
ESPRIT III

ORES: TOWARDS THE FIRST GENERATION

OF TEMPORAL DBMS

(P7224)

DELIVERABLE D4.1

IMPLEMENTATION OF VALID TIME SQL

 Responsible: 01 PLIROFORIKI
 University of Athens
 Agricultural University of Athens
 INFORMATION DYNAMICS

Availability: Public

April 1994

IMPLEMENTATION OF VALID TIME SQL

(DELIVERABLE D4)

 Responsible: 01 PLIROFORIKI
 University of Athens
 Agricultural University of Athens
 INFORMATION DYNAMICS

ABSTRACT

This report concerns the development of Valid Time SQL. The
development has been based on previous ORES deliverables,
concerning the Specification and design of VT-SQL. Deviations
undertaken during the implementation phase are also reported.

TABLE OF CONTENTS

1. INTRODUCTION.. 1

2.VT-SQL INSTALLATION... 2

3. USER'S GUIDE.. 3

3.1 USING THE VT-SQL QUERY PROCESSOR .. 3

Invoking the VT-SQL query processor... 3

Working with the VT-SQL query processor.. 4

3.2 VT-SQL DATA TYPES... 4

3.3 VT-SQL RELATIONAL OPERATORS ... 4

3.4 VT-SQL FUNCTIONS... 7

3.5 VT-SQL STATEMENTS ... 8

3.6 EXTENDED SYNTAX.. 8

3.7 CONTROL SEQUENCES.. 8

3.8 RESERVED WORDS .. 8

3.9 ENVIRONMENT .. 8

3.10 LIMITATIONS.. 8

4. IMPLEMENTATION.. 8

4.1 ARCHITECTURE OVERVIEW .. 8

A. The Monitor ... 8

B. The Input Manager... 8

C. The Parser.. 8

D. The VT-SQL procedures ... 8

E. The VT-Algebra library .. 8

F. The ORES dictionary. ... 8

4.2 DESIGN MODIFICATIONS.. 8

A. The ORES monitor.. 8

B. The ORES type checker .. 8

C. The ORES optimiser ... 8

D. The ORES scheduler .. 8

E. The ORES dictionary.. 8

4.3 THE VT - SQL PARSER .. 8

Syntactical analysis .. 8

Data structure formulation.. 8

Implementation notes.. 8

4.2 VT-SQL DDL STATEMENTS IMPLEMENTATION.. 8

CREATE TABLE statement ... 8

DROP TABLE statement ... 8

4.5 VT-SQL DML STATEMENTS IMPLEMENTATION ... 8

SELECT statement .. 8

Optimisation ... 8

Query evaluation .. 8

INSERT statement... 8

DELETE statement ... 8

UPDATE statement... 8

HELP statement .. 8

5. CONCLUSIONS .. 8

APPENDIX A: VT-SQL EVALUATION.. 8

REFERENCES... 8

ORES DEL.D4.1 : Implementation of VT-SQL

1. Introduction 1

1. INTRODUCTION

This deliverable concerns the development of valid time SQL (VT-SQL). The
development is in accordance with the specification of VT-SQL [01 P 93d]. Deviations
either from the specifications of V-SQL [01 P 93d] or the design of VT-SQL [01 P 93c],
are also reported. It should e noted that some optimisation, has in addition, been
incorporated. The remainder of this report is outlined as follows:

In section 2 we describe the instalation of VT-SQL. Section 3 is the user's guide. In
section 4 we report on the implementation of VT-SQL Conclusions are drawn in the last
section. Finally, in Appendix A we give a list of the tests for the evaluation of VT-SQL

ORES DEL.D4.1 : Implementation of VT-SQL

2.VT-SQL Installation 2

2.VT-SQL INSTALLATION

In order to install the VT-SQL query processor and create the VT-SQL system tables,
the following procedure must be carried out:

1. Log in as an authorised INGRES user. If you are not sure whether such a user exists,
log in as the ingres user.

2. Change your working directory to the directory where you want to install the VT-
SQL query processor. Make sure that you have write permission on that directory. If
you have logged in as the ingres user, installing the query processor in the directory
~/bin or in the directory ~/utility will make it automatically available to all
INGRES users. (The tilde character (~) is the C-Shell (csh) shorthand for your home
directory. If you are using Bourne shell (sh), substitute the tilde character with the
notation $HOME.)

3. Insert the cartridge into the appropriate device. Enter the command

 tar xvf deviceName

 where deviceName is the name of the special file that corresponds to the device, e.g.
/dev/rst0. The VT-SQL query processor will be extracted in a file named VT-SQL. as
well as the script for the creation of the VT-SQL system tables named
cr_vtsql_systables.

4. Ensure that you have execute permission on the VT-SQL command processor and the
above script, by issuing the command

 chmod +x VT-SQL cr_vtsql_systables

5. Create the system tables for a database under the name <DatabaseName> by issuing

the command

 sql <DatabaseName> < cr_vtsql_systables

The VT-SQL query processor is now installed and the system tables created. *(Note that
the routines of Vlid time Relational Algebra are also installed in this way).

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 3

3. USER'S GUIDE

3.1 USING THE VT-SQL QUERY PROCESSOR

Invoking the VT-SQL query processor

Once installed, the VT-SQL query processor may be invoked by entering the command

VT-SQL databaseName [filename]

where databaseName is the name of the INGRES database that the user issuing the
command wants to work with. The user must be authorised to use the specified database.
If the optional filename parameter is omitted, the VT-SQL query processor is started in
interactive mode, accepting input from the keyboard and displaying results and error
messages to the screen. If the filename parameter is specified, the VT-SQL query
processor is started in batch mode, reading commands from file filename. Results and
error messages are still printed on the screen, but this can be changed using the standard
UNIX redirection notations. Note that input redirection and specification of the filename
parameter are not equivalent: If input is redirected, interactive mode semantics apply to
the session, while specification of the filename parameter implies batch mode semantics
for the session. Thus, the command

VT-SQL database filename

reads input from file filename with batch mode semantics, while the command

VT-SQL database < filename

reads input from the same file with interactive mode semantics.

Comments

1. INGRES servers must be running when the user invokes the VT-SQL query
processor, or the program will halt, issuing an appropriate error message.

2. If the specified database does not exist, the program will notify the user and halt.

3. The user is subject to access restrictions imposed by the database administrator and
the table owners.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 4

4. The optional filename parameter, if specified, must identify an existing file, on which
the user has read permission.

Working with the VT-SQL query processor

The VT-SQL query processor accepts input either from the keyboard or from a file,
depending on the invocation syntax. Input fed to the VT-SQL query processor must
comply to the syntax rules which are specified in [1], and summarised below. The VT-
SQL query processor also accepts input conferment to the Extended Syntax
Specifications, which are described below.

In the subsequent paragraphs, the following notations will be used:

• Normal writing indicates reserved words, which must be typed as they appear in the
document.

• Italics indicate that the term should be substituted by an appropriate string.

• Terms enclosed in brackets ([]) are optional.

• Terms enclosed in braces ({}) are optional and may be repeated several times.

• term1 | term2 means "either term1 or term2"

• Parentheses are used to group terms. Parentheses that must be typed literally, are
enclosed in single quotes ('')

3.2 VT-SQL DATA TYPES

VT-SQL supports all the data types supported by INGRES. Additionally, in order to
support valid time data, a new data type, namely DATEINTERVAL, has been
introduced for the representation of time intervals. For every DATEINTERVAL we use
the notation [di,dj), where di, dj of type DATE and di < dj.

3.3 VT-SQL RELATIONAL OPERATORS

The VT-SQL query processor supports all standard SQL operators. In addition,
predicates for dateinterval comparisons are supported, that may be used to form
conditions in the where and having clauses. The predicates and the cases for which each
one is true are illustrated in Figure 1.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 5

 interv1

1. interv1 before interv2

2. interv1 meets interv2

3. interv1 loverlaps interv2

4. interv1 lcovers interv2

5. interv1 covers interv2

6. interv1 rcovered interv2

7. interv1 = interv2

8. interv1 rcovers interv2

9. interv1 covered interv2

10. interv1 lcovered interv2

11. interv1 roverlaps interv2

12. interv1 met interv2

13. interv1 after interv2

14. interv1 psubinterv interv2 This predicate is true when interv1 is a
pure subinterval of interv2 (one of the
conditions 6, 9 and 10 is true).

15. interv1 subinterv interv2 This predicate is true when interv1 is a
subinterval of interv2 (one of the
conditions 6, 9, 7 and 10 is true).

16. interv1 psupinterv interv2 This predicate is true when interv1 is a
pure superinterval of interv2 (one of the
conditions 4, 5 and 8 is true).

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 6

17. interv1 supinterv interv2 This predicate is true when interv1 is a
superinterval of interv2 (one of the
conditions 4, 5, 7 and 8 is true).

18. interv1 cp interv2 This predicate is true when the two intervals
have common points (one of the conditions 3,
4, 5, 6, 7, 8, 9, 10 and 11 is true).

19. interv1 adjacent interv2 This predicate is true when the starting date of
interv1 is the successor of the ending point
of interv2 or the starting date of interv2
is the successor of the ending point of
interv1 (one of the conditions 2 and 12 is
true).

20. interv1 overlaps interv2 In other words, the predicate is true when
interv1 and interv2 have common
points, but neither interv1 is a subinterval
of interv2, nor interv2 is a subinterval
of interv1 (one of the conditions 3 and 11
is true).

21. interv1 merges interv2 This predicate is true when interv1 and
interv2 have common points, or when
interv1 and interv2 are adjacent (one of
the conditions 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and
12 are true).

22. interv1 prequals interv2 This predicate is true when interv1 starts
before or at the same date as interv2 and
ends before or at the same date as interv2
(one of the conditions 1, 2, 3, 4, 6 and 7 are
true).

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 7

23. interv1 preceds interv2 This predicate is equivalent to the prequals
predicate, except for the case of operand
equality, in which the preceds predicate
yields false, whereas the prequals predicate
yields true (one of the conditions 1, 2, 3, 4 and
6 are true).

24. interv1 folequals interv2 This predicate is true when interv1 starts
after or at the same date as interv2 and
ends after or at the same date as interv2
(one of the conditions 7, 8, 10, 11, 12 and 13
are true).

25. interv1 follows interv2 This predicate is equivalent to the
folequals predicate, except for the case of
operand equality, in which the follows
predicate yields false, whereas the
folequals predicate yields true (one of the
conditions are 8, 10, 11, 12 and 13 true).

3.4 VT-SQL FUNCTIONS

The VT-SQL query processor supports the following functions, in addition to the
functions provided by INGRES.

1. countap(dateint)

 countap is an aggregate function, accepting an argument of type DATEINTERVAL.
The function operates on the collection of values specified by its argument and returns
the number of time points in all intervals. The countap function does not accept the
all and distinct qualifiers.

 Examples

 The following statement finds the total number of days that certain patient has
hospitalised.

 select countap(hosp_stay_int)
 from patient
 where medrec_no = 'ABCDEF'

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 8

2. ctointerv(string)

 ctointerv accepts an argument of the form 'date1,date2'. date1 and date2 should be
valid dates and also date1 < date2. The function operates on a string, checks if it
represents a valid dateinterval and returns a DATEINTERVAL.

 Examples

 ctointerv('1990-01-01,1991-01-01') yields [1990-01-01, 1991-01-01)

 ctointerv('1991-01-01,1990-01-01') returns an error message

3. dist(date1,date2)

 Function dist accepts two arguments of type DATE and returns the number of days
between its two arguments. The result is of type INTEGER and is always non-
negative.

 Examples

 dist('1990-01-01', '1990-02-01')
 yields 31.

4. dur(dateint)

 Function dur accepts an argument of type DATEINTERVAL and returns the number
of time points included in its argument. The result is of type INTEGER.

 Examples

 dur('[1990-01-01, 1991-01-01)')
 yields 365.

5. interv(date1, date2)

 Function interv accepts two arguments of type DATE. Its result is a
DATEINTERVAL, starting at expr1 and ending at expr2. An error occurs if expr1 is
after expr2.

 Examples

 interv('1990-01-01', '1991-01-01') yields [1990-01-01, 1991-01-01).

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 9

 interv('1991-01-01', '1990-01-01') results to an error.

6. intervsect(dateint1, dateint2)

 Function intervsect accepts two argument of type DATEINTERVAL and returns the
common points of its argument. The result is of type DATEINTERVAL. An error
occurs if the two arguments do not have any common points.

 Examples

 intervsect('[1990-01-01, 1991-01-01)', '[1990-02-01, 1993-01-01)')
 yields [1990-02-01, 1991-01-01).

 intervsect('[1990-01-01, 1991-01-01)', '[1989-02-01, 1993-01-01)')
 yields [1990-01-01, 1991-01-01).

 intervsect('[1990-01-01, 1991-01-01)', '[1992-01-01, 1993-01-01)')
 results to an error (the two arguments do not have any common points).

7. maxdate()

 This function returns the maximum date supported. It takes no arguments and yields a
result of type DATE. The maximum date currently supported by the system is
'2030-12-30'.

 Examples

 maxdate() yields '2030-12-30'

8. merge(dateint1, dateint2)

 Function merge accepts two arguments of type DATEINTERVAL and returns a
DATEINTERVAL containing all the time points in both arguments. An error occurs
if the two arguments cannot be merged, i.e. one of the conditions dateint1 before
dateint2 and dateint1 after dateint2 is true.

 Examples

 merge('[1990-01-01, 1991-01-01)', '[1990-06-01, 1992-01-01)')
 yields [1990-01-01, 1992-01-01).

 merge('[1990-01-01, 1991-01-01)', '[1990-06-01, 1990-08-01)')

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 10

 yields [1990-01-01, 1991-01-01).

 merge('[1990-01-01, 1991-01-01)', '[1991-01-01, 1992-01-01)')
 yields [1990-01-01, 1992-01-01).

 merge('[1990-01-01, 1991-01-01)', '[1992-06-01, 1990-08-01)')
 results to an error, because the two arguments are neither overlapping nor adjacent.

9. middle(dateint)

 Function middle accepts an argument of type DATEINTERVAL and returns the
midpoint of its argument. The result is of type DATE.

 Examples

 middle('[1990-01-01, 1990-01-03)') yields '1990-01-02'.

10.mindate()

 This function returns the minimum date supported. It takes no arguments and yields a
result of type DATE. The maximum date currently supported by the system is
'1970-01-01'.

 Examples

 mindate() yields '1970-01-01'

11.now()

 This function returns the current date. It takes no arguments and yields a result of
type DATE.

12.span(date1, date2)

 This function accepts two arguments of type DATE and returns the number of days
between its two arguments. The result is of type INTEGER and may be positive, zero
or negative depending on the relative position of date1 and date2.

 Examples

 span('1990-01-01', '1989-01-01') yields 365

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 11

 span('1990-01-01', '1990-02-01') yields -31

13.start(dateint)

 Function start takes an argument of type DATEINTERVAL and returns the starting
date of its argument. The result is of type DATE.

 Examples

 start('[1990-01-01, 1990-01-03)') yields '1990-01-01'

14.stop(dateint)

 Function start takes an argument of type DATEINTERVAL and returns the starting
date of its argument. The result is of type DATE.

 Examples

 stop('[1990-01-01, 1990-01-03)') yields '1990-01-03'

15.succ(date1, int1)

 Function succ accepts one argument of type DATE and one argument of type
INTEGER. The result of the function is a date int1 days after date1.

 Examples

 stop('1990-01-01', 2) yields '1990-01-03'

16.tointerv(date1)

 Function tointerv accepts an argument of type DATE and returns the trivial
DATEINTERVAL which includes only the date specified by the argument.

 Examples

 tointerv('1990-01-01') yields '[1990-01-01, 1990-01-02)'

17.topoint(dateint)

 Function topoint accepts an argument of type DATEINTERVAL. If the argument is a
trivial dateinterval (i.e. a DATEINTERVAL including a single time point), the

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 12

function returns the start of its argument. If the argument is not a trivial
DATEINTERVAL, an error occurs.

 Examples

 topoint('[1990-01-01, 1990-01-02)') yields '1990-01-03'.

 topoint('[1990-01-01, 1990-01-03)') results to an error.

18.window(start_date, period_length, num_periods)

 Function window accepts three arguments. The first argument specifies a starting
date, the second a period length (number of days), and the third a number of periods.
If the num_periods argument is positive, the function returns a DATEINTERVAL,
starting num_periods periods (i.e. period_length * (num_periods - 1) days) after
start_date and ending num_periods + 1 periods after start_period. If the
num_periods argument is negative, the function returns a DATEINTERVAL starting
num_periods periods (i.e. period_length * num_periods days) before start_date. The
duration of the result dateinterval is period_length days. Argument period_length
must be positive, and argument num_periods must be non-zero.

 Examples

 window('1990-01-01', 10, 2) yields [1990-01-11, 1990-01-21).

 window('1990-01-01', 10, -3) yields [1989-12-02, 1989-12-12).

19.windowno(start_date, period_length, end_date)

 Function windowno accepts three arguments. The first argument specifies a starting
date, the second a period length (number of days), and the third an ending date. The
result is the number of periods (each one lasting period_length days) between
start_date and end_date, and will be negative if end_date is before start_date. The
result, however, cannot be zero.

 Examples

 windowno('1990-01-01', 10, '1990-01-20') yields 2.

 windowno('1990-01-01', 10, '1989-12-12') yields -2.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 13

3.5 VT-SQL STATEMENTS

CREATE INDEX

Syntax

 CREATE [UNIQUE] INDEX indexName ON tableName
 '('columnName {, columnName}')'

Description

The CREATE INDEX statement is used to build indexes on tables, allowing for rapid data
retrieval. The unique qualifier, if specified, ensures that no two rows of table
tableName may contain identical data in the columns on which the index is created.
However, if the table already contains such data, the CREATE INDEX statement will fail.

Comments

• The CREATE INDEX statement will also fail if an object (table or index) with the name
indexName already exists in the database.

• Names starting with ii are reserved by INGRES, and the VT-SQL query processor
reserves names starting with jj and tt, as well as the names VT-SQL_keys and
VT-SQL_norms. Reserved names should not be used as index names in a CREATE

INDEX statement.

Examples

1. The following statement creates a unique index on the medrec_no column of table
patient.

create unique index index1 on patient(medrec_no)

2. The following statement creates a non-unique index on columns type and cause of
table operation.

create index index2 on operation(type, cause)

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 14

CREATE TABLE

Syntax

 create table tableName
 (columnName dataType [not null] {, columnName dataType [not null]}
 [normalised (columnName)]
 [primary key (columnName [interval | point] {, columnName [interval |

point]})])

Description

VT-SQL CREATE TABLE statement is an extended version of the standard SQL
corresponding statement. Its enhancements reside in the provision of the new data type,
namely DATEINTERVAL, and the ability to specify the primary keys and normalisation
columns of the table to be created. Supported datatypes are the standard SQL datatypes,
as well as DATEINTERVAL datatype.

In order to ensure the efficient use of CREATE TABLE statement, a number of
limitations should be considered when using this statement. Normalisation attributes
should be present in the table column list and not be duplicated. All columns present in
the NORMALISED clause must be of type DATEINTERVAL. Such a column should
also be present in the PRIMARY KEY section, if there is any, and -moreover- be of type
POINT.

Primary key attributes must be present in the table column list, whereas declaration of
duplicate primary keys is illegal. Columns participating in the PRIMARY KEY section as
POINT should also be present in the NORMALISED clause.

Columns declared as primary keys should be either of type DATEINTERVAL or
POINT, following the limitations imposed above. If no type is specified, the default type,
namely DATEINTERVAL, is used. Every column present in either of the statement
extended clauses should acquire the not null property, that is, whether or not it is
declared as nullable, it is ultimately created as not null.

Comments

The CREATE TABLE statement will fail if an object (table or index) with the name
tableName already exists in the database. Names starting with ii are reserved by
INGRES, and the VT-SQL query processor reserves names starting with jj and tt, as

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 15

well as the names vtsql_keys and vtsql_norms. Reserved names should not be
used as table names in a CREATE TABLE statement.

Examples

1. Create table inflation with fields Country (character 15), Percetage (real) and Time
(dateinterval), with primary key on Country and Time.

 create table inflation (Country char(15),
 Percentage real,
 Time dateinterval
 Primary Key (Country interval, Time interval)

2. Create table salary with fields Name (character 15), Time (dateinterval) and Amount

(integer) , normalised on Time, with primary key on Name and Time.

 create table salary (Name char(15),
 Time dateinterval,
 Amount integer
 Normalised (Time)

3. Create table salary with fields Name (character 15), Time (dateinterval) and Amount

(integer) , normalised on Time, with primary key on Name and Time.

 create table salary (Name char(15),
 Time dateinterval,
 Amount integer
 Normalised (Time)
 Primary Key (Name interval, Time point))

4. Create table shift with fields Name (character 15), Time (dateinterval) and Date

(dateiterval), normalised on Time, with primary key on Date and Time.

 create table shift (Name char(15),
 Time dateinterval,
 Date dateinterval
 Normalised (Time)
 Primary Key (Date interval, Time point))

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 16

DELETE

Syntax

 delete from tableName
 [portion columnName = period]
 [where condition]

Description

The delete statement removes rows' portions from a specified table that satisfy the
condition in the where clause and they match with the period in the portion clause. If
both the where and portion clauses are omitted, the statement deletes all rows in the
table. The result is a valid but empty table. If the where clause is omitted, but there does
exist a portion clause, the statement will delete the portions' of those rows that match
with the period in portion clause. If only a where clause exists, the statement will
remove the rows that satisfy the condition in the where clause.

The columnName stated in the portion clause must refer to the column that the table is
normalised on, and period must be an expression yielding a result of type interval. If
table tableName is not normalised on some column, the portion clause should not be
specified. The portion clause restricts the scope of the delete statement to the time
points included in result of period.

The condition in the -optional- where clause may be any valid condition, as described in
the paragraphs referring to the select statement.

Comments

• If table tableName is normalised on some column, and the portion clause is specified,
then the execution of a delete statement may not decrease the number of rows in the
table. The number of rows may increase, decrease or remain the same, depending on
the row foldings that will take place.

Examples

1. Delete all employees whose salary is over 1000000

 delete from employee
 where salary > 1000000

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 17

2. Delete all employees data for the period '[1990-01-02, 1990-03-03)'

 delete from employee
 portion time = '[1990-01-02, 1990-03-03)'

3. Delete John's data for the period '[1990-01-02, 1990-03-03)'

 delete from employee
 portion time = '[1990-01-02, 1990-03-03)'
 where name = 'John'

4. Delete all employees

 delete from employee

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 18

DROP INDEX

Syntax

DROP INDEX indexName

Description

The DROP INDEX statement destroys an index created via the CREATE INDEX statement.

Comments

• The user should not use the DROP INDEX statement in order to remove indexes whose
names start with ii, jj or tt. These indexes are reserved by the INGRES DBMS
and the VT-SQL query processor.

Examples.

1. The following statement destroys the index index1.

drop index index1

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 19

DROP TABLE

Syntax

 drop table tableName

Description

The DROP TABLE statement removes table tableName from the database, and eliminates
any data concerning this table, including indexes and primary key information. The user
should not use the DROP TABLE statement in order to remove tables vtsql_keys,
vtsql_norms as well as tables whose names start with ii, jj or tt.

When executing the VT-SQL DROP TABLE statement all entries referring to table
table-name are removed from the systems tables. The table itself no longer exists in the
database. The DBMS also takes care of all structures, as indexes, relating to this table.
Consequently, all indexes previously declared are therefore removed from the Data Base
without any further actions required.

Comments

No actions have to be taken for removing previously defined indexes based on table
table-name.

Examples

1. The following statement destroys the table salary.

drop table salary

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 20

HELP

Syntax

HELP [object_name]

Description

The HELP command provides a list of the tables which the user is allowed to access in
the current database, or information about a particular database object. If the parameter
object_name is not specified, then a table list is displayed. If, however, the parameter is
specified, it must designate an existing table or index owned by the user issuing the
command or the ingres user. Information displayed about a table includes the table
schema as well as primary keys and normalised columns defined for that table.

Examples

1. The following statement displays a list of the tables in the current database on which
the user has access.

help

1. The following statement displays information about table patient.

help patient

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 21

INSERT

Syntax

 insert into tableName [(column-list)]
 values (value-or-null-list)

 or

 insert into tableName [(column-list)] query

Description

VT-SQL INSERT statement is an extended version of the standard SQL corresponding
statement. Its enhancements reside in the use of the NORMALISE ON and
REFORMAT AS sections that may be present in the subselect clause, as well as the
functionality originating from the definition of the table and concerning its primary keys
and normalisation columns.

Though the use of the INSERT statement the user inserts values in the insertion table.
Values may be declared in two ways:

• as single values (forming a row, or sometimes a subset of a row).

• as the result of a subselect on any table.

It is evident that in both cases the insertion values must comply with the insertion table
schema. It is also possible to insert values in specific columns of the insertion table,
declared in the column-list clause. In the second case, attention should be paid to the
columns of the table acquiring the not null property. If no value is specified for these
columns it is unavoidable to receive an error message.

Handling of the subselect clause is much alike the SQL subselect. The extra functionality
reside in the NORMALISE ON and REFORMAT AS sections, through which we can
specify the normalisation and reformatting forms to be applied on the intermediate table
that holds the results of the conventional subselect. The intermediate table is reformed in
order to acquire the insertion table schema.

The columns specified in the NORMALISE ON and REFORMAT AS sections may have
the standard SQL format. These clauses are viewed in a similar manner to the GROUP
BY clause; thus, all limitations for the GROUP BY are depicted for NORMALISE ON
and REFORMAT AS. There is also the possibility to use the number representing the

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 22

order of the column in the resulting table instead of using any of the conventional
formats. This is analogous to the ability provided within the ORDER BY clause in the
standard SQL.

After the execution of the extended subselect statement, all results acquired are to be
inserted in the insertion table. In case this table is not normalised, the values are simply
inserted thus completing the whole operation. Whether the table is normalised or not, is
specified in the CREATE TABLE statement given for this table. Normalisation attributes
reside in the system table vtsql_norms and may be viewed through a single select query.
In case the table is normalised, an extensive checking is performed in order to ensure that
the values to be inserted do not violate the insertion table primary keys. Primary keys are
specified in the CREATE TABLE statement and reside in the corresponding system table,
namely vtsql_keys. Any values encountered to cause duplication, result in the abortion of
the whole operation, and the display of an appropriate message.

In case that no duplication is encountered, the values are inserted in the insertion table.
The table is consequently normalised according to the attributes mentioned above.

Comments

• If table tableName is normalised on some column, then the execution of an INSERT
statement may not increase the number of rows in the table. The number of rows may
increase, decrease or remain the same.

• The query in the second form of the INSERT statement must be a single select clause,
that is it may not consist of two select clauses combined by the union, union all or
except operators.

• Insertion attempts should not be made for the VT-SQL system tables, namely
vtsql_norms and vtsql_keys

Examples

 1. Insert into table salary the row (John, 1000,'[1991-01-01, 1993-01-01)').

 insert
 into salary
 values ('John', 1000, '[1991-01-01, 1993-01-01)')

 2. Insert into table inflation the row (A, '[1990-01-02, 1990-03-03)').

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 23

 insert
 into inflaction(Country, Time)
 values ('A', '[1990-01-02, 1990-03-03)')

 3. Insert into table salary all data related to John from table h_salary.

 insert
 into salary

 select Name, Amount, Time
 from h_salary
 where Name='John'

4. Insert into table patient all drugs and the corresponding date intervals for which they

were given to patient John.

 insert
 into patient
 select Name, Drug, Time
 from drug
 where Name='John'
 normalised on Time

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 24

SELECT

Syntax

 SELECT [DISTINCT | ALL] target-column-list
 FROM table-list
 [WHERE condition]
 [GROUP BY column-list [HAVING condition]]
 [REFORMAT AS
 (FOLD | UNFOLD | UNFOLD ALL) result-column-list
 {(FOLD | UNFOLD | UNFOLD ALL) result-column-list}]
 [NORMALISE ON result-column-list]
 [(UNION | UNION ALL | EXCEPT) [result-column-list]
 SELECT [DISTINCT | ALL] target-column-list
 FROM table-list
 [WHERE condition]
 [GROUP BY column-list [HAVING condition]]
 [REFORMAT AS
 (FOLD | UNFOLD | UNFOLD ALL) result-column-list
 {(FOLD | UNFOLD | UNFOLD ALL) result-column-list}]
 [NORMALISE ON result-column-list]]
 [ORDER BY result-column-list]

Description

The SELECT statement retrieves data from tables in the database and displays it on the
screen. The SELECT statement has been extended, compared to the standard SQL SELECT
statement, allowing for reformatting and normalisation of target columns, application of
the VT-Algebra operations PUNION and PEXCEPT to query results and usage of all
predicates and functions involving time points and dateintervals.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 25

The target-column-list is a set of comma-separated select items or an asterisk. Each
select item may be a column name (qualified or non-qualified1) or an expression. The
default name for each select item is the column name, if the select item is a column name,
or a name of the form colI, if the select item is an expression (I is an integer,
increasing for every expression encountered; the leftmost expression is named col1).
The default name can be changed to newName, using either the
newName = select item or the select item as newName notation. If the
target-column-list is an asterisk, all columns belonging to the tables in table-list are
retrieved.

The table-list is a comma-separated list of table names from which the SELECT statement
will retrieve data. Standard SQL table aliasing (tableName aliasName) is
supported.

The condition in the where and having clauses is any valid Boolean expression, and may
contain simple column and value comparisons, standard INGRES datatype functions,
functions and predicates involving dateintervals and time points (dates), and subqueries.
Simple conditions may be combined to more complex ones, using the and and or
Boolean operators. The not operator may also be used to negate the meaning of a
condition. All standard SQL subquery types are supported. For dateinterval datatypes,
the predicates precedes, prequals, equals, follows and folequals may be
used to form subqueries, e.g. the condition:

treatmentPeriod follows (select infectionPeriod from infected)

is valid. Standard SQL qualifiers all and any and the not operator may be used for
subqueries, in conjunction with the permitted dateinterval predicates, thus the conditions

treatmentPeriod follows all (select infectionPeriod from infected)

and

treatmentPeriod not follows any (select infectionPeriod from infected)

1A qualified column name has the form tableName.columnName, and refers to column

columnName of table tableName. Non-qualified column names consist of the columnName part

only.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 26

are valid. The first condition is true if the value of treatmentPeriod overlaps with
the ending part of every value of infectionPeriod retrieved by the subquery, while
the second condition is true if there exists a value of infectionPeriod retrieved by
the subquery, such that its ending part overlaps with the value of treatmentPeriod.
None of the dateinterval predicates which are not listed above is allowed to be used to
form subqueries. The standard SQL relational operators >, >=, < and <= are supported
for dateintervals, and correspond to the precedes, prequals, equals, follows
and folequals predicates, respectively.

The column-list in the group by clause is a list of comma-separated column names,
which may be qualified or non-qualified.

The result-column-list in the reformat, normalise and order by clauses is a list of
comma-separated target column specifiers. Each target column specifier may be a
column name (qualified or non-qualified), or an integer, indicating the position of the
desired column in the target-column-list. The same rules apply to the result-column-list
that may be specified after the union, union all and except keywords, which may be
used to combine query results.

If either union, union all or except keyword is used to combine query results,
then the results of the two queries must be union-compatible, which means that:

1. the number of columns of the two results must be the same

2. the corresponding columns must be type-compatible, as type compatibility is defined
by INGRES.

If the union, union all or except keyword is not followed by a
result-column-list, the corresponding standard relational algebra operator is applied to
the results of the two queries, in order to produce the final result. If, however, a
result-column-list is present, the valid time algebra operators PUNION and PEXCEPT
are used instead. The columns specified in the result-column-list must be of type
dateinterval or date. If column names are used as target column specifiers, they
must refer to the first query's result schema.

The result-column-lists in the reformat and normalise clauses must specify columns of
type dateinterval or date. If column names are used as target column specifiers, they
must refer to the corresponding query's result schema (i.e. the specifiers in the first
query's normalise and reformat clauses must refer to the first query's result schema,
while specifiers in the second query's normalise and reformat clauses must refer to the

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 27

second query's result schema). The reformat clause is executed prior to the normalise
clause. These clauses are not allowed within subqueries.

If column names are used as target column specifiers in the order by clause, they must
refer to the first query's result schema.

Comments

• If a column exists in more than one tables in table-list, then it must be qualified, if it
appears in the target-column-list.

• If a non-qualified column name is specified in the group by, reformat, normalise or
order by clauses, and such a column occurs in more than one of the tables listed in
table-list, then it specifies the column in the leftmost table in table-list, containing that
column.

• If a table is aliased, then the alias should be used in qualified column references that
designate columns in that table, rather than the original table name.

• If a result column is renamed using either the newName = select item or the
select item as newName notation, then newName must be used in the group
by, reformat, normalise and order by clauses, in order to refer to that column. In
the reformat, normalise and order by clauses, a target column may be specified by
an integer too, as described above.

• If the group by clause is present, the target-column-list may contain only columns
specified in the group by clause and aggregate functions. Aggregate functions include
countap.

• If the target column list contains column references, non-aggregate functions and
aggregate functions, then the group by clause is mandatory, and must include all
target columns that do not contain aggregate functions.

• The union all operator followed by a result-column-list is semantically equivalent to
the union operator, followed by the same result-column-list.

Examples

1. The following statement retrieves all rows from table patient.

 select *

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 28

 from patient

2. The following statement selects the patient codes for male patients who stayed in the

hospital for more than 30 days.

 select medrec_no
 from patient
 where sex = 'M'
 and dur(hosp_stay_int) > 10

3. The following statement selects all distinct dates for which the patient with code

'ABCDEF' suffered from complication 'COMP'

 select time
 from complication
 where medrec_no = 'ABCDEF'
 and complication = 'COMP'
 reformat as
 unfold time

4. The following statement retrieves all drugs and the corresponding date intervals for

which they were given to any patient.

 select drug, time
 from drug
 reformat as
 fold time

5. The following statement selects for every patient, the dateintervals for which the

patient was hospitalised but did not suffer from any complication.

 select medrec_no, hosp_stay_int
 from patient
 except 2
 select medrec_no, time
 from complication

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 29

6. The following statement retrieves the date intervals during which the patient with code
'ABCDEF' suffered from some complication but not from a non-infectious one.

 select time
 from complication
 where medrec_no = 'ABCDEF'
 except time
 select time
 from complication
 where medrec_no = 'ABCDEF'
 and complication in (select name from comp_list
 where category = 'NON-INFECTIOUS')

7. The following statement displays the number of weeks that have passed since the last

operation on each patient.

 select name, windowno(max(op_date), 7, now)) as weeks
 from recipient, operation
 where recipient.rno = operation.rno
 group by name

8. The following statement retrieves the total number of days that each patient was in the

hospital.

 select name, countap(stay) as total_days
 from recipient
 group by name

8. The following statement selects the patients who has had an operation during the third

week after their first admission.

 select distinct name
 from recipient, operation
 where recipient.rno = operation.rno
 and window(min(start(stay)), 7, 3) cp interv(operation.op_date)
 group by name

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 30

UPDATE

Syntax

 update tableName
 [portion columnName = period]
 set updateColumnName = newValue {, updateColumnName = newValue}
 [where condition]
Description

The update statement replaces the values of the specified columns by the values of the
specified expressions for all the rows' portions that satisfy both the condition in the
where clause and match with the period found in the portion clause. If either of the two
clauses is omitted the updated rows or rows' portions are those specified by the existing
clause. If both the portion and where clauses are omitted all the rows in the table will be
replaced.

The columnName stated in the portion clause must refer to the column that the table is
normalised on, and period must be an expression yielding a result of type interval. If
table tableName is not normalised on some column, the portion clause may not be
specified. The portion clause restricts the scope of the UPDATE statement to the time
points included in result of period.

The set keyword is followed by a comma-separated list of updateColumnName =
expression specifications, where updateColumnName is the name of a column occurring
in tableName's schema, and newValue is an expression yielding a result type-compatible
with the updateColumnName's type.

The -optional- where clause can be used to select the rows on which the update
statement will operate. The condition specified in this clause may be any valid condition,
as described in the paragraphs referring to the select statement.

If a primary key is defined for the table tableName, and the update statement results to
having rows with matching data in the key columns, the update statement will fail,
leaving table tableName unchanged. "Matching data" means identical values for key type
interval and overlapping values for key type point. The update statement will also fail,
if an attempt is made to change values to null in columns having the not null property.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 31

Comments

• If table tableName is normalised on some column, and the portion clause is specified,
then the execution of an update statement may alter the number of rows in the table.
The number of rows may increase, decrease or remain the same.

• The newValue expressions may not contain qualified column references. All column
references must be non-qualified and designate columns in table tableName.

Examples

1. Replace the time-interval '[1990-02-02, 1990-10-10)' of country A by the correct one,
'[1990-01-01, 1991-01-01)'

 update inflation
 set time = '[1990-01-01, 1991-01-01)'
 where country = 'A'
 and time = '[1990-02-02, 1990-10-10)'

2. Update all employees' salary during interval '[1990-02-01, 1990-06-01)' to 110000

 update salary
 portion time = '[1990-02-01, 1990-06-01)'
 set salary = 110000

3. Update all employees' salary during interval '[1990-02-01, 1990-06-01)' from 100000
to 110000

 update salary
 portion time = '[1990-02-01, 1990-06-01)'
 set salary = 110000
 where salary = 100000

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 32

3.6 EXTENDED SYNTAX

Commands starting with an exclamation mark (!) are not parsed by the VT-SQL query
processor, but are passed without any modifications to INGRES, thus these commands
must obey the INGRES syntax and semantic rules. This means that valid time extensions
to SQL are not available to Extended Syntax statements, and if such extensions are used,
the INGRES DBMS will issue error messages. The SELECT, INSERT, UPDATE,
DELETE, DROP and HELP statements are not permitted as Extended Syntax
statements. The end of an Extended Syntax statement is marked by a semicolon
character (which is not part of a string literal or contained in a comment), or by the end
of the current batch. The output of an extended syntax command is directed to the
screen (in fact the standard output stream), and error messages are directed to the
standard error stream, which defaults to the screen.

The contents of normalised tables must be modified only by the INSERT, DELETE and
UPDATE commands. The user must not use any other command that modify the
contents of tables which are normalised, as this may produce erroneous results. For
example, if table n1 is created via the command

create table n1 (name char(20), period dateinterval
normalised (period))

then the command

! copy n1 () from 'filename'

should be substituted by the following commands:

create table ntmp (name char(20), period dateinterval)
! copy ntmp () from 'filename'
insert into n1 select * from ntmp
drop table ntmp

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 33

3.7 CONTROL SEQUENCES

• The control sequence \g can be typed at the beginning of an input line, marking the
end of a batch, initiating the syntactical analysis of the input typed up to the previous
line and the execution of the appropriate commands. Results are printed on the screen
(or to the file to which the standard output is redirected) and error messages are
directed to the standard error, which defaults to the screen.

The commands are analysed and executed sequentially. If some command contains a
syntax error, an appropriate error message is issued. Depending on the mode of the
VT-SQL query processor (batch or interactive), one of the following actions will be
taken when a syntax error is encountered:

• If the VT-SQL query processor operates in interactive mode, the rest of the batch
is ignored.

• If the VT-SQL query processor operates in batch mode, execution of the program
will terminate.

After the commands are read and executed (or execution is resumed after a syntax
error in interactive mode), the input buffer is cleared and the user prompted for the
next batch. In batch mode, after the execution of one batch, the next batch is read
from the input file.

If and ENDOFFILE character is received before a \g control sequence (because the
user typed CTRL-D or the end of the input file is reached), input read between the
previous \g control sequence and the ENDOFFILE character is ignored. The
remainder of the input lines beginning with \g is ignored.

• The control sequence \r can be typed at the beginning of an input line. This resets
the input buffer, i.e. discards everything typed up to the previous line. The remainder
of lines beginning with \r is ignored. The control sequence is not recognised unless
placed at the beginning of the input line. Usage of the \r control sequence in batch
files is permitted, but pointless.

• The control sequence \q can be typed at the beginning of an input line, causing the
termination of the VT-SQL query processor execution. Input typed between the
previous \g control sequence and the \q control sequence is ignored. The control
sequence is not recognised unless placed at the beginning of the input line.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 34

• The control sequence \e can be typed at the beginning of an input line. This invokes
an editor, allowing modifications to the input typed up to the previous line. The editor
that will be invoked is specified by the EDITOR environment variable, and defaults to
vi, if the EDITOR variable is not set. When the user exits from the editor, the
modified input is read by the VT-SQL query processor, replacing previous input. The
user can, however, leave the editor without saving the changes made, leaving the VT-
SQL buffer unchanged. Control sequences \g, \e, \q and \r are not recognised in
the modified input, and the size of the modified input may not exceed the 10 KBytes
limit. The editor can not be called when the VT-SQL query processor operates in
batch mode, or when the input is redirected to a file. The control sequence is not
recognised unless placed at the beginning of the input line.

If the VT-SQL query processor is unable to invoke the editor, input typed up to the
\e control sequence is preserved.

All control sequences are case insensitive, e.g. \q is equivalent to \Q.

ORES DEL D4.1 : Implementation of VT-SQL

3. User's Guide 35

3.8 RESERVED WORDS

The following words are reserved and may not be used as table names, column names, or
in any other way different than the one described in section 2.2. Usage of these words
within Extended Syntax statements is subject to ingres syntax and semantic rules.

adjacent
after
all
and
any
as
asc
avg
before
by
c
char
count
countap
covered
covers
cp
create
date
delete
desc
dist
distinct
drop
except
exists
float
float4
float8
fold
folequals
follows
from
group
having
help
in
index
insert
integer
integer1
integer2
integer4
interv
interval

into
is
key
lcovered
lcovers
like
loverlaps
max
maxdate
meets
merges
met
middle
min
mindate
normalise
normalised
not
now
null
on
or
order
overlaps
point
portion
preceds
prequals
primary
psubinterv
psupinterv
rcovered
rcovers
real
reformat
roverlaps
select
set
span
start
stop
subinterv
succ
sum
supinterv

table
tointerv
topoint
unfold
union
unique
update
values
varchar
where
window
windowno

ORES DEL.D4.1 : Implementation of VT-SQL

3. User's Guide 36

3.9 ENVIRONMENT

EDITOR This variable specifies the editor which will be called when the user
types \e. The editor may be specified by providing the full file
specification (e.g. /usr/bin/X11/xedit) or just the program
name (e.g. xedit), provided that the directory in which the editor
resides is included in the path variable. If the EDITOR environment
variable is not set, it defaults to vi.

USER This variable allows the VT-SQL query processor to identify the user
name, which is subsequently used within queries submitted to
INGRES. The USER variable is normally set and maintained by the
operating system, but illegal modifications to it may result in erroneous
query results.

3.10 LIMITATIONS

• The size of a query batch is limited to 10 KBytes (10240 bytes). Larger batches
must be split to smaller ones, by inserting appropriate end-of-batch control
sequences (\g). The limitation applies all kinds of input, including batch query files
and input provided via editor invocation. If the size of a batch exceeds the 10
KBytes limit, execution of the VT-SQL query processor is terminated.

• Pressing CTRL-C (or otherwise generating the SIGINT signal), causes the
termination of the VT-SQL query processor execution, not just the execution of the
current query.

• User-level transactions are not supported.

• The VT-SQL query processor is subject to all limitations imposed by INGRES, such
as maximum number of columns per table, maximum number of concurrent users,
etc.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 37

4. IMPLEMENTATION

4.1 ARCHITECTURE OVERVIEW

The ORES VT-DBMS consists of modules. Each module implements a specific task, and
their operation is coordinated, in order to provide the required functionality. The overall
architecture is illustrated in figure 1. Solid lines indicate transfer of control and/or data,
whereas dotted lines indicate selective execution of a target module.

The functionality of the modules is described in the following paragraphs.

Figure 1. Overall architecture.

A. The Monitor

The monitor is responsible for initialising the VT-DBMS environment, invoking the input
manager and deciding on the appropriate action, based on user input. If the user has
entered a query and requested for its execution, the parser is invoked, so that the
appropriate actions will be taken, and the input manager is invoked again to obtain the
next query batch. If the user has requested the termination of the execution of the VT-
DBMS, the monitor arranges for final housekeeping actions, releasing memory, shutting
down the connection with the INGRES DBMS, etc.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 38

B. The Input Manager

The input manager is responsible for reading the statements that will be analysed and
executed. Input may be read either interactively from the user, or from a file in batch
mode. Input is read in a line-oriented fashion, but in interactive mode the user may
invoke a full screen editor for writing the query. The input manager accepts appropriate
control sequences which mark the end of an input batch, and request either execution of
the queries or termination of the execution of the VT-DBMS and sets a fla, indicating
the action that must be taken. The flag is examined by the monitor.

C. The Parser

The VT-SQL parser is responsible for the syntactical analysis of the of user queries,
formulation of data structures describing the queries and invocation of the appropriate
execution modules, which will take the appropriate actions. Syntactical analysis is
performed by two modules, the lexical analyser and the syntax checker. Data structure
formulation is integrated with syntax checking for optimisation purposes.

D. The VT-SQL procedures

The VT-DBMS implementation includes one execution module for each type of VT-
SQL statement. Once a statement is syntactically analysed by the parser, the appropriate
execution module is called. The called module is provided with adequate parameters for
statement execution and may, in turn, invoke a VT-Algebra library procedure or interact
directly with INGRES. All execution modules return a status code, indicating if the
operation was successful or not. In the case of failure, an error message is also returned.

E. The VT-Algebra library

The VT-Algebra library contains procedures implementing the PUNION, PEXCEPT,
FOLD, UNFOLD and NORMALISE operations, which are documented in deliverables
C2, C3 and C4.

F. The ORES dictionary.

The VT-DBMS requires meta-information about the tables, which is not stored in the
dictionaries maintained by INGRES. This information describes the normalised columns
and the primary keys defined for the tables, and is stored in a user-level dictionary
consisting of two tables, namely vtsql_norms and vtsql_keys.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 39

Table vtsql_norms stores information about the normalised columns in the user tables.
The columns of the table are:

Column Name Type nulls Description

table_name varchar(24) no The name of the normalised table

user_name varchar(9) yes The user name of the normalised table

column_name varchar(24) no The name of the normalised table

column_sequence integer no The order of normalisation. Currently, only
one column may be normalised, so the value
of this column is always 0.

Table vtsql_keys stores information about the primary key columns in the user tables.
The columns of the table are:

Column Name Type nulls Description

table_name varchar(24) no The name of the table with a primary key

user_name varchar(9) yes The user name of the table with a primary key

column_name varchar(24) no The name of the primary key column

key_type varchar(8) no Indicates if the field participates in the
primary key with interval or point semantics

sequence integer no specifies the order of the field within the
primary key

index_name varchar(24) no Stores the name of an index, created at
INGRES level. It is used to enforce
uniqueness for fields with interval semantics

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 40

4.2 DESIGN MODIFICATIONS

A. The ORES monitor

Part of the functionality assigned to the monitor in [01 P 93e] has been moved into the
execution procedures. The implemented monitor interacts only with the input manager
and the parser, and the parser is responsible for calling the appropriate execution module.

B. The ORES type checker

The VT-DBMS implementation does not include a separate module for type checking.
Type checking in the VT-DBMS level is kept minimal, to avoid duplication of checks.
(Type checking will be performed in all cases by the INGRES kernel.) The VT-DBMS
performs type checks only for columns having valid time information, and these checks
are built in the various execution modules.

C. The ORES optimiser

The VT-DBMS implementation does not include a separate module for optimisation. No
global optimisation scheme is applicable on the VT-DBMS level, in the sense of the
optimisation employed by INGRES, since neither statistical information is kept about
table sizes nor indexes are defined at this level. The only possible optimisation on the
VT-DBMS level is the elimination of unnecessary reformatting and normalisation
operations, which is built in the relevant execution modules.

D. The ORES scheduler

The VT-DBMS implementation does not include a separate module for scheduling.
Scheduling of pure SQL statements (or pure SQL parts of VT-SQL statements) is left to
the INGRES kernel, whereas scheduling of various operations needed for the execution
of VT-SQL statements is built in the various execution modules.

E. The ORES dictionary

The VT-DBMS implementation uses a different ORES dictionary than the one described
in deliverable D3. The implementation dictionary contains a column specifying the table
owner name, thus allowing for multi-user extensions, and is conferment to 3rd normal
form specifications.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 41

4.3 THE VT - SQL PARSER

The VT-SQL parser is responsible for:

 (a) the syntactical analysis of the user queries

 (b) determining the query type (e.g. CREATE TABLE, SELECT, etc.) and

(c) creating the appropriate data structures describing the query.

These data structures will be passed to the execution modules, in order to execute the
user query. The VT-SQL parser functions are described in the following paragraphs.

Syntactical analysis

The VT-SQL syntactical analyser checks for syntactical correctness of user queries and
performs various transformations, mapping user input to INGRES acceptable forms.

A. Syntax checking

Syntax checking is split into two levels. The lower level is the lexical analyser, which
converts the stream of input characters into a stream of tokens, checking for illegal
characters. A token may be a reserved word (e.g. SELECT), a string literal (e.g. 'John'),
an identifier (e.g. employee), a comma, or any other component of the VT-SQL
language. The token stream is fed to the upper level, the syntax checker, which checks if
the sequence in which the tokens appear conforms to the specification of the VT-SQL
language. If user input is erroneous, i.e. contains illegal characters or does not form a
valid VT-SQL statement, an error message is displayed.

The lexical analysis has been implemented using the lex lexical analyser generator tool,
but a substantial part of token recognition has been coded in C, to avoid large state
transition tables. The syntax checking has been implemented using the yacc syntax
analyser generator tool.

B. Input transformations

The VT-SQL syntactical analyser performs a number of transformations on user input.
These transformations are:

i) mapping of VT-SQL interval predicates to INGRES kernel function calls. Conditions
of the form

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 42

expr1 interval_predicate expr2

are transformed to

(interval_predicate(expr1, expr2) = 1)

which is acceptable by the extended INGRES kernel. Conditions of the form

expr1 not interval_predicate expr2

are also accepted and transformed to

(interval_predicate(expr1, expr2) = 0)

ii) mapping of VT-SQL interval predicates involving subqueries to INGRES acceptable
forms. A subquery of the form

expr interval_predicate subquery

is transformed using the following algorithm:

• if interval_predicate is one of equals, prequals, preceds, follows and folequals, it
is substituted by the =, <=, <, > or >= relational operator, respectively.

• in all other cases, an appropriate error message is issued.

The inability to support more interval predicates is due to the fact that subqueries in
INGRES may appear only on the right hand side of a relational operator, and may not
be used as function arguments.

Subqueries of the form

expr not interval_predicate subquery

are also supported, and translated to

not (expr relational_operator subquery)

using the interval predicate substitution algorithm described above.
Both subquery forms may contain the any or all quantifiers.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 43

iii) insertion of type coercions for functions taking arguments or returning results of
type DATE. INGRES does not allow user-defined functions to accept arguments or
return values of type DATE, so the kernel definitions for these functions specify
string type arguments and results. The VT-SQL syntactical analyser arranges for the
appropriate type casts to be performed: all arguments of type DATE are coerced to
type CHAR before they are passed to the functions, using the C function, and all
results of type DATE are coerced to that type, before they are used, using the DATE
function. E.g. the

succ(date1, 5)

function call is transformed to

date(succ(c(date1), 5))

which converts the date1 argument to type CHAR before passing it to the succ
function, and coerces the function result to type DATE.

iv) argument reformatting for functions with three arguments. INGRES does not allow
for functions with more than two arguments, which means that the WINDOW and
WINDOWNO functions cannot be supported directly by the INGRES kernel. To
overcome this problem, the kernel definitions for the WINDOW and WINDOWNO
functions specify that these functions take only one argument of type CHAR, which
is actually a comma-separated list of the argument values. The VT-SQL syntactical
analyser arranges for passing the arguments in the appropriate format to these
functions, by transforming the

window_function(arg1, arg2, arg3)

function call to

window function(c(arg1)+','+c(arg2)+','+c(arg3))

(where window_function is either window or windowno.)

v) translation of the COUNTAP aggregate function. The

countap(argument)

function call is translated to

sum(dur(argument))

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 44

Data structure formulation

In the subsequent paragraphs the following notation will be used:

• normal writing indicates reserved words.

• italic characters indicate user-provided values.

• terms enclosed in brackets ([]) are optional.

• terms enclosed in braces ({}) may occur zero or more times.

• the notation term1 | term2 is read as "either term1 or term2".

• parentheses are used to group terms. Literal parentheses are enclosed in single
quotes.

A. The CREATE TABLE statement

The syntax of the CREATE TABLE statement is:

 CREATE TABLE table_name
 '('column_name type [NOT NULL] {, column_name type [NOT NULL]}
 [NORMALISED column_name]
 [PRIMARY KEY '('column_name [POINT | INTERVAL]
 {, column_name [POINT | INTERVAL]}')']')'

The data structure used to describe a CREATE TABLE statement consists of the
following fields:

i) table_name, which contains the table name.

ii) table_columns, which is a list of (column_name, type, null_spec) triplets, one for
every column. null_spec may be either NOT NULL or empty.

iii) normalised_column, which contains the name of the column specified in the
NORMALISED clause, if any, or a null value.

iv) primary_keys, which is a list of (column_name, key_type) pairs, one for every
column listed in the PRIMARY KEY clause. key_type may contain one of the
values POINT and INTERVAL or a null value.

Note:

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 45

The syntax of the CREATE TABLE statement has been slightly modified, compared to
the syntax defined in [01P 93e]. The new syntax specifies that the -optional-
NORMALISED and PRIMARY KEY clauses do not start with a comma.

B. The CREATE INDEX statement

The syntax for the CREATE INDEX statement is

CREATE [UNIQUE] INDEX index_name ON table_name (column {, column})

The data structure describing the CREATE INDEX statement consists of the following
fields:

i) index_name, which contains the name of the index to be created.

ii) table_name, which contains the name of the table on which the index will be
created.

iii) unique_spec, which contains an indication on whether the index will be unique or
not.

iv) index_columns, which is a list containing the column names that will participate in
the index.

C. The DROP TABLE statement

The syntax of the DROP TABLE statement is

DROP TABLE table_name

The DROP TABLE statement is described by a single field, which contains the name of
the table to be dropped.

D. The DROP INDEX statement

The syntax of the DROP TABLE statement is

DROP INDEX index_name

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 46

The DROP INDEX statement is described by a single field, which contains the name of
the index to be dropped.

E. The SELECT statement

The syntax of the SELECT statement is

extended_select
[(UNION | UNION ALL | EXCEPT) [column {, column}]
extended_select]
[ORDER BY column [ASC | DESC] {, column [ASC | DESC]]

where extended_select is defined as

SELECT [ALL | DISTINCT] target_list
FROM table_list
[WHERE condition]
[GROUP BY column_list [HAVING condition]]
[REFORMAT AS
(FOLD | UNFOLD | UNFOLD ALL) column {, column}
{(FOLD | UNFOLD | UNFOLD ALL) column {, column}}]
[NORMALISE ON column {, column}]

The SELECT statement is described by a data structure containing the following fields:

i) select1, which is a sub-structure describing the first extended select.

ii) join_type, which indicates the type of the operator joining the two extended selects
(union, union all or except), if such an operator is present. A special null value
indicates that only the first extended_select is defined.

iii) join_columns, which is a list of columns following the joining operator, if any. The
list may be empty.

iv) select2, which is a sub-structure describing the second extended select. Its contents
are invalid if the join_type field indicates that only the first extended select is
defined.

v) order_columns, which is a list of pairs (column_spec, sort_order), describing the
ORDER BY clause, if such a clause is present. If the ORDER BY clause is not
defined, the field contains a null value.

The sub-structures describing the extended selects consist of the following fields:

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 47

i) quantifier, which indicates if the keywords ALL or DISTINCT are used.

ii) target_columns, which contains the list of the target columns. Each element of the
list is a pair (column_name, definition), where definition is the expression that will
be evaluated to produce the results for that column, whereas column_name is a
name assigned to that result column for presentation reasons, using either the

column_name = definition

or the

definition as column_name

notations. If no name is defined, the column_name field contains a null value.

iii) target_relations, which is a list containing one (relation_name, relation_alias) pair
for each relation specification in the FROM clause. relation_alias is optional. The
syntax is

relation_name alias_name

iv) where_clause, which contains the condition following the WHERE keyword.

v) group_spec, which contains the GROUP BY and HAVING clauses.

vi) reformat_spec, which is a list describing the REFORMAT clause. Each element in
the list consists of an indication of the reformat operation specified (FOLD,
UNFOLD, UNFOLD ALL) and a list of the columns designated for that operation.

vii) normalise_columns, which is a list of the column names specified in the
NORMALISE clause.

F. The INSERT statement

The syntax of the INSERT statement is

INSERT INTO table_name ['(' column {, column} ')']
insert_values_spec

where insert_target may be either

VALUES (value {, value})

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 48

or an extended select (see paragraph E).

The INSERT statement is described by a data structure containing the following fields:

i) table_name, which contains the name of the target table.

ii) insert_idents, which is a list containing one element for each of the parenthesised
identifiers immediately following the table name.

iv) insert_values, which is a list of the values defined in the VALUES clause.

v) insert_subquery, which is a data structure describing the extended select statement.

G. The UPDATE statement

The syntax of the UPDATE statement is

UPDATE table_name
[PORTION column = expr]
SET column = expr {, column = expr}

[WHERE condition]

The data structure used to describe the UPDATE statement consists of the following
fields:

i) table_name, which contains the name of the table to be updated.

ii) portion_spec, which contains a pair (column, expr) describing the PORTION clause,
if such a clause is present.

iii) assignments, which is a list of (column, expr) pairs, one for each assignment
following the SET keyword.

iv) condition, which contains the condition in the WHERE clause.

H. The DELETE statement

The syntax of the DELETE statement is

DELETE FROM table_name
[PORTION column = expr]
[WHERE condition]

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 49

The data structure used to describe the DELETE statement consists of the following
fields:

i) table_name, which contains the name of the target table.

ii) portion_spec, which contains a pair (column, expr) describing the PORTION clause.

iii) condition, which contains the condition in the WHERE clause, if the clause is
present, or the null value.

I. The HELP statement

The syntax of the HELP statement is

HELP [object]

The HELP statement is described by a single field, containing the name of the object or a
null value.

J. The escaped DBMS statements

If a statement does not contain any of the characteristics of VT-SQL then its execution
time may be minimised in the statement is routed directly to INGRES. This can be
achieved if the statement is preceded by a "!", i.e.

! command

Note : A "!" should not precede a SELECT, INSERT, DELETE, UPDATE, DROP or
HELP statement.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 50

Implementation notes

A. Memory allocation monitoring

For optimisation purposes, syntactical analysis and data structure formulation have been
integrated, thus allowing for user input to be scanned only once. Data structure fields are
filled in as soon as the appropriate tokens are recognised by the syntactical analyser. In
the case, however, that a syntactical error is found, the parsing procedure is terminated
abruptly and care is taken so that memory allocated for data structure field storage is
freed. In order to tackle this problem, memory allocation during parsing is monitored,
and the monitor is called to free the allocated memory, in the case that a syntactical error
occurs.

B. Escaped commands

The underlying DBMS is responsible for lexical and syntactical analysis of the escaped
commands. No tokenisation, illegal character checking or syntax checking is performed
for escaped commands.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 51

4.2 VT-SQL DDL STATEMENTS IMPLEMENTATION

CREATE TABLE statement

According to SQL2, whenever a table is created, its name, attributes and primary key (if
any) must be specified. In order to support the distinction between valid time intervals
and time intervals in VT-SQL, we extended the syntax of the create table statement as
follows:

CREATE TABLE table name
(column-name data-type other {,column-name data-type other..}
[NORMALISED (normalised-column-list)]
[PRIMARY KEY (key-column-list)])

All column names specified in <normalised-column-list> are of type DATEINTERVAL.
When data are inserted, deleted or updated, the table is normalised according to these
specified intervals. Normalisation occurs in the order the columns appear after the
NORMALISED keyword. All valid time intervals should participate in the PRIMARY
KEY section (if a primary key is defined) followed by the keyword POINT. Other
columns may also be present in this section when followed by the keyword INTERVAL
which (which is a default, if not declared).

The supporting of the extended functionality may demand the construction of specific
structures (e.g. indexes) as well as the provision of additional system tables. Both the
normalisation schema of every table created through VT-SQL and the columns
participating in the primary key are maintained in the new system tables implemented,
namely vtsql_norms and vtsql_keys.

Due to the complexity originating from the extended functionality, the execution phase
demands an exhaustive checking in order to ensure the given CREATE TABLE
statement complies with the provided specifications. The extended system tables are to
be updated during the execution phase. The overall actions performed are presented in
the following algorithm.

A. Normalisation attributes are checked for the cases of not being present in the table

column list, not being of type DATEINTERVAL, being duplicated in the

normalisation column list and, in combination with the primary key declaration

section, not being present as primary keys or not being declared of type POINT. The

above checking results in the appropriate error messages whenever any of the

conditions described is not fulfilled.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 52

B. Primary key attributes are examined for the cases of not being present in the table
column list, being duplicated in the primary key column list and, in combination with
the normalisation columns declaration section, not being present as normalisation
attributes.

C. The appropriate SQL CREATE TABLE statement is formed and executed.
Declaration of table columns participating in the PRIMARY KEY or in
NORMALISED section is modified when columns are declared as nullable, so that
they always acquire the not null property.

D. The appropriate SQL CREATE INDEX statements are formed and executed in case
that existence of unique indexes is required.

E. Normalisation attributes are stored in the appropriate system table, namely
vtsql_norms.

F. Primary keys are stored in the corresponding system table, namely vtsql_keys.

DROP TABLE statement

The syntax of the VT-SQL DROP TABLE statement remains the same as the analogous

SQL statement; thus, the syntax becomes:

DROP TABLE table-name

The functionality of the DROP statement corresponds to the extended features

embedded in the CREATE TABLE operation.

During the DROP TABLE statement execution, all entries referring to table table-name

are removed from the systems tables vtsql_norms and vtsql_keys, if they have been

recorded in them. The appropriate SQL queries are issued for this purpose. Accordingly,

the table itself is dropped through the SQL DROP statement. We note that INGRES

itself also takes care of all structures, as indexes, relating to this table that is, all indexes

previously declared are removed.

CREATE INDEX statement

As already stated, the syntax of the CREATE INDEX statement is

CREATE [UNIQUE] INDEX index_name
ON table_name (column {, column})

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 53

Once the parser has recognised a CREATE INDEX statement, the appropriate execution
module is invoked. The execution module is provided with parameters that are sufficient
for the reconstruction of the original statement, which is forwarded to INGRES for
execution. Errors that may occur during statement execution (such as the specification of
a non-existent column or an attempt to create a UNIQUE index on a table that contains
duplicates in the specified columns) are trapped, and appropriate error messages are
displayed.

DROP INDEX statement

As already stated, the syntax of the DROP INDEX statement is

DROP INDEX index_name

Once the parser has recognised a DROP INDEX statement, the appropriate execution
module is invoked. The execution module is provided with a single parameter, namely
the name of the index to be dropped. Errors that may occur during statement execution
(such as attempting to drop a non-existent index) are trapped, and appropriate error
messages are displayed.

4.5 VT-SQL DML STATEMENTS IMPLEMENTATION

SELECT statement

The syntax of the SELECT statement is as follows:

SELECT [DISTINCT | ALL] target-column-list
FROM table-list
[WHERE condition]
[GROUP BY column-list]
[HAVING condition]]
[REFORMAT AS {(FOLD | UNFOLD | UNFOLD ALL) result-column-list}]
[NORMALISE ON result-column-list]
[(UNION | UNION ALL | EXCEPT) [result-column-list]
SELECT [DISTINCT | ALL] target-column-list
FROM table-list
[WHERE condition]

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 54

[GROUP BY column-list]
[HAVING condition]]
[REFORMAT AS {(FOLD | UNFOLD | UNFOLD ALL) result-column-list}]
[NORMALISE ON result-column-list]]
[ORDER BY result-column-list]

Thus, a SELECT statement may be a select query, extended by the reformat and
normalise clauses, or two extended select queries, joined with a union, union all or
except operation. The joining operations may include valid time semantics, which is
indicated by a result column list immediately following the operator.

Once the parser has recognised a SELECT statement, the appropriate execution module is
invoked, in order to evaluate the query and present the results to the user. The execution
module is provided with parameters allowing semantic analysis, type checking,
optimisation and query evaluation. All these steps are described in the following
paragraphs.

Semantic analysis

The semantic analyser built in the select execution module examines the query definition,
as presented by the parser, and determines the actions that must be taken in order to
evaluate the query. The following algorithm is used to determine the appropriate actions:

A. If the user query consists of one simple query or two simple queries joined via a
union or union all operation with no valid time semantics, then the query can be
forwarded directly to INGRES for execution. (A simple query is a select statement
consisting only of an attribute list, the FROM clause and, possibly, the WHERE and
GROUP BY/HAVING clauses.) In this case, the optimisation step is skipped.

B. If the user query consists of one query which includes a REFORMAT or
NORMALISE clause, then the following procedure is introduced:

i) the simple query is extracted. The types of the columns appearing in the
REFORMAT and NORMALISE clauses are checked, and if an illegal operation
is detected (i.e. an operation on a column whose type is neither DATE nor
DATEINTERVAL), query evaluation is aborted. If no illegal operation is
detected, the simple query is forwarded to INGRES for evaluation and
execution. The results are stored in a temporary table.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 55

ii) if the user query includes a REFORMAT clause, then the optimisation module
is called, in order to eliminate redundant operations. At execution time, the fold
and unfold valid time algebra library procedures are invoked, depending on the
operation stated in the REFORMAT clause. Each invocation operates on the
intermediate table produced by the previous one (the first invocation operates
on the temporary table produced by step i), producing a new intermediate table.
Intermediate tables are dropped as soon as the next invocation is completed
(e.g. the intermediate table created by the first invocation is dropped as soon as
the second invocation is completed).

iii) if the user query includes a NORMALISE clause, then the optimisation module
is called to eliminate redundant operations. At execution time, the normalise
valid time algebra library procedure is invoked, operating on the last
intermediate table produced by step ii (or the intermediate table produced by
step i, if the user query does not include a REFORMAT clause). The previous
temporary table is then dropped.

Finally, the results are retrieved from the last intermediate table that was produced
in steps (i) to (iii) and presented to the user.

C. If the user query consists of two select statements, joined by a union, union all or
except operation, then the following procedure is used:

i) the schema of the result table of each query is determined, and the two
schemata are checked for compatibility. If the two schemata are incompatible,
query evaluation is aborted. If the operator joining the two queries is followed
by a result column list, the types of the columns appearing in the list are
checked. If the type of any of the columns is neither DATE nor
DATEINTERVAL, query evaluation is aborted. If this step completes
successfully, then the following steps take place:

ii) the first query is evaluated and executed, using steps (i) to (iii) of case B,
producing an intermediate table. If a runtime error occurs during its execution,
the whole procedure is aborted.

iii) the second query is evaluated and executed, using steps (i) to (iii) of case B,
producing a second intermediate table. If an error occurs during its execution,
the whole procedure is aborted.

iv) if the queries are joined by a union or union all operation not followed by
column names, then a query retrieving the union of the tuples in the intermediate

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 56

tables produced in steps (ii) and (iii) above is formulated and forwarded to the
execution module. Finally, the intermediate tables produced by steps (ii) and (iii)
are dropped.

v) if the queries are joined by an except operation, or a union or union all
operation which are followed by column names, the appropriate valid time
algebra library procedure is invoked, producing a third intermediate table. The
valid time algebra library procedure is selected as follows:

a) if the joining operator is an except with no valid time semantics, then
the except valid time algebra library procedure is used.

b) if the joining operator is an except with valid time semantics, then the
pexcept valid time algebra library procedure is used.

c) if the joining operator is a union or union all with valid time
semantics, then the punion valid time algebra operator is used.

Afterwards, the intermediate tables produced in steps (ii) and (iii) are dropped,
and a query retrieving the contents of the third intermediate table is forwarded
to the execution module. The third intermediate table is finally dropped.

Optimisation

The optimisation procedure is invoked to remove redundant operations defined by the
REFORMAT and NORMALISE operations. The optimisation procedures used for these
clauses are described in the following paragraphs.

REFORMAT clause optimisation

The REFORMAT clause optimisation procedure rearranges the reformats and removes
some unnecessary reformats. Recall that a REFORMAT clause contains an arbitrary list
of FOLD, UNFOLD and UNFOLD ALL operations, each one applicable on a set of
result columns. Rearranging implies the following:

1) UNFOLD ALL operations immediately followed by UNFOLD operations are
changed to UNFOLD operations. This does not alter the semantics of the operation,
as duplicates produced by the UNFOLD ALL operation will be removed by the
following UNFOLD operation.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 57

2) UNFOLD ALL operations immediately following UNFOLD operations and
followed by FOLD or UNFOLD operations are changed to UNFOLD operations.
This does not alter the semantics of the operation, as duplicates produced by the
UNFOLD ALL operation will be removed by the following FOLD or UNFOLD
operation.

3) consecutive FOLD operations are packed in a single one.

4) consecutive UNFOLD operations are packed in a single one.

5) consecutive UNFOLD ALL operations are packed in a single one.

Steps (1) and (2) allow for better packing of operations, preserving operation semantics.
Packing the operations into bigger chunks allows for exploitation of optimised code in
the valid time algebra library procedures: if these procedures are coded in such a way
that folding or unfolding of multiple columns is done in a single pass (i.e. with one
reading of the table), then the execution procedure can benefit from the packing, since
less intermediate steps will be taken. The packing of operations also eases the work of
the next optimisation step, the removal of unnecessary operations, which scans every
operation, and removes duplicate occurrences of the same column, if any are found.
Figure 1 illustrates the two steps of the optimisation procedure.

reformat as reformat as reformat as reformat as
 fold 1 fold 1 fold 1, 2, 1 fold 1, 2
 fold 2, 1 fold 2, 1 unfold 3, 4, 5, 4, 3 unfold 3, 4, 5
 unfold 3, 4 unfold 3, 4 fold 6 fold 6
 unfold all 5, 4 unfold 5, 4 unfold 7, 8, 8, 9 unfold 7, 8, 9
 unfold all 3 unfold 3 fold 10 fold 10
 fold 6 fold 6 unfold all 11 unfold all 11
 unfold all 7, 8 unfold 7, 8
 unfold all 8, 9 unfold 8, 9
 fold 10 fold 10
 unfold all 11 unfold all 11

(a) (b) (c) (d)

Figure 1. (a) An original REFORMAT clause. (b) The same REFORMAT
clause after changing UNFOLD ALL operations to UNFOLD operations. (c)
The same REFORMAT clause after operation packing. (d) The same
REFORMAT clause after duplicate removal.

NORMALISE clause optimisation

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 58

The optimisation of the NORMALISE clause removes duplicate references to the same
column (except the first occurrence of a column name, all other are eliminated), and thus
normalisation of each column is performed only once.

Query evaluation

The evaluation procedure built in the select execution module is responsible for carrying
out the actions scheduled by the semantic analysis procedure (which may have been
modified by the optimisation module). The following points are taken into consideration
for query execution:

A. Column renaming

If the query evaluation procedure requires the creation of an intermediate table to store
the results of a simple query, care must be taken so that column names for the
intermediate table will be unique. The intermediate table cannot be created by simply
transforming the simple query to

create table temp_name as simple_query

because if the target column list of simple_query contains two or more columns with the
same name, the statement will be rejected by INGRES. To avoid such problems, the
columns in the target list of the simple query are renamed, and given unique internal
names. The original names of the columns in the target list are saved, and used when the
results are presented to the user. If the target list is a star (*), the actual target columns
are calculated and then renamed.

Since the columns in the intermediate tables have different names than the ones in the
original tables, care must be taken so that the fold, unfold and normalise valid time
algebra library procedures are called with the appropriate arguments, i.e. the internal
attribute names. The target column list which follows the ORDER BY clause is also
changed, and attribute names are transformed to column sequence numbers. Figure 2
illustrates the functionality of the column renaming scheme.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 59

select s.sno, sp.sno, time = sp.period create table temp0 as
from s, sp select attr0 = s.sno, attr1 = sp.sno,
where s.sno > sp.sno attr2 = sp.period

 from s, sp

 where s.sno > sp.sno

reformat as unfold sp.period temp1 = unfold [attr2] (temp0)

order by s.sno, sp.sno select sno = attr0, sno = attr1, time = attr2

 from temp1

 order by 1, 2

(a) (b)
Figure 2. (a) A query whose evaluation requires the creation of an
intermediate table. (b) The actual operations performed, using the renaming
scheme (destruction of intermediate tables is not included).

B. Exception handling

During query evaluation certain exceptions may occur, such as passing a negative
argument to the log function, or using the intervsect function with two non-overlapping
dateintervals as arguments. The INGRES kernel will notify the application retrieving the
data, as soon as the row containing the invalid data is examined, which means that
previous rows will be presented to the application with no error indication.

It is clear that a terminal monitor, which presents query results to the user, should not
issue an error message, informing the user that an exception has occurred, after
displaying some rows. The expected behaviour is that either the query is correct, so its
results are displayed, or an exception occurs during its evaluation, in which case only the
error message is printed. This can be accomplished in two ways:

i) result rows are fetched and stored in memory data structures. If a row contains
invalid data, INGRES will raise an exception, in which case memory used to store
previously fetched rows is freed, and query evaluation is aborted. If all rows are
successfully fetched, then the result is displayed.

ii) the result rows are fetched, but not stored into memory. Fetching the rows will
cause INGRES to raise an error if a row containing invalid data is encountered, in

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 60

which case query evaluation is aborted. If all rows are valid, they are fetched once
more into memory, one after another, and printed.

The two approaches have advantages and disadvantages. The first approach is clearly
more efficient, since rows are fetched into memory once, but requires large amounts of
memory. This can cause problems with computers with small memories, especially in a
multiuser environment, where many users may submit select queries simultaneously.

The second approach is slower, since rows must be fetched twice, but is more stable,
with respect to query result sizes and number of active users. It is noted that the
performance penalty paid for fetching the result rows twice, will not be extremely high,
since the data will be present in INGRES buffers (if the results are small enough to fit
entirely in those buffers), where INGRES can rapidly access them.

The implementation takes the second approach, but two optimisations limit the number
of cases in which the results are actually fetched twice to a minimum:

• if the query does not contain references to function that may cause exceptions,
there is no need to check the rows before displaying them. The parser sets a flag,
indicating the existence of such function references. If no such function reference
occurs in the user query, the rows are fetched one after another and printed. In the
case, however, that such function references do occur, all rows must be examined
before any of them is displayed.

• if the query evaluation procedure requires creation of intermediate tables, all
possible exceptions will be raised during the creation of these tables, because all
functions are evaluated at this point. Thus, if the results are retrieved from an
intermediate table, there is no need to examine the rows before printing them, so
all rows are fetched into memory once.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 61

INSERT statement

The syntax of the VT-SQL insert statement remains exactly the same as in SQL2.
However, the actual insertion method depends on the table normalisation schema and
primary key definition, both defined within the CREATE TABLE statement. Thus, the
syntax has either of the following forms:

INSERT INTO table-name [(column-name-list)]
VALUES value-list

or

INSERT INTO table-name [(column-name-list)] subselect
where subselect is defined as in the select statement.

If the table does not contain valid time intervals, INSERT operation is identical to the
corresponding SQL2 operation. If a key has been declared, according to SQL2 the
insertion fails when the key value in one of the rows to be inserted matches the key value
of any existing row or when the key values of two or more of the insertion rows are the
same. The functionality of the SQL2 INSERT statement is not only preserved within
VT-SQL, but also extended. If a valid time interval is participating in the key, the two
rules mentioned above must be satisfied in a time-point granularity. In case the table
contains valid time intervals, it remains normalised after the insert operation. Processing
and execution of the subselect statement conforms with the corresponding actions in
select operation.

Execution of the INSERT statement is viewed as a complex task since it demands the
analysis and execution of the included subselect statement. In case only insertion values
are present the number of the steps required is minimised. The overall algorithm may be
described in the following:

Checking for the existence of a subselect statement that is to be processed before any
other actions are performed. These are the steps required for processing the subselect:

A. Examination of the subselect for the case that all columns are to be retrieved through
a “select * “ clause, whereas the NORMALISED or REFORMAT clauses are not
empty. In this case, further processing is aborted. (Similarly to GROUP BY, the
column names after any of these clauses must be explicitly referenced at the SELECT
clause).

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 62

B. Preparation of the subselect statement execution.

C. Examination of the resulting table. In case that duplicate column names are found,
duplicating columns (i.e. columns having names identical to previous ones) are
renamed appropriately.

D. Reformatting of the resulting table according to the attributes and the reformat type

specified in the REFORMAT AS cause.

E. Normalisation of the resulting table according to the attributes included in the
NORMALISED ON clause.

For these two latter actions we may note that the attributes present in both clauses are

replaced with a number indicating the order of the column in the resulting table. This is

performed because, under certain circumstances, referencing the resulting table columns

through their names cannot always be achieved.

The actions performed when only autonomous values are to be inserted, are the

following:

A. Creation of a empty table identical to the insertion table.

B. Insertion of the values specified in the previously created table.

From this point all the necessary actions are common for both cases. So far, a table is

created, the all the rows to be inserted.

Examining whether a normalisation should be performed after the rows are inserted. This

information is acquired by accessing the vtsql_norms system table. If no normalisation is

necessary, rows are simply inserted, thus completing the operation.

In normalisation is required, an extensive primary key violation check is performed, as

specified in [01P 93e].

Insertion of the values contained in the resulting table in the insertion table. The whole

table is subsequently normalised on the attributes specified in the NORMALISED clause

of the CREATE TABLE statement.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 63

DELETE statement

The DELETE statement is as follows:

DELETE FROM table-name
[PORTION key-point-column-name = dateinterval]
[WHERE condition]

Thus a DELETE statement is a delete query, extended by the PORTION clause.

Once the parser has recognised the DELETE statement, the appropriate execution
module is invoked, in order to execute the query and make the proper deletions to the
table. The execution module is provided with parameters which will allow for semantic
analysis, type checking, optimisation and query execution. In the following paragraphs,
these steps are analysed.

The semantic analyser built in the delete execution module examines the query definition,
as presented by the parser, and determines the actions that must be taken in order to
execute the query. The following algorithm is used:

A. If the user query concerns a deletion from a table, not recorded in the ORES
Dictionary, then the only check made is to ensure that no PORTION clause exists. If
such a clause does exist, a syntax error is identified, otherwise the query is
forwarded to INGRES for execution.

B. If the user query concerns a deletion from a table recorded in the ORES Dictionary,
then following procedure is used:

i) If no PORTION clause is contained in the user query, the query is passed to
INGRES for execution.

ii) If a PORTION clause is contained in the user query, it is initially checked
whether the column name, after the keyword PORTION represents a column
with respect to which a normalisation has to take place (such a column has
previously been declared in the CREATE TABLE statement). If this is not the
case, then a syntax error is identified, therefore further processing is aborted and
a message is displayed. In the opposite case, a check is made that the rows or
portions of rows that are about to be deleted really exist (i.e. that there do exist
rows that satisfy the WHERE clause condition and have common points with
the dateinterval found in the PORTION clause), If no such row exists, then the

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 64

query execution is finished by displaying a "No rows deleted" message. If such
rows do exist, then the remainder of the algorithm described in [01P 93e] is
executed and the portions of these rows are eliminated.

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 65

UPDATE statement

The syntax of the UPDATE statement is as follows:

UPDATE table-name
[PORTION key-point-column-name = dateinterval]
SET updatable-column-list
[WHERE condition]

Similar to the DELETE statement, an UPDATE statement is an update query, extended
by the PORTION clause.

Once the parser has recognised the UPDATE statement, the appropriate execution
module is invoked, in order to execute the query and updates the table.

The semantic analyser built in the update execution module examines the query
definition, as presented by the parser, and determines the actions that must be taken in
order to execute the query.

The algorithm is similar to that for deletion, (except that now an update takes place
instead of a deletion) and is in accordance with the algorithm described in [01P 93e].

ORES DEL D4.1 : Implementation of VT-SQL

4. Implementation 66

HELP statement

The syntax of the HELP statement is

HELP [object_name]

Once the parser has recognised a HELP statement, the appropriate execution module is
invoked. The execution module may be provided with a single parameter, whose value is
the name of the object on which help is requested.

If no object name is specified, then a list of the tables which the user can access is
retrieved and displayed. To determine the list, the system catalogue iitables is
queried to retrieve the tables that are owned by the user, while the system catalogue
iipermits is queried to retrieve the tables owned by other users, but are accessible by
the user issuing the HELP statement.

If an object is specified, it must designate a system catalogue, a user table or an index.
The system catalogue iicolumns is queried to determine the names, type and
properties of the columns belonging to the object. Normalisation and primary key
information is retrieved from the VT-DBMS system catalogues, vtsql_norms and
vtsql_keys, respectively.

ORES DEL D4.1 : Implementation of VT-SQL

5. Conclusions 67

5. CONCLUSIONS

In this report we presented the valid time SQL (VT-SQL) which has been developed in
the ORES project. The evaluation tests have shown that the software runs according to
the specification. The results are presented in appendix A.

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 68

APPENDIX A: VT-SQL EVALUATION

1. Introduction

The present appendix contains the tests of VT-SQL. The evaluation has been tailored to
examine the correctness of the functionality of VT-SQL. The functionality of VT-RA
and the INGRES kernel has already been tested (Appendix A, deliverable C4). A sample
database has been used and thorough tests have been made on all VT-SQL statements.
In what follows, the description of the sample database is given, and tests made on
CREATE TABLE, INSERT, DELETE, UPDATE, SELECT are presented, in that
order.

2. Sample database

part of the time test has been made against the tables which follow. All these tables
contain valid time data and care has been taken for them to contain duplicate rows and to
be non-normalised. Similar tables containing invalid data have also been used.

 (S)ALARY (A)SSIGNMENT
Name Amount Days Name Dept Days Type

John 10000 [1993-06-02, 1993-06-06) John shoe [1993-06-03, 1993-06-07) salesman

John 10000 [1993-06-09, 1993-06-12) John food [1993-06-07, 1993-06-11) supervisor

John 12000 [1993-06-15, 1993-06-18) John toys [1993-06-11, 1993-06-15) salesman

Alex 14000 [1993-06-09, 1993-06-12) Alex shoe [1993-06-05, 1993-06-10) supervisor

 Mary toys [1993-06-05, 1993-06-11) supervisor

 (D)uplicated SALARY (N)on Normalised ASSIGNMENT
Name Amount Days Name Dept Days Type

John 10000 [1993-06-02, 1993-06-06) John shoe [1993-06-03, 1993-06-07) salesman

John 10000 [1993-06-02, 1993-06-06) John food [1993-06-07, 1993-06-11) supervisor

John 12000 [1993-06-15, 1993-06-18) John food [1993-06-08, 1993-06-15) salesman

Alex 14000 [1993-06-09, 1993-06-12) Alex shoe [1993-06-05, 1993-06-10) supervisor

 Mary toys [1993-06-05, 1993-06-11) supervisor

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 69

 (I)nflation
Country Percentage Period

greece 0.15 [1993-06-01, 1993-06-02)

spain 0.10 [1993-06-03, 1993-06-04)

EEC 0.08 [1993-06-07, 1993-06-08)

 (O)vertive Dup(L)icated Overtime
Name Date No of Hours Name Date No of Hours

John 1993-06-02 2 John 1993-06-02 2

John 1993-06-03 2 John 1993-06-03 2

John 1993-06-04 2 John 1993-06-15 1

John 1993-06-05 2 John 1993-06-15 1

John 1993-06-06 2 Alex 1993-06-20 2

John 1993-06-15 1

John 1993-06-20 2

Alex 1993-06-20 2

 (C)omplication
Patient Complication Period

John Hypotassemia [1993-06-01, 1993-06-05)

John Hyperglykemia [1993-06-01, 1993-06-09)

John Leykopenia [1993-06-01, 1993-06-10)

John Hypomagnesemia [1993-06-01, 1993-06-15)

John Dialysis [1993-06-01, 1993-06-20)

John Atelectasis [1993-06-08, 1993-06-10)

John Hemothorax [1993-06-08, 1993-06-15)

John Pneumothorax [1993-06-08, 1993-06-20)

John Ultrafiltration [1993-06-09, 1993-06-11)

John Psychosis [1993-06-12, 1993-06-15)

John Pancreatitis [1993-06-12, 1993-06-20)

John Bone [1993-06-14, 1993-06-20)

John Hemolytic Anemia [1993-06-17, 1993-06-20)

 S2
Name Amount Date

John 10000 [1993-06-17, 1993-06-20)

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 70

 D2
Name Amount Date

John 10000 [1993-06-17, 1993-06-20)

John 10000 [1993-06-17, 1993-06-20)

John 12000 [1993-06-15, 1993-06-18)

Alex 14000 [1993-06-09, 1993-06-12)

 (SO) (OO)
Name Amount Days Hours Date Name Date Hours Period

John 10000 [1993-06-02, 1993-06-06) 2 1993-06-02 John 1993-06-02 2 1993-06-02

John 10000 [1993-06-09, 1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

John 10000 [1993-06-09, 1993-06-12) 2 1993-06-03 John 1993-06-04 2 1993-06-02

John 12000 [1993-06-05, 1993-06-12) 1 1993-06-15 John 1993-06-04 2 1993-06-03

Alex 14000 [1993-06-09, 1993-06-12) 2 1993-06-20 Alex 1993-06-20 2 1993-06-03

 (SOD) (OOD)
Name Amount Days Hours Date Name Date Hours Period

John 10000 [1993-06-02, 1993-06-06) 2 1993-06-02 John 1993-06-02 2 1993-06-02

John 10000 [1993-06-09, 1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

John 10000 [1993-06-09, 1993-06-12) 2 1993-06-03 John 1993-06-03 2 1993-06-02

John 12000 [1993-06-05, 1993-06-12) 1 1993-06-15 John 1993-06-04 2 1993-06-03

Alex 14000 [1993-06-09, 1993-06-12) 2 1993-06-20 Alex 1993-06-20 2 1993-06-03

 (DA)
Name Amount Dept Days Period

John 10000 shoe [1993-06-02, 1993-06-06) [1993-06-03, 1993-06-07)

John 10000 food [1993-06-02, 1993-06-06) [1993-06-03, 1993-06-07)

John 10000 food [1993-06-09, 1993-06-12) [1993-06-07, 1993-06-11)

John 12000 toys [1993-06-15, 1993-06-18) [1993-06-11, 1993-06-15)

Alex 14000 shoe [1993-06-09, 1993-06-12) [1993-06-05, 1993-06-11)

 (E)
Name Amount Date

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 71

 (DAN)
Name Amount Dept Days Period

John 10000 shoe [1993-06-02, 1993-06-06) [1993-06-03, 1993-06-07)

John 10000 food [1993-06-02, 1993-06-06) [1993-06-07, 1993-06-11)

John 10000 food [1993-06-02, 1993-06-06) [1993-06-08, 1993-06-15)

John 12000 toys [1993-06-15, 1993-06-18) [1993-06-11, 1993-06-15)

Alex 14000 shoe [1993-06-09, 1993-06-12) [1993-06-05, 1993-06-11)

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 72

3. Evaluation of CREATE TABLE

Four main categories of tests have been made:

1. Tables without primary key or normalised clause. All specified data types

 - integer
 - integer1
 - varchar() or char() or c()
 - float
 - date or point and
 - dateinterval
have been tested

Test Result: According to the specifications

2. Tables with primary key clause. Tests have been made, aiming to evaluate the
correctness of the parser for possible combinations of column names, participating in
the primary key.

Test Result: According to the specifications

3. Tables with normalised clause. Tests have been made, aiming to evaluate the
correctness of the parser for possible combinations of column names, participating in
the NORMALISED clause.

Test Result: According to the specifications

3. Tables with normalised and primary key clause. Tests have been made, aiming to
evaluate the correctness of the parser for possible combinations of normalised
column names, which also participate in key.

Test Result: According to the specifications

As far as we can estimate, these tests have been exhaustive.

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 73

4. Evaluation of INSERT, DELETE, UPDATE

The ecaluation tests of the above statements have been separated in four major
categories. Each category corresponds to each table type, namely:

1. Table without primary key and normalised clause.
2. Table with primary key clause.
3. Table with normalised clause.
4. Table with primary key and normalised clause.

4.1. Table without primary key and normalised clause

The table salary was created and a set of statements have been issued to perform the
testing.

create table salary
(name char(10),
sal float,
time dateinterval not null)
\g

insert into salary (name, sal) values('John', 500000)

insert into salary values('John', 170000, '[1990-01-01, 1992-01-01)')

insert into salary values('John', 2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary values('John', 200000, tointerv(now()))

insert into salary values('John', 300000, interv(start('[1993-01-01, 1994-01-01)', now()))

insert into salary (sal, time) values (170000, '[1990-01-01, 1992-01-01)')

insert into salary (sal, time) values (2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary (sal, time) values(200000, tointerv(now()))

insert into salary (sal, time) values(300000, interv(start('[1993-01-01, 1994-01-01)',
now()))

insert into salary values('John', 170000, '[1990-01-01, 1992-01-01)')

insert into salary (sal, time) values (2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary (select name, amount, days from s)

insert into salary(sal, time) select amount, time from s

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 74

insert into salary select name, amount, days from s
where amount = 10000 and
start(days) < stop(interv(stop(days), now()))
reformat as
unfold time
fold time

insert into salary (sal, time) select amount, days from s
where amount = 10000 and
start(days) < stop(interv(stop(days), now()))
reformat as
unfold time
fold time

delete from salary

insert into salary values('John', 170000, '[1990-01-01, 1992-01-01)')

insert into salary values('John', 2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary values('John', 200000, tointerv(now()))

insert into salary values('John', 300000, interv(start('[1993-01-01, 1994-01-01)', now()))

insert into salary (sal, time) values (170000, '[1990-01-01, 1992-01-01)')

insert into salary (sal, time) values(2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary (sal, time) values(200000, tointerv(now()))

insert into salary (sal, time) values(300000, interv(start('[1993-01-01, 1994-01-01)',
now()))

insert into salary select name, amount, days from s

insert into salary (sal, time) select amount, days from s

delete from salary where amount = 10000

delete from salary where amount = 10000 or name = ''

delete from salary
where interv(start(time), succ(now(), span(now(), start(time))) cp
interv(stop(time), stop(merge(time, interv(start(time), now()))))

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 75

insert into salary values ('John', 170000, '[1990-01-01, 1992-01-01)')

delete from salary portion time = '[1990-01-01, 1991-01-01)

delete from salary

select * from salary

insert into salary values ('John', 100000, '[1985-01-01, 1987-01-01)')

insert into salary values ('John', 130000, '[1987-01-01, 1989-01-01)')

insert into salary values ('John', 160000, '[1989-01-01, 1990-01-01)')

update salary
set sal = 170000
where time = '[1989-01-01, 1990-01-01)'

update salary
set time = '[1990-01-01, 2000-01-01)
where interv(start(time), now()) equals
interv(start(time), stop(interv(stop(time), now())))

update salary
portion time = '[1999-01-01, 1999-02-02)'
set sal = 200000
where name = 'John'

update salary
set name = 'Marc', sal = 100000

drop table salary

Test Result: According to the specifications, as in standard SQL

4.2. Table with primary key clause only

The table salary was created and a set of statements has been issued to perform the
testing.

create table salary
(name char(10),
sal float,
time dateinterval not null
primary key (name, sal, time))

insert into salary values('John', 170000, '[1990-01-01, 1992-01-01)')

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 76

insert into salary values ('John', 2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary values ('John', 200000, '[1992-01-01, 1994-01-01)')

insert into salary (sal, time) values (170000, '[1990-01-01, 1992-01-01)')

insert into salary (sal, time) values (2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary values ('Marc', 170000, '[1990-01-01, 1992-01-01)', 'Marc', 2 *
100000, '[1992-01-01, 1994-01-01)')

insert into salary (select name, amount, days from s)

insert into salary(sal, time) select amount, time from s where amount = 14000

insert into salary(sal, time) select amount, days from s

delete from salary

insert into salary values('John', 170000, '[1990-01-01, 1992-01-01)')

insert into salary values('Marc', 170000, '[1990-01-01, 1992-01-01)')

insert into salary values ('Marc', 2 * 100000, '[1992-01-01, 1994-01-01)')

insert into salary select name, amount, days from s

insert into salary select * from s

delete from salary where sal = 10000

delete from salary where sal = 10000 or name = ''

delete from salary where interv(start(time), succ(now(), span(stop(time), start(time))))
cp

interv(stop(time), stop(merge(time, interv(start(time), now()))))

insert into salary values
('John', 170000, '[1990-01-01, 1992-01-01)')

delete from salary portion time = tointerv('[1990-01-01, 1991-01-01)')

delete from salary portion time = '[1990-01-01, 1991-01-01)'

delete from salary

insert into salary values ('John', 100000, '[1985-01-01, 1987-01-01)')

insert into salary values ('John', 130000, '[1987-01-01, 1989-01-01)')

insert into salary values ('John', 160000, '[1989-01-01, 1990-01-01)')

update salary set sal = 170000 where time = '[1989-01-01, 1990-01-01)'

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 77

update salary set sal = 100000

update salary set time = '[1993-10-10, 1994-10-10)'

update salary set name = 'Jim', sal = 100

drop table salary

Test Result: According to the specifications

4.3. Table with normalised clause only

create table salary
(name char(10),
sal float,
time dateinterval not null
normalised (time))

insert into salary values
('John', 100000, '[1985-01-01, 1987-01-01)',
'John', 200000, '[1987-01-01, 1989-01-01)',
'John', 300000, '[1989-01-01, 1990-01-01)')

insert into salary values ('Marc', 100000, '[1985-01-01, 1987-01-01)')

insert into salary values ('John', 100000, '[1986-01-01, 1988-01-01)')

insert into salary values ('John', 300000, '[1989-11-01, 1998-01-01)')

delete from salary where name = 'Marc'

delete from salary portion time = '[1990-01-01, 1992-01-01)'
where stop(time) = '1998-01-01'

delete from salary portion time = '[1989-01-01, 1989-02-02)'
where start(time) = '1989-01-01'

delete from salary

insert into salary values ('John', 100000, '[1985-01-01, 1987-01-01)')

insert into salary values ('John', 200000, '[1986-01-01, 1988-01-01)')

insert into salary values ('John', 300000, '[1989-11-01, 1998-01-01)')

update salary set name = 'Marc'

update salary portion time = '[1988-11-01, 1988-01-10)'
set sal = 150000, time = '[1993-01-01, 1994-01-01)'

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 78

update salary portion time = '[1988-11-01, 1988-11-10)'
set sal = 150000, time = '[1993-01-01, 1994-01-01)'
where name = 'Marc'

update salary portion time = '[1988-11-01, 1988-01-10)'
set sal = 150000, time = '[1993-01-01, 1994-01-01)'
where name = 'John'

drop table salary

Test Result: According to the specifications

4.4. Table with both primary key and normalised clauses

create table salary
(name char(10),
sal float,
time dateinterval not null
normalised (time)
primary key(name, sal, time point))

insert into salary values
('John', 100000, '[1985-01-01, 1987-01-01)')

insert into salary values ('John', 130000, '[1987-01-01, 1989-01-01)')

insert into salary values ('John', 150000, '[1989-01-01, 1992-01-01)')

insert into salary values ('John', 150000, '[1990-01-01, 1992-01-01)')

insert into salary values ('John', 160000, '[1990-01-01, 1992-01-01)')

update salary portion time = '[1989-01-01, 1990-01-01)'
set sal = 130000
where sal = 150000

update salary portion time = '[1989-01-01, 1990-01-01)'
set sal = 130000, time = '[1988-01-01, 1990-01-01)
where sal = 150000

update salary portion time = '[1989-01-01, 1990-01-01)'
set sal = 120000, time = '[1988-01-01, 1990-01-01)
where sal = 150000

delete from salary portion time = '[1988-01-01, 1990-01-01)'
where sal = 150000

delete from salary portion time = '[1986-02-02, 1986-03-03)'
where sal = 100000

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 79

delete from salary

drop table salary

Test Result: According to the specifications

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 80

5. Evaluation of SELECT

For the evaluation of the SELECT statement, ten (10) broad categories of tests have
been made. The categories contain tests that evaluate some part of the syntax of a
VT-SQL SELECT statement. The first category contains very simple queries, having
only a FROM clause. Each category of the tests, then, adds up to the complexity of the
syntax of the queries, in order to test all aspects of the syntax of the VT-SQL SELECT
statement.

5.1 SELECT <list> FROM <tbl>

- <list> contains all VT-SQL functions
- <list> contains all SQL functions
- <list> contains combination of VT-SQL functions (not exhaustive)
- <list> contains combination of SQL functions (not exhaustive)
- <list> contains combination of SQL and VT-SQL functions (not exhaustive)
- <list> contains '*'

Test Result: According to the specifications

5.2 SELECT A=<list> FROM <tbl>

- <list> contains all VT-SQL functions
- <list> contains all SQL functions
- <list> contains combination of VT-SQL functions (not exhaustive)
- <list> contains combination of SQL functions (not exhaustive)
- <list> contains combination of SQL and VT-SQL functions (not exhaustive)

Test Result: According to the specifications

5.3 SELECT <list> FROM <tbl> WHERE <condition>

- <condition> contains all VT-SQL functions
- <condition> contains all SQL functions
- <condition> contains combination of VT-SQL and SQL functions with and, or,

not (not exhaustive)
- <condition> contains combination of SQL functions (not exhaustive)
- <condition> contains combination of VT-SQL functions and VT-SQL

predicates (not exhaustive)
Test Result: According to the specifications

5.4 SELECT * FROM <tbl> GROUP BY <group_list> HAVING <hav_condition>

- <group_list> contains combination of column names
- <hav_condition> contains all SQL functions

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 81

- < hav_condition > contains a combination of VT-SQL and SQL functions with
and, or, not (not exhaustive)

- < hav_condition> contains combination of VT-SQL functions and VT-SQL
predicates (not exhaustive)

Test Result: According to the specifications

5.5 SELECT * FROM <tbl> REFORMAT AS <ref_clause>

- <ref_clause> contains UNFOLD and all combinations of column names or
numbers referring to column names for single, or two tables

- <ref_clause> contains UNFOLD ALL and all combinations of column names or
numbers referring to column names for single, or two tables

- <ref_clause> contains FOLD and all combinations of column names or numbers
referring to column names for single, or two tables

- <ref_clause> contains FOLD ALL and all combinations of column names or
numbers referring to column names for single, or two tables

- <ref_clause> contains UNFOLD and FOLD and all combinations of column
names or numbers referring to column names for single, or two tables

Test Result: According to the specifications

5.6 SELECT * FROM <tbl> NORMALISE ON <nor_list>

- <nor_list> contains all names or numbers referring to column names for single,
or two tables

Test Result: According to the specifications

5.7 <query1> WHERE <arg1> <op> <query2>

- <arg> contains column names or VT-SQL functions (not exhaustive)
- <arg> is of type date or dateinterval and <op> is one of <, >, =, precedes,

follows, prequals, folequals
- all, any, exist before <query2>

Test Result: According to the specifications

5.8 <query1> UNION <query2>

- <query1> does not have REFORMAT or NORMALISE and <query2> does
not have REFORMAT or NORMALISE

- <query1> has REFORMAT or NORMALISE and <query2> does not have
REFORMAT or NORMALISE

- <query1> does not have REFORMAT or NORMALISE and <query2> has
REFORMAT or NORMALISE

- <query1> has REFORMAT or NORMALISE and <query2> has REFORMAT
or NORMALISE

Test Result: According to the specifications

ORES DEL D4.1 : Implementation of VT-SQL

Appendix A: VT-SQL Evaluation 82

5.9 <query1> EXCEPT <query2>

- <query1> does not have REFORMAT or NORMALISE and <query2> does
not have REFORMAT or NORMALISE

- <query1> has REFORMAT or NORMALISE and <query2> does not have
REFORMAT or NORMALISE

- <query1> does not have REFORMAT or NORMALISE and <query2> has
REFORMAT or NORMALISE

- <query1> has REFORMAT or NORMALISE and <query2> has REFORMAT
or NORMALISE

Test Result: According to the specifications

ORES DEL D4.1 : Implementation of VT-SQL

References 83

REFERENCES

[01P 93a] 01PLIROFORIKI 'Specification of system requirements', ORES Deliverable
C2, Athens, 1993.

[01P 93b] 01PLIROFORIKI 'Specification of Valid Time Formalism', ORES Deliverable
C3, Athens, 1993.

[01P 93c] 01PLIROFORIKI 'Implementation of Valid Time Algebra', ORES Deliverable
C4, Athens, 1993.

[01P 93d] 01PLIROFORIKI 'Specification of Valid Time SQL, Revision I', ORES
Deliverable D2, Athens, 1993.

[01P 93e] 01PLIROFORIKI 'Design of Valid Time SQL', ORES Deliverable D3,
Athens, 1993.

