

ESPRIT III

ORES: TOWARDS THE FIRST GENERATION
OF TEMPORAL DBMS

(P7224)

DELIVERABLE D2

SPECIFICATION OF VALID TIME SQL

Responsible: 01 PLIROFORIKI

Copyright: Nikos A. Lorentzos, ORES Technical Manager

APRIL 1993

SPECIFICATION OF VALID TIME SQL
(DELIVERABLE D2)

Responsible: 01 PLIROFORIKI

ABSTRACT
This report concerns the specification of a valid time extension to
SQL. It is a consistent extension in that it preserves the syntax and
semantics of SQL. In addition, it incorporates all the operations of
Valid Time Relational Algebra.

TABLE OF CONTENTS

1. Introduction ..4

2. A Sample Database ...6

3. Extensions to SQL...9

4. Comments on VT-SQL ...54

5. VT-SQL and the ORES project..57

6. Conclusions..60

 Appendix A ...61

Appendix B..66

Appendix C..74

References..81

1. INTRODUCTION

In this report we formalise a consistent extension to SQL, namely Valid Time SQL (VT-
SQL), which can handle both snapshot and valid time data. VT-SQL can be seen as an
integration of SQL and Valid Time Relational Algebra (VT-SQL) [01P 93], in the sense
that it preserves the syntax and semantics of the former and extends them in a natural
way so as to include all the characteristics of the latter. As a consequence, VT-SQL is as
user-friendly as SQL. The new features are the following:

- Predefined constants

- New data types

- New literals

- New relational operators

- New scalar functions

- New aggregate functions

- A consistent extension to the SQL CREATE TABLE statement

- New clauses for the incorporation of the VT-RA reformat and normalise
operations

- A consistent extension to the SQL UNION operation

- A direct incorporation of the except and pexcept operations of VT-RA

- A consistent extension to the SQL data manipulation statements

Effort has been made in defining an almost full SQL extension and not a minimal one, as
specified in the Technical Annex of the ORES project. The specification of VT-SQL has
been based on the following:

- Literature on standard SQL, especially [Date 86], [Lans 88a], [Lans 88b] and
[Ingres 89]

- Literature on the definition of a VT-SQL ([Navathe & Ahmed 86], [Sarda 90])

- The user requirements, as specified in [CPH 93].

It is worth mentioning that VT-SQL is so powerful that it can answer more complicated
queries than those identified in the test bed application [CPH 93].

Report C3 [01P 93] is a requirement for the understanding of this one. The remainder of
this report is outlined as follows.

In section 2 we provide a sample database, against which we provide examples on the
definition of VT-SQL. In section 3 we describe VT-SQL. In section 4 we justify certain
specification decisions. In section 5 we present implementation problems and identify the
portion of VT-SQL which will be implemented within the ORES project. Conclusions
are drawn in the last section. The document is followed by three appendices. In appendix
A we provide certain formal definitions which are necessary to VT-SQL. In appendix B
we provide the full VT-SQL syntax. In appendix C we demonstrate how VT-SQL can be
used to answer queries of the test bed application. All the examples provided in this
appendix answer queries which are real in nature, not hypothetical.

2. A SAMPLE DATABASE

In this section we present a sample database which is used in the examples provided in
subsequent sections.

Since a Valid Time DBMS (VT-DBMS) should support various time-interval types, in
the following we usually refer to generic time-points (d5, d6, d7 etc.) and time-intervals
([d5, d7), [d12, d15) etc.). A generic time-interval over an arbitrary set of time-points is
alternatively denoted by δx, δy or δz. A time type is either a time-point or time-interval
type.

Although dates and intervals over a set of dates are actually displayed in a format like
30/01/93 and [30/01/93, 20/04/93), for simplicity reasons we use the above notation and
denote them like d5 and [d5, d10), respectively.

Hour-intervals are intervals over the set HOURS = {h1, h2, ..., h25} (for example
[h14, h25)).

Month-intervals are intervals over the set MONTHS = {m1, m2, ..., m13} (for example
[m7, m13)).

Tables

For each of the tables which follow we provide its key and a short description of its
contents.

 SALARY

Name Amount Time
John 10K [d2, d6)
John 10K [d9, d12)
John 12K [d15, d18)
Alex 14K [d9, d12)

 Key: <Name-i, Time-p>

The salary of each employee for each of the dates in the Time interval.

ASSIGNMENT

Name Dept. Time
John shoe [d3, d7)
John food [d7, d11)
John toys [d11, d15)
Alex shoe [d5, d10)
Mary toys [d5, d11)

Key: <Name-i, Time-p>

The department in which each employee was assigned for each of the dates in the Time
interval.

PROJECT

Name Project Time
John P1 [d1, d5)
John P2 [d2, d12)
John P1 [d15, d30)
Mary P1 [d2, d10)

Key: <Name-i, Project-i, Time-p>

The project in which each employee was involved for each of the dates in the Time
interval.

SHIFT

Name Day Hour
John [d1, d10) [h1, h9)
John [d5, d20) [h9, h12)

Key: <Day-p, Hour-p>

The interval of hours each employee works, for each particular interval of dates.

INFLATION

Country Percentage Time
A 8.0 [m1, m4)
A 10.0 [m4, m7)
A 10.0 [m1, m13)

Key: <Country-i, Time-i>

The rate at which the inflation of each country was running, during a particular month-
interval.

SALES

Date Product Qty Price
d5 apples 500 100
d5 grapes 200 300
d5 oranges 300 150
d5 pears 400 200
d6 apples 600 120
d6 grapes 250 300
d6 oranges 350 170
d6 pears 200 220
d7 apples 650 120
d7 grapes 300 300
d8 oranges 400 170
d8 pears 300 220

Key: <Date-i, Product-i>

The quantity sold and the unit price of each product on a particular date.

3. EXTENSIONS TO SQL

In this section we give the specification of VT-SQL. The new features are given in bold, to make
reading easier. For each new feature we provide a description, followed by appropriate examples and
its syntax in BNF. Similarly to [Lans 88b] we have avoided complicating the syntax, by writing under
appropriate headings the rules which cannot be deduced by it. A complete syntax of VT-SQL is given
in appendix B.

3.1 Predefined Constants

Description

If D={d1, d2, ..., dn} is a set of consecutive time-points, then two predefined constants, minD and
maxD, equal d1 and dn, respectively. If minD or maxD are in an expression, the VT-DBMS replaces
them by their values before the expression is evaluated.

Two predefined constants of particular interest are mindate and maxdate which equal the least and
greatest date supported by a VT-DBMS. The importance of these constants is shown in subsequent
sections.

3.2 New Data Types

Description

For every set D={d1, d2, ..., dn} of consecutive time-points, DINTERVAL is a new data type with
elements of the form [di, dj), where di < dj.

A data type of particular interest is DATEINTERVAL. For simplicity reasons, we again use the
notation [di, dj), for elements of a DATEINTERVAL type, where di, dj are of type DATE.

Example:

CREATE TABLE SALARY (Name VARCHAR(15) NOT NULL,
 Amount INTEGER4,
 Time DATEINTERVAL NOT NULL)

Format
<data-type> ::= <standard-SQL-data-type>
 | DATEINTERVAL

General Rules
1. Every SQL data type is also valid in VT-SQL.

2. The new data types may be used in exactly the same places where the SQL data types are used.

3. The rules to which the SQL data types obey, are exactly the same for the VT-SQL types.

Convention
A time-interval which participates in the operations defined in the sub-sections which follow, may
not be semi-null or null. Examples of semi-null time intervals are '[, d10)' and '[d5,)'.

3.3 New Literals

Description

If 'di' and 'dj' are time-point literals, di < dj, then '[di, dj)' is a DINTERVAL literal.

Example:

'[01/01/93, 25/03/93)' is a DATEINTERVAL literal.

INSERT INTO INFLATION(Country, Percentage, Time)
VALUES ('B', 3.0, '[m7, m13)')

Format
<literal> ::= <standard-SQL-literal>
 | <dateinterval-literal>

<dateinterval-literal> ::= '[<date>, <date>)'

General Rules
1. Every SQL literal is also valid in VT-SQL.

2. The new literals may be used in exactly the same places where the SQL literals are used.

3. The rules to which the SQL literals obey, are exactly the same for the VT-SQL literals.

3.4 New Relational Operators

Description

The time-interval relational operators are shown in figure 1. Their definition is given in appendix A.

(1) äy before
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)
(12)
(13)

äy meets
äy loverlaps
äy lcovers
äy covers
äy rcovered
äy =
äy rcovers
äy covered
äy lcovered
äy roverlaps
äy met
äy after

äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx
äx

δy psubinterv δx ⇔ (6 V 9 V 10) (δy is a pure subinterval of δx)
δy subinterv δx ⇔ (6 V 9 V10 V 7) (δy is a subinterval of δx)
δy psupinterv δx ⇔ (4 V 5 V 8) (δy is a pure superinterval of δx)
δy supinterv δx ⇔ (4 V 5 V 8V7) (δy is a superinterval of δx)
δy overlaps δx ⇔ (3 V 11)
δy merges δx ⇔ (2 V 3 V . . . V12)
δy cp δx ⇔ (3 V 4 V . . . V 11) (δy has common points with δx)
δy precedes δx ⇔ (1 V 2 V 3 V 4 V 5 V 6)
δy follows δx ⇔ (8 V9 V 10 V11 V 12 V 13)
δy prequals δx ⇔ (1 V 2 V 3 V 4 V5 V 6 V 7) (δy precedes or equals δx)
δy folequals δx ⇔ (7 V 8 V9 V 10 V 11V 12 V13) (δy follows or equals δx)
δy adjacent δx ⇔ (2 V12)

Figure 1: Internal relational operations.

Example:

[d12, d50) before [d60, d80) is true.
[d12, d60) meets [d60, d80) is true.
[d12, d60) meets [d70, d80) is false.
[d12, d50) cp [d30, d80) is true.
[d12, d50) cp [d60, d80) is false.

"Give the name and the department of the employees who worked at some time in [d5, d10)."

SELECT Name, Dept
FROM ASSIGNMENT
WHERE Time cp '[d5, d10)'

"Give the employees who were not paid at any day in [d5, d10)."

SELECT Name
FROM SALARY
WHERE Name not in (SELECT Name

 FROM SALARY S1
 WHERE S1.Name cp '[d5, d10)'
 GROUP BY Name)

GROUP BY Name

"Give the employees whose salary exceeded 9K at all days in [d5, d10)."

SELECT Name
FROM SALARY
WHERE Time cp '[d5, d10)'
AND Name not in (SELECT Name

 FROM SALARY S1
 WHERE S1.Time cp '[d5, d10)'
 AND S1.Amount <= 9K
 GROUP BY Name)

GROUP BY Name

"Give the employees who left the toys department at least one day before John moved to it." (We assume that
John moved to the toys department for the first time.)

SELECT Name
FROM ASSIGNMENT
WHERE Dept = 'toys'
AND Time before (SELECT Time

 FROM ASSIGNMENT A
 WHERE A.Name = 'John'
 AND A.Dept = 'toys')

GROUP BY Name

Format
<comparison-op>::= = | <> | < | > | <= | >=

| <interval-comparison-op>

<interval-comparison-op> ::= before
| meets
| loverlaps
| lcovers
| covers
| rcovered
| =
| rcovers
| covered
| lcovered
| roverlaps
| met
| after
| psubinterv
| subinterv
| psupinterv
| supinterv
| overlaps
| merges
| cp
| precedes
| follows
| prequals
| folequals
| adjacent

General Rules
1. Every SQL literal is also valid in VT-SQL.

2. The new relational operators may be used in exactly the same places where the SQL relational
operators are used.

3. The rules to which the SQL relational operators obey, are exactly the same for the VT-SQL
relational operators.

Additional Rule
The new operators may be used only between time-intervals of the same type.

3.5 New Scalar Functions

Description
The scalar functions which can be used in VT-SQL are those defined in [01P 93]. Their definition is
given in appendix A.

Examples
now : It returns the current time.

start([d5, d8)) = d5

stop([d5, d8)) = d8

topoint([d5, d6) = d5

tointerv(d5) = [d5, d6)

interv(d5, d8) = [d5, d8)
interv(d5, d3) = undefined

intervsect([d5, d10), [d7, d12)) = [d7, d10)
intervsect([d5, d10), [d15, d20)) = undefined

succ(d5, 3) = d8
succ(d5, -3) = d2

dur([d5, d8)) = 3

span(d3, d8) = -5

span(d8, d3) = 5

dist(d3, d8) = 5

middle([d5, d8)) = d6
middle([d5, d9)) = d6

merge([d5, d8), [d6, d12)) = [d5, d12)
merge([d5, d8), [d10, d20)) = undefined

window(d5, 5, 0) = [d5, d10)
window(d5, 5, 1) = [d10, d15)
window(d5, 3, -1) = [d2, d5)

windowno(d5, 5, d17) = 2
windowno(d5, 5, d15) = 2
windowno(d10, 5, d9) = -1

"Give the names of employees whose current salary exceeds 10K."

SELECT Name
FROM SALARY
WHERE tointerv('now') cp Time
GROUP BY Name

"For how long have we been knowing John?" (It is assumed that we know an employee from the first
time he started working in some department.)

SELECT 'now' - min(start(Time))
FROM ASSIGNMENT
WHERE Name = 'John'

"Give John's salary and assignment to departments, for all times at which both his salary and assignment to
departments was known."

SELECT` Amount, Dept, intervsect(A.Time, S.Time)
FROM ASSIGNMENT A, SALARY S
WHERE A.Name = 'John'
AND A.Name = S.Name
AND A.Time cp S.Time

"Give the names of employees who moved from the shoe to the food department while Mary was assigned to
some project."

SELECT A1.Name
FROM ASSIGNMENT A1, ASSIGNMENT A2, PROJECT P
WHERE A1.Name = A2.Name
AND A1.Dept = 'shoe'
AND A2.Dept = 'food'
AND A1.Time meets A2.Time
AND tointerv(start(A2.Time)) cp P.Time
AND P.Name = 'Mary'
GROUP BY Name

"Give the current salary of all employees not employed at any time in [d5, d12)."

SELECT S1.Name, S1.Amount
FROM SALARY S1
WHERE S1.Time cp tointerv('now')
AND Name not in (SELECT S2.Name

FROM SALARY S2
WHERE S1.Name = S2.Name
AND S2.Time cp '[d5, d10)')

"Give the employees whose first salary was greater than 8K."

SELECT S1.Name
FROM SALARY S1
WHERE S1.Amount > 8K
AND stop(S1.Time) <= all (SELECT start(S2.Time)

FROM SALARY S2
WHERE S2.Name = S1.Name
AND S2.Time <> S1.Time)

GROUP BY S1.Name

Format
<scalar-function> ::= <standard-SQL-scalar-function>

| now
| start(Dateinterval)
| stop (Dateinterval)

| topoint(Dateinterval)
| tointerv(Date)
| interv(Date, Date)
| intervsect(Dateinterval, Dateinterval)
| succ(Date, Integer)
| dur(Dateinterval)
| span(Date, Date)
| dist(Date, Date)
| middle(Dateinterval)
| merge(Dateinterval, Dateinterval)
| window(StartDate, TimeDuration, TimeNumber)
| windowno(StartDate, TimeDuration, Date)

General Rules
1. Every SQL scalar function is also valid in VT-SQL.

2. The new scalar functions may be used in exactly the same places where the SQL scalar functions
are used.

3. The rules to which the SQL scalar functions obey, are exactly the same for the new scalar
functions.

Additional Rule
The arguments of every new scalar function funct, must be funct-compatible.

3.6 New Aggregate Functions

Description
Two new aggregate functions are the following.

Function countap (count all time-points) returns the number of time-points that are contained in a
selected column or value expression of a time-interval type. Duplicate points are also counted.

Function countdp (count distinct time-points) returns the number of distinct time-points that are
contained in a selected column or value expression of a time-interval type.

Examples
"Give the total manpower put to the shoe department, measured in days."

For simplicity reasons, we assume that each employee works on all the dates in a specified time-
interval.

SELECT countap(Time)
FROM ASSIGNMENT
WHERE Dept = 'toys'

We can see that only the first and fourth row of ASSIGNMENT satisfy the search condition. For the
associated time-intervals, we notice the following:

Interval Days in Interval Number of
Days in Interval

[d3, d7) d3, d4, d5, d6 4
[d5, d10) d5, d6, d7, d8, d9 5
__
 Total manpower in days: 9

Hence, the result obtained is 9.

"Give the number of distinct days on which John was assigned to some project."

SELECT countdp(Time)
FROM PROJECT
WHERE Name = 'John'

Interval Days in Interval
[d1, d5) d1, d2, d3, d4
[d2, d12) d2, d3, d4, ..., d11
[d15, d30) d15, d16, ..., d29
__
Total number of distinct days : 26

Hence, the result obtained is 26.

The SQL aggregate functions may also be used in order to answer valid time queries, as is
demonstrated by the following examples.

Let us assume that in column Amount of SALARY we record the daily salary of employees. We recall
that SALARY is a normalised table, therefore consider the query "give the total amount paid for salaries
on date d9".

SELECT sum(Amount)
FROM SALARY
WHERE tointerv('d9') cp Time

"Give the employees who were first employed on a date greater than d7."

SELECT Name
FROM SALARY
GROUP BY Name
HAVING min(start(Time)) > 'd7'
GROUP BY Name

"Give the total amount paid for salaries from d5 to d15."

SELECT sum(Amount*dur(intervsect(Time, '[d5, d16)')))
FROM SALARY
WHERE tointerv('[d5, d16)') cp Time

"Give the number of salary increases for John."

SELECT count(S2.Time)
FROM SALARY S1, SALARY S2
WHERE S1.Name = 'John'
AND S1.Name = S2.Name
AND S1.Amount < S2.Amount
AND S1.Time meets S2.Time

"Give the number of employees who had a salary increase in [d5, d15)."

SELECT count(distinct S2.Name)
FROM SALARY S1, SALARY S2
WHERE S1.Name = S2.Name
AND S1.Amount < S2.Amount
AND S1.Time meets S2.Time
AND tointerv(start(S2.Time)) cp '[d5, d15)'

"Give the department in which John was working when he got his last salary increase."

SELECT Dept
FROM ASSIGNMENT
WHERE Name = 'John'
AND Time cp (SELECT tointerv(max(start(S2.Time)))

FROM SALARY S1, SALARY S2
WHERE S1.Name = 'John'
AND S1.Name = S2.Name
AND S1.Amount < S2.Amount
AND S1.Time meets S2.Time)

Format
<distinct-set-function> ::= <standard-SQL-distinct-set-function>

| { COUNTDP | COUNTAP} (DISTINCT <column-spec>)

<all-set-function> ::= <standard-SQL-all-set-function>
| { COUNTDP | COUNTAP} [ALL] <value-exp>)

General Rules
1. Every SQL aggregate function is also valid in VT-SQL.

2. The new aggregate functions may be used in exactly the same places where the SQL functions
are used.

3. The rules to which the SQL aggregate functions obey, are exactly the same for the new aggregate
functions.

Additional Rules
1. The argument of every new aggregate function must be either a column or a value expression of a

time-interval type.

2. Functions AVG, MAX, MIN and SUM may not be applied to elements of a time-interval type.

3.7 Extension to the Create Table Statement

Description
The syntax of the SQL2 CREATE TABLE command, enables the definition of the primary key of a
table. Its syntax is

<table-definition> ::=
 CREATE TABLE <table name>
 (<column-name> <data-type> <other> {, <column-name> <data-type> <other> ...}
 [, PRIMARY KEY (<key-column-list>)])
<key-column-list> ::=
 <key-column-name> {, <key-column-name> ...})
where <other> denotes other SQL2 declarations which are beyond the purposes of ORES. Thus,

CREATE TABLE SP (Supplier CHAR(10),
 Part CHAR(10),
 Quantity INTEGER)

is an example of declaring a table. If we are also interested in declaring that <Supplier, Part> is the key
of the table, the syntax is

CREATE TABLE SP (Supplier CHAR(10),
 Part CHAR(10),
 Quantity INTEGER,
 PRIMARY KEY (Supplier, Part))

Assuming that an INTEGERINTERVAL data type is also supported, another example is

CREATE TABLE OWNERSHIP (Name CHAR(10),
 Length INTEGERINTERVAL,
 Width INTEGERINTERVAL,
 PRIMARY KEY (Length, Width))

The constraint imposed by the primary key of OWNERSHIP implies that each piece of land
(rectangle with (Length, Width) co-ordinates) can be owned by at most one person.

Data is inserted in such tables in the usual way and if the primary key has been declared then a table
may not have two rows with the same key value. As we have seen however, if a database supports an

interval data type then it is often the case that the data of certain columns has to be normalised.
Therefore, we extend the above syntax in VT-SQL as follows:

<table-definition> ::=
CREATE TABLE <table name>
(<column-name> <data-type> <other> {, <column-name> <data-type> <other>...}
[, NORMALISED (<normalised-column-list>)]
[, PRIMARY KEY (<key-column-list>)]))

<normalised-column> ::= <column-name>
<key-column-list> ::=
 <key-column-name> [INTERVAL | POINT] {, <key-column-name> [INTERVAL |
POINT] ...})
Now, whenever data is inserted, deleted or updated, <table-name> is normalised with respect to the
columns whose name appears after the keyword NORMALISED. Furthermore, a <key-column-
name> is followed by one of the keywords INTERVAL or POINT. From these, INTERVAL is the
default and may follow a <key-column-name> only in the case that <key-column-name> does not
follow the keyword "NORMALISED". If however it has been declared that a table is defined, then
all the colums on which a normalisation occurs, have to participate in the key, followed by the
keyword POINT. This is demonstrated by the following examples.

Examples
CREATE TABLE SP (Supplier CHAR(10),
 Part CHAR(10),
 Quantity INTEGER,
 PRIMARY KEY (Supplier INTERVAL, Part INTERVAL))

CREATE TABLE OWNERSHIP (Name CHAR(10),
 Length INTEGERINTERVAL,
 Width INTEGERINTERVAL,
 PRIMARY KEY (Length INTERVAL, Width

INTERVAL))

CREATE TABLE INFLATION (Country CHAR(15),
 Percentage REAL,
 Time MONTHINTERVAL,
 PRIMARY KEY (Country INTERVAL, Time

INTERVAL))

The above examples show how the syntax is extended if no normalisation is required. The keyword
INTERVAL may be omitted from any place.

CREATE TABLE SALARY (Name CHAR(15),
 Time DATEINTERVAL,
 Amount INTEGER,
 NORMALISED (Time))

The consequence of this syntax is that if we issue a command to insert the row
(John, 10K, [d6, d9))

then, after insertion, SALARY will consist of the tuples
(John, 10K, [d2, d12))
(Alex, 14K, [d9, d12))

Alternatively, if we issue a command to insert the row
(John, 11K, [d5, d8))

then, after insertion, SALARY will consist of the tuples
(John, 10K, [d2, d6))
(John, 11K, [d5, d8))
(John, 10K, [d9, d12))
(John, 12K, [d15, d18))
(Alex, 14K, [d9, d12))

We now notice that for date d5, John has two distinct salaries, 10k and 11k. This is because no
primary key has been declared. To avoid therefore the insertion of two distinct salaries, SALARY has
to be declared as

CREATE TABLE SALARY (Name CHAR(15),
 Time DATEINTERVAL,
 Amount INTEGER,
 NORMALISED (Time),
 PRIMARY KEY (Name INTERVAL, Time POINT))

CREATE TABLE SHIFT (Name CHAR(15),
 Date DATEINTERVAL,
 Hour INTEGERINTERVAL,
 NORMALISED (Date, Hour),
 PRIMARY KEY (Date POINT, Hour POINT))

The primary key declaration implies that no two employees may be working at the same date and
hour. Furthermore, NORMALISED (Date, Hour) denotes that after insertions, deletions and
updates, a normalisation always takes place firstly on Date and then on Hour.

Details concerning how data is inserted, deleted or updated in normalised tables, is given in section
3.11 which follows.

Format
<table-definition> ::=

CREATE TABLE <table name>
(<column-name> <data-type> <other> {, <column-name> <data-type> <other> ...}
[, NORMALISED (<normalised-column-list>)]
[, PRIMARY KEY (<key-column-list>)])

<normalised-column-list> ::= <column-name>

<key-column-list> ::=
<key-column-name> [INTERVAL | POINT] {, <key-column-name> [INTERVAL |
POINT] ...})

General Rules
1. Each <key-column-name> in <key-column-list> must be a <column-name>.
2. A <key-column-name> may not appear more than once in <key-column-list>.
3. <other> refers to other SQL2 declarations. They will be supported in ORES if they are directly

supported by INGRES.

Additional Rules
1. Each <normalised-column-name> in <normalised-column-list> must be a <column-name>.
2. A <normalised-column-name> may not appear more than once in <normalised-column-list>.
3. If NORMALISED (<normalised-column-list>) has been declared then the table is always

normalised with respect to the columns in <normalised-column-list> in both data insertion and
deletion and update. The <normalised-column-list> determines the sequence in which this
normalisation takes place.

4. If both NORMALISED (<normalised-column-list>) and PRIMARY KEY (<key-column-list>)
have been declared then every <mormalised-comlumn-name> in <normalised-column-list>
must also be present as a <key-column-name> in <key-column-list>, followed by the keyword
POINT.

5. If a <key-column-name> in <key-column-list> is not also a <normalised-column-name> in
<normalised-column-list> then it may not be followed by the keyword POINT in the <key-
column-list>.

5. If a <key-column-name> in <key-column-list> is not followed by either POINT or INTERVAL
then INTERVAL is assumed.

6. NOT NULL must be declared in <other> for all the column names which are referenced either
in <normalised-column-list> and / or <key-column-list>.

3.8 Incorporation of the Reformat and Normalise Operations

Description

A <query-spec> has been extended by a <reformat-clause> and a <normalise-clause> which enable the
incorporation of reformat and normalise operations of VT-RA [01P 93]. Its syntax thus becomes

 SELECT <select-list> (1)
 FROM <table-ref-list> (2)
[WHERE <search-condition>] (3)
[GROUP BY <column-spec-list>] (4)
[HAVING <search-condition>] (5)
[REFORMAT AS <reformat-item>] (6)
[NORMALISE ON <column-spec-list>] (7)
[ORDER BY <column-spec-list>] (8)

Lines (1)-(5) are executed in the standard SQL sequence. We present the execution steps briefly and
explain the new clauses.

Line 2 (Defines the tables in which data is stored).

Line 3 (Selects rows that satisfy a condition): The VT-SQL interval relational operators and scalar
functions may also be used.

Line 4 (Groups rows on the basis of equal values in columns.)

Line 5 (Selects groups that satisfy a condition): The VT-SQL interval relational operators, scalar and
aggregate functions may also be used.

Line 1 (Selects columns): The VT-SQL scalar and aggregate functions may also be used.

Line 6 (Reformats a table with respect to a sequence of columns of a time type): The REFORMAT
AS implements the reformat operation of VT-RA [01P 93]. In particular, it introduces a sequence of
unfold/fold operations which have to be performed on the table retrieved by the execution of the
clauses in lines 1-5. Its syntax is as follows.

<reformat-item> ::= FOLD <column-spec-list> [<reformat-item>]
| UNFOLD [ALL] <column-spec-list> [<reformat-item>]

<column-spec> ::= <column-name>
 | <table-name>.<column-name>
 | <correlation-name>.<column-name>
 | <unsigned-integer>

Some examples are the following:

REFORMAT AS FOLD Time1, Time2

REFORMAT AS FOLD R.Time1, 2

REFORMAT AS FOLD 1, 2

REFORMAT AS UNFOLD Time1, 2
FOLD Time3

REFORMAT AS UNFOLD Time1, 2
FOLD Time3, 1
UNFOLD Time4

Standard SQL allows duplicate rows. To maintain therefore compatibility with SQL, two versions of
UNFOLD have been defined, UNFOLD and UNFOLD ALL. In the first case the table which is
derived after a sequence of unfolds does not contain duplicate rows. In the second case the table may
contain duplicate rows.

Line 7 (Normalises a table on certain columns of a time type): The clause

NORMALISE ON <column-spec-list>
implements the normalise operation of VT-RA [01P 93], that is, it is semantically equivalent to

REFORMAT AS
UNFOLD <column-spec-list>
FOLD <column-spec-list>

The rules which apply to <column-spec-list> are the same with those in the REFORMAT AS clause.

Line 8 (Sorts rows on the basis of columns): It is also possible to sort on columns of a time-interval
type. In particular, assume, for demonstration reasons, that the table derived from the execution of
clauses 1-7 has scheme R(A, Time) and contains the rows

(b, [dp, dp))
(a, [di, dj))
(a, [dp, dq))

Assume also that "[dp, dq) prequals [di, dj)" is satisfied. If the order clause is

ORDER BY A, Time

then these rows will be sorted as

(a, [dp, dq))
(a, [di, dj))
(b, [dp, dq))

Examples
"Give the projects in which John was involved on each of the dates in [d3, d7)."

SELECT Project, intervsect(Time, '[d3, d7)')
FROM PROJECT
WHERE Name = 'John'
AND Time cp '[d3, d7)'
REFORMAT AS

UNFOLD 2
ORDER BY 2, Project

The execution of the first four lines of this query results in the table

Project
P1 [d3, d5)
P2 [d3, d7)

Next, the REFORMAT AS clause is executed, which transforms it to

Project
P1 d3
P1 d4
P2 d3
P2 d4
P2 d5
P2 d6

The execution of the last clause finally sorts the above table to

Project
P1 d3
P2 d3
P1 d4
P2 d4
P2 d5
P2 d6

"Give all disjoint time-intervals in which John was involved in some project, sorted in descending order."

SELECT Time
FROM PROJECT
WHERE Name = 'John'
REFORMAT AS

FOLD 1
ORDER BY 1 DESC

The execution of the first three lines of the query results in the table

Time
[d1, d5)
[d2, d12)
[d15, d30)

which is next transformed to

Time
[d1, d12)
[d15, d30)

and is finally sorted as

Time
[d15, d30)
[d1, d12)

"Normalise SHIFT on Hour, Day."

SELECT Name, Day, Hour
FROM SHIFT
NORMALISE ON Hour Day

SHIFT

Name Day Hour
John [d1, d5) [h1, h9)
John [d5, d10) [h1, h12)
John [d10, d20) [h9, h12)

Consider the table below, which is not normalised, and the query "Give the shift of every employee for
each distinct day".

SHIFT

Name Day Hour
John [d2, d5) [h1, h5)
John [d3, d6) [h4, h8)
John [d4, d6) [h3, h7)

The query

SELECT Name, Day, Hour
FROM SHIFT
 REFORMAT AS
 UNFOLD Day
 FOLD Hour

yields

Name Day Hour

John d2 [h1, h5)
John d3 [h1, h8)
John d4 [h1, h8)
John d5 [h9, h8)

The same result can be obtained if the query is formulated as

SELECT Name, Day, Hour
FROM SHIFT
 REFORMAT AS
 UNFOLD Day
 NORMALISE ON Hour

"Give the time-intervals of all the days with the property that in each day the sales exceeded 50000."

SELECT Date
FROM SALES
GROUP BY Date
HAVING sum(Qty*Price) > 50000
 REFORMAT AS
 FOLD Day
 ORDER BY Date

Format
<query-exp> : := {<query-spec | <union-exp> | <except-exp>}[<order-clause>]

<query-spec> : := SELECT [ALL | DISTINCT] <select-list> <table-exp>

<table-exp> : := <from-clause>
[<where-clause>]
[<group-clause>]
[<having-clause>]
[<reformat-clause>]
[<normalise-clause>]

<reformat-clause> : := REFORMAT AS <reformat-item>

<reformat-item> : := FOLD <column-spec-list> [<reformat-item>]
 | UNFOLD [ALL] <column-spec-list> [<reformat-item>]

<normalise-clause> : := NORMALISE ON <column-spec-list>

<order-clause> : := ORDER BY <order-item-list>

<order-item> : := <order-column> [ASC | DESC]

<order-column> : := <column-spec>
 | <unsigned-integer>

<column-spec> : := <column-name>
 | <table-name>.<column-name>
 | <correlation-name>.<column-name>
 | <unsigned-integer>

The <union-exp> and <except-exp> in the <query-exp> are explained in sub-sections 3.9 and 3.10.

General Rule
1. Every SQL <query-spec> is also valid in VT-SQL.

2. A <query-spec> may have only one <order-clause> which is the last clause which is executed.

Additional Rules
1. A <query-spec> is executed as in standard SQL and it may incorporate the features of VT-SQL.

2. The <reformat-clause> is applied to the table derived after the execution of the SELECT
statement.

3. The <normalise-clause> is applied to the table derived after the execution of the <reformat-
clause>.

4. A <column-spec> must be referenced in the <select-list>.

5. The domain of a <column-spec> must be of a time type.

6. Before a sequence of FOLD operations is executed, duplicate rows are eliminated.

7. After a sequence of UNFOLD operations, duplicate rows are eliminated unless UNFOLD ALL
has been specified.

8. The SQL expression x BETWEEN y and z does not apply if x, y, z are time-intervals.

Convention
The <reformat-clause> and the <normalise-clause> may not include columns of a time type on which
either null time-points or null or semi-null time-intervals have been recorded.

3.9 Extension of Union

Description

The syntax of UNION has been extended so as to implement both the union operation of standard
SQL and also the punion operation of VT-RA [01P 93]. In particular, if the syntax is

<query-spec-1> UNION <query-spec-2>

then a standard SQL UNION operation takes place. If the syntax is

<query-spec-1> UNION <reformat-column-list> <query-spec-2>

where <reformat-column-list> is a list of columns and we assume that <query-spec-1> and <query-
spec-2> yield tables R1 and R2 respectively, then the operation is semantically equivalent to the VT-
RA operation

R1 punion[<reformat-column-list>] R2

In either case <query-spec-1> and <query-spec-2> must yield union-compatible tables.

Examples

Assume that another table I1 is union-compatible with INFLATION and contains the tuples (A, 9.0,
[m1, m7)) (A, 10.0, [m1, m13)). The query "give the inflation of country A for all the time-intervals in
INFLATION and I1, sorted by Time" is formulated as

SELECT Country, Percentage, Time
FROM INFLATION
WHERE Country = 'A'
UNION
SELECT Country, Percentage, Time
FROM I1
WHERE Country = 'A'
ORDER BY Time

This is a standard SQL query.

"Give the greatest disjoint time-intervals in which either John's salary was 10K or he was assigned to project
P2."

SELECT Time
FROM SALARY
WHERE Name = 'John'
AND Amount = 10K
UNION Time
SELECT Time
FROM PROJECT
WHERE Name = 'John'
AND Project = 'P2'

This implements 'punion[Time]' and results in the single tuple ([d2, d12)).

Format
The syntax of this operation is given in the next sub-section, with the syntax of EXCEPT.

3.10 Direct Support of Operations Except and Pexcept

Description

In standard SQL the set-difference operation is not supported directly but it can be expressed by a
nested query. In VT-SQL is supported directly for two reasons, firstly to achieve symmetry with
operation pexcept of VT-RA, which is supported directly, and, secondly, to achieve symmetry with
the direct support of the UNION operation of SQL [Date 86]. Specifically, one operation, EXCEPT,
is defined in VT-SQL, which implements both the except and pexcept operations of VT-RA. In
particular,

<query-spec-1> EXCEPT <query-spec-2>

implements except [01P 93]. If the syntax is

<query-spec-1> EXCEPT <reformat-column-list> <query-spec-2>

where <reformat-column-list> is a list of columns of a time type and we assume that <query-spec-1>
and <query-spec-2> yield tables R1 and R2 respectively, then the operation is semantically equivalent
to the VT-RA operation [01P 93]

R1 pexcept[<reformat-column-list>] R2

In all cases the two query specifications of EXCEPT must yield union-compatible tables.

Examples

"Give employees who were not paid at any time in [d3, d10)."

SELECT Name
FROM SALARY
GROUP BY Name
EXCEPT
SELECT Name
FROM SALARY
WHERE Time cp '[d3, d10)'
GROUP BY Name

"Give the employees whose salary exceeded 9K at all times in [d5, d10)."

SELECT Name
FROM SALARY
WHERE Time cp '[d5, d10)'
GROUP BY Name
EXCEPT
SELECT Name
FROM SALARY
WHERE Time cp '[d5, d10)'
AND Amount <= 9K
GROUP BY Name

"Give the employees whose salary exceeded 9k at all times they were in the shoe department."

SELECT S.Name
FROM SALARY S, ASSIGNMENT A
WHERE S.Name = A.Name
AND S.Time cp A.Time
AND A.Dept = 'shoe'
GROUP BY Name
EXCEPT
SELECT S.Name
FROM SALARY S, ASSIGNMENT A
WHERE S.Name = A.Name
AND S.Time cp A.Time
AND A.Dept = 'shoe'

AND S.Amount <= 30K
GROUP BY Name

The above examples represent demonstrations of operation except. Examples to demonstrate pexcept
are the following.

"Give the employees and the time-intervals in which they were in the shoe department, excluding the time
during which John was also working in it."

SELECT Name, Time
FROM ASSIGNMENT A
WHERE A.Name <> 'John'
AND A.Dept = 'shoe'
EXCEPT Time
SELECT A1.Name, intervsect(A1.Time, A2.Time)
FROM ASSIGNMENT A1, ASSIGNMENT A2
WHERE A1.Name <> 'John'
AND A1.Dept = 'shoe'
AND A1.Time cp A2.Time
AND A2.Name = 'John'
AND A2.Dept = 'shoe'

"Give John's shift for each of the dates d5-d9, excluding the data in the next table."

SHIFT1

Day Hour
[d6, d8) h5
[d6, d8) h6
[d6, d8) h7

SELECT intervsect(Day, '[d5, d10)'), Hour
FROM SHIFT
WHERE Name = 'John'
AND Day cp '[d5, d10)'
 REFORMAT AS
 UNFOLD 1
EXCEPT 1, 2
SELECT Day, tointerv(Hour)
FROM SHIFT1
 REFORMAT AS
 UNFOLD 1

Assume that the enterprise is operational for all the time at which at least one employee is paid. Now
consider the query "give all the time-intervals at which the enterprise was not operational".

SELECT interv(min(start(Time), max(stop(Time))
FROM SALARY
EXCEPT 1
SELECT Time
FROM SALARY

Format
<query-exp> : := {<query-spec> | <union-exp> | <except-exp> }

[<order-clause>]

<query-spec> : := SELECT [ALL | DISTINCT] <select-list> <table-exp>

<union-exp> : := <query-spec>
UNION [{ ALL | <reformat-column-list> }]
<query-spec>

<except-exp> : := <query-spec>
EXCEPT [<reformat-column-list>]
<query-spec>

<table-exp> : := <from-clause>
[<where-clause>]
[<group-clause>]
[<having-clause>]

[<reformat-clause>]
[<normalise-clause>]

<reformat-column> : := <column-spec>
| <unsigned-integer>

<column-spec> : := <column-name>
| <table-name>.<column-name>
| <correlation-name>.<column-name>

General Rules
1. Every SQL query expression which involves UNION is also valid in VT-SQL.

2. A <query-spec> may have only one <order-clause> which is the last clause which is executed.

Additional Rules
1. The lines in SELECT and <table-exp> are executed as explained earlier.

2. The two <query-spec> in <union-exp> and <except-exp> must yield union-compatible tables.

3. Before EXCEPT is executed, duplicate data in the <query-exp> which precedes EXCEPT has to
be eliminated.

Convention
The <reformat-column-list> in both UNION and EXCEPT may not include columns of a time type
on which either null time-points or null or semi-null time-intervals have been recorded.

3.11 Extension to the Data Manipulation Statements

The fact that the SQL2 CREATE TABLE command has been extended in VT-SQL by the
incorporation of the NORMALISED clause, now simplifies the syntax of the data manipulation
statements. Each of them is described separately next. The examples which are provided should be
seen in conjunction with section 3.7, where it has been shown how certain tables have been declared
to the DBMS.

3.11.1 Data Insertion

Description
The syntax of the SQL2 INSERT statement remains exactly the same in VT-SQL. However,
according to the explanations already provided in the CREATE TABLE statement above, the way
data is inserted, depends completely on how a table has been declared to the DBMS. This is
demonstrated by the following examples.

Examples
"Insert into INFLATION the row (A, 10.0, [m7, m13))."

INSERT
INTO INFLATION(Country, Percentage, Time)
VALUES ('A', 10.0, '[m7, m13)')

We notice that the definition of table INFLATION does not contain a NORMALISED clause.
This implies that INSERT functions in exactly the same way as in SQL2 that is, it results in a table
which is semantically equivalent to

INFLATION = INFLATION union S
thus yielding

INFLATION
Countr

y
Percentage Time

A 8.0 [m1, m4)
A 10.0 [m4, m7)
A 10.0 [m7, m13)
A 10.0 [m1, m13)

It should be noted that if the key of a table has been declared, then in SQL2 an insertion fails in either
of the following cases: (i) The key values of one of the rows to be inserted in R matches the respective
values of one of the rows already recorded in R. (ii) Two of the rows to be inserted in R have the same
value for the key columns. In either of these cases, the insertion fails completely. To provide
examples, assume that the key of INFLATION has been declared and assume that we attempt to
insert either of the following set of rows:

(a) (A, 8.0, [m1, m4))
 (A, 9.0, [m1, m7))

(Case (i) above, the first of them has already been recorded.)
(b) (A, 9.0, [m1, m4))
 (A, 9.0, [m1, m7))

(Case (i) above, key violation.)
(c) (A, 9.0, [m1, m7))
 (A, 9.0, [m1, m7))
 (A, 12.0, [m7, m13))

(Case (ii) above, identical rows.)
(d) (A, 9.0, [m1, m7))
 (A, 12.0, [m7, m13))
 (A, 13.0, [m7, m13))

(Case (ii) above, two rows violate the key constraints.)

Then for any of cases (a)-(d), nothing is inserted in INFLATION.

For compatibility reasons, this functioning of the SQL2 INSERT statement is not only preserved in
VT-SQL but also extended appropriately. In particular, assume that we attempt to insert into
SALARY any of the following set of rows:

(a) (John, 10K, [d2, d6))
 (Mary, 10K, [d2, d6))

(Case (i), the first of them has already been recorded.)
(b) (John, 10K, [d5, d8))
 (Mary, 10K, [d2, d6))

(Case (i), the data for John's salary on date d5 has already been recorded.)
(c) (John, 10K, [d6, d8))
 (John, 10K, [d6, d9))
 (Mary, 10K, [d2, d6))

(Case (ii), John's salary for dates d6 and d7 is recorded in two rows.)
(d) (John, 10K, [d6, d8))
 (John, 11K, [d6, d9))
 (Mary, 10K, [d2, d6))

(Case (ii), John's salary for dates d6 and d7 violates the key.)

Then in all (a)-(d) cases above, nothing will be inserted in SALARY. Some examples to demonstrate
the functioning of VT-SQL INSERT, are the following:

"Insert into SALARY the data (John, 10K, [d3, d10)."

We initially assume that the key of SALARY has not been declared. The command is issued as
INSERT
INTO SALARY
VALUES ('John' 10K, '[d3, d10)')

We now recall that the declaration of SALARY includes "NORMALISED (Time)". As a
consequence, at insertion the new data is normalised with the data already recorded in SALARY,
thus implementing

SALARY = SALARY punion[Time] S

where S is a constant table consisting of the above tuple, and yields

SALARY
Name Amoun

t
Time

John 10K [d2, d12)
John 12K [d15, d18)

Alex 14K [d9, d12)

It should be noted that John's salary for dates d3, d4, d5 and d9, which was contained in S, had
already been recorded into SALARY. Given however that the key of SALARY had not been declared
to the DBMS, the insertion command was executed without any problem. Yet, if we assume that the
key of SALARY has been declared then, as reported above, the command will fail.

Is should be noted that the VALUES(<values-list>) in the above example may be replaced by a
<query-spec>.

Format
<insert-stat> : := INSERT
 INTO <table-name> [(<column-ref-list>)]
 <source-values>

<source-values> : := VALUES (<values-list>) | <query-spec>

<values> : := <literal> | NULL

General Rules
1. Every valid INSERT statement of standard SQL, is also valid in VT-SQL

Additional Rules
1. The data to be inserted in <table-name> has to be compatible with the data in this table.
2. If the table definition contains a NORMALISED <normalised-column-list> then a

normalisation always takes place in data insertion.
3. If the key of a table R has been declared to the DBMS and either (i) the key values of one of the

rows to be inserted in R matches the respective values of one of the rows already recorded in R or
(ii) two of the rows to be inserted in R have the same value for the key columns then the
insertion command fails completely.

Conventions
1. The value of every piece of data which is to be inserted in a table may not contain null or semi-

null time-intervals on components with respect to which a normalization takes place.

2. The value of every piece of data which is to be inserted in a table may not contain null or semi-
null time-intervals on components which participate to the key.

3.11.2 Data deletion

Description

The syntax of the DELETE statement of standard SQL is

DELETE FROM <table-name>
[<where-clause>]

but this does not enable a satisfactory formulation of commands for the deletion of data from tables
normalised with respect to some of their columns. We have thus extended this syntax as

DELETE FROM <table-name>
[PORTION <normalised-column-value-list>]
[<where-clause>]

where
<normalised-column-value> :: = <normalised-column-name> = <value-exp>
To demonstrate its functionality by an example, let R(A, B) be a table normalised with respect to B
and assume that

DELETE FROM R
PORTION B = '[d5, d15)'
WHERE A = 'a'

has been issued. Let also (a, [d1, d20)) be one of the tuples of R which is to be deleted. We then notice
that this tuple can be split into the tuples

(a, [d1, d5))
(a, [d5, d15))
(a, [d15, d20))

the second of which contains the interval in the list after the keyword PORTION of the above
deletion statement. After the execution of the statement, R will contain the tuples

(a, [d1, d5))
(a, [d15, d20))

in place of tuple (a, [d1, d20)). Therefore, the extended statement is applied to a normalised table R
and deletes from each tuple of R which satisfies the deletion criteria, that portion of data which is explicitly
referenced in the list after the keyword PORTION.

For a formal definition, we consider below two distinct cases:

Case (i): It has not been declared in the CREATE TABLE <table-name> statement that <table-
name> is normalised.

If R is such a non-normalised table then the syntax of the delete statement is

DELETE FROM R
[<where-clause>]

exactly as in standard SQL. If we assume that another table S consists of the rows of R which satisfy
the deletion criteria, the result obtained is semantically to

R = R except S

Case (ii): It has been declared in the CREATE TABLE <table-name> statement that <table-name>
is normalised.

Assume that the scheme of such a table is R(A1, A2, ..., Ap, B1, B2, ..., Bq) and that it has been
declared in the CREATE TABLE statement that R is normalised on all the Bi columns. If {W1, W2,
..., Wr} ⊆ {B1, B2, ..., Bq}, we define that the result obtained by

DELETE FROM R
[PORTION W1 = w1, W2 = w2, ..., Wr = wr]
[<where-clause>]

is semantically equivalent to the following sequence of steps:

Step 1: Let S be a table consisting of the rows of R which satisfy

 (<where-clause>) and (W1 cp w1 and W2 cp w2 and ... and Wr cp wr)

(If the <where-clause> or "PORTION W1 = w1, W2 = w2, ..., Wr = wr"or both of them are missing,
this search statement is adjusted appropriately.)

Step 2: Replace each S.Wi value of S by the respective intervsect (S.Wi, wi).

Step 3: R = R pexcept[C1, C2, ..., Cq] S

We notice that after the deletion, R remains normalised with respect to [C1, C2, ..., Cq].

 Examples
"Delete from INFLATION the inflation of country A for [m1, m13)."

DELETE FROM INFLATION
WHERE Country = 'A'

AND Time = '[m1, m13)'

Since it has not been declared that INFLATION is normalised, case (i) above applies, and a standard
SQL deletion takes place.

"Delete from SALARY John's data for the time-interval [d2, d6)."

DELETE FROM SALARY
PORTION Time = '[d2, d6)'
WHERE Name = 'John'

Here it is only a coincidence that [d2, d6) is an interval explicitly recorded in SALARY. The result is
that the first row of SALARY is eliminated.

"Delete the data for John's salary during the interval [d5, d10)."

The query represents the general case of a deletion from a table which has been normalised with
respect to certain columns. We now want to eliminate John's data during an arbitrary time-interval,
not explicitly recorded on column Time of some row of SALARY..

DELETE FROM SALARY
PORTION Time = '[d5, d10)'
WHERE Name = 'John'

 SALARY

Name Amoun
t

Time

John 10K [d2, d5)
John 10K [d10, d12)
John 12K [d15, d18)
Alex 14K [d9, d12)

"Delete from SALARY all the data for John."

DELETE
FROM SALARY
WHERE Name = 'John'

We notice that PORTION <normalised-column-value-list> is not necessary. The command
eliminates all the rows for John.

"Purge all the data from SALARY until time d10."

DELETE FROM SALARY

PORTION Time = '[mindate, d11)'

SALARY

Name Amoun
t

Time

John 10K [d11, d12)
John 12K [d15, d18)
Alex 14K [d11, d12)

"Delete all the data from SALARY"

DELETE FROM SALARY

"Delete from SHIFT John's data for each of the hours in [h5, h10) in each of the dates in [d6, d8)."

DELETE FROM SHIFT
PORTION Hour = '[h5, h10)', Day = '[d6, d8)'
WHERE Name = 'John'

SHIFT

Name Day Hour

John [d1, d10) [h1, h5)
John [d1, d6) [h5, h9)
John [d8, d10) [h5, h9)
John [d5, d6) [h9, h10)
John [d8, d20) [h9, h10)
John [d5, d20) [h10, h12)

"Delete from SHIFT John's data for each of the dates in [d6, d8)."

DELETE FROM SHIFT
PORTION Day = '[d6, d8)'

WHERE Name = 'John'

The examples shows that it is not necessary for all the columns on which a table has been normalised
need appear after the keyword PORTION.

SHIFT

Name Day Hour

John [d1, d6) [h1, h9)
John [d8, d10) [h1, h9)
John [d5, d6) [h9, h12)
John [d8, d20) [h9, h12)

Format
<delete-stat> : := DELETE FROM <table-name>
 [PORTION <normalised-column-value-list>]
 [<where-clause>]

<normalised-column-value> ::= <normalised-column-name> = <value-exp>

General Rules

1. Every valid DELETE statement of standard SQL, is also valid in VT-SQL.

Additional Rules

1. PORTION <normalised-column-value-list> may appear only if it has been declared in the
CREATE TABLE statement that <table-name> is normalised.

2. Every <normlalised-column-name> in <normalised-column-value-list> must be the name of a
column on which it has been declared in the CREATE TABLE statement that <table-name> is
normalised.

3. A <normalised-column-name> may not appear more than once in <normalised-column-value-
list>.

4. Each <value-exp> in <normalised-column-value-list> must evaluate to an interval compatible
with the domain of the proceeding <normalised-column-name>.

Conventions

1. A <value-exp> may not be a null or semi-null interval.

3.11.3 Data Update

Description

The syntax of the UPDATE statement of standard SQL is

UPDATE <table-name>
SET <column-assignment-list>

[<where-clause>]

but this does not enable a satisfactory formulation of commands for the update of tables which have
been normalised with respect to some of their columns. We have thus extended it in a consistent way,
as

UPDATE <table-name>
[PORTION <normalised-column-value-list>]
SET <column-assignment-list>
[<where-clause>]

where
<normalised-column-value> :: = <normalised-column-name> = <value-exp>

To demonstrate its functionality by an example, let R(A, B) be a table normalised with respect to B
and assume that

UPDATE <table-name>
PORTION B = '[d5, d15)'
SET A = 'a2'
[<where-clause>]

has been issued. Let also (a1, [d1, d20)) be one of the tuples of R which is to be updated. We then
notice that this tuple can be split into the tuples

(a1, [d1, d5))
(a1, [d5, d15))
(a1, [d15, d20))

the second of which contains the interval which is next to the keyword PORTION of the above
deletion statement. After the execution of the above statement, R contains the tuples

(a1, [d1, d5))
(a2, [d5, d15))

(a1, [d15, d20))

in place of the tuple (a1, [d1, d20)). Therefore, for each row of R which satisfies the update criteria,
the extended statement updates that portion which is explicitly referenced after the keyword PORTION..

For a formal definition, we consider below two distinct cases:

Case (i): It has not been declared in the CREATE TABLE <table-name> statement that <table-
name> is normalised.

Let R be a non-normalised table. Then the syntax of the statement which updates it, is

UPDATE R
SET <column-assignment-list>
[<where-clause>]

exactly as in standard SQL, and it is semantically equivalent to the following sequence of steps:

Step 1: Let S be the rows of R which satisfy the update criteria.

Step 2: R = R except S

Step 3: For each assignment A=a in <column-assignment-list> replace by a the value of each row of
S for column A.

Step 4: R = R union S

Case (ii): It has been declared in the CREATE TABLE <table-name> statement that <table-name>
is normalised.

Assume that the scheme of such a table is R(A1, A2, ..., Ap, B1, B2, ..., Bq) and that it has been
declared in the CREATE TABLE statement that it is normalised on all the Bi columns. If {W1, W2,
..., Wr} ⊆ {B1, B2, ..., Bq}, we define that the result obtained by

DELETE FROM R
[PORTION W1 = w1, W2 = w2, ..., Wr = wr]
[<where-clause>]

is semantically equivalent to the following sequence of steps:

Step 1: Let S be a table, union-compatible to R, consisting of the rows of R which satisfy

(<where-clause>) and (W1 cp w1 and W2 cp w2 and ... and Wr cp wr)
(If the <where-clause> or PORTION W1 = w1, W2 = w2, ..., Wr = wr or both of them are missing,
this search statement is adjusted appropriately.)

Step 2: Replace each S.Wi value of S by the respective intervsect(S.Wi, wi).

Step 3: R = R pexcept[B1, B2, ..., Bq] S

Step 4: For each assignment A=a in <column-assignment-list> replace by a the value of each row of
S for column A.

Step 5: R = R punion[B1, B2, ..., Bq] S

We notice that after the execution of UPDATE, R remains normalised with respect to [C1, C2, ...,
Cq].

Examples

"Replace the time-interval [m1, m4) of country A by the correct one, [m1, m7)".
Since it has not been declared that INFLATION is normalised with respect to any of its columns, the
command is formulated exactly as in standard SQL:

UPDATE INFLATION
SET Time = '[m1, m7)'
WHERE Country = 'A'
AND Time = '[m1, m4)'

"Update SALARY that it was not John's salary 10K but Mary's."

UPDATE SALARY
SET Name = 'Mary'
WHERE Name = 'John'
AND Amount = 10K

The example shows that even if a table is normalised, PORTION <normalised-column-value-list> is
not necessary.

SALARY

Name Amoun
t

Time

Mary 10K [d2, d6)
Mary 10K [d9, d12)
John 12K [d15, d18)
Alex 14K [d9, d12)

"It has been recorded by mistake that John's salary was 10K for each of the days in [d10, d12). Update the
data to 11K for this time-interval".

UPDATE SALARY
PORTION Time = '[d10, d12)'
SET Amount = 11K
WHERE Name = 'John'
AND Amount = 10K
AND Time cp '[d10, d12)'

We notice that [d10, d12) is not an interval explicitly recorded in column Time of some row of
SALARY.

SALARY

Name Amount Time

John 10K [d2, d6)
John 10K [d9, d10)
John 11K [d10, d12)
John 12K [d15, d18)
Alex 14K [d9, d12)

"It has been recorded by mistake a salary for John, for each of the days in [d11, d12). Update the data to the
correct one, that the salary was 12K, and the time-interval was [d18, d25)."

UPDATE SALARY
PORTION Time = '[d11, d12)'

SET Amount = 12K, Time ='[d18, d25)'
WHERE Name = 'John'
AND Time cp '[d11, d12)'

SALARY

Name Amount Time

John 10K [d2, d6)
John 10K [d9, d11)
John 12K [d15, d25)
Alex 14K [d9, d12)

"The data concerning John's salary for each of the days in [d9, d18) is not correct. The correct is that each of
the days have to be restricted to those in [d10, d16)."

UPDATE SALARY
PORTION Time = '[d9, d18)'
SET Time = '[d10, d16)'
WHERE Name = 'John'
AND Time cp '[d9, d18)'

SALARY

Name Amount Time

John 10K [d2, d6)
John 10K [d10, d12)
John 12K [d15, d16)
Alex 14K [d9, d12)

"It has been recorded by mistake John's shift for each of the dates in [d10, d20). Update it to the correct, that
this is Alex's shift."

UPDATE SHIFT
PORTION Day = '[d10, d20)'
SET Name = 'Alex'
WHERE Name = 'John'
AND Time cp '[d10, d20)'

SHIFT

Name Day Hour

John [d1, d10) [h1, h9)
John [d5, d10) [h9, h12)
Alex [d10, d20) [h9, h12)

We now recall that in SQL2 an update operation of a table R fails completely in any of the following
cases: (i) The value for the key columns of one of the updated rows matches the respective values of
one of the rows already recorded in R. (ii) Two of the updated rows have the same value for the key
columns. For compatibility reasons, this rule is also maintained in VT-SQL, as is shown by the next
example:

"Update SALARY to record that 10K was Alex's salary and not John's."

UPDATE SALARY
SET Name = 'Alex'
WHERE Name = 'John'
AND Amount = 10K

If no primary key had been declared in the CREATE TABLE SALARY statement, the result would
be

SALARY

Name Amount Time

John 12K [d15, d18)
Alex 10K [d2, d6)
Alex 10K [d9, d12)
Alex 14K [d9, d12)

If hovever the primary key has been declared then the update statement will be completely rejected
because, for example, this would result in that Alex's salary for date d9 would be recorded in SALARY
twice.

Format

<update-stat> ::= UPDATE <table-name>
 PORTION <normalised-column-value-list>]
 SET <column-assignment-list>

<normalised-column-value> ::= <normalised-column> = <value-exp>
<column-assignment> ::= <column-ref> = { <scalar-exp> | NULL }

General Rules

1. Every valid UPDATE statement of standard SQL, is also valid in VT-SQL.

Additional Rules

1. The data which is to replace that in <table-name> has to be compatible with the data in <table-
name>.

1. PORTION <normalised-column-value-list> may appear only if it has been declared in the
CREATE TABLE statement that <table-name> is normalised.

2. Every <normlalised-column-name> in <normalised-column-value-list> must be the name of a
column on which it has been declared in the CREATE TABLE statement that <table-name> is
normalised.

3. A <normalised-column-name> may not appear more than once in <normalised-column-value-
list>.

4.. Each <value-exp> in <normalised-column-value-list> must evaluate to an interval compatible
with the domain of the proceeding <normalised-column-name>.

5. If the primary key of <table-name> has been declared in the CREATE TEBLE <table-name>
statement then the UPDATE statement fails completely in each of the following cases: (i) A
piece of data for the key columns of one of the updated rows has already recorded in <table-
name>. (ii) Two of the updated rows have the same piece of data for the key columns.

Conventions

1. A <value-exp> may not be a null or semi-null interval.

Remark

Optimization techniques will be incorporated at the implementation of the VT-SQL statements
INSERT, UPDATE and DELETE.

3.12 Other VT-SQL Statements

From the remainder SQL statements we notice the following.

Create Index Statement

It remains exactly the same as in standard SQL.

Create View

In a complete implementation, provision has to be made for the support of views which incorporate
the features of VT-SQL. This is however a feature which requires further investigation related
mainly to whether a view is updatable or not.

Grant Statement

It remains the same.

4. COMMENTS ON VT-SQL

VT-SQL is a consistent extension to standard SQL in that it maintains its syntax and
semantics. At the same time it supports all the VT-RA operations. Some comments on
the specification of VT-SQL are the following.

(i) It would be desirable to allow nested queries in a <from-clause> of VT-SQL. If
this were allowed, certain VT-SQL queries would not have to be broken into more
than one query. However, for symmetry reasons this nesting should also be
allowed to pure SQL queries. However, SQL is not orthogonal [Date 86] and the
aim of ORES is far from defining an orthogonal extension to SQL. A relevant
example in SQL is the query

SELECT max(T.City)
FROM (SELECT S.City FROM S

UNION
SELECT P.City FROM P)
AS T(City)

which is not valid in fact. To obtain the result targeted by it, one has to formulate
two distinct SQL queries.

(ii) It could have been argued that a <normalise-clause> is not necessary in a query
specification which precedes or follows a UNION or an EXCEPT. We have
allowed it for the reasons described next.

Symmetry: If SHIFT1 is the table

 SHIFT1

Name Day Hour
john d6 [h5, h12)
john d7 [h6, h12)
john d8 [h7, h12)

then it does make sense to issue the command

INSERT Hour
INTO SHIFT1
SELECT Name, Day, Hour
FROM SHIFT
REFORMAT AS

 UNFOLD Day

(Indeed, if this command were not allowed, one would firstly have to unfold
SHIFT on Day and obtain the result in a table R and then issue the INSERT
statement to insert the contents of R into SHIFT1.) Since there is a symmetry
between UNION and INSERT, it is principally necessary for a <reformat-clause>
to be allowed to any of the query specifications which precede or follow UNION
or EXCEPT. Finally, since NORMALISE is only a special case of REFORMAT, it
is also reasonable, again for symmetry reasons, for NORMALISE to be applied to
any of the two query specifications which surround a UNION or EXCEPT.

Easiness in query formulation: Queries like the following ones can be formulated
in one step.

SELECT A, B, C
FROM S1
UNION
SELECT A, B, C
FROM S2
REFORMAT AS
 UNFOLD C

(REFORMAT is necessary for the two tables to become union-compatible.)

SELECT A, B, C, D, E
FROM S1
NORMALISE ON A, B
UNION D, E
SELECT A, B, C, D, E
FROM S2
REFORMAT AS
 UNFOLD C

(Before punion is applied, they become union-compatible.)

Combination of the above: In contrast with the <order-clause>, the <reformat-
clause> and <normalise-clause> may be in a nested query and this enables the user
formulate queries in the way he finds it most convenient.

For the above reasons, it has been determined that discarding a redundant
normalisation should rather be a task of the DBMS optimiser.

5. VT-SQL AND THE ORES PROJECT

Although it would be desirable to reach a complete implementation of VT-SQL, it is
anticipated that this is really difficult for a number of reasons, the most serious of which
are the short life span of the project, in conjunction with the substantial programming
effort which is required. In particular, the implementation issues which can hardly be
attacked are the following.

(i) The support of a <normalise-clause> or a <reformat-clause> in a sub-query, for

example

SELECT A, B
FROM S1
WHERE '[d5, d10)' = (SELECT A

FROM S2
NORMALISE ON A)

It is a desirable property because it may simplify the formulation of certain queries.
In this case however we shall deprive the optimisation capabilities of INGRES. It
should be noted that if the support of sub-queries of this type is not supported, no
major problem will arise. In particular, an initial investigation, which we have
undertaken, has shown that queries which involve a <normalise-clause> or
<reformat-clause> in a sub-query, can equivalently be expressed in ways by which
such clauses can be eliminated.

(ii) The use of all the interval relational operators before a sub-query, either in a
<where-clause> or in a <having-clause> for example,

SELECT A, B
FROM S1
WHERE '[d5, d10)' adjacent (SELECT A

FROM S2
<where-clause>)

Our investigation has shown that the Object Manager of INGRES does not allow
the use of user-defined relational operators before sub-queries. One alternative
solution which we have investigated, is for the user to formulate a query in a way
like the above and, before execution, the query to be transformed to the equivalent
one

SELECT A, B
FROM S1
WHERE stop('[d5, d10)') = (SELECT start(A)

FROM S2
<where-clause>)

OR start('[d5, d10)') = (SELECT stop(A)
FROM S2
<where-clause>)

This is possible for all the relational operators of VT-SQL. This solution however
will increase the execution time. In particular, our investigation has shown that,
depending on the operator, a user sub-query has to be transformed up to three
SQL sub-queries with the same <where-clause>. It is therefore obvious that the
execution time will increase exponentially with respect to the nesting depth of a
query.

(iii) The support of the two VT-SQL aggregate functions. Since aggregate functions
may appear in many places in a query, this would require the development of a VT-
DBMS almost from scratch. It should be noted however, that if aggregate
functions are not supported, the user will again be able to obtain the results
returned by them, by formulating the queries in other equivalent ways which do not
involve aggregate functions.

In addition to the above, the following should be taken into consideration.

(i) VT-SQL is more than the minimal extension to SQL, which the ORES
Technical Annex requires.

(ii) The partial implementation of VT-SQL, as specified next, completely
satisfies the requirements of the test bed application [CPH 93].

(iii) The project's life span is too short.

The software which will be developed will include the following.

(i) The support of a DATEINTERVAL type.

(ii) The support of the VT-SQL relational operators and scalar functions in all
other places except those specified above.

(iii) The support of the <reformat-clause> and <normalise-clause> at a non-
nested query, applied to one time-point or time-interval. In addition to the
ORES Technical Annex, we are planning to include some optimisation
here.

(iv) The support of EXCEPT and the extended version of UNION, with some
optimisation. Queries will be of the type

<query-spec> [UNION | EXCEPT] <query-spec>.

(v) The support of the extended versions of INSERT, DELETE, and
UPDATE, with some optimisation.

Effort will also be made to support the following:

(i) The combination of the DATEINTERVAL type with the INGRES DATE
type.

(ii) The definition of other time-interval types.

(iii) The enforcement of the semantics of VT-SQL.

(iv) The application of the <reformat-clause> and <normalise-clause> at a non-
nested query, applied to more than one time-point or time-interval. (Note that
this really make sense only in the case that a table contains at least two
columns of distinct time types.).

The syntax of VT-SQL will probably be slightly different in the implementation, if we are
faced with constraints imposed by INGRES.

6. CONCLUSIONS

In this report we gave the specification of a valid time extension to standard SQL. It is a
consistent extension of SQL, in that it preserves its syntax and semantics. Its definition
has been based on the Valid Time Relational Algebra (VT-RA) [01P 93], whose
operations are fully supported.

APPENDIX A

FORMAL DEFINITIONS

PREDEFINED CONSTANTS

mindate: It equals the least date supported by a VT-DBMS.

maxdate: It equals the greatest date supported by a VT-DBMS.

AGGREGATE FUNCTIONS

countap : (Count all time-points) returns the number of time-points that are contained in
a selected column or value expression. Duplicate points are also counted.

countdp : (Count distinct time-points) returns the number of distinct time-points that are
contained in a selected column or value expression.

PREDICATES

 dy before dx : stop(dy) < start(dx)

 dy meets dx : stop(dy) = start(dx)

 dy loverlaps dx : start(dy) < start(dx) and
 stop(dy) > start(dx) and
 stop(dy) < stop(dx)

 dy lcovers dx : start(dy) < start(dx) and
 stop(dy) = stop(dx)

 dy covers dx : start(dy) < start(dx) and
 stop(dy) > stop(dx)

 dy rcovered dx : start(dy) = start(dx) and
 stop(dy) < stop(dx)

 dy = dx : start(dy) = start(dx) and
 stop(dy) = stop(dx)

 dy rcovers dx : start(dy) = start(dx) and
 stop(dy) > stop(dx)

 dy covered dx : start(dy) > start(dx) and
 stop(dy) < stop(dx)

 dy lcovered dx : start(dy) > start(dx) and
 stop(dy) = stop(dx)

 dy roverlaps dx : start(dy) > start(dx) and
 start(dy) < stop(dx) and
 stop(dy) > stop(dx)

 dy met dx : start(dy) = stop(dx)

 dy after dx : start(dy) > stop(dx)

 dy psubinterv dx : start(dy) >= start(dx) and
 stop(dy) <= stop(dx) and
 not (
 start(dy) = start(dx) and
 stop(dy) = stop(dx)
)

 dy subinterv dx : start(dy) >= start(dx) and
 stop(dy) <= stop(dx)

 dy psupinterv dx : start(dy) <= start(dx) and
 stop(dy) >= stop(dx) and
 not (
 start(dy) = start(dx) and
 stop(dy) = stop(dx)
)

 dy supinterv dx : start(dy) <= start(dx) and
 stop(dy) >= stop(dx)

 dy overlaps dx : not (
 not (
 start(dy) < start(dx) and
 stop(dy) > start(dx) and
 stop(dy) < stop(dx)
)
 and
 not (
 start(dy) > start(dx) and
 stop(dy) > stop(dx)
)
)

 dy merges dx : stop(dy) >= start(dx) and
 start(dy) <= stop(dx)

 dy cp dx : stop(dy) > start(dx) and
 start(dy) < stop(dx)

 dy precedes dx : not (
 not (
 start(dy) < start(dx) and
 stop(dy) <= stop(dx)
)
 and
 not (
 start(dy) = start(dx) and
 stop(dy) < stop(dx)
)
)

 dy follows dx : not (
 not (
 start(dy) > start(dx) and
 stop(dy) >= stop(dx)
)
 and
 not (
 start(dy) = start(dx) and

 stop(dy) > stop(dx)
)
)

 dy prequals dx : not (
 not (
 start(dy) < start(dx) and
 stop(dy) <= stop(dx)
)
 and
 not (
 start(dy) = start(dx) and
 stop(dy) <= stop(dx)
)
)

 dy folequals dx : not (
 not (
 start(dy) > start(dx) and
 stop(dy) >= stop(dx)
)
 and
 not (
 start(dy) = start(dx) and
 stop(dy) >= stop(dx)
)
)

 dy adjacent dx : not (
 stop(dy) <> start(dx) and
 start(dy) <> stop(dx)
)

FUNCTIONS

The following notations are used in the definition of the functions incorporated in VT-
SQL.

I: The set of integeres

R: The set of reals

D = {d1, d2, ..., dn} : A set of consecutive dates.

I(D) = {(di, dj)  di, dj ∈ D, di < dj} : A set of intervals over D.

trunc: integer part of a real number.

div: quotient of an integer division.

now: Returns the current date

start: I(D) → D: start([di, dj)) = di

stop: I(D) → D: stop([di, dj)) = dj

topoint: I(D) → D: topoint([di, di+1)) = di

tointerv: D → I(D): tointerv(di) = [di, di+1)

interv: D × D → I(D): interv(di, dj) = [di, dj), i < j

intervsect: I(D) × I(D) → I(D):

 intervsect ([di, dj), [dp,dq)) = [max({di, dp}), min({dj, dq})),

 [di, dj) cp [dp, dq) = True

succ: D × I → D: succ(di, k) = di+k, 1 ≤ i + k ≤ n

dur: I(D) → I: dur([di, dj)) = j - i

span: D × D → I: span(di, dj) = i - j

dist: D × D → I: dist(di, dj) =  i - j 

middle: I(D) → D: middle([di, dj)) = di+trunc((j-i)/2)

merge: I(D) × I(D) → I(D):

 merge([di, dj), [dp, dq)) = [min({di, dp}), max ({dj, dq})), j ≥ p and q ≥ i

window: D × I × I → I(D): window(di, m, n) = [di+m*n, di+m*(n+1)), m > 0

windowno: D × I ×D → I:
 windowno(di, m, dj) = (j - i) div m, j ≥ i, m > 0
 windowno(di, m, dj) = -((i - j + m - 1) div m), j < i, m > 0

APPENDIX B

VT-SQL SYNTAX

This appendix contains the syntax of VT-SQL. The syntax is slightly permissive, in that it
allows the generation of certain constructs that are not legal. For example, the argument
to a set function may not in turn be a set function and arithmetic operations between
time-intervals are not allowed. The detailed restrictions which concern VT-SQL, have
been given in the text under headings General Rules and Additional Rules. Note that
minor syntax corrections may be made in the implementation.

1. DATA DEFINITION LANGUAGE

<table-definition> ::=
 CREATE TABLE <table-name>
 (<column-name-format-list>
 [, NORMALISED (<normalised-column-list>)]
 [, PRIMARY KEY (<key-column-list>]))

<column-name-format> ::= <column-name> <format>

<format> ::= <datatype> [NOT NULL [WITH | NOT DEFAULT] | WITH NULL]

<normalised-column> ::= <column-name>

<key-column> ::= <column-name> [INTERVAL | POINT]

<privilege-definition> ::= GRANT <privileges>
 ON <table-name>
 TO <grantees>

<privileges> ::= ALL PRIVILEGES
 | <action-list>

<action> ::=

 SELECT
 | INSERT
 | DELETE
 | UPDATE (<column-name-list>)

<grantees> ::= PUBLIC
 | <username-list>

<view-definition> ::=
 CREATE VIEW <table-name> [(<column-name-list>)]
 AS <query-spec>
 [WITH CHECK OPTION]

2. DATA MANIPULATION LANGUAGE

<delete-stat> ::= DELETE FROM <table-name>
 [PORTION <normalised-column-value-list>]
 [<where-clause>]

<insert-stat> ::= INSERT [<reformat-column-list>]
 INTO <table-name> [(<column-name-list>)]
 <source-values>

<source-values> ::= VALUES (<values-list>)
 | <query-spec>

<update-stat> ::= UPDATE <table-name>
 PORTION <<normalised-column-value-list>]
 SET <column-assignment-list>
 <where-clause>

<column-assignment> ::= <column-name> = {<value-exp> | NULL}

<normalised-column-value> ::= <normalised-column-name> [=<value-exp>]

3. COMMON ELEMENTS

<all-set-function> ::= {AVG | MAX | MIN | SUM} [ALL] <value-exp>)
 | { COUNTDP | COUNTAP} [ALL] <value-exp>)

<approx-num-literal> ::= <mantissa> E <exponent>

<boolean-factor> ::= [NOT] <boolean-primary>

<boolean-primary> ::= <predicate>
 | (<search-condition>

<boolean-term> ::= <boolean-factor>
 | <boolean-term> AND <boolean-factor>

<nonquote-char> ::= <digit> | <letter> | <special-char>

<char-represent> ::= <nonquote-char> | ''

<char-string-literal> ::= '<char-represent>...'

<column-spec> ::= <column-name>
 | <table-name>.<column-name>
 | <correlation-name>.<column-name>
 | <unsigned-integer>

<comparison-op> ::= = | <> | < | > | <= | >=
 | <interval-comparison-op>

<data-type> ::= CHAR [(<length>)]
 | VARCHAR [(<length>)]
 | FLOAT4
 | FLOAT8
 | INTEGER1
 | SMALLINT
 | INTEGER4
 | DATE
 | DATEINTERVAL

<dateinterval-literal> ::= '[<date>, <date>)'

<distinct-set-function> ::= {AVG | MAX | MIN | SUM | COUNT}
 (DISTINCT <column-spec>)
 | { COUNTDP | COUNTAP} (DISTINCT <column-spec>)

<esc-char> ::= <value-spec>

<exact-num-literal> ::= [+ | -] <unsigned-int> [.<unsigned-int>]
 | [+ | -] <unsigned-int>.
 | [+ | -] .<unsigned-int>

<except-exp> ::= <query-spec>
 EXCEPT [<reformat-column-list>]
 <query-spec>

<exponent> ::= [+ | -] <digit>...

<factor> ::= [+ |-] <primary>

<from-clause> ::= FROM <table-ref-list>

<group-clause> ::= GROUP BY <column-spec-list>

<having-clause> ::= HAVING <search-condition>

<interval-comparison-op> ::= before
 | meets
 | loverlaps
 | lcovers
 | covers
 | rcovered
 | =
 | rcovers
 | covered
 | lcovered
 | roverlaps

 | met
 | after
 | psubinterv
 | subinterv
 | psupinterv
 | supinterv
 | overlaps
 | merges
 | cp
 | precedes
 | follows
 | prequals
 | folequals
 | adjacent

<length> ::= <unsigned-integer>

<literal> ::= <char-string-literal>
 | <num-literal>
 | <dateinterval-literal>

<mantissa> ::= <exact-num-literal>

<normalise-clause> ::= NORMALISE ON <column-spec-list>

<num-literal> ::= <exact-num-literal>
 | <approx-num-literal>

<order-clause> ::= ORDER BY <order-item-list>

<order-column> ::= <column-spec>
 | <unsigned-integer>

<order-item> ::= <order-column> [ASC | DESC]

<pattern> ::= <value-spec>

<predicate> ::=
 <value-exp> <comparison-op> <value-exp>
 | <value-exp> [NOT] BETWEEN <value-exp> AND <value-exp>
 | <value-exp> [NOT] IN (<value-spec-list>)
 | <column-spec> [NOT] LIKE <pattern> [ESCAPE <esc-char>]
 | <column-spec> IS [NOT] NULL
 | <value-exp> <comparison-op> <subquery>
 | <value-exp> <comparison-op> ALL <subquery>
 | <value-exp> <comparison-op> ANY <subquery>
 | <value-exp> <comparison-op> SOME <subquery>
 | <value-exp> [NOT] IN <subquery>
 | EXISTS <subquery>

<primary> ::= <value-spec>
 | <column-spec>
 | <set-function-spec>
 | <scalar-function>
 | (<value-exp>)

<query-exp> ::= {<query-spec> | <union-exp> | <except-exp> }
 [<order-clause>]

<query-spec> ::= SELECT [ALL | DISTINCT] <select-list>
 <table-exp>

<reformat-clause> ::= REFORMAT AS <reformat-item>

<reformat-column> ::= <column-spec>
 | <unsigned-integer>

<reformat-item> ::= FOLD <column-spec-list> [<reformat-item>]
 | UNFOLD [ALL] <column-spec-list> [<reformat-item>]

<scalar-function> ::= <standard-SQL-scalar-function>
 | now
 | start (Dateinterval)

 | stop (Dateinterval)
 | topoint(Dateinterval)
 | tointerv(Date)
 | interv (Date, Date)
 | intervsect (Dateinterval, Dateinterval)
 | succ (Date, Integer)
 | dur (Dateinterval)
 | span (Date, Date)
 | dist (Date, Date)
 | middle (Dateinterval)
 | merge (Dateinterval, Dateinterval)
 | window (start-Date, Time-duration, Time-number)
 | windowno (start-Date, Time-duration, Date)

<search-condition> ::= <boolean-term>
 | <search-condition> OR <boolean-term>

<select-list> ::= <value-exp-list> | *

<set-function-spec> ::= COUNT(*)
 | <distinct-set-function>
 | <all-set-function>

<subquery> ::= (SELECT {<value-exp> | *}
 <table-exp>)

<table-exp> ::= <from-clause>
 [<where-clause>]
 [<group-clause>]
 [<having-clause>]
 [<reformat-clause>]
 [<normalise-clause>]

<table-ref> ::= <table-name> [<correlation-name>]

<term> ::= <factor>
 | <term> * <factor>

 | <term> / <factor>

<union-exp> ::= <query-spec>
 [UNION [{ ALL | <reformat-column-list> }]
 <query-spec>

<values> ::= <literal> | NULL

<value-exp> ::= <term>
 | <value-exp> + <term>
 | <value-exp> - <term>

<value-spec> ::= <literal>
 | <system-variable>

<where-clause> ::= WHERE <search-condition>

4. OTHER VT-SQL STATEMENTS

<index-definition> ::= CREATE [UNIQUE] INDEX <index-name>
 ON <table-name>
 (<index-column-list>)

<index-column> ::= <column-name> [ASC | DESC]

<drop-stat> ::= <drop-index-def>
 | <drop-table-def>
 | <drop-view-def>

<drop-index-def> ::= DROP INDEX <index-name>

<drop-table-def> ::= DROP TABLE <table-name>

<drop-view-def> ::= DROP VIEW <table-name>

APPENDIX C

EXAMPLES FROM THE TEST BED APPLICATION

In this appendix we demonstrate how VT-SQL can be used to answer queries of the test
bed application. All the examples provided next, answer queries which are real in nature,
not hypothetical. No queries have been identified which cannot be answered. In contrast,
VT-SQL proves to be much more powerful.

Tables
We first introduce some tables which are used in the examples which follow. For each
table we provide its key and a short description of its contents.

TRANSPLANTATION

Name Date
John d30
Peter d40

Key: <Name-i>

The date on which a patient has had a transplant operation. For simplicity, we assume
that each patient has only one transplantation.

INFECTION

Name Cause Time
John Enterococcus s.p. [d31, d34)
John Enterococcus s.p. [d40, d46)
John Enterococcus s.p. [d50, d60)
John Proteus s.p. [d33, d38)

Key: <Name-i, Time-p, Cause-i>

Time during which a patient was infected by some disease.

SURVIVAL

Name Time
John [d30, d50)
Peter [d40, d45)

Key: <Name-i>

Survival time after transplantation.

DRUG

Name Drug Level Time
John Cyclosporine 121 [d30, d35)
John Cyclosporine 58 [d35, d40)
John Cyclosporine 110 [d40, d45)
John Azathioprine 110 [d50, d60)

Key: <Name-i, Time-p, Drug-i>

Level of drug with which each patient was administered during each time-interval.

COMPLICATION

Name Complication Time
John Hypotassemia [d31, d40)
John Hyperglycemia [d33, d42)
John Metabolic Alcolosis [d37, d45)
John Leukopenia [d55, d60)

Key: <Name-i, Time-p, Complication-i>

Time during which a patient faced some complication.

CHOLESTEROL

Name Level Time
John 180 [d31, d33)
John 140 [d33, d36)
Peter 158 [d41, d44)
Peter 155 [d44, d46)
Peter 130 [d46, d50)

Key: <Name-i, Time-p>

The patients' cholesterol level for each date within the time-interval.

Queries
We notice that the key definition of the tables above justify the necessity of the use of the
extended UNION, INSERT, DELETE, and UPDATE operations. For the retrieval
queries we notice that some of them cannot be answered using SQL and some other can
hardly be formulated

John was in addition infected by Proteus s.p. during [d38, d50). Insert the data.

INSERT
INTO INFECTION
VALUES ('John', 'Proteus s.p', '[d38, d50)')

INFECTION

Name Cause Time
John Enterococcus s.p. [d31, d34)
John Enterococcus s.p. [d40, d46)
John Enterococcus s.p. [d50, d60)
John Proteus s.p. [d33, d50)

Give the patients whose episodes of Hypotassemia had a duration of more than 5 days.

SELECT Name
FROM COMPLICATION
WHERE Complication = 'Hypotassemia'
AND dur(Time) > 5

GROUP BY Name

Give the patients who have been administered with Azathioprine during an episode of
Leukopenia.

SELECT D.Name
FROM DRUG D, COMPLICATION C
WHERE D.Name = C.Name
AND D.Drug = 'Azathioprine'
AND C.Complication = 'Leukopenia'
AND D.Time cp C.Time
GROUP BY Name

Give John's levels of Cyclosporine from d30 to d40.

SELECT Level, intervsect(Time, '[d30, d41)')
FROM DRUG
WHERE Name = 'John'
AND Drug = 'Cyclosporine'
AND Time cp '[d30, d41)'

Give the time-intervals in which John had episodes of both Metabolic Alkolosis and
Hyperglycemia and Hypotassemia

SELECT intervsect(C1.Time, intervsect(C2.Time, C3.Time))
FROM COMPLICATION C1, COMPLICATION C2,
 COMPLICATION C3
WHERE C1.Name = 'John'
AND C1.Name = C2.Name
AND C2.Name = C3.Name
AND C1.Time cp C2.Time
AND C2.Time cp C3.Time
AND C3.Time cp C1.Time
AND C1.Complication = 'Metabolic Alkolosis'
AND C2.Complication = 'Hyperglycemia'
AND C3.Complication = 'Hypotassemia'

For each patient give any complications he has had 10 days after the transplant
operation.

SELECT C.Name, C.Complication
FROM TRANSPLANTATION T, COMPLICATION C
WHERE T.Name = C.Name
AND tointerv(succ(Date, 10)) cp Time
GROUP BY Name, Complication

Give the patients who have had some infection during the first thirty days after the
transplant operation.

SELECT T.Name
FROM TRANSPLANTATION T, INFECTION I
WHERE T.Name = I.Name
AND window(Date, 30, 0) cp Time
GROUP BY Name

Give the level of Cyclosporine with which all patients were administered in the third
week after the transplant operation.

SELECT D.Name, D.Level
FROM TRANSPLANTATION T, DRUG D
WHERE T.Name = D.Name
AND window(Date, 7, 3) cp Time

Give the number of patients who have survived for more than three months after the
transplantation.

SELECT count(*)
FROM SURVIVAL S, TRANSPLANTATION T
WHERE S.Name = T.Name
AND windwono(Date, 30, stop(Time)) >= 2

Give John's levels of Cyclosporine for each of the days in [d30 to d41).

SELECT Level, intervsect(Time, '[d30, d41)')
FROM DRUG
WHERE Name = 'John'
AND Drug = 'Cyclosporine'
AND Time cp '[d30, d41)'

REFORMAT AS
 UNFOLD Time

Give the greatest time-intervals during which John was administered with Cyclosporine.

SELECT Time
FROM DRUG
WHERE Name = 'John'
AND Drug = 'Cyclosporine'
REFORMAT AS
 FOLD Time

Give the number of days John has been administered with Cyclosporine from d30 to
d38.

SELECT countdp(intervsect(Time, '[d30, d39)'))
FROM DRUG
WHERE Drug = 'Cyclosporine'
AND Name = 'John'
AND Time cp '[d30, d39)'

Give the number of days John was administered with Cyclosporine from the transplant
date to the present.

SELECT countdp(intervsect(Time, interv(Date, 'now')))
FROM DRUG D, TRANSPLANTATION T
WHERE T.Name = 'John'
AND T.Name = D.Name
AND Drug = 'Cyclosporine'
AND Time cp interv(Date, 'now')

Give the level of cholesterol while John had an Enterococcus s.p infection.

SELECT Level, intervsect(C.Time, I.Time)
FROM CHOLESTEROL C, INFECTION I
WHERE C.Name = 'John'
AND C.Name = I.Name
AND C.Time cp I.Time

Give the patients whose cholesterol level surpassed 150 at some time of the during the
first 30 days after the transplant operation.

SELECT T.Name
FROM CHOLESTEROL C, TRANSPLANTATION T
WHERE C.Name = T.Name
AND C.Level > 150
AND window(T.Date, 30, 0) cp C.Time

For each patient give the cholesterol level in the third week after the transplant
operation.

SELECT C.Name, C.Level, intervsect(C.Time, window(T.Date, 7, 3))
FROM CHOLESTEROL C, TRANSPLANTATION T
WHERE C.Name = T.Name
AND C.Time cp window(T.Date, 7, 3)

Give the week number after transplant operation that John's cholesterol level became
less than 140.

SELECT windowno(T.Date, 7, min(start(C.Time)))
FROM TRANSPLANTATION T, CHOLESTEROL C
WHERE T.Name = 'John'
AND T.Name = C.Name
AND C.Level < 140

For each patient give the time elapsed between two episodes of Enterococcus s.p.

SELECT I1.Name, dist(start(I2.time), stop(I1.Time))
FROM INFECTION I1, INFECTION I2
WHERE I1.Cause = 'Enterococcus s.p.'
AND I1.Name = I2.Name
AND I1.Cause = I2.Cause
AND stop(I1.Time) < start(I2.Time)
AND stop(I1.Time) = (SELECT max(stop(I3.Time))
 FROM INFECTION I3
 WHERE stop(I3.Time) < start(I2.Time)
 AND I3.Cause = 'Enterococcus s.p.'
 AND I3.Name = I1.Name)

REFERENCES

[01P 93] 01 PLIROFORIKI 'Specification of valid time formalism', ORES Deliverable
C3, Athens, 1993.

[CPH 93] CPH 'User Requirements', ORES Deliverable B2, Madrid, 1993.

[Date 86] C. J. Date. 'A guide to the SQL standard', 2nd Edition, Addison-Wesley, 1982.

[INGRES 89] Ingres 'SQL reference manual', Release 6.3, VAX/VMS, 1989.

[Lans 88a] R. F. van der Lans. 'Introduction to SQL', Addison-Wesley, 1988.

[Lans 88b] R. F. van der Lans. 'The SQL standard. A complete reference', Prentice Hall,

1988.

[Lorentzos et al 92] N. A. Lorentzos, A. Poulovasilis and C. Small. 'Optimized update

operations for multi-dimensional interval data', Int. Rept., Informatics Laboratory,
Agricultural University of Athens, 1993.

[Lorentzos 93] N. A. Lorentzos. 'Properties of functional dependencies', Int. Rept.,

Informatics Laboratory, Agricultural University of Athens, 1993.

[Navathe & Ahmed 86] S. B. Navathe, and R. Ahmed. 'A temporal relational model and

a query language', Tech. Rept. TR-85-16, Department of Computer and
Information Sciences, University of Florida, 1986.

[Sarda 90] N. L. Sarda. 'Extensions to SQL for historical databases', IEEE Transactions

on Knowledge and Data Engineering, Volume 2, Number 2, 1990, pp 220-230.

