

ESPRIT III

ORES: TOWARDS THE FIRST GENERATION
OF TEMPORAL DBMS

(P7224)

DELIVERABLE C4

IMPLEMENTATION OF VALID TIME
RELATIONAL ALGEBRA

Responsible : 01 PLIROFORIKI
 Information Dynamics
Contributor : Agricultural University of Athens
 University of Athens

Availability: Restricted

Athens, October 1993

IMPLEMENTATION OF VALID TIME
RELATIONAL ALGEBRA

(DELIVERABLE C4)

Responsible : 01 PLIROFORIKI
 Information Dynamics
Contributor : Agricultural University of Athens
 University of Athens

ABSTRACT
We report on the development of Valid Time Relational
Algebra. The development has been based on a previous ORES
deliverable, concerning the Specification of Valid Time
Formalism.

TABLE OF CONTENTS
1. INTRODUCTION.. 4
2. INSTALLATION ... 5
3. USER'S GUIDE ... 7

3.1 Invocation of VT-RA .. 7
3.2 Data Types.. 7
3.3 Functions .. 8
3.4 Relational Operators ... 18
3.5 Relational Algebra Operations .. 20

4. IMPLEMENTATION... 39
4.1 Implementation of the Interval Data Type and
Relevant Functions.. 39
4.2 Implementation of VT-RA Operations...................................... 41

5. CONCLUSIONS .. 42
REFERENCES... 43
APPENDIX A - VT-RA EVALUATION ... 44

1. Introduction .. 44
2. Sample Database .. 44
3. Evaluation of VT-RA Functions .. 47
4. Evaluation of VT-RA Relational Operators 55
5. Evaluation of VT-RA Operations .. 56
6. Conclusions .. 63

1. INTRODUCTION

This deliverable concerns the development of the operations of Valid Time Relational
Algebra (VT-RA). A major characteristic of the development is the support of a new
primitive data type, interval. An interval has format [di, dj), where di and dj are valid
dates (ORES dates), satisfying di < dj. The development of VT-RA is in accordance with
the previous ORES deliverable, Specification of Valid Time Formalism [01P 93a] with
the following improvements:

1. In [01P 93a] an operation, Compute, had been defined which incorporated certain
special ORES functions, not supported, in their majority, by any commercial DBMS.
It was reported that neither Compute nor these functions would be included in the
implementation of VT-RA. In fact, these functions have been implemented and are
incorporated in the Select and Project operations of VT-RA. All the INGRES
functions are also supported. Finally, all the ORES and INGRES functions can be
combined, to form composite functions.

2. Although optimisation algorithms were not to be incorporated in the development of
VT-RA, they are fully used in operations Unfold, Fold, Normalise, Punion and
Pexcept.

3. Although no operation for the renaming of attributes was to be implemented, such a
renaming is allowed in operation Project.

4. Four more operations have been defined, Help, Display, Drop, and Quit to simplify
the user's work.

5. The functionality of the VT-RA operations is fully compatible with the functionality of
standard SQL.

As it should be expected, the specifications of all the VT-RA operations have been
extended in the present deliverable, so as to include the above enhanced features.

It should be noted that operation Reformat has not been implemented. This does not
cause any practical problem because Reformat is composite and can be expressed by
sequences of Unfold and Fold operations.

The remainder of this deliverable is summarised as follows: Section 2 contains guidelines
for the installation of the necessary software. Section 3 is a guide to the user.
Implementation issues are addressed in section 4. Conclusions are drawn in the last
section. Finally, Appendix A contains the evaluation tests of the implementation.

2. INSTALLATION

The software installation consists of two parts, the installation of the INGRES kernel and
the installation of VT-RA. They are described separately next.

Installation of the INGRES kernel

1. Log in as an INGRES user.

2. Issue the command iishutdown, to shut down the INGRES servers.

3. Insert the INGRES kernel tape into the tape drive.

4. Enter the commands
cd demo
mv udadts udadts.bak
tar xvf device-name
cd udadts
iilink

where device-name is the special file associated with the tape drive (e.g. /dev/rst0).
When prompted by the iilink command for the object files, reply

$II_SYSTEM/ingres/demo/udadts/*.o
Later, you will be prompted for an extension for the new binaries. Simply, press
RETURN. The new INGRES kernel will be built, and various diagnostic messages
will be displayed.

5. Issue the command iistartup, to start up the INGRES servers. The new kernel will
support the INTERVAL data type, along with all the new functions defined for this
data type.

6. Log out.

Installation of the VT-RA query processor

1. Log in as an authorised INGRES user (if you are not sure that such a user exists, log
in as an INGRES user).

2. Insert the VT-RA query processor tape into the tape drive.

3. Extract the VT-RA query processor from the tape, by issuing the command
tar xvf device-name

where device-name is the special file associated with the tape drive (e.g. /dev/rst0).

4. Enter the command

chmod+x vtal
to make sure that you have execute permission for the VT-RA query processor.
The VT-RA query processor is then installed.

In order to get ORES intervals to work together with the INGRES date data type, the
INGRES environment DATE must be set to SWEDEN. This can be accomplished from
the INGRES account, with the command:

ingsetenv II_DATE_FORMAT Sweden.

3. USER'S GUIDE
In this section guidelines are provided to the user for the use of Valid Time Relational
Algebra (VT-RA). They are in accordance with the underlying formalism given in [01P
93a] and [01P 93b], except that the implementation incorporates additional
improvements, discussed separately wherever necessary.

3.1 Invocation of VT-RA
VT-RA is invoked from the environment of the Operating System by the command
vtal <database_name>

Example:
 vtal ores

3.2 Data Types

All the data types supported by INGRES are also supported by VT-AL. Their
description can be found in [INGRES 89]. We restrict here to the definition of data types
developed within ORES.

In the following we use the following terms:

Internal Representation: The format in which a constant of a particular data type is
physically stored in the database.

Input Format: The format in which a constant of a particular data type has to be
provided as an input argument to a function or as a piece of data which must be
physically recorded in the database.

Display Format: The format in which a constant of a particular data type is displayed.

ORES Date

An ORES date type represents a valid date in format SWEDEN (YYYY-MM-DD). The
lowest value is 1970-01-01 and the greatest one is 2030-12-30.

Internal Representation: CHAR(10)

Input Format: CHAR(10)

Display Format: CHAR(10)

ORES Interval
For simplicity reasons, an ORES interval is also referenced as interval. An interval has
format [di, dj), where di, dj are two valid dates (the start and stop of the interval)
satisfying 1970-01-01 ≤ di < dj < 2030-12-30.

Internal Representation:
Internally, an interval is stored as two distinct long integers (32 bits each), which
represent its start and stop. The offset of each integer represents a date in the above
range, expressed in seconds.

Input Format: It is a CHAR(23) string with format
[YYYY-MM-DD,YYYY-MM-DD).

Display Format: It is a CHAR(26) string with format
[^YYYY-MM-DD,^YYYY-MM-DD^)
where "^" denotes the space character.

3.3 Functions

In VT-RA it is possible to incorporate both the VT-SQL [01P 93b] and INGRES
functions. The formal definition of the former can be found in [01P 93b], Appendix A.
Here they are described in alphabetic order. The INGRES function c is also described
here, due to its relevance to VT-AL. The computation of composite functions is allowed,
too.

Format

c(arg)

Description

Returns the respective character string.

Input Arguments

arg : integer | date | interval

Output

CHAR(?)

The size of the output character string varies with respect to the input argument.
Examples of particular importance are given below.

Examples

c(5) = 5
Here the input argument is an integer and the output is a CHAR(6) string.

c(1993-11-23) = 1993-11-23
Here the input argument is an INGRES date and the output is a CHAR(25) string.

c('[1992-11-01,1993-10-31)') = [1992-11-01,1993-10-31).
Here the input argument is an ORES interval and the output is a CHAR(23) string.

The argument of c may be another function:

c(5+3) = 8.
Here the input argument is an arithmetic operation and the output is the result of the
operation, provided as a CHAR(13) string.

c('ORES^'+'Project') = ores^project.
Here the input argument is the string concatenation operation and the output is the result
of the operation, provided as a CHAR(12) string ("^" denotes the space character).

Function c can also be used as argument to other functions, including those defined in
ORES:

window('1993-01-01'+','+c(2+3)+','+'0') = [^1993-01-01,^1993-01-06^).
Here the input argument of window is a concatenation of strings and the output is an
interval, where "^" denotes the space character.

Format

dist(d1, d2)

Description

It returns the absolute number of days date d2 is away from date d1.

Input Arguments

d1, d2: ORES date.

Output

integer.

Examples

dist('1993-01-01', '1993-01-05') = 4
dist('1993-01-05', '1993-01-01') = 4.

Format

dur(di)

Description

Returns the number of dates in an interval.

Input Arguments

di: ORES interval.

Output

integer.

Example

dur('[1993-06-01,1993-06-11)') = 10.

Format

interv(d1, d2)

Description

Returns interval [d1, d2), where d1 and d2 are dates, provided that d1 < d2.

Input Arguments

d1, d2: ORES date.

Output

ORES interval.

Example

interv('1993-06-01','1993-06-30') = [^1993-06-01,^1993-06-30^).
interv('1993-06-30','1993-06-01') returns an error message.

"^" denotes the space character.

Format

intervsect(di1, di2)

Description

Returns the intersection of two intervals, di1 and di2, provided that di1 and di2 have at
least one common point.

Input Arguments

di1, di2: ORES interval.

Output

ORES interval.

Example

intervsect('[1993-06-01,1993-06-25)','[1993-06-15,1993-06-30)' = '[^1993-06-
15,^1993-06-25^)'

intervsect('[1993-06-01,1993-06-25)','[1993-07-01,1993-07-25)' returns an error
message.

"^" denotes the space character.

Format

maxdate()

Description

Returns the greatest supported date. (In the current implementation it has been defined
that the greatest date is 2030-12-30).

Input Arguments

none.

Output

ORES date.

Example

maxdate() = 2030-12-30.

Format

merge(di1, di2)

Description

Returns an interval which is the union of two intervals di1 and di2, provided that di1 and
di2 are adjacent or have at least one common date.

Input Arguments

di1, di2: ORES interval.

Output

ORES interval.

Examples

merge('[1993-01-01,1993-01-31)','[1993-01-31,1993-02-28)') = [^1993-01-01,^1993-
02-28^)

merge('[1993-01-01,1993-01-31)','[1993-01-15,1993-02-28)') = [^1993-01-01,^1993-
02-28^)

merge('[1993-01-01,1993-01-31)','[1993-03-01,1993-03-30)') returns an error
message.

"^" denotes the space character.

Format

middle(di)

Description

Returns the smallest date which is closest to the middle of an interval.

Input Arguments

di: ORES interval.

Output

ORES date.

Examples

middle('[1993-01-01,1993-01-06)') = 1993-01-03
middle('[1993-01-01,1993-01-07)') = 1993-01-03.

Format

mindate()

Description

Returns the lowest supported date. (In the current implementation it has been defined
that the lowest date is 1970-01-01).

Input Arguments

none.

Output

ORES date.

Example

mindate() = 1970-01-01.

Format

now()

Description

Returns the current date.

Input Arguments

none.

Output

ORES date.

Example

If the current day is 1993-11-23 then
now() = 1993-11-23.

Format

span(d1, d2)

Description

It returns the number of days date d2 is away from date d1.

Input Arguments

d1, d2: ORES date.

Output
integer.

Examples

span('1993-01-01', '1993-01-05') = 4
span('1993-01-05', '1993-01-01') = -4.

Format

start(di)

Description

Returns the start of an interval.

Input Arguments

di: ORES interval.

Output

ORES date.

Example

start('[1992-11-01,1994-10-01)') = 1992-11-01.

Format

stop(di)

Description

Returns the stop of an interval.

Input Arguments

di: ORES interval.

Output

ORES date.

Example

stop('[1992-11-01,1994-10-01)') = 1994-10-01.

Format

succ(d, k)

Description

Returns a date which is k days away from date d.

Input Arguments

d: ORES date
k: integer.

Output

ORES date.

Example

succ('1993-06-01', 10) = 1993-06-11
succ('1993-06-11', -10) = 1993-06-01.

Format

tointerv(d)

Description

Transforms a date to an elementary interval. (Elementary is an interval of exactly one
date).

Input Arguments

d: ORES date .

Output

ORES interval.

Example

tointerv('1993-06-01') = [^1993-06-01,^1993-06-02^).

"^" denotes the space character.

Format

topoint(di)

Description

Returns the start of an elementary interval. (Elementary is an interval of exactly one
date).

Input Arguments

di: ORES interval.

Output

ORES date.

Example

topoint('[1993-06-01,1993-06-02)') = 1993-06-01.
topoint('[1993-06-01,1993-06-10)' returns an error message.

Format

window(chr)

Description

Argument chr is a character string with format 'd,m,n', where d is ORES date and m, n
are integers, m > 0. If n ≥ 0 the function returns the n-th (n = 0, 1, 2, ...) interval of
duration m after date d whereas if n < 0 it returns the n-th (n = -1, -2, ...) interval before
date d.

Input Arguments

chr: A character string with format 'd,m,n' where
d: ORES date
m: integer, m > 0
n: integer.

From the above format it can be seen that space characters are not allowed at any place
of the input argument.

Output

interval.

Examples

window('1993-01-01,5,0') = [1993-01-01,1993-01-06)
window('1993-01-01,5,1') = [1993-01-06,1993-01-11)
window('1993-01-01,5,-1') = [1992-12-27,1993-01-01)
window('1993-01-01,-3,0') returns an error message.

Notes

1. It would be most desirable if this function accepted three distinct arguments but
INGRES imposes a restriction, that the number of arguments of a function defined
directly in the INGRES server, should be at most 2.

2. This function will probably be redefined, so as not to accept a 0 value for n.

Format

windowno(chr)

Description

Argument chr is a character string with format 'd1,m,d2', where d1 and d2 are ORES
dates and m is an integer, m > 0. If one starts from date d1 and all intervals of duration m
which are to the right of d1 are counted (starting counting from 0) whereas all intervals
of duration m which are to the left of d1 are also counted (starting counting from -1), the
function returns the count of the interval in which date d2 lies.

Input Arguments

chr: A character string with format 'd1,m,d2' where
d1, d2: ORES date
m: integer, m>0.

From the above format it can be seen that space characters are not allowed at any place
of the input argument.

Output

integer.

Examples
windowno('1993-01-01,5,1993-01-03') = 0
windowno('1993-01-01,5,1993-01-08') = 1
windowno('1993-01-01,5,1992-12-28') = -1
windowno('1993-01-01,-3,1993-01-03') returns an error message.

Notes

1. It would be most desirable if this function accepted three distinct arguments but
INGRES imposes a restriction, that the number of arguments of a function defined
directly in the INGRES kernel, should be at most 2.

2. This function will probably be redefined, so as not to accept a 0 value for m.

3.4 Relational Operators

VT-RA incorporates all the ordinary relational operators (<, ≤, =, ≠, ≥, >) which can be
applied between two ordinary pieces of data. VT-RA also incorporates all the interval
relational operators. Specifically, if δx and δy are two pieces of data of type interval and
irp is an interval relational operator, then the general syntax is

δy irp δx.

It is shown below when each of these operators evaluates to true. Their definition can be
found in [01P 1993b], Appendix A.

(1) äy before
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

äy meets
äy loverlaps
äy lcovers
äy covers
äy rcovered
äy =
äy rcovers
äy covered
äy lcovered
äy roverlaps
äy met
äy after

äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx

δy psubinterv δx ⇔ (6 V 9 V 10) (δy is a pure subinterval of δx)
δy subinterv δx ⇔ (6 V 7 V9 V10) (δy is a subinterval of δx)
δy psupinterv δx ⇔ (4 V 5 V 8) (δy is a pure superinterval of δx)
δy supinterv δx ⇔ (4 V 5 V 7V8) (δy is a superinterval of δx)
δy overlaps δx ⇔ (3V 11)
δy merges δx ⇔ (2 V 3 V . . . V12)
δy cp δx ⇔ (3 V 4 V . . . V 11) (δy has common points with δx)
δy precedes δx ⇔ (1 V 2 V 3 V 4 V 5V 6)
δy follows δx ⇔ (8 V 9 V 10 V11 V 12 V 13)
δy prequals δx ⇔ (1 V 2V 3 V 4 V 5 V 6 V 7) (δy precedes or equals δx)
δy folequals δx ⇔ (7 V 8V 9V 10 V 11V 12 V13) (δy follows or equals δx)
δy adjacent δx ⇔ (2 V12)

3.5 Relational Algebra Operations

The definition and specifications of VT-RA operations can be found in [01P 93a].
Certain improvements of major practical interest are the following:

1. Operations Select and Project incorporate all the VT-SQL functions [01P 93b] and
all the INGRES functions. In addition, all these functions can be combined, to form
composite functions.

2. Optimisation algorithms have been used for the development of operations Unfold,
Fold, Normalise, Punion and Pexcept.

3. Operation Project enables the renaming of attributes.

4. Four more operations have been defined, Display, Drop, Help, and Quit.

5. The functionality of the VT-RA operations is fully compatible with the functionality
of standard SQL.

Full specifications of the above enhanced features are given in the sub-sections which
follow.

It should be noted that operation Reformat has not been implemented. This does not
cause any practical problem because Reformat is composite and can be expressed by
sequences of Unfold and Fold operations.

General Rules

Two general rules which all the VT-RA operations obey, are the following:

1. No redundant spaces (including spaces after a ",") are allowed anywhere in the
formulation of a VT-RA operation except exactly one space, to separate keywords
from the remainder portion of the input string.

2. If at the execution of an operation one of the input arguments is invalid, or an invalid
result is computed at some intermediate step, the operation is completely dropped.

As an example of this second rule, assume that a project operation has been formulated.
Assume also that the operation requires a projection on the result computed by
succ(Date, Number), where Date and Number are attribute names of type CHAR(10)
and INTEGER4, respectively. If one of the strings recorded in Date is invalid, then the
operation is dropped and an error message is returned. This behaviour is fully compatible
with that of standard SQL.

All the VT-RA operations are given next in alphabetic order. Their names are given in
bold. Square brackets ([,]) which are also given in bold, form part of the syntax.

Display

Syntax

display <table-name>

Description

Displays the contents of <table-name>.

Drop

Syntax

drop <table-name>

Description

Drops <table-name>.

Except

Syntax

<table-name-3>=<table-name-1> except <table-name-2>

Description

It retrieves into <table-name-3> the tuples of <table-name-1> except those tuples which
are also in <table-name-2>.

Specifications

1. <table-name-1> and <table-name-2> must already exist in the database.

2. <table-name-3> must not exist before the execution of except.

3. <table-name-1> and <table-name-2> must be union-compatible, exactly as this
compatibility is interpreted by INGRES. (*)

4. The scheme or <table-name-3> is identical with the scheme of <table-name-1>.

5. <table-name-3> must not contain duplicate tuples.

(*) Two relations are union-compatible if they satisfy the following two conditions:

(i) They have the same number of attributes.
(ii) The i-th attribute of <table-name-1> is type-compatible with the i-th attribute of

<table-name-2>.

Two attributes are type-compatible if their types are the same, regardless of their length. For
example, char(20) is type-compatible with char(15) and i2 is type-compatible with i4.
In addition, types MONEY and VARCHAR are type-compatible with types FLOAT
and CHAR, respectively.

Fold

Syntax

<table-name-3>=fold[<attribute-list>](<table-name-1>)

Description

It folds successively <table-name-1> on the attributes in <attribute-list> and returns the
result in <table-name-3>. Folding starts from the leftmost attribute in <attribute-list> and
proceeds to the rightmost attribute.

Specifications

1. <table-name-1> must already exist in the database.

2. <table-name-3> must not exist before the execution of fold.

3. The <attribute-list> must be a non-empty list of the attribute names of <table-name-
1> of a date or an interval type.

4. The number of attributes in <attribute-list> is limited by the number of columns a
relation may have in INGRES.

5. Before folding starts, duplicate tuples are eliminated from <table-name-1>.

6. The domain of all the folded attributes in <table-name-3> is of type interval.

7. If <table-name-1> is empty, then <table-name-3> is empty, too.

8. <table-name-3> must not contain duplicate tuples.

Convention

It is assumed that the attributes in <attribute-list> contain intervals whose start and stop
points are not-null.

Help

Syntax

help

Description

Gives a list of the relations in the database.

Normalise

Syntax

<table-name-3>=normalise[<attribute-list>](<table-name-1>)

Description

It normalises <table-name-1> on the attributes in <attribute-list> and retrieves the result
in <table-name-3>. The operation is semantically equivalent to
<table-name-3>=fold[<attribute-list>] ° unfold[<attribute-list>](<table-name-1>).

Specifications

1. <table-name-1> must already exist in the database.

2. <table-name-3> must not exist before the execution of normalise.

3. The <attribute-list> must be a non-empty list of attributes of <table-name-1> of a
date or interval type.

4. Before folding starts, duplicate tuples are be eliminated from
 unfold[<attribute-list>](<table-name-1>).

5. The number of attributes in <attribute-list> is limited by the number of columns a
relation may have in INGRES.

6. The domain of all the normalised attributes in <table-name-3> is of type interval.

7. If the initial relation is empty, the output relation is also empty.

8. <table-name-3> must not contain duplicate tuples.

Convention

It is assumed that the attributes in <attribute-list> contain intervals whose start and stop
points are not-null.

Pexcept

Syntax

<table-name-3>=<table-name-1> pexcept[<attribute-list>]<table-name-2>)

Description

It retrieves into <table-name-3> the points-difference of relations <table-name-1> and
<table-name-2>. The operation is semantically equivalent to
<table-name-3> =
fold[<attribute-list>]

(
unfold[<attribute-list>](<table-name-1>)
except
unfold[<attribute-list>](<table-name-2>)
).

Specifications

1. <table-name-1> and <table-name-2> must already exist in the database.

2. <table-name-3> must not exist before the execution of pexcept.

3. The <attribute-list> must be a non-empty list of the attributes of <table-name-1> of
a date or interval type.

4. <table-name-1> and <table-name-2> must be union-compatible, exactly as this
compatibility is interpreted by INGRES. (*)

5. Duplicate tuples must be eliminated from both unfold[<attribute-list>](<table-name-
>) and unfold[<attribute-list>](<table-name-2>). Next, their difference is obtained
and finally fold is applied to the result.

(*) Two relations are union-compatible if they satisfy the following two conditions:

(i) They have the same number of attributes.
(ii) The i-th attribute of <table-name-1> is type-compatible with the i-th attribute of

<table-name-2>.

Two attributes are type-compatible if their types are the same, regardless of their length. For
example, char(20) is type-compatible with char(15) and i2 is type-compatible with i4.
In addition, types MONEY and VARCHAR are type-compatible with types FLOAT
and CHAR, respectively.

6. The scheme of <table-name-3> is the same with the scheme of <table-name-1>
except that the domain of the attributes in <attribute-list> is of an interval type.

7. <table-name-3> must not contain duplicate tuples.

Convention

It is assumed that the attributes in <attribute-list> contain intervals whose start and stop
points are not-null.

Product

Syntax

<table-name-3>=<table-name-1> product <table-name-2>.

Description

It retrieves into <table-name-3> the Cartesian product of <table-name-2> and
<table-name-3>.

Specifications

1. <table-name-1> and <table-name-2> must already exist in the database.

2. <table-name-3> must not exist before the execution of product.

3. <table-name-1> and <table-name-2> must not have attributes with common names.

4. The attributes of <table-name-3> are those of the attributes of relations <table-
name-1> and <table-name-2>.

5. <table-name-3> must not contain duplicate tuples.

Project

Syntax

<table-name-3>=project[<name-attribute-list>*](<table-name-1>)

where

<name-attribute> ::= [<attribute-name-2>=]<attribute-name-1>
 [<attribute-name>=]<function>.

Description

It retrieves into <table-name-3> the projection of all the tuples of <table-name-1> on all
the attributes contained in <attribute-list>.

Specifications

1. <table-name-1> must already exist in the database.

2. <table-name-3> must not exist before the execution of project.

3. The <name-attribute-list> must be non-empty.

4. The attributes of <table-name-3> are those specified in <name-attribute-list>.

5. A ''*'' for <name-attribute-list> indicates a projection on all the attributes of <table-
name-1>.

6. If <function> is specified the respective attribute of <table-name-3> contains the
result returned by the function.

7. If "<attribute-name-2>=" is specified then an attribute renaming occurs or a name is
assigned to an attribute which contains a computed result.

8. If "<function>" is specified, not proceeded by <"<attribute-name-2>=" then a
default <attribute-name> (col1, col2, ...) is assigned by the system.

9. <table-name-3> must not have two attributes with identical names.

10. <table-name-3> must not contain duplicate tuples.

Punion

Syntax

<table-name-3>=<table-name-1> punion[<attribute-list>]<table-name-2>)

Description

It retrieves into <table-name-3> the points-union of relations <table-name-1> and
<table-name-2>. The operation is semantically equivalent to
<table-name-3> =
fold[<attribute-list>] ° unfold[<attribute-list>](<table-name-1> union <table-name-2>).

Specifications

1. <table-name-1> and <table-name-2> must already exist in the database.

2. <table-name-3> must not exist before the execution of punion.

3. The <attribute-list> must be a non-empty list of the attributes of <table-name-1> of
a date or interval type.

4. <table-name-1> and <table-name-2> must be union-compatible, exactly as this
compatibility is interpreted by INGRES. (*)

5. Before folding starts, duplicate tuples are eliminated from
 unfold[<attribute-list>](<table-name-1> union <table-name-2>).

6. The scheme of <table-name-3> is the same with the scheme of <table-name-1>
except that the domain of the attributes in <attribute-list> is of a interval type.

7. <table-name-3> must not contain duplicate tuples.

(*) Two relations are union-compatible if they satisfy the following two conditions:

(i) They have the same number of attributes.
(ii) The i-th attribute of <table-name-1> is type-compatible with the i-th attribute of

<table-name-2>.

Two attributes are type-compatible if their types are the same, regardless of their length. For
example, char(20) is type-compatible with char(15) and i2 is type-compatible with i4.
In addition, types MONEY and VARCHAR are type-compatible with types FLOAT
and CHAR, respectively.

Convention

It is assumed that the attributes in <attribute-list> contain intervals whose start and stop
points are not-null.

Select

Syntax

<table-name-3>=select[<search-condition>](<table-name-1>)

Description

It retrieves into <table-name-3> the tuples of <table-name-1> which satisfy the <search-
condition>.

Specifications

1. <table-name-1> must already exist in the database.

2. <table-name-3> must not exist before the execution of select.

3. <table-name-3> must not contain duplicate tuples.

4. If no <search-condition> is specified then all the tuples of <table-name-1> are
selected.

5. The <search-condition> is fully compatible with the SQL <search-condition> and
enables the incorporation of all the functions and relational operators of both SQL
and VT-RA.

6. <search-condition> is defined as follows:
<search-condition> ::= <empty-string>

| <boolean-term>
| <search-condition> OR <boolean-term>.

<boolean-term> ::= <boolean-factor>| <boolean-term> AND <boolean-
factor>.

<boolean-factor> ::= [NOT] <boolean-primary>.

<boolean-primary> ::= <predicate> | (<search-condition>).

<predicate> ::= <value-exp> <compare-op> <value-exp>.

<compare-op> ::= <> | = | < | > | <= | >= | <interval-compare-op>.

<interval-compare-op> ::= before
meets

| loverlaps

| lcovers
| covers
| rcovered
| =
| rcovers
| covered
| lcovered
| roverlaps
| met
| after
| psubinterv
| subinterv
| psupinterv
| supinterv
| overlaps
| merges
| cp
| precedes
| follows
| prequals
| folequals
| adjacent.

<value-exp> : : = <attribute-name>
| <literal>
| <function>(<attribute-name>)
| <function(<literal>).

Unfold

Syntax

<table-name-3>=unfold[<attribute-list>](<table-name-1>)

Description

It unfolds successively <table-name-1> on the attributes in <attribute-list> and retrieves
the result in <table-name-3>. Folding starts from the leftmost attribute in <attribute-list>
and proceeds to the rightmost attribute.

Specifications

1. <table-name-1> must already exist in the database.

2. <table-name-3> must not exist before the execution of unfold.

3. The <attribute-list> must be a non-empty list of the attributes of <table-name-1> of
a date or interval type.

4. The number of attributes in <attribute-list> is limited by the number of columns a
relation may have in INGRES.

5. The domain of all the unfolded attributes in <table-name-3> is of type date.

6. If the initial relation is empty, the output relation is also empty.

7. <table-name-3> must not contain duplicate tuples.

Convention

It is assumed that the attributes in <attribute-list> contain intervals whose start and stop
points are not-null.

Union

Syntax

<table-name-3>=<table-name-1> union <table-name-2>

Description

It retrieves into <table-name-3> the union of two relations.

Specifications

1. <table-name-1> and <table-name-2> must already exist in the database.

2. <table-name-3> must not exist before the execution of union.

3. <table-name-1> and <table-name-2> must be union-compatible, exactly as this
compatibility is interpreted by INGRES. (*)

4. The scheme or <table-name-3> is identical with the scheme of <table-name-1>.

5. <table-name-3> must not contain duplicate tuples.

(*) Two relations are union-compatible if they satisfy the following two conditions:

(i) They have the same number of attributes.
(ii) The i-th attribute of <table-name-1> is type-compatible with the i-th attribute of

<table-name-2>.

Two attributes are type-compatible if their types are the same, regardless of their length. For
example, char(20) is type-compatible with char(15) and i2 is type-compatible with i4.
In addition, types MONEY and VARCHAR are type-compatible with types FLOAT
and CHAR, respectively.

Quit

Syntax

quit

Description

Exits the VT-RA environment.

4. IMPLEMENTATION

VT-RA has been implemented in two distinct steps, discussed separately below.

4.1 Implementation of the Interval Data Type and Relevant Functions

The Object Management of INGRES is a module that allows the user to add to the
INGRES Data Base Server new data types and new SQL functions. A user-defined data
type can be used in any context in which a standard INGRES data type can be used.
Added SQL functions can be used in queries and can manipulate both user-defined and
standard INGRES data types. However, the code for the definition of new types and
functions has to be written by the user. To this end, INGRES supplies the Object
Management Extensions which contains the complete structure and symbol definitions
which are necessary.

Once the code which supports a user-defined data type or a new function has been
completed, it runs as part of the underlying INGRES System. All the DBMS modules
access it, therefore it is available to the entire installation. Because of this, user-supplied
code has the same rights, privileges and responsibilities with the INGRES code.

The ORES interval type, the VT-RA functions and VT-RA relational operators have
been implemented using this module, in language C. Some remarks on their
implementation are the following:

ORES Interval Data Type and VT-RA Functions

Its format is [di, dj), where di, dj are two valid dates (the start and stop of the interval),
satisfying

1970-01-01 ≤ di < dj ≤ 2030-12-30.

 Because of this, the following is a valid VT-SQL statement:

CREATE TABLE TEST(Id I4,
Name CHAR(15),
Time INTERVAL)

Internally, an interval is stored as two distinct long integers (32 bits each), which
represent its start and stop. The offset of each integer represents a date, in the range
given above, expressed in seconds. The advantage of the use of a numeric format,
enabled the development of efficiently running code for the interval functions and interval
relational operations. However, one limitation of INGRES is that it does not allow a

user-defined data type to be composed of complex INGRES data types, such as Date
and Money. To overcome this limitation, all the functions that return a date, have been
implemented in such a way so as to return a CHAR(10) string. This string is formatted
according to the ISO date format "YYYY-MM-DD". If the result of a function needs be
compared with an INGRES date data type, INGRES coerces the string into a date data
type.

There are two ways to insert an interval into a relation:

(i) Supply the interval as a character string: The string can be any form of text-string
type from those supported by INGRES. The CHAR type is preferred since most of
the tests have been performed using this type. The input format has to be

[YYYY-MM-DD, YYYY-MM-DD)

of a CHAR(23) type.

(ii) Incorporate the interv function: Then the form is

interv('YYYY-MM-DD', 'YYYY-MM-DD')

An interval is displayed as a CHAR(26) string, with format

[^YYYY-MM-DD, ^YYYY-MM-DD^)

where "^" denotes the space character.

Another limitation of INGRES is that at most two input arguments can be passed to a
user-defined function. This was an inconvenience for functions window and windowno,
since they both require three input arguments, according to the specifications in [01P
93a]. The easiest way to overcome this problem was to redefine the specifications of
these functions: Their input has been thus defined to be a single character string,
composed by the concatenation of the initially defined arguments. This strings also
includes two commas (,) which function as the physical separators of the three
arguments. An internal string processing decomposes the string into the three initially
defined arguments.

VT-RA Relational Operators

One more limitation is that INGRES does not allow the definition of new relational
operators. (In fact only a redefinition of the existing SQL operators is allowed). To
emulate therefore the behaviour of the VT-RA, each of them has to be internally
transformed into an equivalent boolean function with two arguments.

4.2 Implementation of VT-RA Operations

The VT-RA parser has been developed using lex. The input string is processed and
appropriate action is taken as follows:

(i) If the input string represents either of the VT-RA operations Union, Except,
Project, Product or Select, it is transformed into an equivalent SQL statement. The
parsing of Select has an additional requirement, that interval relational operators are
transformed to equivalent user-defined boolean functions.

(ii) If the input string represents either of the VT-RA operations Unfold, Fold,
Normalise, Punion or Pexcept, then the respective routine, implemented in C, is
invoked. Optimised code has been developed for the implementation of these
operations, described in detail in [Lorentzos et al 92] and [Lorentzos &
Manolopoulos 93].

The INGRES dictionary is assessed before the execution of certain operations, to verify
that the columns of the input table(s) are of the proper data type.

5. CONCLUSIONS

In this report we presented the Valid Time Relational Algebra which has been developed
in the ORES project. The evaluation tests of the developed programs have been
exhaustive and have shown that the software runs according to the specifications.

REFERENCES

[01P 93a] 'Specification of Valid Time Formalism', ORES Deliverable C3, Apr. 1993.

[01P 93b] 'Specification of Valid Time SQL', ORES Deliverable D2, Amendment I, Oct.
1993.

[INGRES 89] Ingres 'SQL Reference Manual', Release 6.3, Nov. 1989.

[INGRES 91] Ingres 'Object Management Extension User's Guide', Release 6.4, Dec.
1991.

[Lorentzos et al 92] N. A. Lorentzos, A. Poulovassilis, and C. Small. 'Update Operations
For Multi-dimensional Interval Data', Int. Rept., Informatics Laboratory, Agricultural
University of Athens, 1993.

[Lorentzos & Manolopoulos 93] N. A. Lorentzos, and Y. Manolopoulos. 'Optimised
Update of 2-Dimensional Interval Relations' Paper accepted to the 4th Greek Computer
Society Conference, 1993.

APPENDIX A - VT-RA EVALUATION

1. Introduction

The present appendix contains the tests of VT-RA. The evaluation has been based on the
notion of test cases also known as black box testing. A test case is a specific scenario
with a predefined input and output aiming at checking only one aspect at a time. The test
cases have been applied to a test database particularly created for the evaluation.

Two kinds of tests have been used, normal ones, with a valid input and an expected valid
output and tests which should normally be flagged by an error message. Effort has been
made for the set of tests to be exhaustive.

The remainder of this appendix is outlined as follows :

In section 2 we provide a sample database against which part of the evaluation took
place. In section 3 we provide tables on the evaluation of VT-RA functions. In section 4
we provide tables on the the evaluation of VT-RA relational operators. In section 5 we
provide tables on the evaluation of VT-RA operations. Conclusions are drawn in the last
section.

2. Sample Database
Part of the evaluation test has been made against the tables which follow. All these tables
contain valid data and care has been taken for them to contain duplicate rows and to be
non-normalised. Similar tables containing invalid data have also been used. Finally, tables
with two time related attributes have been created that contain duplicate rows and to are
non-normalised .

 (S)ALARY (A)SSIGNMENT

Name Amount Days Name Dept. Days Type

John 10000 [1993-06-02,1993-06-06) John shoe [1993-06-03,1993-06-07) salesman

John 10000 [1993-06-09,1993-06-12) John food [1993-06-07,1993-06-11) supervisor

John 12000 [1993-06-15,1993-06-18) John toys [1993-06-11,1993-06-15) salesman

Alex 14000 [1993-06-09,1993-06-12) Alex shoe [1993-06-05,1993-06-10) supervisor

 Mary toys [1993-06-05,1993-06-11) supervisor

 (D)uplicated SALARY (N)on Normalised ASSIGNMENT

Name Amount Days Name Dept. Days Type

John 10000 [1993-06-02,1993-06-06) John shoe [1993-06-03,1993-06-07) salesman

John 10000 [1993-06-02,1993-06-06) John food [1993-06-07,1993-06-11) supervisor

John 12000 [1993-06-15,1993-06-18) John food [1993-06-08,1993-06-15) supervisor

Alex 14000 [1993-06-09,1993-06-12) Alex shoe [1993-06-05,1993-06-10) supervisor

 Mary toys [1993-06-05,1993-06-11) supervisor

 (I)nflation

Country Percentage Period

greece 0.15 [1993-06-01,1993-06-02)

spain 0.10 [1993-06-03,1993-06-04)

EEC 0.08 [1993-06-07,1993-06-08)

 (O)vertime Dup(L)icated Overtime

Name Date No of Hours Name Date No of Hours

John 1993-06-02 2 John 1993-06-02 2

john 1993-06-03 2 John 1993-06-03 2

John 1993-06-04 2 John 1993-06-15 1

john 1993-06-05 2 John 1993-06-15 1

John 1993-06-15 1 Alex 1993-06-20 2

John 1993-06-20 2

Alex 1993-06-20 2

 (C)complication

Patient Complication Period

john Hypotassemia [1993-06-01,1993-06-05)

john Hyperglykemia [1993-06-01,1993-06-09)

john Leykopenia [1993-06-01,1993-06-10)

john Hypomagnesemia [1993-06-01,1993-06-15)

john Dialysis [1993-06-01,1993-06-20)

john Atelectasis [1993-06-08,1993-06-10)

john Hemothorax [1993-06-08,1993-06-15) Interval for comparison

john Pneumothorax [1993-06-08,1993-06-20)

john Ultrafiltration [1993-06-09,1993-06-11)

john Psychosis [1993-06-12,1993-06-15)

john Pancreatitis [1993-06-12,1993-06-20)

john Bone [1993-06-14,1993-06-20)

john Hemolytic Anemia [1993-06-17,1993-06-20)

 S2

Name Amount Date

john

10000 [1993-06-17,1993-06-20)

 D2

Name Amount Date

john

10000 [1993-06-17,1993-06-20)

John 10000 [1993-06-17,1993-06-20)

John 12000 [1993-06-15,1993-06-18)

Alex 14000 [1993-06-09,1993-06-12)

 (SO) (OO)
Name Amount Days Hours Date Name Date Hours Period

John 10000 [1993-06-02,1993-06-06) 2 1993-06-02 John 1993-06-02 2 1993-06-02

John 10000 [1993-06-09,1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

John 10000 [1993-09-09,1993-06-12) 2 1993-06-04 John 1993-06-04 2 1993-06-02

john 12000 [1993-09-05,1993-06-12) 1 1993-06-15 john 1993-06-04 2 1993-06-03

alex 14000 [1993-06-09,1993-06-12) 2 1993-06-20 alex 1993-06-20 2 1993-06-03

 (SOD) (OOD)
Name Amount Days Hours Date Name Date Hours Period

John 10000 [1993-06-02,1993-06-06) 2 1993-06-02 John 1993-06-02 2 1993-06-02

John 10000 [1993-06-09,1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

John 10000 [1993-09-09,1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

john 12000 [1993-09-05,1993-06-12) 1 1993-06-15 john 1993-06-04 2 1993-06-03

alex 14000 [1993-06-09,1993-06-12) 2 1993-06-20 alex 1993-06-20 2 1993-06-03

 (DA)

name amount dept days period

john 10000 shoe [1993-06-02,1993-06-06) [1993-06-03,1993-06-07)

john 10000 food [1993-06-02,1993-06-06) [1993-06-03,1993-06-07)

john 10000 food [1993-06-09,1993-06-12) [1993-06-07,1993-06-11)

john 12000 toys [1993-06-15,1993-06-18) [1993-06-11,1993-06-15)

john 14000 shoe [1993-06-09,1993-06-12) [1993-06-05,1993-06-11)

 (DAN)
name amount dept days period

john 10000 shoe [1993-06-02,1993-06-06) [1993-06-03,1993-06-07)

john 10000 food [1993-06-02,1993-06-06) [1993-06-07,1993-06-11)

john 10000 food [1993-06-02,1993-06-06) [1993-06-08,1993-06-15)

john 12000 toys [1993-06-15,1993-06-18) [1993-06-11,1993-06-15)

john 14000 shoe [1993-06-09,1993-06-12) [1993-06-05,1993-06-11)

 (E)

name amount date

3. Evaluation of VT-RA Functions
The following evaluation has been made through the use of INGRES SQL as well as
through the "project" operation of VT-RA. Here only the SQL portion of tests is
included. The following categories of tests have been included :

1) Syntax Errors
2) Invalid Input
3) Output beyond required range
4) Valid Syntax and Input Data

As far as we can estimate, these tests have been exhaustive.

Start(di)

di = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select start('1993-09-27') from s <error message> √

Any string as argument select start('nonsense') from s <error message> √

Not valid date interval select start('[1993-09-29,1993-09-27)')
from s

<error message> √

Not complete date interval select start('[1993-09,1993-10)') from s <error message> √

Date argument select start(date) from o <error message> √

Valid Syntax and Input
Data

date comparison select * from s where
start(days)=date('1993-06-09')

 √

simple select start('[1993-09-27,1993-09-29)')
from s

 √

Stop(di)

di = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected
Output

Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select stop('1993-09-27') from s <error message> √

Any string as argument select stop('nonsense') from s <error message> √

Not valid date interval select stop('[1993-09-29,1993-09-27)') from s <error message> √

Not complete date interval select stop("[1993-09,1993-10[)) from s <error message> √

Date argument select stop(date) from o <error message> √

Valid Syntax and Input
Data

date comparison select * from s where stop(days)=date('1993-
06-09')

 √

simple select stop('[1993-09-27,1993-09-29)') from s

Date Topoint(di)

di = "[YYYY-MM-DD,YYYY-MM-DD+1)"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select topoint('1993-09-27') from s <error message> √

Any string as argument select topoint('nonsense') from s <error message> √

Not valid date interval select topoint('[1993-09-29,1993-09-27)')
from s

<error message> √

Duration not 1 select topoint('[1993-09-20, 1993-09-25'))
from s

<error message> √

Date argument select topoint(date) from o <error message> √

Valid Syntax and Input Data

date comparison select * from s where
topoint(days)=date('1993-06-012')

 √

simple select topoint('[1993-09-27,1993-09-28)')
from s

 √

DateInterv Tointerv(d)

d = "YYYY-MM-DD"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

Invalid Input

Date Interval argument select tointerv('[1993-09-27,1993-09-29)')
from s

<error message> √

Any string as argument select tointerv('nonsense') from s <error message> √

Not valid date select tointerv('1993-09') from s <error message> √

Date argument select tointerv(date) from o <error message> √

Valid Syntax and Input
Data

date comparison select * from o where
tointerv(c(date))='[1993-06-20,1993-06-21)'

 √

simple select tointerv('1993-09-27') from s √

DateInterv Intervsect(di1,di2)

di1, di2 = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select intervsect('1993-09-27') from s <error message> √

Any string as argument select intervsect('nonsense') from s <error message> √

Not valid date interval select intervsect('[1993-09-29,1993-09-
27)','[1993-09-24,1993-09-27)') from s

<error message> √

Not Common Points select intervsect('[1993-09-22,1993-09-
27)','[1993-09-14,1993-09-17)') from s

<error message> √

Date argument select intervsect(date) from o <error message> √

Valid Syntax and Input
Data

In where clause select * from n where
dur(intervsect(days,'[1993-06-08,1993-06-
15)')) < 10

 √

simple select intervsect('[1993-09-23,1993-09-
29)','[1993-09-24,1993-09-27)') from s

 √

Date Succ(d,n)

d = "YYYY-MM-DD"
n = integer

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Any string as argument select succ('nonsense',2) from s <error message> √

Not valid date select succ('1993-09',2) from s <error message> √

Date argument select succ(date,2) from o <error message> √

Date interval argument select succ(days,5) from o <error message> √

Valid Syntax and Input
Data

Negative 2nd argument select succ('1993-09-20',-3) from s √

In where clause select * from o where succ(c(date),6) >
'1993-06-15'

 √

simple select succ('1993-09-20',3) from s √

Int Dur(di)

di = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select dur('1993-09-27') from s <error message> √

Any string as argument select dur('nonsense') from s <error message> √

Not valid date interval select dur('[1993-09-29,1993-09-27)')
from s

<error message> √

Date argument select dur(date) from o <error message> √

Valid Syntax and Input
Data

In where clause select * from i where dur(days) > 4 √

simple select dur(days) from s √

Date middle(di)

di = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected
Output

Pass Comments

Syntax Errors

 <error message> √

Invalid Input

Date string argument select middle('1993-09-27') from s <error message> √

Any string as argument select middle('nonsense') from s <error message> √

Not valid date interval select middle('[1993-09-29,1993-09-27)')
from s

<error message> √

Date argument select midle(date) from o <error message> √

Valid Syntax and Input
Data

In where clause select * from i where middle(days)='1993-06-
10' or middle(days)='1993-06-11'

 √

simple select middle('[1993-09-27,1993-09-30)')
from s

 √

DateInterv merge(di1,di2)

di1,di2 = "[YYYY-MM-DD,YYYY-MM-DD)"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Data

Date string argument select merge('[1993-09-10, 1993-09-
15)','1993-09-27') from s

<error message> √

Any string as argument select merge(days,'nonsense') from s <error message> √

Not valid date interval select merge(days,'[1993-09-29,1993-09-
27)') from s

<error message> √

Non common points select merge('[1993-09-20, 1993-09-
25)','[1993-09-25, 1993-09-30)') from s

<error message> √

Date argument select merge(date,'[1993-09-20, 1993-09-
25)') from o

<error message> √

Valid Syntax and Input
Data

In where clause select * from s where dur(merge(days,'[1993-
06-05,1993-06-15)') > 6

 √

simple select merge('[1993-09-20, 1993-09-
25'),'[1993-09-22, 1993-09-30)') from s

 √

Int span(d1, d2)

d1, d2 = "YYYY-MM-DD"

Test Case Input Description Test Case Input Expected
Output

Pass Comments

Syntax Errors

 <error message> √

Invalid Data

One Date string argument
missing

select span('1993-09-27',) from s <error message> √

Any string as argument select span('1993-09-27','nonsense') from s <error message> √

Date argument select span(date,date) from o <error message> √

Valid Syntax and Input
Data

In where clause select * from o where span(c(date),c(date)) > 6 Normal situation √

simple select span('1993-09-27','1993-09-30') from s Normal situation √

simple select span('1993-09-27','1993-09-10') from s Normal situation √

Positive Int dist(d1,d2)

d1,d2 = "YYYY-MM-DD"

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

One Date string argument
missing

select dist('1993-09-10',) from s <error message> √

Any string as argument select dist('1993-09-10','nonsense') from s <error message> √

Date argument select dist(date,date) from o <error message> √

Valid Syntax and Input
Data

date comparison select * from o where dist(c(date),c(date)) > 6 Normal situation √

simple select dist('1993-09-20','1993-09-25') from s Normal situation √

simple select dist('1993-09-20','1993-09-15') from s Normal situation √

DateInterval window(d1 i1 i2)

d1 = "YYYY-MM-DD"
i1, i2 = integer

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors <error message> √

Invalid Input

Date string argument missing select window(,9,3) from s <error message> √

Any string as argument select window('nonsense',3,4) from s <error message> √

Not valid date argument select window('1993-90-29',2,3) from s <error message> √

Valid Syntax and Input
Data

simple select window('1993-90-29,2,3') from o √

In where clause select * from o where window(c(date)+' ,3,4') > 2 √

Int windowno(d1,i1, d2)

d1,d2 = "YYYY-MM-DD"
i1 = integer

Test Case Input Description Test Case Input Expected Output Pass Comments

Syntax Errors

 <error message> √

Invalid Input

One Date string argument
missing

select windowno('1993-09-10,9,') from s <error message> √

Any string as argument select windowno('1993-09-01,3,nonsense') from
o

<error message> √

Not valid date select windowno('1993-90-29,3,1993-09-27')
from s

<error message> √

Valid Syntax and Input
Data

In where clause select * from o where windowno(c(date)+' ,3,' +
c(date)) > 2

 √

simple select windowno('1993-09-20,2,1993-09-25')
from s

 √

4. Evaluation of VT-RA Relational Operators
The general format of an interval relational operator is x irp y where x and y are intervals
and irp is an interval relational operator. The following tests have been made for :

1) Invalid x
2) Invalid y
3) valid x and y
As far as we can estimate these tests have been exhaustive.

Test Case Descr. Test Case Command Pass Comments

Invalid x

 √

Invalid y

 √

Valid x and y

 √

<srch> contains before SE = select [period before interv('1993-06-08','1993-06-15')] (C) √

<srch> contains meets SE = select [period meets interv('1993-06-08','1993-06-15')] (C) √

<srch> contains loverlaps SE = select [period loverlaps interv('1993-06-08','1993-06-15')] (C) √

<srch> contains lcovers SE = select [period lcovers interv('1993-06-08','1993-06-15')] (C) √

<srch> contains covers SE = select [period covers interv('1993-06-08','1993-06-15')] (C) √

<srch> contains rcovered SE = select [period rcovered interv('1993-06-08','1993-06-15')] (C) √

<srch> contains = SE = select [period = interv('1993-06-08','1993-06-15')] (C) √

<srch> contains rcovers SE = select [period rcovers interv('1993-06-08','1993-06-15')] (C) √

<srch> contains covered SE = select [period covered interv('1993-06-08','1993-06-15')] (C) √

<srch> contains lcovered SE = select [period lcovered interv('1993-06-08','1993-06-15')] (C) √

<srch> contains roverlaps SE = select [period roverlaps interv('1993-06-08','1993-06-15')] (C) √

<srch> contains met SE = select [period met interv('1993-06-08','1993-06-15')] (C) √

<srch> contains after SE = select [period after interv('1993-06-08','1993-06-15')] (C) √

<srch> contains psubinterv SE = select [period psubinterv interv('1993-06-08','1993-06-15')] (C) √

<srch> contains subinterv SE = select [period subinterv interv('1993-06-08','1993-06-15')] (C) √

<srch> contains psupinterv SE = select [period psupinterv interv('1993-06-08','1993-06-15')] (C) √

<srch> contains overlaps SE = select [period overlaps interv('1993-06-08','1993-06-15')] (C) √

<srch> contains merges SE = select [period merges interv('1993-06-08','1993-06-15')] (C) √

<srch> contains cp SE = select [period cp interv('1993-06-08','1993-06-15')] (C) √

<srch> contains precedes SE = select [period precedes interv('1993-06-08','1993-06-15')] (C) √

<srch> contains follows SE = select [period follows interv('1993-06-08','1993-06-15')] (C) √

<srch> contains prequals SE = select [period prequals interv('1993-06-08','1993-06-15')] (C) √

<srch> contains folequals SE = select [period folequals interv('1993-06-08','1993-06-15')] (C) √

<srch> contains adjacent SE = select [period adjacent interv('1993-06-08','1993-06-15')] (C) √

5. Evaluation of VT-RA Operations

The following categories of tests have been done :

1) Syntax errors.
2) Violation of VT-RA operations Specifications.
3) Valid Syntax and Specifications satisfaction
4) Support of SQL functions. Not exhaustive test.(applicable to project and select only)
5) Support of composite VT-RA and SQL functions.(applicable to project and select
only)

Unfold

<tbl3> = unfold [<atr>] (<tbl1>)

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors

('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> does not exist U = unfold [days] (R) <error message> √

<tbl3> exists A = unfold [days] (S) <error message> √

<atr> not present U = unfold [] (S) <error message> √

<atr> is not point or interv U = unfold [name] (S) <error message> √

Valid Syntax and
Specifications Statisfaction

<tbl1> with duplicates, time interval U = unfold [days] (D) U should have no
duplicates

√

<tbl1> with duplicates, time ipoint U = unfold [date] (L) U should have no
duplicates

√

<atr> is time point U = unfold [date] (O) U=O, O remains
unchanged

√

<atr> is time interval U = unfold [days] (S) Normal situation √

Non normalised <tbl1> U = unfold [days] (N) U should have no
duplicates

√

<tbl1> is empty U = unfold [date] (E) Normal situation √

Fold

<tbl3> = fold [<atr>] (<tbl1>)

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing

<error message> √

Specifications Violation

<tbl1> does not exist F = fold [days] (R) <error message> √

<tbl3> exists A = fold [days] (S) <error message> √

<atr> not present F = fold [] (S) <error message> √

<atr> is not point or interval F = fold [name] (S) <error message> √ `

Valid Syntax and Specifications
Satisfaction

<tbl1> with duplicates, time point F = fold [date] (L) F should have no
duplicates

√

<tbl1> with duplicates, time interval F = fold [days] (D) F should have no
duplicates

√

<atr> is time interval F = fold [days] (S) F=S, S remains
unchanged

√

<atr> is time point F = fold [date] (O) Normal situation √

Non normalised <tbl1> F = fold [days] (N) F should have no
duplicates

√

<tbl1> is empty F = fold [date] (E) Normal situation √

Normalise

<tbl3> = normalise [<atr>] (<tbl1>)

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> does not exist NOR = normalise [days]
(R)

<error message> √

<atr> not present NOR = normalise [] (S) <error message> √

<atr> is not point or interval NOR = normalise [name]
(S)

<error message> √

Valid Syntax and
Specifications Satisfaction

<tbl1> with duplicates, time interval NOR = normalise [days]
(D)

NOR should have no duplicates √

<tbl1> with duplicates, time point NOR = normalise [date]
(L)

NOR should have no duplicates √

<atr> is time interval NOR = normalise [days]
(S)

[days] of NOR should be Interval √

<atr> is time point NOR = normalise [date]
(O)

[date] of NOR should be Interval √

Non normalised <tbl1> NOR = normalise [days]
(N)

[days] of NOR should be Interval √

<tbl1> is empty NOR = normalise [date]
(E)

 Normal Situation √

Project

<tbl3> = project [<atr>] (<tbl1>)

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> does not exist P = project [date] (R) <error message> √

<tbl3> exists A = project [date] (O) <error message> √

<atr> not present P = project [] (R) <error message> √

Valid Syntax and Specifications
Satisfaction

attribute casting P=project [newname =
days] (s)

P has an attribute
with name 'newname'

√

<tbl1> with duplicates, time point P= project [date] (L) P has no duplicates √

<tbl1> with duplicates, time interval P= project [days] (D) P has no duplicates √

<atr> is not point or interval P = project [name] (S) Normal Situation √

<atr> is time interval P = project [days] (S) Normal Situation √

<atr> is time point P = project [date] (O) Normal Situation √

Non normalised <tbl1> P = project [days] (N) Normal Situation √

<tbl1> is empty P = project [date] (E) Normal Situation √

<atr> = * P = project [*] (O) All atrs are processed √

Support of SQL functions P = project [abs(-2)] (S) Normal Situation √

Support of VT-RA and SQL functions

topoint in <atr>, atr non unary interval P = project
[topoint(days)] (S)

Normal Situation √

tointerv in <atr>, atr not time point P = project
[tointerv(days)] (S)

Normal Situation √

topoint in <atr> P = project
[topoint(period)] (I)

Normal Situation √

tointerv in <atr> P = project
[tointerv(c(date))] (O)

Normal Situation √

Product

<tbl3> = <tbl2> product <tbl1>

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> or <tbl2> does not exist P = S product R
P = R product S

<error message> √

<tbl3> exists A = O product L <error message> √

<tbl1>,<tbl2> have attrs with the same name P = S product A <error message> √

Valid Syntax and Specifications
Satisfaction

<tbl1> or <tbl2> or both are empty P = S2 product E
P = E product S2
P = E product E

Normal Situation √

<tbl1>, <tbl2> have not attrs with the same
name

P = S product I Normal Situation √

Union

<tbl3> = <tbl2> union <tbl1>

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> or <tbl2> does not exist U = S union R
U = R union S

<error message> √

<tbl3> exists A = O union L <error message> √

<tbl1>,<tbl2> have different no. of attrs U = S union A <error message> √

<tbl1>,<tbl2> have type incompatible attrs U = S union O <error message> √

Valid Syntax and Specifications
Satisfaction

<tbl1> or <tbl2> with duplicate tuples U = S union D
U = D union S
U = O union L
U = L union O

Normal Situation √

tables with different attr names, type
compatible

U = S union S2
U = S2 union S

Normal Situation √

<tbl1> or <tbl2> or both are empty U = S union E
U = E union S
U = E union E

Normal Situation √

Except

<tbl3> = <tbl2> except <tbl1>

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> or <tbl2> does not exist EX = S except R
EX = R except S

<error message> √

<tbl3> exists A = O except L <error message> √

<tbl1>,<tbl2> have different no. of
attrs

EX = S except A <error message> √

<tbl1>,<tbl2> have type incompatible
attrs

EX = S except O <error message> √

Valid Syntax and
Speifications Staisfaction

<tbl1> or <tbl2> or both with
duplicate tuples

EX = S except D
EX = D except S
EX = O excpet L
EX = L except O
EX = D except D2
EX = D2 except D

EX with no duplicates √

<tbl1> or <tbl2> non normalised EX = A except N
EX = N except A

EX normalised √

<tbl1> and <tbl2> with different attr
names

EX = S except S2
EX = S2 except S

EX with <tbl1>
schema

√

<tbl1> or <tbl2> or both are empty EX = S2 except E
EX = E except S2
EX = E except E

EX is empty √

Punion

<tbl3> = <tbl2> punion [<atr>] <tbl1>

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')'
or <tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> or <tbl2> does not exist PU = S punion [days] R
PU = R punion [days] S

<error message> √

<tbl3> exists A = O punion [date] L <error message> √

empty <attr> PU = S punion [] (S) <error message> √

<tbl1>,<tbl2> have different no. of attrs PU = S punion [days] A <error message> √

<tbl1>,<tbl2> have type incompatible attrs PU = S punion [days] O <error message> √

<atr> belongs to <tbl1> PU = S punion [date] O <error message> √

<atr> not time point or time interval PU = S punion [name] D <error message> √

Valid Syntax and Specifications
Staisfaction

<tbl1> or <tbl2> with duplicate tuples PU = S punion [days] D
PU = D punion [days] S
PU = O punion [date] L
PU = L punion [date] O

Duplicates removed √

<atr> is time point PU = O punion [date] O PU has time interval
attr

√

<atr> is time interval PU = S punion [days] S Normal Situation √

<tbl1> or <tbl2> non normalised PU = A punion [days] N
PU = N punion [days] A

PU should be
normalised

√

<tbl1> and <tbl2> have different atr names PU = S punion [days] S2
PU = S2 punion [date] S

Normal Situation √

<tbl1> or <tbl2> or both empty PU = S punion [days] E
PU = E punion [date] S
PU = E punion [date] E

Normal Situation √

Pexcept

<tbl3> = <tbl2> pexcept [<atr>] <tbl1>

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')' or
<tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> or <tbl2> does not exist PE = S pexcept [days] R
PE = R pexcept [days] S

<error message> √

<tbl3> exists A = O pexcept [date] L <error message> √

empty <attr> PE = S pexcept [] D <error message> √

<tbl1>,<tbl2> have different no. of
attrs

PE = S pexcept [days] A
PE = A pexcept [days] S

<error message> √

<tbl1>,<tbl2> have type
incompatible attrs

PE = S pexcept [days] O
PE = O pexcept [days] S

<error message> √

<atr> belongs to <tbl1> PE = S pexcept [date] O <error message> √

<atr> not time point or time interval PE = S pexcept [name] D <error message> √

<tbl1> and <tbl2> have different attr
names

PE = S pexcept [days] S2
PE = S2 pexcept [date] S

<error message> √

Valid Input and
Specifications Staisfaction

duplicate tuples, time interval PE = S pexcept [days] D
PE = D pexcept [days] S

Duplicates removed √

duplicate tuples, time point PE = O pexcept [date] L
PE = L pexcept [date] O

time interval attr, duplicates
removed

√

<tbl1> or <tbl2> non normalised PE = N pexcept [days] A
PE = A pexcept [days] N

PE should be normalised √

<tbl1> or <tbl2> or both are empty PE = S2 pexcept [days] E
PE = E pexcept [date] S2
PE = E pexcept [date] E

Normal Situation √

Select

<tbl3> = select [<srch>] (<tbl1>)

Test Case Descr. Test Case Command Expected Result Pass Comments

Syntax Errors ('=' or '[' or ']' or '(' or ')' or
<tbl1> is missing)

<error message> √

Specifications Violation

<tbl1> does not exist SE = select [patient='john'] (R) <error message> √

<tbl3> exists A = select [patient='john'] (C) <error message> √

Valid Input and Specifications
Satisfaction

<srch> is empty SE = select [] (C) Selects all tuples √

<tbl1> is empty SE = select [] (e) √

<srch> contains AND SE = select [patient='john' AND
period = interv('1993-06-
08','1993-06-15')] (C)
SE = select
[complication='dialysis' AND (
patient='john' OR interv('1993-
06-08','1993-06-15')] (C)

 √

<srch> contains OR SE = select [patient='john' OR
period = interv('1993-06-
08','1993-06-15')] (C)

 √

<srch> contains NOT SE = select [NOT (period cp
interv('1993-06-08','1993-06-
15'))] (C)

 √

<srch> contains a combination of
AND, OR and NOT

SE = select [(patient='john' AND
period = interv('1993-06-
08','1993-06-15')) OR NOT
(period after tointerv('1993-06-
08'))] (C)

 √

Support of SQL functions SE = select [patient='john' OR
abs(-2)=2] (S)

 √

Support of VT-RA and SQL
functions

SE = select [patient='john' OR
period after tointerv('1993-06-
08')] (C)

 √

6. Conclusions

From the evaluation tables provided above, it can be verified that major effort was made
for the tests to be exhaustive. The results which have been obtained are completely
satisfactory, since no undesirbale side-effect has been identified.

