
Mixin Layers: An Object-Oriented
Implementation Technique for Refinements
and Collaboration-Based Designs

YANNIS SMARAGDAKIS
Georgia Institute of Technology
and
DON BATORY
The University of Texas at Austin

A “refinement” is a functionality addition to a software project that can affect multiple dispersed
implementation entities (functions, classes, etc.). In this paper, we examine large-scale refinements
in terms of a fundamental object-oriented technique called collaboration-based design. We explain
how collaborations can be expressed in existing programming languages or can be supported with
new language constructs (which we have implemented as extensions to the Java language). We
present a specific expression of large-scale refinements called mixin layers, and demonstrate how
it overcomes the scalability difficulties that plagued prior work. We also show how we used mixin
layers as the primary implementation technique for building an extensible Java compiler, JTS.

Categories and Subject Descriptors: D.2.11 [Software Engineering]: Software Architectures;
D.2.13 [Software Engineering]: Reusable Software; D.1.5 [Programming Techniques]: Object-
Oriented Programming; D.3.3 [Programming Languages]: Language Constructs and Features

General Terms: Design, Languages

Additional Key Words and Phrases: Collaboration-based design, component-based software,
product-line architectures

1. INTRODUCTION

The history of software design and programming languages intimately evolves
around the concept of modularity. Modules encapsulate primitive functionality
or services that, ideally, can be reused in the construction of many applications.
The granularity of modules has evolved from small to medium scale, and now to
large-scale—from functions, to abstract data types or classes (i.e., suites of in-
terrelated functions), and now, more commonly, to components or packages (i.e.,

The authors gratefully acknowledge funding by the University of Texas Applied Research Labs and
the U.S. Department of Defense Advanced Research Projects Agency in cooperation with the U.S.
Wright Laboratory Avionics Directorate under contract F33615-91C-1788.
Authors’ addresses: Yannis Smaragdakis, College of Computing, Georgia Tech, Atlanta, GA 30332;
Don Batory, Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on
servers, or to redistribute to lists requires prior specific permission and/or a fee.
C© 2002 ACM 1049-331X/02/0400–0215 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002, Pages 215–255.

216 • Y. Smaragdakis and D. Batory

suites of interrelated classes). The benefit of increased module scale is that of
economics—applications are easier to build from fewer and larger parts—and
design simplicity—applications are easier to comprehend when modules encap-
sulate, and thus hide, irrelevant implementation details.

The benefits of scaled modularity, however, are driven by reuse. The more a
module is reused, the more valuable it becomes. But there is an ironic twist: the
larger the module, the more specific its use and functionality, and this, in turn,
reduces the likelihood that other applications will need its exact capabilities.
In other words, it seems that reuse opportunities become fewer as a module
becomes larger: scaling modularity seems to defeat the purpose of reuse, and
this is exactly the opposite of what we want [Biggerstaff 1994].

The solution to this problem lies in a very different concept of modularity,
where neither entire functions, entire classes, nor entire packages are the an-
swer. Instead, the unit of modularity that we seek, encapsulates fragments of
multiple classes, which in turn encapsulate fragments of multiple functions. An
extensive body of research has shown that such units are indeed the reusable
building blocks of large-scale modules; composing sets of class fragments yields
a package of fully-formed classes. This recognition has become particularly
clear in the area of software product-lines, where the goal is to construct large
families of related applications from primitive and reusable components. The
components that made this possible encapsulated fragments of classes.

We use the term refinement (also in [Batory and Geraci 1997]) for any such
unit of functionality in a software system. A refinement is a functionality addi-
tion to a program, which introduces a conceptually new service, capability, or
feature, and may affect multiple implementation entities. Various researchers
have offered different descriptions, implementations, and names to fairly
analogous concepts over the years: layers [Batory et al. 1988], collaborations
[Reenskaug et al. 1992], subjects [Ossher and Harrison 1992; Tarr et al. 1999]
and aspects [Kiczales et al. 1997]. Parnas’s [1979] classic work has offered
much of the software engineering context for these approaches.1

We believe that scalability is a prominent characteristic of successful re-
finement technologies. Implementing microscopic refinements (i.e., refinements
that dealt with code fragments at the expression level) has not produced great
software engineering advances in the past, and is unlikely to do so in the fu-
ture. The novelty of current research strikes at the core problem—that of scal-
ing the unit of refinement from a microscopic to a large scale where a single

1The definition of “refinement” that seems closest to our intended meaning is “the act of making
improvement by introducing subtleties or distinctions” (Merriam-Webster’s Dictionary). Formal
approaches to programming use the term “refinement” to denote the elaboration of a program by
adding more implementation detail until a fully concrete implementation is reached. The set of
behaviors (i.e., the legal variable assignments) of a “refined” program is a subset of the behaviors
of the original “unrefined” program. This appears to be different from our use of the term. Our
“refinements” follow the dictionary definition by adding “subtleties or distinctions” at the design
level. At the implementation level, however, a refinement can yield dramatic changes: both the ex-
ported functionality (semantics of operations) and the exported interface (signatures of operations)
may change. Thus, unlike the use of “refinement” in formal approaches to programming, the set of
allowed behaviors of our “refined” program might not be a subset of the behaviors of the “unrefined”
program.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 217

refinement alters multiple classes of an application. A large-scale refinement
exhibits “cross-cutting”—multiple classes must be updated simultaneously and
consistently. Thus, composing a few large scale refinements yields an entire ap-
plication. This means that the inverse relationship between module size, and
reusability, which has crippled conventional concepts, no longer applies, and a
fresh look at software modularity has become a topic of wide-spread interest.

This paper is about modular implementations of large-scale refinements,
and the development of families of related applications through refinement.
In particular, we show that a fundamental object-oriented concept, called
collaboration-based designs, is in fact how large-scale refinements are ex-
pressed in object-oriented models. We begin by explaining the core ideas of
collaboration-based design, and how they are related to large-scale refinements.
We then show how these ideas can be expressed in existing programming
languages, or supported with new language constructs (which we have imple-
mented as extensions of the Java language). We introduce a specific expression
of large-scale refinements called mixin layers, and demonstrate how it extends
and overcomes problems of prior work on the refinement-based designs of
VanHilst and Notkin [1996a, 1996b, 1996c, 1997] and application frameworks
[Johnson and Foote 1988]. Mixin layers implementations are discussed, but we
intend to convince the reader that one should implement programs using mixin
layers, not that one is merely able to do so. Although better implementations
than the ones we propose may be possible, or languages other than the ones we
examine may offer more complete support for mixin layers, this would not alter
our main argument, which is that application development through mixin
layers is desirable. As a practical validation, we show how we used mixin layers
as the primary implementation technique in a medium-size project: the JTS
tool suite for implementing domain-specific languages. Our experience shows
that the mechanism is versatile and can handle refinements of substantial size.

2. BACKGROUND: COLLABORATION BASED DESIGNS

Collaboration-based, or role-based, designs have been the subject of many pa-
pers [Cunningham and Beck 1989; Helm et al. 1990; Holland 1992; Reenskaug
et al. 1992; VanHilst and Notkin 1996b]. The concept may have originated
with Reenskaug, et al. [1992], but the ideas have been used in various forms,
often without being named (e.g., [Batory et al. 1988]). A good introduction to
collaboration-based design can be found in the presentation of the OORAM
approach [Reenskaug et al. 1992] A detailed treatment of collaboration-based
designs, together with a discussion of how to derive them from use-case scenar-
ios [Rumbaugh 1994] can be found in VanHilst’s [1997] Ph.D. dissertation.

2.1 Collaborations and Roles

In an object-oriented design, objects are encapsulated entities, but are rarely
self-sufficient. Although an object is fully responsible for maintaining the data
it encapsulates, it needs to cooperate with other objects to complete a task. An
interesting way to encode object interdependencies is through collaborations. A
collaboration is a set of objects, and a protocol (i.e., a set of allowed behaviors)

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

218 • Y. Smaragdakis and D. Batory

Fig. 1. Example collaboration decomposition. Ovals represent collaborations; rectangles represent
objects; their intersections represent roles.

that determines how these objects interact. The part of an object that enforces
the protocol that a collaboration prescribes, is called the object’s role in the
collaboration. Objects of an application generally participate in multiple col-
laborations simultaneously, and thus may encode several distinct roles. Each
collaboration, in turn, is a collection of roles, and represents relationships across
corresponding objects. A role isolates the part of an object that is relevant to
a collaboration, from the rest of the object. Different objects can participate in
a collaboration, as long as they support the required roles.

In collaboration-based design, the objective is to express an application as a
composition of largely independently-definable collaborations. Viewed in terms
of design modularity, collaboration-based design acknowledges that a unit of
functionality (module), is neither a whole object nor a part of it, but can cross-cut
several different objects. If a collaboration is reasonably independent of other
collaborations (i.e., a good approximation of an ideal module), the benefits are
great. First, the collaboration can be reused in a variety of circumstances where
the same functionality is needed, by just mapping its roles to the right objects.
Second, any changes in the encapsulated functionality will only affect the col-
laboration, and will not propagate throughout the whole application.

In abstract terms, a collaboration is a view of an object-oriented design from
the perspective of a single concern, service, or feature. For instance, a collab-
oration can be used to express a producer-consumer relationship between two
communicating objects. Clearly, this collaboration prescribes roles for (at least)
two objects and there is a well-defined “protocol” for their interactions. Interest-
ingly, the same collaboration could be instantiated more than once in a single
object-oriented design, with the same objects playing different roles in every
instantiation. In the example of the producer-consumer collaboration, a single
object could be both a producer (from the perspective of one collaboration) and
a consumer (from the perspective of another).

Figure 1 depicts the overlay of objects and collaborations in an abstract appli-
cation involving three different objects (OA, OB, OC), each supporting multiple
roles. Object OB, for example, encapsulates four distinct roles: B1, B2, B3, and
B4. Four different collaborations (c1, c2, c3, c4) capture distinct aspects of the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 219

application’s functionality. Each collaboration prescribes roles to certain ob-
jects. For example, collaboration c2 contains two distinct roles, A2 and B2, which
are assumed by distinct objects (namely OA and OB). An object does not need
to play a role in every collaboration—for instance, c2 does not affect object OC.

Collaborations can be composed dynamically at application run-time, or stat-
ically at application compile-time. In this paper, we examine the static compo-
sition of collaborations, where roles that are played by an object are uniquely
determined by its class. For instance, in Figure 1, all three objects must be-
long to different classes (since they all support different sets of roles). The
work described in this paper can be generalized to dynamic compositions of
collaborations.

From a broader perspective, a collaboration is a large-scale refinement.
Again, a refinement elaborates a program to extend its functionality or to
add implementation details. A refinement is large scale if it modifies multiple
classes of an application. For example, when collaboration c4 is (statically)
added to the program of Figure 1, the classes for objects OA, OB, and OC are
updated consistently and simultaneously, so that the “feature” or “service” de-
fined by c4 is appropriately implemented. Thus, composing collaborations is an
example of refinement, where a simple program is progressively elaborated into
a more complex one. Collaborations are large-scale and reusable refinements—
they can be used in the construction of many programs.

2.2 An Example

As a running example that illustrates important points of our discussion, we
consider a graph traversal application that was initially examined by Holland
[1992], and subsequently by VanHilst and Notkin [1996b]. This affords a his-
torical perspective on the development of collaboration-based designs, and a
perspective on the contribution of this work. The application defines three dif-
ferent operations (algorithms) on an undirected graph, all based on depth-first
traversal: Vertex Numbering numbers all nodes in the graph in depth-first order,
Cycle Checking examines whether the graph is cyclic, and Connected Regions
classifies graph nodes into connected graph regions. A client of this applica-
tion can instantiate a graph and separately invoke algorithms that perform
vertex numbering, cycle checking, and/or find connected regions on a graph.
The application itself has three distinct classes: Graph, Vertex, and Workspace.
The Graph class describes a container of nodes with the usual graph properties.
Each node is an instance of the Vertex class. Finally, the Workspace class includes
the application part that is specific to each graph operation. For example, the
Workspace object for a Vertex Numbering operation holds the value of the last
number assigned to a vertex as well as the methods used to update this number.

In decomposing this application into collaborations, we need to capture dis-
tinct aspects as separate collaborations. A decomposition of this kind is straight-
forward and results in five distinct collaborations.

One collaboration (Undirected Graph) encapsulates properties of an undi-
rected graph. This is clearly an independent aspect of the application—the
problem could very well be defined for directed graphs, for trees, and so on.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

220 • Y. Smaragdakis and D. Batory

Fig. 2. Collaboration decomposition of the example application domain: A depth-first traversal
of an undirected graph is specialized to yield three different graph operations. Ovals represent
collaborations, rectangles represent classes.

Another collaboration (Depth First Traversal) encapsulates the specifics of
depth-first traversals and provides a clean interface for extending traversals.
That is, at appropriate moments during a traversal (the first time a node is vis-
ited, when an edge is followed, and when a subtree rooted at a node is completely
processed) control is transferred to specialization methods that can obtain infor-
mation from the traversal collaboration, and supply information to it. Consider
the Vertex Numbering operation as a refinement of a depth-first traversal. Num-
bering is realized by specializing the action when visiting a node for the first
time during a traversal. The action assigns a number to the node and increases
the count of visited nodes.

Using this approach, each of the three graph operations can be seen as a
refinement of a depth-first traversal, and each can be expressed by a single
collaboration. Figure 2 is reproduced from VanHilst and Notkin [1996b] and
presents the collaborations and classes of our example application domain. The
intersection of a class and a collaboration in Figure 2 represents the role pre-
scribed for that class by the collaboration. A role encodes the part of an object
that is specific to a collaboration. For instance, the role of a Graph object in
the “Undirected Graph” collaboration supports storing and retrieving a set of
vertices. The role of the same object in the “Depth First Traversal” collabora-
tion implements a part of the depth-first traversal algorithm. (In particular, it
contains a method that initially marks all vertices of a graph not-visited and
then calls the method for depth-first traversal on each graph vertex object.)

The goal of a collaboration-based design is to encapsulate within a collabora-
tion, all dependencies between classes that are specific to a particular service
or feature. In this way, collaborations themselves have no outside dependen-
cies and can be reused in a variety of circumstances. The “Undirected Graph”
collaboration, for instance, encodes the properties of an undirected graph (per-
taining to the Graph and Vertex classes, as well as the interactions between
objects of the two). Thus, it can be reused in any application that deals with

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 221

undirected graphs. Ideally, if we could define an “interface” to a collaboration,
we should also be able to easily replace one collaboration with another that
exports the same interface. For instance, it would be straightforward to replace
the “Undirected Graph” collaboration with one representing a directed graph,
assuming that both collaborations exported the same interface.

Of course, simple interface conformance does not guarantee composition
correctness—the application writer must ensure that the algorithms used (for
example, the depth-first traversal) are still applicable after the change. The
algorithms presented by Holland [1992] for this example are general enough to
be applicable to a directed graph. If, however, a more efficient, specialized-for-
undirected-graphs algorithm were used (as is, for instance, possible for the Cycle
Checking operation) the change would yield incorrect results. Smaragdakis
[1999], Smaragdakis and Batory [1998], and Batory and Geraci [1997] discuss,
in detail, the issue of ensuring that collaborations are actually interchangeable.

Although we have focussed on a single application that supports all three
graph operations, it is easy to see how variants of this application could be cre-
ated (e.g., by omitting or adding operations), where each variant would be de-
scribed by the use of different collaborations. This very fact makes collaboration-
based designs ideal for describing product-line architectures, that is, designs
for families of related applications. As we will see, collaborations define the
building blocks for application families; compositions of these building blocks
yield different product-line members.

3. IMPLEMENTING COLLABORATION-BASED
DESIGNS WITH MIXIN LAYERS

3.1 Mixin Classes and Mixin Layers

A refinement of an object-oriented class is encapsulated by a subclass—a sub-
class can add new methods and data members, as well as override existing
methods of its superclass. Thus, inheritance is a built-in mechanism for stat-
ically refining classes in object-oriented languages. The challenge is to scale
inheritance from refining individual classes to expressing the large-scale re-
finements of collaboration-based designs.

A solution is to build on an existing object-oriented construct called a mixin.
Mixins are similar to classes but with some added flexibility. Unfortunately,
mixins alone are not sufficient to express large-scale refinements—they suffer
from being able to refine only a single class at a time, not a collection of coop-
erating classes. To address this, we introduce mixin-layers: a scaled-up form of
mixins that can contain multiple smaller mixins.

3.1.1 Introduction to Mixins. The term mixin class (or just “mixin”) has
been overloaded to mean several specific programming techniques and a gen-
eral mechanism that they all approximate. Mixins were originally explored in
the context of the Lisp language with object-systems like Flavors [Moon 1986]
and CLOS [Kiczales et al. 1991]. They were defined as classes that allow their
superclass to be determined by linearization of multiple inheritance. In C++,
the term has been used to describe classes in a particular (multiple) inheritance

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

222 • Y. Smaragdakis and D. Batory

arrangement: as superclasses of a single class that themselves have a common
virtual base class (see Stroustrup [1997], p. 402). Both of these mechanisms
are approximations of a general concept described by Bracha and Cook [1990].
Here we use “mixin” in this general sense.

The main idea of mixins is simple: in object-oriented languages, a super-
class can be defined without specifying its subclasses. This property is not,
however, symmetric: when a subclass is defined, it must have a specific super-
class. Mixins (also commonly known as abstract subclasses [Bracha and Cook
1990]) represent a mechanism for specifying classes that eventually inherit
from a superclass. This superclass, however, is not specified at the site of the
mixin’s definition. Thus a single mixin can be instantiated with different super-
classes yielding widely varying classes. This property makes them appropriate
for defining uniform incremental extensions for a multitude of classes. When
a mixin is instantiated with one of these classes as a superclass, it produces a
class incremented with the additional behavior.

Mixins can be implemented using parameterized inheritance (a class whose
superclass is specified by a parameter). Using C++ syntax we can write a
mixin as:

template <class Super> class Mixin : public Super {
... /* mixin body */

};

Mixins are flexible and can be applied in many circumstances without modi-
fication. To give an example, consider a mixin implementing operation counting
for a graph. Operation counting means keeping track of how many nodes and
edges have been visited during the execution of a graph algorithm. (This simple
example is one of the non-algorithmic refinements to algorithm functionality
discussed in Weihe [1997].) This mixin could have the form:2

template <class Graph> class Counting: public Graph {
int nodes_visited, edges_visited;

public:
Counting() : Graph() { nodes_visited = edges_visited = 0; }

node succ_node (node v) {
nodes_visited++;
return Graph::succ_node(v);

}

edge succ_edge (edge e) {
edges_visited++;
return Graph::succ_edge(e);

}

2We use C++ syntax for most of the examples of this section, in the belief that concrete syntax
clarifies, rather than obscures, our ideas. To facilitate readers with limited C++ expertise, we
avoid several cryptic idioms or shorthands (for instance, constructor initializer lists are replaced
by assignments, we do not use the “struct” keyword to declare classes, etc.).

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 223

// example method that displays the cost of an algorithm in
// terms of nodes visited and edges traversed
void report_cost () {

cout << "The algorithm visited " << nodes_visited <<
" nodes and traversed " << edges_visited <<
" edges\n";

}
... // other methods using this information may exist

};

By expressing operation counting as a mixin, we ensure that it is applicable
to many classes that have the same interface (i.e., many different kinds of
graphs). The implicit assumption is that classes, like Dgraph and Ugraph, have
been designed so that they export similar interfaces. By standardizing certain
aspects of the design, like the method interfaces for different kinds of graphs, we
gain the ability to create mixin classes that can be reused in different occasions.3

We can, for instance, use two different compositions:

typedef Counting < Ugraph > CountedUgraph;

and

typedef Counting < Dgraph > CountedDgraph;

to define a counted undirected graph type and a counted directed graph type.
(We omit parameters to the graph classes for simplicity.) Note that the behavior
of the composition is exactly what one would expect: any methods not affect-
ing the counting process are exported (inherited from the graph classes). The
methods that do need to increase the counts are “wrapped” in the mixin.

3.1.2 Mixin Layers. To implement entire collaborations as components,
we need to use mixins that encapsulate other mixins. We call the encapsu-
lated mixin classes inner mixins, and the mixin that encapsulates them the
outer mixin. Inner mixins can be inherited, just as any member variables or
methods of a class. An outer mixin is called a mixin layer when the parameter
(superclass) of the outer mixin encapsulates all parameters (superclasses)
of inner mixins.4 This is illustrated in Figure 3. ThisMixinLayer is a mixin
that refines (through inheritance) SuperMixinLayer. SuperMixinLayer encapsu-
lates three classes: FirstClass, SecondClass, and ThirdClass. ThisMixinLayer
also encapsulates three inner classes. Two of them are mixins that refine
the corresponding classes of SuperMixinLayer, while the third is an entirely
new class.

3Stated another way, a mixin defines a refinement of a class, but this refinement is not meaningful
for every possible class. Standardized interfaces is a way to type or restrict the set of classes that
a mixin can meaningfully refine. C++ syntax, in this regard, is unsatisfactory because C++ tem-
plates have untyped parameters. Languages like Pizza [Odersky and Wadler 1997] or GJ [Bracha
et al. 1998] offer a better mechanism, where class parameters are typed by the interfaces that they
implement. Unfortunately, Pizza and GJ do not support parameterized inheritance.
4Inner mixins can themselves be mixin layers.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

224 • Y. Smaragdakis and D. Batory

Fig. 3. Mixin layers schematically.

Inheritance works at two different levels. First, a layer can inherit inner
classes from the layer above it (for instance, ThirdClass in Figure 3). Second,
the inner mixins inherit member variables, methods, or other classes from their
superclass.

3.1.3 Mixin Layers in Various OO Languages. The mixin layer concept
is quite general and is not tied to any particular language idiom. Many
flavors of the concept, however, can be expressed via specific programming lan-
guage idioms: as stand-alone language constructs, as a combination of C++
nested classes and parameterized inheritance, as a combination of CLOS class-
metaobjects and mixins, and so on. We next examine some of these different
realizations. The introduction of technical detail is necessary at this point, as it
helps us demonstrate concretely, in Section 3.2 , the advantages of mixin layers
for implementing collaboration-based designs.

C++. We would like to support mixin layers in C++, using the same lan-
guage mechanisms as those used for mixin classes. To do this, we can standard-
ize the names used for inner class implementations (make them the same for
all layers). This yields an elegant form of mixin layers that can be expressed
using common C++ features. For instance, using C++ parameterized inheri-
tance and nested classes, we can express ThisMixinLayer as a mixin layer (see
again Figure 3) with two inner mixins (FirstClass and SecondClass) and one
additional class (FourthClass):

template <class LayerSuper>
class ThisMixinLayer: public LayerSuper {
public:

class FirstClass : public LayerSuper::FirstClass { ... };
class SecondClass : public LayerSuper::SecondClass { ... };
class FourthClass { ... };
...

};

The above code fragment represents the form of mixin layers that we use in
the examples of this section. Note that specifying a parameter for the outermost
mixin automatically determines the parameters of all inner mixins. Composing

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 225

mixin layers to form concrete classes is now as simple as composing mixin
classes. If we have four mixin layers (Layer1, Layer2, Layer3, Layer4), we can
compose them as:

Layer4 < Layer3 < Layer2 < Layer1 > > >

where “<...>” is the C++ operator for template instantiation. Note that Layer1
has to be a concrete class (i.e., not a mixin class). Alternatively we can have
a class with empty inner classes that is the root of all compositions. (A third
alternative is to use a fixpoint construction and instantiate the topmost layer
with the result of the entire composition. This pattern has several desirable
properties and is analyzed further in Chapter 3 of Smaragdakis [1999].)

In the above code fragment, we mapped the main elements of the mixin
layer definition to specific implementation techniques. We used nested classes
to implement class encapsulation. We also used parameterized inheritance to
implement mixins. However, there are very different ways of encoding the same
concept in other languages.

CLOS (and other reflective languages). We can encode mixin layers in
CLOS [Kiczales et al. 1991] (and other reflective systems) by simulating their
main elements using reflection (classes as first-class entities). Because of lack
of space, we elide the implementation specifics. A discussion can be found in
Smaragdakis and Batory [1998] and Smaragdakis [1999]. CLOS mixin layers
are not semantically equivalent to C++ mixin layers (for instance, there is no
default class data hiding: class members are by default accessible from other
code in CLOS). Nevertheless, the two versions of mixin layers are just different
flavors of the same idea.

Our ideas are applicable to other reflective languages. Smalltalk, in particu-
lar, has been a traditional test-bed for mixins, both for researchers (e.g., Bracha
and Griswold [1996], Mezini [1997], and Steyaert et al. [1993]) and for prac-
titioners [Montlick 1996]. A straightforward (but awkward) way to implement
mixins in Smalltalk is as class-functors; that is, mixins can be functions that
take a superclass as a parameter and return a new subclass.

Java. The Java language is an obvious next candidate for mixin layers.
Java has no support for mixins and it is unlikely that the core language will
include mixins in the near future. As will be described in Section 4, we extended
the Java language with constructs that capture mixins and mixin layers explic-
itly. In this effort we used our JTS set of tools [Batory et al. 1998] for creating
compilers for domain-specific languages. The system supports mixins and mixin
layers through parameterized inheritance and class nesting, in much the same
way as in C++.5 Additionally, the fundamental building blocks of JTS itself
were expressed as mixin layers, resulting in an elegant bootstrapped imple-
mentation. More on JTS in Section 4.

5The Java 1.1 additions to the language [Sun Microsystems 1997] support nested classes and
interfaces (actually both “nested” classes as in C++ and member classes—where nesting has access
control implications). Nested classes can be inherited just as any other members of a class.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

226 • Y. Smaragdakis and D. Batory

Adding mixins to Java is also the topic of other active research [Agesen et al.
1997; Flatt et al. 1998] (although such work is almost certain to remain in the
research domain). The work of Flatt et al. [1998] presented a semantics for
mixins in Java. This is particularly interesting from a theoretical standpoint,
since it addresses issues of mixin integration in a type-safe framework. As we
saw, mixins can be expressed in C++ using parameterized inheritance. There
have been several recent proposals for adding parameterization/genericity to
Java [Agesen et al. 1997; Odersky and Wadler 1997; Bracha et al. 1998; Myers
et al. 1997; Thorup 1997], but only Agesen et al. [1997] supports parameterized
inheritance and, hence, can express mixin layers.

It is interesting to examine the technical issues involved in supporting mix-
ins in Java genericity mechanisms. Three of these mechanisms [Odersky and
Wadler 1997; Bracha et al. 1998; Thorup 1997] are based on a homogeneous
model of transformation: the same code is used for different instantiations of
generics. This is not applicable in the case of parameterized inheritance—
different instantiations of mixins are not subclasses of the same class (see
[Agesen et al. 1997] for more details). There may also be conceptual difficul-
ties in adding parameterized inheritance capabilities the genericity approach
of [Thorup 1997] is based on virtual types. Parameterized inheritance can be
approximated with virtual types by employing virtual superclasses [Madsen
and Møller-Pedersen 1989], but this is not part of the design of Thorup [1997].

The approaches of Myers et al. [1997] and Agesen et al. [1997] are concep-
tually similar from a language design standpoint. Even though parameterized
implementations do not directly correspond to types in the language (in the
terminology of Cardelli and Wegner [1985] they correspond to type operators),
parameters can be explicitly constrained. This approach, combined with a het-
erogeneous model of transformation (i.e., one where different instantiations of
generics yield separate entities) is easily amenable to adding parameterized
inheritance capabilities, as was demonstrated in Agesen et al. [1997].

3.2 Implementing Collaboration-Based Designs

Given the mixin layer concept, we can now express collaboration-based designs
directly at the implementation level. We show how mixin layers can be used to
perform the task and examine how it compares to two previous approaches. One
is the straightforward implementation technique of application frameworks
using just objects and inheritance. The other is the technique of VanHilst and
Notkin that employs C++ mixins to express individual roles.

3.2.1 Using Mixin Layers. A collaboration can be expressed by a mixin
layer. The roles played by different objects are expressed as nested classes
inside the mixin layer. The general pattern is:

template <class CollabSuper>
class CollabThis : public CollabSuper {
public:

class FirstRole : public CollabSuper::FirstRole { ... };
class SecondRole : public CollabSuper::SecondRole { ... };

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 227

class ThirdRole : public CollabSuper::ThirdRole { ... };
... // more roles

};

Again, mixin layers are composed by instantiating one layer with another as
its parameter. This produces two classes that are linked as a parent-child pair
in the inheritance hierarchy. For four mixin layers, Collab1, Collab2, Collab3,
FinalCollab of the above form, we can define a class T that expresses the final
product of the composition as:

typedef Collab1 < Collab2 < Collab3 < FinalCollab > > > T ;

or (alternatively):

class T : public Collab1 < Collab2 < Collab3 < FinalCollab > > >
{ /* empty body */ };

In this paper, we consider these two forms to be equivalent.6

The individual classes that the original design describes are members (nested
classes) of the above components. Thus, T::FirstRole defines the application
class FirstRole, etc. Note that classes that do not participate in a certain col-
laboration can be inherited from collaborations above (we subsequently use the
term “collaboration” for the mixin layer representing a collaboration when no
confusion can result). Thus, class T::FirstRole is defined even if Collab1 (the
bottom-most mixin layer in the inheritance hierarchy) prescribes no role for it.

Example. Consider the graph traversal application of Section 2.2. Each
collaboration is represented as a mixin layer. Vertex Numbering, for example,
prescribes roles for objects of two different classes: Vertex and Workspace. Its
implementation has the form:

template <class CollabSuper>
class NUMBER : public CollabSuper {
public:

class Workspace : public CollabSuper::Workspace {
... // Workspace role methods
};

class Vertex : public CollabSuper::Vertex {
... // Vertex role methods
};

};

Note how the actual application classes are nested inside the mixin layer.
For instance, the roles for the Vertex and Workspace classes of Figure 1 corre-
spond to NUMBER::Vertex and NUMBER::Workspace, respectively. Since roles are
encapsulated, there is no possibility of name conflict. Moreover, we rely on the

6There are differences, but these are a consequence of C++ policies and are not important for
our discussion (they are discussed together with other C++ specific issues in Smaragdakis [1999],
Chapter 3).

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

228 • Y. Smaragdakis and D. Batory

standardization of role names. In this example the names Workspace, Vertex,
and Graph are used for roles in all collaborations. Note how this is used in the
above code fragment: Any class generated by this template defines roles that
inherit from classes Workspace and Vertex in its superclass (CollabSuper).

Other collaborations of our Section 2.2 design are similarly represented
as mixin layers. Thus, we have a DFT and a UGRAPH component that capture
the Depth-First Traversal and Undirected Graph collaborations respectively.
For instance, methods in the Vertex class of the DFT mixin layer include
visitDepthFirst and isVisited (with implementations as suggested by their
names). Similarly, methods in the Vertex class of UGRAPH include addNeighbor,
firstNeighbor, and nextNeighbor, essentially implementing a graph as an
adjacency list.

To implement default work methods for the depth-first traversal, we use
an extra mixin layer, called DEFAULTW. The DEFAULTW mixin layer provides the
methods for the Graph and Vertex classes that can be overridden by any graph
algorithm (e.g., Vertex Numbering) used in a composition.

template <class CollabSuper>
class DEFAULTW : public CollabSuper {
public:

class Vertex : public CollabSuper::Vertex {
protected:

bool workIsDone(CollabSuper::Workspace*) {return 0;}
void preWork(CollabSuper::Workspace*) {}
void postWork(CollabSuper::Workspace*) {}
void edgeWork(Vertex*, CollabSuper::Workspace*) {}

};

class Graph : public CollabSuper::Graph {
protected:

void regionWork(Vertex*, CollabSuper::Workspace*) {}
void initWork(CollabSuper::Workspace*) {}
bool finishWork(CollabSuper::Workspace*) {return 0;}

};
};

The introduction of DEFAULTW (as a component separate from DFT) is an im-
plementation detail, borrowed from the VanHilst and Notkin [1996b] imple-
mentation of this example. Its purpose is to avoid dynamic binding, and enable
multiple algorithms to be composed as separate refinements of more than one
DFT component. This topic is discussed in detail as part of the comparison of
mixin layers and application frameworks (Section 3.2.2).

With the collaboration entities of the original design represented as distinct
mixin layers, it is easy to produce an entire application by composing collabora-
tions. In fact, the mixin layers defined, can be used to implement a product-line:
a family of related applications. Different compositions of layers yield differ-
ent products (members) of the family. In our example, the building blocks are
the Undirected Graph, Depth First traversal, etc. collaborations. We show the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 229

Fig. 4. A composition implementing the vertex numbering operation.

Fig. 5. Mixin-layers (ovals) and role-members (rectangles inside ovals) in the composition. Every
component inherits from the one above it. Shaded role-members are those contained in the collab-
oration, unshaded are inherited. Arrows show inheritance relationships drawn from subclass to
superclass.

collaborations that are composed to build the vertex numbering graph applica-
tion in Figure 4. We will soon explain what this composition means, but first let
us see how the different classes are related. The final implementation classes
are members of the product of the composition, NumberC (e.g., NumberC::Graph
is the concrete graph class). Figure 5 shows the mixin layers and their member
classes, which represent roles, as they are actually composed. Each component
inherits from the one above it. That is, DFT inherits role-members from NUMBER,
which inherits from DEFAULTW, which inherits from UGRAPH. At the same time,
DFT::Graph inherits methods and variables from NUMBER::Graph, which inherits
from DEFAULTW::Graph, which inherits from UGRAPH::Graph. This double level
of inheritance is what makes the mixin-layer approach so powerful. For in-
stance, even though NUMBER does not specify a Graph member, it inherits one
from DEFAULTW. The simplicity that this design affords becomes apparent in the
following sections, when we compare it with alternatives.

The interpretation of the composition in Figure 4 is straightforward. It ex-
presses the development of a vertex numbering application as a series of refine-
ments. One begins with the UGRAPH mixin layer that implements an undirected
graph. Next, default classes and methods that are common to all graph traver-
sal algorithms are added by the mixin layer DEFAULTW. Then the algorithms
and data members that are specific for vertex numbering are introduced by
the NUMBER mixin layer. These algorithms, by themselves, are insufficient for
performing vertex numbering because they rely on graph search algorithms
which have yet to be added. Finally, the graph search algorithms—in this case,
depth first search—are grafted on by the DFT mixin layer, thereby completing
the specification and implementation of this application.

Thus, every mixin layer except UGRAPH is implemented in terms of the
ones above it. For instance, DFT is implemented in terms of methods supplied

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

230 • Y. Smaragdakis and D. Batory

by NUMBER, DEFAULTW, and UGRAPH. An actual code fragment from the visit-
DepthFirst method implementation in DFT::Vertex is the following:

for (v = (Vertex*)firstNeighbor(); v != NULL;
v = (Vertex*)nextNeighbor())

{
edgeWork(v, workspace);
v->visitDepthFirst(workspace);

}

The firstNeighbor, nextNeighbor, and edgeWork methods are not imple-
mented by the DFT component. Instead, they are inherited from components
above it in the composition. firstNeighbor and nextNeighbor are implemented
in the UGRAPH component (as they encode the iteration over nodes of a graph).
edgeWork is a traversal refinement and (in this case) is implemented by the
NUMBER component.

We can now see how mixin layers are both reusable and interchangeable. The
DFT component of Figures 4 and 5 is oblivious to the implementations of methods
in components above it. Instead, DFT only knows the interface of the methods it
expects from its parent. Thus, the code above represents a skeleton expressed
in terms of abstract operations firstNeighbor, nextNeighbor, and edgeWork.
Changing the implementation of these operations merely requires the swapping
of mixin layers. For instance, we can create an application (CycleC) that checks
for cycles in a graph by replacing the NUMBER component with CYCLE:

typedef DFT < CYCLE < DEFAULTW < UGRAPH > > > CycleC;

The results of compositions (CycleC above and NumberC in Figure 4) can be
used by a client program as follows: First, an instance of the nested Graph class
(NumberC::Graph or CycleC::Graph) needs to be created. Then, Vertex objects
are added and connected in the graph (the Graph role in mixin-layer UGRAPH
defines methods addVertex and addEdge for this purpose). After the creation of
the graph is complete, calling method depthFirst on it, executes the appropriate
graph algorithm.

Mixin layers are the building blocks of a graph application product-line. Each
mixin layer is a reusable component and different members (i.e., products) of the
family can be created by using different compositions of mixin layers. Note that
no direct editing of the component is necessary and multiple copies of the same
component can co-exist in the same composition. For instance, we could combine
two graph algorithms by using two instances of the DFT mixin layer (in the same
inheritance hierarchy), refined to perform a different operation each time:

class NumberC : public DFT < NUMBER < DEFAULTW < UGRAPH > > > {};
class CycleC : public DFT < CYCLE < NumberC > > {};

Both algorithms can be invoked, depending on whether we access the depth-
first traversal through a NumberC or a CycleC reference:

CycleC::Graph *graph_c = new CycleC::Graph();
NumberC::Graph *graph_n = graph_c;

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 231

Now a call to graph_c->depth_first invokes the cycle checking algorithm,
while a call to graph_n->depth_first calls the vertex numbering algorithm.
(Alternatively, we can qualify method names directly, e.g.,

graph_c->NumberC::Graph::depth_first(...).)

As another example, the design may change to accommodate a different
under-lying model. For instance, operations could now be performed on directed
graphs. The corresponding update (DGRAPH replaces UGRAPH) to the composition
is straight-forward (assuming that the algorithms are still valid for directed
graphs as is the case with Holland’s [1992] original implementation of this
example):

typedef DFT < NUMBER < DEFAULTW < DGRAPH > > > NumberC;

Again, note that the interchangeability property is a result of the indepen-
dence of collaborations.7 A single UGRAPH collaboration completely incorporates
all parts of an application that relate to maintaining an undirected graph
(although these parts span several different classes). The collaboration com-
municates with the rest of the application through a well-defined and usually
narrow interface.

For this and other similar examples, the reusability and interchangeabil-
ity of mixin layers solves the library scalability problem [Batory et al. 1993;
Biggerstaff 1994]: there are n features and often more than n! valid combina-
tions (because composition order matters and feature replication is possible
[Batory and O’Malley 1992]). Hard-coding all different combinations leads to
libraries of exponential size—the addition of a single feature can double the
size of a library. Instead, we would like to have a collection of building blocks,
and compose them appropriately to derive the desired combination. In this way,
the size of the library grows linearly in the number of features it can express
(instead of exponentially, or super-exponentially).

Multiple Collaborations in a Single Design. An interesting question
is whether mixin layers can be used to express collaboration-based designs
where a single collaboration is instantiated more than once, with the same
class playing different roles in each case. The answer is positive, and the de-
sired result can be effected using adaptor mixin layers. Adaptor layers add
no implementation, but adapt a class so that it can play a pre-defined role.
That is, adaptor layers contain classes with empty bodies that are used to
“redirect” the inheritance chain so that predefined classes can play the required
roles.

Consider the case of a producer-consumer collaboration that was briefly dis-
cussed in Section 2.1. Our example is from the domain of compilers. A parser
in a compiler can be viewed as a consumer of tokens produced by a lexi-
cal analyzer. At the same time, however, a parser is a producer of abstract

7By “independence” we mean that collaborations are composable because they conform to a par-
ticular design—all collaborations use Graph, Vertex, and Workspace classes with standardized
methods. Given this standardization, the interchangeability—or independence—of these collabo-
rations is achieved.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

232 • Y. Smaragdakis and D. Batory

syntax trees (consumed, for instance, by an optimizer). We can reuse the same
producer-consumer collaboration to express both of these relationships. The rea-
son for wanting to provide a reusable implementation of the producer-consumer
functionality is that it could be quite complex. For instance, the buffer for
produced-consumed items may be guarded by a semaphore, multiple consumers
could exist, and so on. The mixin layer implementing this collaboration takes
Item as a parameter, describing the type of elements produced or consumed:

template <class CollabSuper, class Item>
class PRODCONS : public CollabSuper {
public:

class Producer : public CollabSuper::Producer {
void produce(Item item) { ... }
// The functionality of producing Items is defined here
... // other Producer role methods

};

class Consumer : public CollabSuper::Consumer {
Item consume() { ... }
// The functionality of consuming Items is defined here
... // other Consumer role methods

};
};

That is, PRODCONS adds the generic “produce” functionality to the Producer
class and adds generic “consumer” functionality to the Consumer class.

Now we can use two simple adaptors to make a single class (Parser) be both
a producer and a consumer in two different collaborations. The first adaptor
(PRODADAPT) expresses the facts that a producer is also going to be a consumer
(the actual consumer functionality is to be added later) and that the Optimizer
class inherits the existing consumer functionality. This adaptor is shown
below:

template <class CollabSuper>
class PRODADAPT : public CollabSuper {
public:

class Consumer : public CollabSuper::Producer {};
class Optimizer : public CollabSuper::Consumer {};
class Producer {};

};

The second adaptor (CONSADAPT) is similar:

template <class CollabSuper>
class CONSADAPT : public CollabSuper {
public:

class Lexer : public CollabSuper::Producer {};
class Parser : public CollabSuper::Consumer {};

};

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 233

Fig. 6. The desired inheritance hierarchy has a Parser inheriting functionality both from a con-
sumer class (a Parser is a consumer of tokens) and a producer class (a Parser is a producer of
trees).

PRODADAPT

PRODCONS

CONSADAPT

COMPILE R

PRODCONS

Tree Producer Tree Consumer

Producer Consumer Optimizer

Token ConsumerToken Producer

Lexer

Lexer Parser

Parser

Optimizer

Fig. 7. By using adaptor layers (dotted rectangles), one can emulate the inheritance hierarchy
of Figure 6, using only pre-defined mixin layers (solid rectangles). Since a single mixin layer
(PRODCONS) is instantiated twice, adaptors help determine which class will play which role every
time.

Now a single composition can contain two copies of the PRODCONS mixin layer,
appropriately adapted. For instance:

typedef COMPILER < CONSADAPT < PRODCONS <
PRODADAPT < PRODCONS < ..., Tree> >, Token > > >

CompilerApp;

In the above, the COMPILERmixin layer is assumed to contain the functionality
of a compiler that defines three classes, Lexer, Parser, and Optimizer. These
classes use the functionality supplied by the producer-consumer mixin layer.
For instance, there may be a parsemethod in COMPILER::Parser that repeatedly
calls the consume and produce methods. To better illustrate the role of adaptors,
Figures 6 and 7 show the desired inheritance hierarchy for this example, as well

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

234 • Y. Smaragdakis and D. Batory

as the way that adaptors are used to enable emulating this hierarchy using only
predefined mixin layers. Note that each of the layers participating in the above
composition appears as a rectangle in Figure 7.

3.2.2 Comparison to Application Frameworks. In object-oriented program-
ming, an abstract class cannot be instantiated (i.e., it cannot be used to create
objects), but is only used to capture the commonalities of other classes. These
classes inherit the common interface and functionality of the abstract class. An
object-oriented application framework (or just framework) consists of a suite of
interrelated abstract classes that embodies an abstract design for software in a
family of related systems [Johnson and Foote 1988]. Each major component of
the system is represented by an abstract class. These classes contain dynam-
ically bound methods (virtual in C++), so that the framework user can add
functionality by creating subclasses and overriding the appropriate methods.
Thus, frameworks have the advantage of allowing reuse at a granularity larger
than a single abstract class. But frameworks have the disadvantage that us-
ing them means manually making the client classes inherit from framework
classes. Thus, the framework classes cannot easily be interchanged (with a dif-
ferent, similar framework) and the client classes cannot be reused in a different
context—they are hard-wired to the framework.

In a white-box framework, users specify system-specific functionality by
adding methods to the framework’s classes. Each method must adhere to the
internal conventions of the classes. Thus, using white-box frameworks is diffi-
cult, because it requires knowledge of their implementation details. In a black-
box framework, the system-specific functionality is provided by a set of classes.
These classes must adhere only to the proper external interface. Thus, using
black-box frameworks is easier, because it does not require knowledge of their
implementation details. Using black-box frameworks is further simplified when
they include a library of pre-written functionality that can be used as-is with
the framework.

Frameworks can be used to implement collaboration-based designs, but the
amount of flexibility and modularity they can afford is far from optimal. The
reason is that frameworks allow the reuse of abstract classes but have no way
of specifying collections of concrete classes that can be used at will (i.e., either
included or not and in any order) to build an application (Batory et al. [2000a]).
Intuitively, frameworks allow reusing the skeleton of an implementation but
not the individual pieces that are built from the skeleton. This can be seen
through a simple combinatorics argument. Consider a set of four features, A,
B, C, and D that can be combined arbitrarily to yield complete applications. For
simplicity, assume that feature A is always first, and that no feature repetition
is allowed. Then a framework may encode feature combination AB, thus allow-
ing the user to program combinations ABCD and ABDC. Nevertheless, these
combinations must be coded separately (i.e., they cannot use any common code
other than their common prefix, AB). The reason is that each instantiation of
the framework creates a separate inheritance hierarchy, and reusing a com-
bination is possible only if one can inherit from one of its (intermediate or
final) classes—only common prefixes are reusable. In our four-feature example,

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 235

combinations that have no common prefix with the framework (for instance,
ACD) simply cannot take advantage of it and have to be coded separately. This
amounts to exponential redundancy for complex domains.

In the general case, assume a simple cost model that assigns one cost unit to
each reimplementation of a feature. If feature order matters, but no repetitions
are possible, the cost of implementing all possible combinations using frame-
works is equal to the number of combinations (each combination of length k
differs by one feature from its prefix of length k − 1). Thus, for n features, the
total cost for implementing all combinations using frameworks is

∑n
k=1

n!
(n−k)! .

(This number is derived by considering the sum of the feature combinations
of length k, for each k from 1 to n.) In contrast, the cost of using mixin layers
for the same implementation is equal to n—each component is implemented
once and can be combined in arbitrarily many ways. With mixin layers, even
compositions with no common prefixes share component implementations.

Even though our combinatorics argument represents an extreme case, it
is reflective of the inflexibility of frameworks. For instance, optional features
are common in practice and frameworks cannot accommodate them, unless all
combinations are explicitly coded by the user. This is true even for domains
where feature composition order does not matter, or features have a specific
order in which they must be used.

Another disadvantage of using frameworks to implement collaboration-
based designs, comes from the use of dynamically bound methods in frame-
works. Even though the dynamic dispatch cost is sometimes negligible, or can
be optimized away, it often imposes a run-time overhead, especially for fine-
grained classes and methods. With mixin layers, this overhead is avoided, as
there is little need for dynamic dispatch. The reason is that mixin layers can be
ordered in a composition, so that most of the method calls are to their parent
layers.

This reveals a general and important difference between mixin-based pro-
gramming and standard object-oriented programming. When a code fragment
in a conventional OO class needs to be generic, it is implemented in terms
of dynamically bound methods. These methods are later overridden in a sub-
class of the original class, thus refining it for a specific purpose. With mixin
classes, the situation is different. A method in a mixin class can define generic
functionality by calling methods in the class’s (yet undefined) superclass. That
is, generic calls for mixins can be both up-calls and down-calls in the inher-
itance hierarchy. Generic up-calls are specialized statically, when the mixin
class’s superclass is set. Generic down-calls provide the standard OO run-time
binding capabilities. Their use can be limited to cases where the exact ver-
sion of the method to be called, is truly not known until run-time. In contrast,
in application frameworks, dynamic binding is often used just for modularity
reasons (calling functionality without yet having defined it) even if the target
ends up being known statically. This can be eliminated in a mixin-based ap-
proach because we are allowed to add functionality to a mixin class’s super-
class. Refinement of existing functionality is not just a top-down process but
involves composing mixins arbitrarily, often with many different orders being
meaningful.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

236 • Y. Smaragdakis and D. Batory

Example. We illustrate the above points with the graph algorithm exam-
ple of Section 2.2. The original implementation of this application [Holland
1992] used a black-box application framework on which the three graph algo-
rithms were implemented. The framework consists of the implementations of
the Graph, Vertex, and Workspace classes for the Undirected Graph and Depth
First Traversal collaborations. The classes implementing the depth-first traver-
sal have methods like preWork, postWork, edgeWork, etc., which are declared to
be dynamically bound (virtual in C++). In this way, any classes inheriting
from the framework classes can refine the traversal functionality by redefining
the operation to be performed the first time a node is visited, when an edge is
traversed, and so forth.

VanHilst and Notkin [1996b] discussed the framework implementation of
this example in detail. Our presentation here merely adapts their observations
to our discussion of using frameworks to implement collaboration-based de-
signs. A first observation is that, in the framework implementation, the base
classes are fixed, and changing them requires hand-editing (usually copying
and editing, which results in redundant code). For instance, consider apply-
ing the same algorithms to a directed, as opposed to an undirected graph. If
both combinations need to be used in the same application, code replication is
necessary. The reason is that the classes implementing the graph algorithms
(e.g., Vertex Numbering) must have a fixed superclass. Hence, two different sets
of classes must be introduced, both implementing the same graph algorithm
functionality but having different superclasses.

A second important observation pertains to our earlier discussion of optional
features in an application. In particular, a framework implementation does
not allow more than one refinement to exist in the same inheritance hier-
archy. Thus, with frameworks, unlike the mixin layer version of the code in
Section 3.2.1, we cannot have a single graph that implements both the Vertex
Numbering and the Cycle Checking operations. The reason is that the dynamic
binding of methods in the classes implementing the depth-first traversal causes
the most refined version of a method to be executed on every invocation. Thus,
multiple refinements cannot coexist in the same inheritance hierarchy since
the bottom-most one in the inheritance chain always supersedes any others. In
contrast, the flexibility of mixin layers allows us to break the depth-first traver-
sal interface in two (the DEFAULTW and the DFT component, discussed earlier),
so that DFT calls the refined methods in its superclass (i.e., without needing
dynamic binding). In this way, multiple copies of the DFT component can coexist
and be refined separately. At the same time, obviating dynamic binding results
in a more efficient implementation—dynamic dispatch incurs higher overhead
than calling methods of known classes (although sometimes it can be optimized
by an aggressive compiler).

3.2.3 Comparison to the VanHilst and Notkin Method. The VanHilst and
Notkin [1996a, 1996b, 1996c, 1997] approach is another technique that can
be used to map collaboration-based designs into programs. The method em-
ploys C++ mixin classes, which offer the same flexibility advantages over a
framework implementation as the mixin layers approach. Nevertheless, the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 237

Fig. 8. Example collaboration decomposition. Ovals represent collaborations, rectangles represent
objects, their intersections represent roles.

components represented by VanHilst and Notkin are small-scale, resulting in
complicated specifications of their interdependencies.

VanHilst and Notkin use mixins in C++ to represent roles. More specifically,
each individual role is mapped to a different mixin and is also parameterized
by any other classes that interact with the given role in its collaboration. For an
example, consider role B4 in Figure 8 (which replicates Figure 1 for easy refer-
ence). This role participates in a collaboration together with two other roles, A4
and C4. Hence, it needs to be aware of the classes playing the two roles (so that,
for instance, it can call appropriate methods). With the VanHilst and Notkin
technique, the role implementation would be a mixin that is parameterized by
these two extra classes:

template <class RoleSuper, class OA, class OC>
class B4 : public RoleSuper {

... /* role implementation, using OA, OC */
};

Consider that the actual values for parameters OA, OC would themselves be
the result of template instantiations, and their parameters also, and so on (up
to a depth equal to the number of collaborations). This makes the VanHilst and
Notkin method complicated even for relatively small examples. In the case of
a composition of n collaborations, each with m roles, the VanHilst and Notkin
method can yield a parameterization expression of length mn. Additionally, the
programmer has to explicitly keep track of the mapping between roles and
classes, as well as the collaborations in which a class participates. For instance,
the mixin for role A4 in Figure 1 has to be parameterized with the mixin for
role A2—the programmer cannot ignore the fact that collaboration c3 does not
specify a role for object OA. From a software evolution standpoint, local de-
sign changes cannot be easily isolated, since collaborations are not explicitly
represented as components. These limitations make the approach unscalable:
various metrics of programmer effort (e.g., length of composition expressions,
parameter bindings that need to be maintained, etc.) grow exponentially in the

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

238 • Y. Smaragdakis and D. Batory

Fig. 9. Our mixin layer implementation of a multiple-collaboration composition. The individual
classes are members of NumberC, CycleC (e.g., NumberC::Vertex, CycleC::Graph, etc.).

number of features supported. (This is the same notion of scalability as in our
earlier discussion of the library scalability problem.)

Conceptually, the scalability problems of the VanHilst and Notkin approach
are due to the small granularity of the entities they represent: each mixin class
represents a single role. Roles, however, have many external dependencies (for
instance, they often depend on many other roles in the same collaboration).
To avoid hard-coding such dependencies, we have to express them as extra
parameters to the mixin class, as in the preceding code fragment. Reusable
components should have few external dependencies, as made possible by using
mixin layers to model collaborations.

Example. Consider a composition implementing both the Cycle Checking
and the Vertex Numbering operation on the same graph. Recall that the ability
to compose more than one refinement (or multiple copies of the same refine-
ment) is an advantage of the mixin-based approach (both ours and the VanHilst
and Notkin method) over frameworks implementations.

The components (mixins) used by VanHilst and Notkin are similar to the
inner classes in our mixin layers, with extra parameters needed to express
their dependencies with other roles in the same collaboration. Our specifica-
tion is shown in Figure 9 (reproducing a previously presented code fragment).
A compact representation of a VanHilst and Notkin specification is shown in
Figure 10. (A more readable version of the same code included in VanHilst and
Notkin [1996b] is even lengthier.)8

Figure 10 makes the complications of the VanHilst and Notkin approach
apparent. Each mixin representing a role can have an arbitrary number of
parameters and can instantiate a parameter of other mixins. In this way,
parameterization expressions of exponential (to the number of collaborations)
length can result. To alleviate this problem, the programmer has to intro-
duce explicitly intermediate types that encode common sub-expressions. For
instance, V is an intermediate type in Figure 10. Its only purpose is to
avoid introducing the sub-expression VertexDFT<WS,VNumber> three different
times (wherever V is used). Of course, VNumber itself is also just a shorthand
for VertexNumber<WS,VWork>. VWork, in turn, stands for VertexDefaultWork-
<WS,VGraph>, and so on.9 Additional complications arise when specifying a com-
position: users must know the number and position of each parameter of a
role-component. Both of the above requirements significantly complicate the
implementation and make it error-prone.

8The object code of both is, as expected, of almost identical size.
9Some compilers (e.g., MS VC++, g++) internally expand template expressions, even though the
user has explicitly introduced intermediate types. This caused page-long error messages for in-
correct compositions when we experimented with the VanHilst and Notkin method, rendering
debugging impossible.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 239

Fig. 10. Same implementation using the VanHilst/Notkin approach. V corresponds to our
NumberC::Vertex, Graph to NumberC::Graph, WS to NumberC::Workspace, etc.

Using mixin layers, the exponential blowup of parameterization expressions
is avoided. Every mixin layer has only a single parameter (the layer above it).
By parameterizing a mixin layer A by B, A becomes implicitly parameterized
by all the roles of B. Furthermore, if B does not contain a role for an object that
A expects, it will inherit one from above it. This is the benefit of expressing
the collaborations themselves as classes: they can extend their interface using
inheritance.

Another practical advantage of mixin layers is that it encourages consis-
tent naming for roles. Hence, instead of explicitly giving unique names to role-
members, we have standard names and distinguish instances only by their
enclosing mixin layer. In this way, VertexDFT, GraphDFT, and VertexNumber be-
come DFT::Vertex, DFT::Graph and NUMBER::Vertex, respectively.

VanHilst and Notkin [1996b] questioned the scalability of their method. One
of their concerns was that the composition of large numbers of roles “can be
confusing even in small examples . . .” The observations above (length of pa-
rameterization expressions, number of components, consistent naming) show
that mixin layers address this problem, and do scale gracefully, without losing
the advantages of the VanHilst and Notkin implementation.

3.3 Mixin Layers Considerations

We have argued that mixin layers are better for implementing collaboration-
based designs than other alternatives. Nevertheless, mixin layers are certainly
not a “silver bullet.” They are good for in-house development of product-line
architectures for mature domains, and require programming language and tool
support for specification and debugging. These points are analyzed below in
more detail, but we note that they are by no means specific to mixin layers;
other competitive techniques (e.g., application frameworks, or the VanHilst and
Notkin method) have similar restrictions.

— Appropriate Domains for Mixin Layers: Mixin layers are not appropri-
ate for every domain. In general, the most suitable domains are mature,

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

240 • Y. Smaragdakis and D. Batory

well-understood, amenable to detailed decompositions, and elaborations of
collaboration-based designs. The domain should be decomposable into largely
independent refinements. Composing such refinements need not result in an
increase in the level of abstraction. Instead, refinements can represent dif-
ferent concerns at the same conceptual level. (E.g., the addition of more oper-
ations on graphs does not alter the abstraction that we are still dealing with
graphs, rather, adding more operations merely enriches the graph abstrac-
tion.) A well-known observation is that, even in strictly layered domains, like
operating systems, the notion of “information module” does not necessarily
coincide with the notion of “layer of abstraction.” Modules may encompass
different parts of several layers [Habermann et al. 1976]. Mixin layers are
a kind of “information module” and similar observations apply. Mixin layers
lead to physically layered implementations, which may or may not have a
negative impact on application performance. Mixin layers are implementa-
tions of a standard design imposed on a domain. In-house environments of
individual companies are best to maintain this standard; open collaborative
communities might make such standards difficult to follow. No precise quan-
tification of these properties can be given, but a designer can usually assess
the appropriateness of our techniques.

— Difficulties in Using Mixin Layers: Good OO designs limit the depth of in-
heritance hierarchies to a small number (e.g., 3). In contrast, compositions of
mixin layers often lead to long inheritance chains. This can become a prob-
lem for debugging (chasing method calls up an inheritance hierarchy) and for
understanding where the functionality of a class is located on an inheritance
chain. Another difficulty can be learning the order in which mixin layers can
be composed. While this can be ameliorated by good tool support [Batory and
Geraci 1997], it is something more that needs to be learned; and composition
rules need to be precisely stated.

— Implementation Requirements for Mixin Layers and Interaction with Lan-
guage Features: Mixin layers are only as good as the technology to support
them. Some of the proposed implementation techniques have specific tech-
nical disadvantages, especially in conjunction with particular compiler tech-
nology. For instance, our C++ template implementation of mixin layers may
result in (binary) code duplication, if the same layer is used multiple times
in a composition. Nevertheless, no fundamental implementation drawbacks
exist in relation to mixin layers. Implementation considerations for the C++
version of mixin layers are described in Smaragdakis and Batory [2000].

Several general programming language issues arise in connection with mixin
layers and their compositions. Most of these issues pertain to the interactions
of mixin layers with type systems. Type information can be used to detect
errors in a composition of mixin layers. At the same time, layers are defined
in isolation, and the problem of propagating type information between layers
is especially interesting. Since the focus of this paper is not on concrete lan-
guage solutions, we point the reader to Smaragdakis [1999, Chapter 3] where
such issues are analyzed in detail.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 241

4. AN APPLICATION: THE JAKARTA TOOL SUITE

In this section, we discuss an application of mixin layers to a medium-size
software project (about 30 K lines of code). The project is the Jakarta Tool Suite
(JTS) [Batory et al. 1998]—a set of language extensibility tools, aimed mainly
at the Java language. We use mixin layers as the building blocks that form
different versions of the Jak tool of JTS. Jak is the modular compiler in JTS.
Different versions of Jak can be created using different combinations of layers.
Layers may be responsible for type-checking, compiling, and/or creating code
for a different set of language constructs. Additionally, layers may be used to
add new functionality across a large group of existing classes. In this way, the
user can design a language by putting together conceptual language “modules”
(i.e., consistent sets of language constructs) and implement a compiler for this
language as a version of Jak composed of the mixin layers corresponding to each
language module. Currently available layers support the base Java language,
meta-programming extensions, general purpose extensions (e.g., syntax macros
for Java), a domain-specific language for data structure programming (P3), and
so forth.

The choice of the compiler domain as a large-scale test case for mixin layers
is not arbitrary. Compilers are well-understood, with modern compiler con-
struction benefiting from years of formal development and stylized design pat-
terns. The domain of compilers has been used several times in the past in
order to demonstrate modularization mechanisms. Selectively, we mention the
visitor design pattern [Gamma et al. 1995], which is commonly described us-
ing the example of a compiler with a class corresponding to each syntactic
type that its parser can recognize (e.g., there is a class for if-statements, a
class for declarations, etc.). In this case, the visitor pattern can be used to
add new functionality to all classes, without distributing this functionality
across the classes. Our application of mixin layers to the compilers domain
has very much the same modularization flavor. We use mixin layers to isolate
aspects of the compiler implementation, which can be added and removed at
will. Compared to the visitor pattern, mixin layers offer greater capabilities—
for instance, allowing the addition of state (i.e., member variables) to existing
classes.

The outcome of applying mixin layers to JTS was very successful. The flexi-
bility afforded by a layered design is essential in forming compilers for different
language dialects. Additionally, mixin layers helped with the internal organi-
zation of the code, so that changes were easily localized. Additions that could be
conceptually grouped together (like those reflecting the language changes from
Java 1.0 to Java 1.1) were introduced as new mixin layers, without disrupting
the existing design. JTS was thus easier to implement and has become easier
to maintain.

We next discuss JTS and the use of mixin layers in its implementation.
Section 4.1 offers some essential background in JTS by describing the way
parsers are generated and initial class hierarchies are established based on
language syntax. Section 4.2 discusses the actual application of mixin layers
in JTS.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

242 • Y. Smaragdakis and D. Batory

4.1 JTS Background: Bali as a Parser Generator

Bali is the JTS tool responsible for putting together compilers. Although Bali
is a component-based tool, in this section we limit our attention to the more
conventional grammar-specification aspects of Bali.

The syntax of a language is specified as a Bali grammar, which is an anno-
tated BNF grammar extended with regular-expression repetitions. Bali trans-
forms a Bali grammar into a lexical analyzer and parser. For example, two Bali
productions are shown below: one defines StatementList as a sequence of one
or more Statements, and the other defines ArgumentList as a sequence of one
or more Arguments separated by commas.

StatementList : (Statement)+ ;
ArgumentList : Argument (‘,’ Argument)*;

Repetitions have been used before in the literature [Wirth 1977; Wile 1993;
Reasoning Systems 1990]. They simplify grammar specifications and allow an
efficient internal representation as a list of trees.

Bali productions are annotated by the class of objects that is to be instanti-
ated when the production is recognized. For example, consider the Bali specifi-
cation of the Jak SelectStmt rule:

SelectStmt
: IF ‘(’ Expression ‘)’ Statement ::IfStm
| SWITCH ‘(’ Expression ‘)’ Block ::SwStm
;

When a parser recognizes an “if” statement (i.e., an IF token, followed by ‘(‘,
Expression, ‘)’, and Statement), an object of class IfStm is created. Similarly,
when the pattern defining a “switch” statement (a SWITCH token followed by ‘(‘,
Expression, ‘)’, and Block) is recognized, an object of class SwStm is created.
As a program is parsed, the parser instantiates the classes that annotate pro-
ductions, and links these objects together to produce the syntax tree of that
program.

A Bali grammar specification is a streamlined document. It is a list of the
lexical patterns that define the tokens of the grammar followed by a list of
annotated productions that define the grammar itself. A Bali grammar for an
elementary integer calculator is shown in Figure 11. From this grammar spec-
ification, Bali generates a lexical analyzer and a parser (we use the JavaCC
lexer/parser generator as a backend).

Associating grammar rules with classes allows Bali to do more than generate
a parser. In particular, Bali can deduce an inheritance hierarchy of classes
representing different pieces of syntax. Consider Figure 12, which shows rules
Rule1 and Rule2. When an instance of Rule1 is parsed, it may be an instance of
pattern1 (an object of class C1), or an instance of Rule2 (an object of class Rule2).
Similarly, an instance of Rule2 is either an instance of pattern2 (an object
of C2) or an instance of pattern3 (an object of C3). The inheritance hierarchy
of Figure 12 is constructed from this information: classes C1 and Rule2 are
subclasses of Rule1, and C2 and C3 are subclasses of Rule2.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 243

Fig. 11. A Bali grammar for an integer calculator.

Fig. 12. Inferring inheritance hierarchies from grammar rules.

Additionally, for each production Bali infers the constructors for syntax tree
node classes. Each parameter of a constructor corresponds to a token or non-
terminal of a pattern.10 For example, the constructor of the IfStm class has the
following signature:

IfStm(Token iftk, Token lp, Expression exp, Token rp, Statement st)

Methods for editing and unparsing nodes are additionally generated.
Although Bali automatically generates an inheritance hierarchy and some

methods for the produced Jak compiler, there are obviously many methods that
cannot be generated automatically. These include type checking, reduction, and
optimization methods. Such methods are syntax-type-specific; we hand-code
these methods and encapsulate them as a mixin layer that contains subclasses
of Bali-generated classes.

In essence, Bali takes the grammar specification and uses it to produce a
skeleton for the compiler of the language. The skeleton has the form of a set of
classes organized in an inheritance hierarchy, together with the methods that

10The tokens need not be saved. However, Bali-produced precompilers presently save all white
space—including comments—with tokens. In this way, JTS-produced tools that transform domain-
specific programs retain embedded comments. This is useful when debugging programs with a
mixture of generated and hand-written code, and is a necessary feature if transformed programs
are subsequently maintained by hand.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

244 • Y. Smaragdakis and D. Batory

can be automatically produced (that is, constructors, editing, and unparsing
methods). In other words, Bali produces an application framework for a com-
piler. The framework is encapsulated in a mixin layer that occupies the root of
all mixin layer compositions implementing different versions of Jak.

4.2 Bali Components and Mixin Layers in JTS

Apart from its parser generator aspect, Bali is also a tool that synthesizes
language implementations from components. Bali can create compilers for a
family of languages, depending on the selection of components used as its input.
This is essentially a product-line of language translators, with their common
functionality factored out in reusable components. We use the name Jak for any
Bali-generated compiler. Currently available Bali components support the base
Java language, meta-programming extensions (e.g., code template operators),
general purpose extensions (e.g., syntax macros for Java), a domain-specific
language for state machines [Batory et al. 2000b], and more. Compositions of
these components define different variants of Jak (i.e., different members of a
product-line of Java dialects): with and without meta-programming constructs,
with and without state machine extensions, with and without data structure
extensions, and so on. This is another instance of the library scalability problem
[Batory et al. 1993; Biggerstaff 1994]. We want to compose the different variants
of Jak from components encapsulating orthogonal units of functionality.

A Bali component has two parts: The first is a Bali grammar file, which
contains the lexical tokens and grammar rules that define the syntax of the
host language or language extension—for extensions that only change the se-
mantics, but not the syntax, this file is absent. The second is a mixin layer
encapsulating a collection of multiple hand-coded classes that contain the re-
duction, type-checking, and so on, methods for each syntax type defined in that
grammar file.

To illustrate how classes are defined and refined in Bali, consider four con-
crete Bali components: Java is a component implementing the base Java lan-
guage, SST implements code template operators like tree constructors and ex-
plicit escapes,11 GScope supplies scoping support for program generation, and
P3 implements a language for data structures. The Jak language and compiler
can be defined by a composition of these components. We use the [...] operator
to designate component composition—for instance, P3[GScope[SST[Java]]].

The syntax of a composed language is defined by taking the union of the
sets of production rules in each Bali component grammar. The semantics of a
composition is defined by composing the corresponding mixin layers. Figure 13
depicts the class hierarchy of the Jak compiler. AstNode belongs to the JTS
kernel, and is the root of all inheritance hierarchies that Bali generates. Using
the composition grammar file (the union of the grammar files for the Java, SST,
GScope, and P3 components), Bali generates a mixin layer that encapsulates

11Our code template operators are analogous to the backquote/unquote pair of Lisp operators.
Unlike Lisp, however, multiple operators exist in JTS—one for each syntactic type (e.g., declaration,
expression, etc.). Multiple constructors in syntactically rich languages are common (e.g., Weise and
Crew [1993]; Chiba [1996]). The main reason has to do with the ease of parsing code fragments.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 245

Fig. 13. The Jak inheritance hierarchy.

the hierarchy of classes that contain tree node constructors, unparsing, and
editing methods. Each remaining mixin layer then grafts its hand-coded classes
onto this hierarchy. These define the reduction, optimization, and type-checking
methods of tree nodes by refining existing classes. The terminal classes of this
hierarchy are those that are instantiated by the generated compiler.

It is worth noting that Figure 13 is not drawn to scale. Jak consists of over 500
classes. The number of classes that a mixin layer adds to an existing hierarchy
ranges from 5 to 40. Nevertheless, the simplicity and economy of specifying Jak
using component compositions is enormous—to build the Jak compiler, all that
users have to provide to Bali is the equation Jak = P3[GScope[SST[Java]]], and
Bali does the rest. To compose all these classes by hand (as would be required by
Java) would be very slow, extremely tedious, and error prone. Additionally, the
scalability advantages of mixin layers can easily be demonstrated: when new
extension mechanisms or new base languages are specified as components, a
subset of them can be selected and Bali automatically composes a compiler for
the desired language variant.

4.3 Java Mixin Layers for JTS

In Section 3.1.3, we discussed the applicability of mixin layers in various pro-
gramming languages. There, we explained that Java already supports nested
classes, but the language currently specifies no parameterization mechanism.
Furthermore, some of the proposed parameterization mechanisms for Java
(e.g., Pizza [Odersky and Wadler 1997] or Thorup’s [1997] virtual types) do
not support parameterized inheritance. In order to support mixin layers for
Bali components in JTS, we implemented our own Java language extensions
for parameterization. This section gives a brief overview of the main language
construct.

Our parameterization extensions to Java are geared towards mixin layer de-
velopment (as opposed to general-purpose genericity). Our approach in design-
ing and implementing these language constructs was motivated by pragmatic,
not conceptual, considerations: we needed a layer mechanism to facilitate our
own development efforts—not to supply the best-designed and robust param-
eterization mechanism for Java. Therefore, our implementation was straight-
forward, adopting a heterogeneous model of transformation: for each instan-
tiation of a mixin layer, a new Java class is created at the source code level.
Thus, our approach resembles C++ template instantiation and does not take

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

246 • Y. Smaragdakis and D. Batory

advantage of the facilities for load-time class adaptation offered by the Java
Virtual Machine (see, e.g., the approach of Agesen et al. [1997], and the work
on binary component adaptation [Keller and Hölzle 1998]). Nevertheless, in
this context, our approach is not necessarily at a disadvantage. Mixin layers
in Bali component compositions are never reused in the same application (i.e.,
a single Jak compiler uses at most one instance of a mixin layer). Therefore,
code bloat (redundancy in generated classes) is not a problem. At the same
time, our straightforward approach made for an easier implementation, which
contributed to the faster development of JTS.

The implementation of our Java extensions for mixin layer support occurred
concurrently with the development of JTS. In fact, an early version of JTS
was used to implement the first version of our Java mixin layers. The Java
mixin layers were, in turn, used to evolve and further develop JTS, resulting
in a bootstrapped implementation. (Actually, this is not the only reason that
JTS is based on a bootstrapped implementation. Another reason is that the
meta-programming capabilities added to Java have been used in the code that
implements JTS itself. The entire JTS system is compiled using a basic version
of the Jak compiler, composed of only a few layers that specify the basic Java
language, code template operators, syntax macros, etc.)

The syntax of mixin layers is straightforward and resembles their C++ coun-
terparts. Two new keywords are introduced: layer and realm. The layer key-
word is analogous to class but defines a mixin layer (i.e., an outer class that
may be parameterized with respect to its superclass). The realm keyword is
used to specify interface conformance for mixin layers, in analogy to the Java
implements keyword. Finally, the [...] operator is used to specify layer com-
position. The (slightly simplified) general form of a layer definition is shown
below, with the terminal symbols appearing in bold for clarity:

layer_definition :

layer layer_name (param_list) realm realm_name [super]

{ declaration_list }
The syntax for non-terminals in the above definition is straightforward.

param_list is a list of type parameters for the mixin layer. If the parame-
ter list contains layers, the parameterization can be constrained by specifying
the expected realm of these layers. The optional super construct designates an
extends clause (in much the same way as for regular Java classes). The contents
of a mixin layer can only be Java type declarations.

The actual details of our implementation are not important; we consider the
general approach that this implementation represents to be of much greater
importance. What we did in JTS is an example of a domain-specific languages
approach to software construction. In the course of creating a medium-size soft-
ware project, we recognized that mixin layers would significantly facilitate our
task. That is, we saw an opportunity for improving our implementation through
extra language support. It then proved cost-effective to add the extra linguistic
constructs that were needed (i.e., mixin layers), in the course of implementing
the original project (i.e., JTS).

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 247

It is our belief that the domain-specific language approach to software con-
struction is a promising way to build better software. The designer of a software
application can (and should) be thinking about language constructs that can
have a significant impact in the application’s efficiency, maintainability, and
reusability. Often, such constructs can be readily identified, but they are not
available in the implementation language of choice. With the advent of language
extensibility tools, as well as extensible/reflective programming languages, sup-
plying special-purpose (or domain-specific) language support may be the right
approach in fighting software complexity. JTS is a tool aimed at facilitating the
implementation of domain-specific languages and language extensions. The use
of mixin layers in the implementation of JTS is a vivid demonstration of the
same paradigm that JTS promotes.

5. RELATED WORK

There is an enormous wealth of research in the area of component-based soft-
ware construction and code modularization. Here, we selectively discuss some
approaches that are related to our work but have not been previously described
in this paper.

5.1 GenVoca

GenVoca is a layered design and implementation methodology, mainly applied
to application generators (i.e., compilers for domain-specific programming lan-
guages). GenVoca advocates that a domain be decomposed in terms of largely-
orthogonal features which are implemented as layers. Applications in the do-
main can be synthesized by composing layers; layer composition is performed by
a generator. The name “GenVoca” was derived from the first two generators that
exhibited these principles: Genesis (extensible database systems) [Batory 1987;
Batory et al. 1988] and Avoca (network protocols) [O’Malley and Peterson 1992].
GenVoca generators for other domains include: data manipulation languages
[Villarreal 1994], distributed file systems [Heidemann and Popak 1994], host-
at-sea buoy systems [Weiss 1990], and real-time avionics software [Coglianese
and Szymanski 1993]. Mixin layers were originally inspired by the GenVoca
model and are now an essential part of its arsenal of implementation tech-
niques. Although we have not attempted full implementations, our experience
suggests that mixin layers can be used to obtain many of the same benefits as
full GenVoca generators, for the above domains. That is, much of the benefit
of GenVoca generators is due to the layering technology and not to the use of
compiler techniques.

5.2 Modules in High-Level Languages

High-level languages often provide modules (a.k.a. packages or namespaces)
as fundamental abstractions. Representative approaches include Ada pack-
ages [International Organization for Standardization 1995]—which is a
prototypical modularization scheme for block structured languages, ML

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

248 • Y. Smaragdakis and D. Batory

[Milner et al. 1990]—which provides a very powerful module system based on
polymorphic types, Java packages, and C++ namespaces [Stroustrup 1997].12

Mixin layers are expressible in the latest incarnations of Ada (Ada95 [In-
ternational Organization for Standardization 1995]). Standard ML still lacks
support for extensible records (i.e., a counterpart of inheritance). Nevertheless,
there is nothing fundamental that prevents integrating mixin layers. Recent
research has brought some of the mixin layers ideas in a modular language
framework. Findler and Flatt’s [1998] work introduces constructs remarkably
similar to mixin layers, in an experimental, module-based object system.

The most interesting lesson, however, is that modules—unlike classes—are
often not well integrated in programming languages. For example, a C++
namespace cannot be parameterized, while a class can. This prevents us from
using mixin-like patterns with C++ namespaces. With class nesting and pa-
rameterized inheritance, mixin layers are a kind of module with some desirable
characteristics from a software engineering standpoint.

5.3 Meta-Object Protocols

Meta-Object Protocols (e.g., Forman et al. [1994]; Kiczales et al. [1991]) are
reflective facilities for modifying the behavior of an object system while the
system is being used. Classical modifications include executing arbitrary code
around method invocations (method wrapping), and changing the semantics
of inheritance. Specific examples of method wrapping include function tracing,
invariant checking, and object locking [Forman et al. 1994].

Meta-object protocols solve a different problem than mixin layers. Mixin lay-
ers address the issue of grouping class refinements together so they can be
treated as a unit. In contrast, meta-object protocols can express modifications
to fundamental operations of an object system. Meta-object protocols can be
used for desirable functionality additions that are not convenient with mixin
layers—for example, the application of a single wrapper to all methods of a class
at once. Of course, a meta-object protocol is a mechanism, not a design guideline.
An appropriately designed meta-object protocol, allowing the encapsulation of
many metaclasses in parameterized modules, could certainly be used to im-
plement mixin layers. Unfortunately, to our knowledge, none of the standard
meta-object protocols offer such encapsulation capabilities.

5.4 Aspect-Oriented Programming

Aspect-oriented programming (AOP) advocates decomposing application do-
mains into orthogonal aspects [Kiczales et al. 1997]. Aspects are distinct imple-
mentation entities that encapsulate code that would otherwise be intertwined

12It is perhaps debatable, whether C++ namespaces and Java packages are modules, because they
can later be re-opened and have more definitions added to them. Nevertheless, we choose to include
these mechanisms here. In practice, they are often used, under certain assumptions, in the same
way as modules in other languages. For instance, several Java tools perform whole-package static
analysis, although a change in any file of the package may invalidate the results of the entire
analysis.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 249

throughout an application. In this respect, aspect-oriented programming seems
strikingly similar to GenVoca. Indeed, early AOP manifestos [Kiczales et al.
1997] are very similar to the work describing GenVoca generators: the software
engineering arguments are identical and the implementation techniques used
are very similar. Many of the AOP example applications in Kiczales et al. [1997]
are layered generators for domain-specific languages (an image processing lan-
guage, a language for specifying data transfer on remote procedure calls, etc.).
Domain-specific languages (or language extensions) are called aspect languages
in AOP terminology, and generators are called aspect weavers.

An aspect, just like a collaboration, expresses a refinement that affects mul-
tiple classes of an application. In this sense, mixin layers can be regarded as an
aspect-oriented implementation technique. Nevertheless, it is perhaps hard to
find cross-cutting software implementation techniques that would not qualify as
“aspect-oriented.” The term has nowadays acquired broad meaning and encom-
passes many different techniques. We view using “aspect-oriented” terminology
as purely a matter of taste. Certainly, the cross-cutting software development
ideas pre-date the introduction of “aspect-orientation.”

5.5 Adaptive OO Components

Another approach to modular OO software development is Lieberherr’s
Demeter method and adaptive components [Lieberherr 1996; Lieberherr and
Patt-Shamir 1997; Mezini and Lieberherr 1998]. Adaptive components specify
functionality additions based on an abstract pattern of participating classes.
The pattern can later be applied to actual classes of an application to extend
their capabilities. This technique is analogous to identifying collaborations in
an object-oriented design, only now collaborations are implementation-level
entities. Note that mixin layers offer the same flexibility, through the concept
of adaptor layers discussed in Section 3.2.1. An important difference is that
adaptor layers are themselves mixin layers. That is, with mixin layers, both
the representation of a collaboration, and the representation of a collaboration
application are the same (namely, mixin layers).

Nevertheless, the work on adaptive components reveals an interesting di-
rection of research, with no counterpart in our work. Adaptive components can
be declared by a strategy. That is, a strategy is a way to declaratively specify a
path through the class graph (the graph induced on classes by inheritance and
containment relationships among them). Along each node in the strategy, extra
methods can be added. In this way, strategies are compact ways of expressing
functionality additions to many classes. For example, one can easily specify
new methods to be added to a class and all its superclasses. Similarly, assume
that class A has a member variable that can hold an instance of class B, which,
in turn, may hold an instance of class C. Using strategies, a programmer can
describe the path from A to C in the class graph. (Class B does not need to be
specified explicitly.) An adaptive component employing this strategy can then
define a new method to be added to all three classes. Thus, strategies are a
higher-level way of specifying collaborations (refinements); mixin layers could
be used to implement strategies.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

250 • Y. Smaragdakis and D. Batory

5.6 Design Patterns for Modularization

The visitor design pattern [Gamma et al. 1995] serves modularization pur-
poses similar to mixin layers. Visitor is a pattern allowing a functional style
of programming in object-oriented languages: multiple definitions of the same
operation (applicable to objects of several different classes) can be grouped to-
gether in a visitor class, instead of these methods being distributed over individ-
ual classes. Visitor is a fundamental modularization mechanism and has been
used to implement more sophisticated techniques (e.g., Mezini and Lieberherr
[1998]).

Visitors are different from mixin layers in two ways. First, visitors are dy-
namic in nature, whereas mixin layers are static. This means that mixin layers
can be used to add state (i.e., member variables) to the classes they refine. (For
instance, imagine a class describing a graph node. If one wants to maintain the
information “is_marked” for all nodes, this is easier to do with mixin layers: an
is_marked field can be added in a mixin and carried in every single refined node
object. With a visitor-based approach, this information must be maintained in a
table on the side.) Additionally, visitors, unlike mixin layers, impose a run-time
overhead. Second, visitors are not allowed to access the internals of the classes
they extend. In contrast, mixin layers define subclasses of the refined classes.
Hence, mixin layers are often able to access more implementation details than
visitors. For instance, a C++ class may export a fairly extensive interface
to its subclasses (using the protected keyword), without making the same
interface public so that visitors can use it. This issue commonly arises when
other design patterns (e.g., singleton) are used in conjunction with the visitor
pattern.

Visitors, like many other design patterns, express refinements of objects or
classes. Although not a design pattern, a mixin layer can be viewed as an elegant
way of expressing a collaboration pattern among classes so that it is clear at
the language level. Mixin layers can be expressed with the aid of a type system,
rather than bypassing it, so that more compile-time checking and optimization
is possible.

5.7 Subjectivity

Objects written for one application may not be reusable in another because their
interfaces are different, even though both applications may deal with what is
fundamentally the same object. The principle of subjectivity asserts that no
single interface can adequately describe any object; objects are described by a
family of related interfaces [Harrison and Ossher 1993; Ossher and Harrison
1992; Ossher et al. 1995]. The appropriate interface for an object is application-
dependent (or subjective).

Subjectivity arose from the need for simplifying programming abstractions—
for example, defining views that emphasize relevant aspects of objects and
that hide irrelevant details. Ossher and Harrison took an important step fur-
ther by recognizing that application-specific views of inheritance hierarchies
can be automatically produced by composing different “subjects” [Harrison and

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 251

Ossher 1993]. Subjects encapsulate a primitive aspect or “view” of a hierarchy,
whose implementation requires a set of additions (e.g., new data and method
members) to one or more classes of the hierarchy.

Collaboration-based designs and mixin layers are analogous to subjectiv-
ity and subjects. Nevertheless, even though the goals are common, different
parts of the problem are emphasized in the two approaches. The biggest differ-
ence between subject-oriented programming and our approach is that a subject-
oriented approach aspires to combine programs that are developed completely
independently. Mixin layers focus on a different problem: the consistent re-
finement of groups of classes, in order to raise the level of programming from
single-class to multiple-class components. Mixin layers need to be developed
with interoperability in mind. This makes mixin layers a more general tech-
nique, but with a lower degree of automation and little applicability to pre-
written software—manual adaptation is required.

6. CONCLUSIONS

Improved modularizations are the key to improved component-based soft-
ware development. We and others have observed that traditional notions
of modularization—method, class, package—are inadequate for this purpose.
Many different results in modularization point to large-scale refinements—the
ability to encapsulate and modularize fragments of classes and methods—as
the basis for next-generation modularizations. The core is the idea of refine-
ment as the centerpiece for component-based software development. Our re-
finements are large-scale: a single refinement can update multiple classes of
an application, and a composition of a few refinements specifies a complete
implementation of an application.

The fragments of classes and methods that need to be encapsulated are not
arbitrary. Rather, fragments are encapsulated together when they all define
how a particular service or feature, which can be shared by many applications
of a domain, is implemented. That is, these fragments must have meaning-
ful expressions in software designs. We have shown that the object-oriented
concept of collaboration-based designs captures this idea. A collaboration is an
abstract design that specifies roles for different classes of objects, and defines
protocols by which objects of these classes interact to realize a particular service
or feature. Collaborations are the way large-scale (i.e., multi-class) refinements
are expressed in object-oriented models. Applications are typically defined by
compositions of a small number of reusable collaborations.

We have shown how collaborations can be defined and composed statically
using existing programming language constructs, and how they can be sup-
ported by new language constructs. We presented a particular way of ex-
pressing large-scale refinements as mixin layers, a name chosen to empha-
size its connection to the common mixin concept in object-oriented languages.
We showed how mixin layers overcame the scalability difficulties that plagued
prior work. They rely on a novel combination of parameterized inheritance,
and class nesting, in effect generalizing the concept of a package (set of

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

252 • Y. Smaragdakis and D. Batory

classes), so that parameterized packages could participate in inheritance lat-
tices. As an example, we showed how mixin layers were used as the primary
implementation technique for building an extensible compiler for the Java
language.

REFERENCES

AGESEN, O., FREUND, S. N., AND MITCHELL, J. C. 1997. Adding type parameterization to the java
language. In Conference Proceedings of OOPSLA ’97, Atlanta. ACM SIGPLAN Notices 32, 10.
ACM, 49–65.

BATORY, D., CARDONE, R., AND SMARAGDAKIS, Y. 2000a. Object-oriented frameworks and prod-
uct lines. In Proceedings of the First Software Product Line Conference, P. Donohoe, Ed.
227–247.

BATORY, D. AND GERACI, B. 1997. Composition validation and subjectivity in GenVoca generators.
IEEE Trans. Softw. Eng. 23, 2 (Feb.), 67–82.

BATORY, D., JOHNSON, C., MACDONALD, B., AND VON HEEDER, D. 2000b. Achieving extensibility
through product-lines and domain-specific languages: A case study. In Proceedings of the Sixth
International Conference on Software Reuse, W. B. Frakes, Ed. 117–136.

BATORY, D., LOFASO, B., AND SMARAGDAKIS, Y. 1998. JTS: Tools for implementing domain-specific
languages. In Proceedings: Fifth International Conference on Software Reuse, P. Devanbu and
J. Poulin, Eds. IEEE Computer Society Press, 143–153.

BATORY, D. AND O’MALLEY, S. 1992. The design and implementation of hierarchical software sys-
tems with reusable components. ACM Trans. Softw. Eng. Methodol. 1, 4 (Oct.), 355–398.

BATORY, D., SINGHAL, V., SIRKIN, M., AND THOMAS, J. 1993. Scalable Software Libraries. In Proceed-
ings of the ACM SIGSOFT ’93 Symposium on the Foundations of Software Engineering. 191–
199.

BATORY, D. S. 1987. Concepts for a database system synthesizer. In Symposium on Principles of
Database Systems (PODS ’88). ACM Press, New York, 184–192.

BATORY, D. S., BARNETT, J. R., GARZA, J. F., SMITH, K. P., TSUKUDA, K., TWICHELL, B. C., AND WISE, T. E.
1988. GENESIS: An extensible database management system. Software Engineering 14, 11,
1711–1730.

BIGGERSTAFF, T. J. 1994. The library scaling problem and the limits of concrete component reuse.
In Proceedings: 3rd International Conference on Software Reuse, W. Frakes, Ed. IEEE Computer
Society Press, 102–109.

BRACHA, G. AND COOK, W. 1990. Mixin-based inheritance. In OOPSLA/ECOOP ’90 Proceedings,
N. Meyrowitz, Ed. ACM SIGPLAN, 303–311.

BRACHA, G. AND GRISWOLD, D. 1996. Extending smalltalk with mixins. Workshop on Extending
Smalltalk at OOPSLA 1996. See http://java.sun.com/people/gbracha/mwp.html.

BRACHA, G., ODERSKY, M., STOUTAMIRE, D., AND WADLER, P. 1998. Making the future safe for the
past: Adding genericity to the Java programming language. In ACM Symposium on Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA), C. Chambers, Ed. ACM
SIGPLAN Notices 33, 10. Vancouver, BC, 183–200.

CARDELLI, L. AND WEGNER, P. 1985. On understanding types, data abstraction, and polymorphism.
ACM Comput. Surv. 17, 4 (Dec.), 471–522.

CHIBA, S. 1996. Open C++ programmer’s guide for version 2. Tech. Rep. SPL-96-024, Xerox
PARC.

COGLIANESE, L. AND SZYMANSKI, R. 1993. DSSA-ADAGE: An environment for architecture-based
avionics development. Proceedings of the NATO AGARD Conference.

CUNNINGHAM, W. AND BECK, K. 1989. Constructing Abstractions for Object-Oriented Applications.
J. Obj. Orient. Program., July 1989.

FINDLER, R. B. AND FLATT, M. 1998. Modular object-oriented programming with units and mixins.
In International Conference on Functional Programming (ICFP ’98). 94–104.

FLATT, M., KRISHNAMURTHI, S., AND FELLEISEN, M. 1998. Classes and mixins. In Conference Record
of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, San Diego, California. ACM, New York, NY, 171–183.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 253

FORMAN, I. R., DANFORTH, S., AND MADDURI, H. 1994. Composition of before/after metaclasses in
SOM. In Proceedings of OOPSLA ’94. ACM Sigplan Notices, vol. 29. Portland, 427–439.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns. Addison Wesley,
Reading, MA.

HABERMANN, A. N., FLON, L., AND COOPRIDER, L. W. 1976. Modularization and hierarchy in a family
of operating systems. Commun. ACM 19, 5 (May), 266–272.

HARRISON, W. AND OSSHER, H. 1993. Subject-oriented programming (A critique of pure objects). In
Proceedings of the OOPSLA ’93 Conference on Object-oriented Programming Systems, Languages
and Applications. ACM Press, Los Alamitos, CA, USA, 411–28.

HEIDEMANN, J. S. AND POPEK, G. J. 1994. File-system development with stackable layers. ACM
Trans. Comput. Syst. 12, 1 (Feb.), 58–89.

HELM, R., HOLLAND, I. M., AND GANGOPADHYAY, D. 1990. Contracts: Specifying Behavioral Com-
positions in Object-Oriented Systems. In Proceedings of the OOPSLA/ECOOP ’90 Conference
on Object-oriented Programming Systems, Languages and Applications, 169–180. Published as
ACM SIGPLAN Notices, volume 25, number 10.

HOLLAND, I. M. 1992. Specifying Reusable Components Using Contracts. In Proceedings of the
ECOOP ’92 European Conference on Object-oriented Programming, O. L. Madsen, Ed. LNCS 615.
Springer-Verlag, Utrecht, The Netherlands, 287–308.

International Organization for Standardization 1995. Ada 95 Reference Manual. The Lan-
guage. The Standard Libraries. International Organization for Standardization. ANSI/ISO/IEC-
8652:1995.

JOHNSON, R. E. AND FOOTE, B. 1988. Designing reusable classes. J. Obj. Orient. Program. 1, 2,
22–35.

KELLER, R. AND HÖLZLE, U. 1998. Binary component adaptation. In ECOOP ’98—Object-Oriented
Programming, E. Jul, Ed. Lecture Notes in Computer Science, vol. 1445. Springer, 307–
329.

KICZALES, G., DES RIVIERES, J., AND BOBROW, D. G. 1991. The Art of the Meta-Object Protocol. MIT
Press, Cambridge, MA, USA.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN,
J. 1997. Aspect-oriented programming. In ECOOP ’97—Object-Oriented Programming, M.
Akşit and S. Matsuoka, Eds. Lecture Notes in Computer Science, vol. 1241. Springer, 220–
242.

LIEBERHERR, K. AND PATT-SHAMIR, B. 1997. Traversals of object structures: Specification and ef-
ficient implementation. Tech. Rep. NU-CCS-97-15, College of Computer Science, Northeastern
University.

LIEBERHERR, K. J. 1996. Adaptive Object-Oriented Software: The Demeter Method with Propaga-
tion Patterns. PWS Publishing Company.

MADSEN, O. L. AND MøLLER-PEDERSEN, B. 1989. Virtual classes: A powerful mechanism in object-
oriented programming. In OOPSLA ’89 Conference Proceedings: Object-Oriented Programming:
Systems, Languages, and Applications, N. Meyrowitz, Ed. ACM Press, 397–406.

MEZINI, M. 1997. Dynamic object evolution without name collisions. In ECOOP’97—Object-
Oriented Programming, M. Akşit and S. Matsuoka, Eds. Lecture Notes in Computer Science,
vol. 1241. Springer, 190–219.

MEZINI, M. AND LIEBERHERR, K. 1998. Adaptive plug-and-play components for evolutionary soft-
ware development. In Proceedings of the 13th Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA-98). ACM SIGPLAN Notices, vol. 33, 10. ACM
Press, New York, 97–116.

MILNER, R., TOFTE, M., AND HARPER, R. W. 1990. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts.

MONTLICK, T. 1996. Implementing mixins in smalltalk. The Smalltalk Report (July).
MOON, D. A. 1986. Object-oriented programming with flavors. In OOPSLA ’86 Confer-

ence Proceedings: Object-Oriented Programming: Systems, Languages, and Applications,
N. Meyrowitz, Ed. ACM SIGPLAN, ACM Press, 1–8.

MYERS, A. C., BANK, J. A., AND LISKOV, B. 1997. Parameterized types for Java. In Conference Record
of POPL ’97: The 24TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM SIGACT and SIGPLAN, ACM Press, 132–145.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

254 • Y. Smaragdakis and D. Batory

ODERSKY, M. AND WADLER, P. 1997. Pizza into Java: Translating theory into practice. In Conference
Record of POPL ’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Paris, France, 146–159.

O’MALLEY, S. W. AND PETERSON, L. L. 1992. A dynamic network architecture. ACM Trans. Comput.
Syst. 10, 2 (May), 110–143.

OSSHER, H. AND HARRISON, W. 1992. Combination of Inheritance Hierarchies. In Proceedings of the
OOPSLA ’92 Conference on Object-oriented Programming Systems, Languages and Applications.
25–40. Published as ACM SIGPLAN Notices, volume 27, number 10.

OSSHER, H., KAPLAN, M., HARRISON, W., KATZ, A., AND KRUSKAL, V. 1995. Subject-oriented compo-
sition rules. In OOPSLA ’95 Conference Proceedings: Object-Oriented Programming Systems,
Languages, and Applications. ACM Press, 235–250.

PARNAS, D. L. 1979. Designing software for ease of extension and contraction. IEEE Trans. Softw.
Eng. SE-5, 2 (Mar.), 128–138.

Reasoning Systems 1990. Dialect User’s Guide. Reasoning Systems.
REENSKAUG, T., ANDERSON, E., BERRE, A., HURLEN, A., LANDMARK, A., LEHNE, O., NORD-HAGEN, E.,

NESS-ULSETH, E., OFTEDAL, G., SKAAR, A., AND STENSLET, P. 1992. OORASS: Seamless support for
the creation and maintenance of object-oriented systems. Journal of Object-Oriented Program-
ming 5, 6 (Oct.), 27–41.

RUMBAUGH, J. 1994. Getting started: Using use cases to capture requirements. J. Obj. Orient.
Program. 7, 5 (Sept.), 8–23.

SMARAGDAKIS, Y. 1999. Implementing large-scale object-oriented components. Ph.D. dissertation,
University of Texas at Austin.

SMARAGDAKIS, Y. AND BATORY, D. 1998. Implementing layered designs with mixin layers. In Pro-
ceedings ECOOP’98, E. Jul, Ed. LNCS 1445. Brussels, Belgium, 550–570.

SMARAGDAKIS, Y. AND BATORY, D. 2000. Mixin-based programming in C++. In GCSE’00—
Generative and Component-Based Software Engineering Symposium. Lecture Notes in Computer
Science, vol. 2177. Springer, 163–177.

STEYAERT, P., CODENIE, W., D’HONDT, T., HONDT, K. D., LUCAS, C., AND LIMBERGHEN, M. V. 1993. Nested
Mixin-Methods in Agora. In Proceedings of the ECOOP ’93 European Conference on Object-
oriented Programming, O. Nierstrasz, Ed. LNCS 707. Springer-Verlag, Kaiserslautern, Germany,
197–219.

STROUSTRUP, B. 1997. The C++ Programming Language, 3 ed. Addison-Wesley, Reading, Mass.
Sun Microsystems 1997. Java Inner Classes Specification. Sun Microsystems. In http://java.

sun.com/products/jdk/1.1/docs/.
TARR, P., OSSHER, H., HARRISON, W., AND SUTTON, JR, S. M. 1999. N Degrees of Separation: Multi-

dimensional Separation of Concerns. In Proceedings of ICSE’99. Los Angeles CA, USA, 107–
119.

THORUP, K. K. 1997. Genericity in Java with virtual types. In ECOOP’97—Object-Oriented Pro-
gramming, M. Akşit and S. Matsuoka, Eds. Lecture Notes in Computer Science, vol. 1241.
Springer, 444–471.

VANHILST, M. 1997. Role-oriented programming for software evolution. Ph.D. dissertation, Uni-
versity of Washington, Seattle, Washington.

VANHILST, M. AND NOTKIN, D. 1996a. Decoupling change from design. In SIGSOFT’96: Proceedings
of the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engineering, D. Garlan,
Ed. ACM Press, 58–69.

VANHILST, M. AND NOTKIN, D. 1996b. Using C++ Templates to Implement Role-Based Designs. In
JSSST International Symposium on Object Technologies for Advanced Software. Springer Verlag,
22–37.

VANHILST, M. AND NOTKIN, D. 1996c. Using role components to implement collaboration-
based designs. In OOPSLA ’96 Conference Proceedings: Object-Oriented Programming Systems,
Languages, and Applications. ACM Press, 359–369.

VILLARREAL, E. 1994. Automated compiler generation for extensible data languages. Ph.D. dis-
sertation, University of Texas at Austin.

WEIHE, K. 1997. A software engineering perspective on algorithmics. In http://www.

informatik.uni-konstanz.de/Preprints/.

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

Mixin Layers • 255

WEISE, D. AND CREW, R. 1993. Programmable syntax macros. In Proceedings of the SIGPLAN ’93
Conference on Programming Language Design and Implementation. 156–165.

WEISS, D. M. 1990. Synthesis operational scenarios. Tech. Rep. 90038-N, Version 1.00.01, Soft-
ware Productivity Consortium, Herndon, Virginia.

WILE, D. 1993. Popart: Producer of parsers and related tools. Tech. rep., USC/Information Sci-
ences Institute.

WIRTH, N. 1977. What can we do about the unnecessary diversity of notation for syntactic defi-
nitions? Commun. ACM 20, 11 (Nov.), 822–823.

Received January 2001; revised September 2001; accepted October 2001

ACM Transactions on Software Engineering and Methodology, Vol. 11, No. 2, April 2002.

