

TOOBIS

TODL & TOQL Specifications

Deliverables T32TR.1 & T33TR.1

(Early Release)

UNIV. OF ATHENS

01-PLIROFORIKI S.A.

O2 Technology

May 1996

�TABLE OF CONTENTS

� TOC \o "1-5" �1. Temporal Object Definition Language	� GOTOBUTTON _Toc357851078 � PAGEREF _Toc357851078 �1��

1.1 Introduction	� GOTOBUTTON _Toc357851079 � PAGEREF _Toc357851079 �1��

1.2 Specification	� GOTOBUTTON _Toc357851080 � PAGEREF _Toc357851080 �2��

1.2.1 Type Characteristics	� GOTOBUTTON _Toc357851081 � PAGEREF _Toc357851081 �2��

1.2.1.1 Intra-object period key	� GOTOBUTTON _Toc357851082 � PAGEREF _Toc357851082 �4��

1.2.1.2 Intra-object point key	� GOTOBUTTON _Toc357851083 � PAGEREF _Toc357851083 �4��

1.2.1.3 Inter-object period keys	� GOTOBUTTON _Toc357851084 � PAGEREF _Toc357851084 �5��

1.2.1.4 Inter-object point keys	� GOTOBUTTON _Toc357851085 � PAGEREF _Toc357851085 �5��

1.2.1.5 Extent-wide point keys	� GOTOBUTTON _Toc357851086 � PAGEREF _Toc357851086 �6��

1.2.2 Instance Properties	� GOTOBUTTON _Toc357851087 � PAGEREF _Toc357851087 �6��

1.2.2.1 Attributes	� GOTOBUTTON _Toc357851088 � PAGEREF _Toc357851088 �6��

1.2.2.2 Relationships	� GOTOBUTTON _Toc357851089 � PAGEREF _Toc357851089 �7��

1.2.3 Operations	� GOTOBUTTON _Toc357851090 � PAGEREF _Toc357851090 �8��

1.3 Examples in TODL	� GOTOBUTTON _Toc357851091 � PAGEREF _Toc357851091 �9��

1.3.1 Supplier-Part-Job	� GOTOBUTTON _Toc357851092 � PAGEREF _Toc357851092 �9��

1.3.2 Countries	� GOTOBUTTON _Toc357851093 � PAGEREF _Toc357851093 �10��

1.3.3 Employees - Salaries	� GOTOBUTTON _Toc357851094 � PAGEREF _Toc357851094 �11��

2. Temporal Object Query Language	� GOTOBUTTON _Toc357851095 � PAGEREF _Toc357851095 �13��

2.1 A Sample Database	� GOTOBUTTON _Toc357851096 � PAGEREF _Toc357851096 �13��

2.2 TOQL	� GOTOBUTTON _Toc357851097 � PAGEREF _Toc357851097 �15��

2.2.1 Data Types, Functions and Operators	� GOTOBUTTON _Toc357851098 � PAGEREF _Toc357851098 �16��

2.2.1.1 Functions	� GOTOBUTTON _Toc357851099 � PAGEREF _Toc357851099 �16��

2.2.1.2 Period Comparison Operators	� GOTOBUTTON _Toc357851100 � PAGEREF _Toc357851100 �18��

2.2.2 Using Temporal Objects	� GOTOBUTTON _Toc357851101 � PAGEREF _Toc357851101 �19��

2.2.2.1 Basic Queries on Classes With Temporal Instance Properties	� GOTOBUTTON _Toc357851102 � PAGEREF _Toc357851102 �20��

2.2.2.2 Restrictions on Valid and Transaction Time	� GOTOBUTTON _Toc357851103 � PAGEREF _Toc357851103 �22��

2.2.2.3 Referencing Object Variants	� GOTOBUTTON _Toc357851104 � PAGEREF _Toc357851104 �24��

2.2.2.4 Converting Between Temporal and Snapshot Values	� GOTOBUTTON _Toc357851105 � PAGEREF _Toc357851105 �25��

I. The SNAPSHOT Modifier	� GOTOBUTTON _Toc357851106 � PAGEREF _Toc357851106 �25��

II. The VALID Modifier	� GOTOBUTTON _Toc357851107 � PAGEREF _Toc357851107 �26��

III. The TRANSACTION Clause	� GOTOBUTTON _Toc357851108 � PAGEREF _Toc357851108 �27��

IV. The BITEMPORAL Modifier	� GOTOBUTTON _Toc357851109 � PAGEREF _Toc357851109 �28��

2.2.2.5 Temporal Joins.	� GOTOBUTTON _Toc357851110 � PAGEREF _Toc357851110 �28��

I. Temporal Join Between Two Valid Time Objects	� GOTOBUTTON _Toc357851111 � PAGEREF _Toc357851111 �31��

II. Temporal Join Between a Valid Time and a Transaction Time Object	� GOTOBUTTON _Toc357851112 � PAGEREF _Toc357851112 �31��

III. Temporal Join Between a Valid Time and a Bitemporal Object	� GOTOBUTTON _Toc357851113 � PAGEREF _Toc357851113 �31��

IV. Temporal Join Between two Transaction Time Objects	� GOTOBUTTON _Toc357851114 � PAGEREF _Toc357851114 �32��

V. Temporal Join Between a Transaction Time and a Bitemporal Object	� GOTOBUTTON _Toc357851115 � PAGEREF _Toc357851115 �32��

VI. Temporal Join Between Two Bitemporal Objects	� GOTOBUTTON _Toc357851116 � PAGEREF _Toc357851116 �33��

2.2.2.6 Restructuring Operators.	� GOTOBUTTON _Toc357851117 � PAGEREF _Toc357851117 �34��

I. The FOLD operator	� GOTOBUTTON _Toc357851118 � PAGEREF _Toc357851118 �34��

II. The UNFOLD Operator	� GOTOBUTTON _Toc357851119 � PAGEREF _Toc357851119 �36��

III. Type Considerations for the FOLD and UNFOLD Operators	� GOTOBUTTON _Toc357851120 � PAGEREF _Toc357851120 �36��

2.2.2.7 Aggregation.	� GOTOBUTTON _Toc357851121 � PAGEREF _Toc357851121 �37��

��Temporal Object Definition Language

Introduction

The Temporal Object Definition Language (TODL), a temporal extension to ODL, is a specification language used to define interfaces for objects that will conform with TODM (Temporal Object Data Model). The same principles that have guided the development of ODL have been followed for the development of TODL:

TODL should support all semantic constructs of TODM, which in turn should be compatible with the ODMG Object Model.

TODL should not be a full programming language, but rather a specification language for interface signatures.

TODL should be programming language independent.

TODL should be compatible with ODL.

TODL should be extensible, not only for future functionality, but also for physical optimizations.

As stated above TODL should not be a full programming language, but rather a specification language for interface signatures. Actually, TODL should be a DDL language used for object types and providing for temporal functionality for those object types. Through TODL it is possible to define, along with the object type, the signatures of the operations that can be applied on it. However, the implementation of those operations is out of the scope of TODL. We do not define a standard TOML (Temporal Object Manipulation Language), as ODMG-93 does not provide a standard OML.

Also TODL is intended to define temporal functionality and object types that can be implemented in a variety of programming languages. In this way the schema is defined regardless of the programming language used, something that permits the user to use the language he prefers for method implementation.

Before continuing with the specification of TODL we are going to present some definitions regarding temporal characteristics of an instance property�:

We define as valid time of a fact stored in the database the time point or time period during which the fact was valid in the real word. An instance property with valid time characteristics is one which has associated with it the time point or time period that represents the valid time of the fact the property represents.

The transaction time of a fact is the time period during which the fact was known to the database, i.e. the time period during which the fact was stored in the database. Each such period begins with at the time point when the fact was inserted in the database and its end is either the time point when the fact was logically deleted (i.e. removed or updated) from the database or the special value Until Changed, that denotes that the fact is still stored in the database. We say that an instance property has transaction time characteristics when associated with this property is a time period with the transaction time of the fact the property represents.

We say that an instance property has bitemporal characteristics when it has both valid and transaction time characteristics. Finally we say that an instance property has temporal characteristics, when it has valid time or transaction time or bitemporal characteristics.

Specification

A type is defined by specifying its interface to TODL. The top-level BNF for TODL is the same as ODL’s top-level BNF. The characteristics of the type appear first, followed by lists that define the properties and operations of its interface. Note that the temporal characteristics of an object type are defined on its attributes and relationships. Any list may be omitted if it is not applicable in the interface.

Type Characteristics

As type characteristics we define the supertype information (inheritance), the extent naming and the specification of keys of the (temporal) object type. The BNF for type characteristics in TODL is the same as the one for ODL, except for the <key_spec>, which follows:

<key_spec>	::=	key[s] <key_list>

<key_list>	::=	<key> | <key>, <key_list>

<key>	::=	[<key_kind>] <property_list>

<key_kind>	::=	period | point | unique point |

		unique period | unique object

Each supertype must be specified in its own type definition. Each attribute or relationship traversal path named as (part of) a type’s key must be specified in the <key_spec> of the type definitions.

We define five kinds of keys as follows:

intra-object period key: overlapping periods with the same value in this attribute (relationship) are allowed for the same object, but for a specified period only one value is allowed.

intra-object point key: overlapping periods with the same value in this attribute (relationship) are not allowed for the same object.

inter-object period key: two distinct objects may have the same value at this attribute (relationship) for overlapping periods, but not for exactly the same period. This is the default key type used for objects that do not have any temporal functionality.

inter-object point key: two distinct objects cannot have the same value in this attribute (relationship) at any time point, i.e. overlapping periods with the same value are not allowed.

extent-wide point key: no two objects may have the same value at this attribute (relationship) at any time point, that is if the value a is given for a time period to object A, then no other object may have the same value at any time point.

Examples for these keys types follow:

Intra-object period key

Let’s define a class Country, that has an attribute Inflation_rate, which has valid time characteristics of type period and granularity month�. We define the attribute Country_name to be a key (with the meaning it has in ODMG), and attribute Inflation_rate to be an intra-object period key, defined with the keyword period in the keys’ specification�. This means that for a specified country, say Greece, we may have an object with the following variants (only two of the attributes are shown):

Country_name�Inflation_rate�Period��Greece�7.8%�[1995-01, 1996-01)��Greece�8.8%�[1995-01, 1995-07)��Greece�6.8%�[1995-07, 1996-01)��Greece�9.5%�[1996-01, now)��Note that the periods that refer to the inflation rates are overlapping. This is totally acceptable, since the inflation rate depends on the time period on which it is measured. However an object variant with value for the Inflation_rate attribute equal to, say, 9.9% and valid time period equal to [1995-01, 1995-07) would be unacceptable, since a value for this time period is already defined.

Also note that any other country can have for the same time period a different inflation rate. That is it is totally acceptable to have an object variant with values Country_name = France, Inflation_rate = 9.4% and valid time period [1995-01, 1995-07).

Intra-object point key

Let’s define a class Employee having an attribute Salary, which has valid time information, of type period and granularity month. We define also an attribute Employee_name that identifies the employee, so it is defined as a key. We also define attribute Salary as a intra-object point key, using the keyword point at the key specification clause. Let’s assume that an employee named Jones exist and that the following data are already recorded for him.

 Employee_name�Salary�Period��Jones�12000�[1992-01, 1993-01)��Jones�14000�[1993-01, 1995-07)��Jones�16000�[1995-07, 1996-01)��Jones�17000�[1996-01, now)��Having the above data defined for Jones we cannot add another object variant for him with Salary, say, 15000 and valid time period [1994-01, 1994-06). This holds because an employee cannot have different salaries for the same time point. However the object with Employee_name = Johnson, Salary = 12000 and valid time equal to [1992-01, 1992-09) is acceptable as the salaries of two distinct employees are not, usually, dependent on each other.

Inter-object period keys

Such a key is mainly used as keys for attributes (relationships) that do not have temporal characteristics. They don’t allow for the same value to be used over the same period of time for the same object and they do not allow the same value to exist for any other object for the same time period. This type of key is specified using the keyword unique period and is the default key type for attributes (relationships) that do not have temporal characteristics.

Inter-object point keys

Let’s assume a class Department, with an attribute Department_name, with valid time characteristics of type state and granularity day. This class has also an attribute Department_id which is a key for this class. We also specify that the Department_name is an inter-object point key, by using the keyword unique point. Assuming that the following are defined in the database:

Department_id�Department_name�Period��1�Toys�[1992-01, 1993-01)��1�Toys and Books�[1993-01, 1995-07)��1�Toys�[1995-07, 1996-01)��2�Books�[1995-07, 1996-01)��We notice that the name of Department 1 has changed during time from “Toys” to “Toys and Books” and then back to “Toys” creating another department “Books”. If we try to specify that Department 2 was also valid during [1994-01, 1995-07) with the name “Toys and Books” this operation should be not allowable, as only one department can have a name at any time point.

Extent-wide point keys

Extent-wide point keys are in a way an extension to inter-object point keys. Imagine that we want the Department_name to be unique throughout the time. If in the above definition we had defined Department_name as an intra-extent point key, using the keyword unique object this would mean that the object variant with the value Department_id =1, Department_name = “Toys” and valid period [1995-07, 1996-01) should not be acceptable, nor any other object variant having the same value in the attribute (relationship) Department_name.

Those are the semantics of the keys, as specified above. Note that the uniqueness property should be preserved at the data model level, as TOQL only has access to what can be retrieved from the extents and not to what is stored in them.

Instance Properties

A type’s instance properties are the attributes and relationships of its instances. These properties are specified in attribute and relationship specifications.

Attributes

The BNF for specifying the attribute must change to allow the definition of temporal data over the attributes.

<attrib_dcl>	::=	[readonly] attribute

		<domain_type> <identifier>

		[[<positive_int_const>]]

		[<valid_clause>]

		[<transaction_clause>]

<domain_type>	::=	<simple_type_spec>

		| <struct_type>

		| <enum_type>

		| <attr_collection_specifier> <literal>

		| <attr_collection_specifier> <identifier>

<attr_collection_specifier>

	::= Set | List | Bag | Array

<valid_clause>	::=	valid <valid_type>

		<granularity_clause>

<valid_type>	::=	state | event

<granularity_clause>

	::=	granularity <gran_specifier>

<gran_specifier>	::=	second | minute | hour | day | week |

		month | year

<transaction_clause>

	::=	transaction

The differences from the ODL BNF is the addition of the <valid_clause> and <transaction_clause> clauses. Using the <valid_clause> it is possible to define that an attribute has valid time characteristics, that we keep values this attribute had during time. The time during which the attribute had a specified value is given through a timestamp which we can define as a time period or as a time point. The former is defined using the keyword state while the latter using the keyword event. The valid timestamp defined over an attribute can have one of the specified granularities. At this point we define seven granularities that are specified by the keywords: second, minute, hour, day, week, month and year. The possibility of user-defined granularities may also be addressed, provided that the data model will support such an extension.

The <transaction_clause> is used to define that the specified attribute should have transaction time information, that is all the values that at some time point have been stored in the database are never physically deleted from it, and are kept in the object variants.

Relationships

A relationship specification names and defines a traversal path for a relationship. As in ODMG, a traversal path definition includes designation of the target type, ordering information and information about the inverse traversal path found in the target type. As with attributes a relationship may have temporal information defined on it with the same semantics as above. With the temporal information in mind the relationship BNF changes as follows:

<rel_dcl>	::=	relationship <target_of_path>

		<identifier>

		[<valid_clause>]

		[<transaction_clause>]

		[inverse <inverse_traversal_path>]

		[(order_by <order_by_list>)]

<order_by_list>	::=	<order_by_item>

		| <order_by_item> <order_by_list>

<order_by_item>	::=	<identifier>

		| valid

		| transaction

Traversal path cardinality information, as in ODMG, is included in the specification of the target of a traversal path. The target type must be specified with its own type definition, unless the relationship is recursive. A collection indicates cardinality greater than one on the target side.

Also an ordering criterion is specified with the order_by clause. Each attribute in an ordering criterion must be defined in the attribute list of the target type’s definition. If the relationship has also temporal characteristics it is possible to define that the relationship will be ordered over the timestamp used to specify the temporal characteristic.

If a relationship has temporal characteristics then its inverse may or may not have temporal characteristics, depending on its semantics.

As with ODMG, the attribute and relationship specifications can be mixed in the property list.

Operations

The definition of the operations is compatible with the ODL specification of operations with the difference that in the parameter declaration the user may specify that one or more of the operation’s parameters have temporal characteristics, using the keyword valid or the keyword transaction immediately after the parameter’s type specification. In this way the following change is made in the high-level BNF:

<param_dcl>	::=	<param_attribute> <simple_type_spec>

		[<temporal_spec>] <declarator>

<temporal_spec>	::=	valid | transaction |

		valid transaction

Examples in TODL

Supplier-Part-Job

The following example is an object-oriented version of the Supplier-Part-Job database, along with some temporal extension. Note that only valid time is defined for the attributes of these objects. Also note that valid time is of type state and that the granularity is day for all the attributes.

Interface Supplier: Person

(extent Suppliers

 key unique object ident)

{

	attribute String	ident;

	relationship Addr Address valid state granularity day;

	relationship Set<Part> Inventory valid state granularity day;

	Supplier RecvOrder (inout Supplier FromSupplier,

				in Set<Part> RecvParts)

raises no_such_supplier;

}

interface Part

(extent Parts

 keys unique object Num,

	point color,

	point components)

{

	attribute String Num;

	relationship Addr address valid state granularity day;

	attribute String color valid state granularity day;

	relationship Set<Struct<Part: P, Integer: Qty>> components

		valid state granularity day;

	relationship drawing plan;

	relationship List<Part> BillOfMaterial valid state

		granularity day;

	Part Order(in Part part_order) raises no_such_part;

}

interface Job

(extent Jobs

 keys unique object Num,

	point address)

{

	attribute String Num;

	relationship Addr Address valid state granularity day;

	relationship Set<Part> PartsNeeded valid state

		granularity day;

	relationship List<Supplier> Preferred_Suppliers

		valid state granularity day;

	Job NewPart(in Job this_Job, in Part new_part)

		raises no_such_job;

}

interface Addr

{

	attribute String Street;

	attribute String City;

	attribute String State;

}

Countries

We have a database containing data about different countries around the world. Among those data we have inflation rates, population figures, surface area, capital, and currency used in country. The definition of the above database should be the following:

interface Country

(extent Countries,

 keys unique period name, inflation, population)

{

	attribute String name;

	attribute Real inflation valid state granularity month;

	attribute Real population valid state granularity year;

	attribute Real surface;

	attribute String currency;

	relationship City capital

inverse City::is_capital;

	relationship Set<City> cities

inverse City::belongs_to_country;

}

interface City

(extent Cities,

 keys point belongs_to_country)

{

	attribute String name;

	relationship Country is_capital

inverse Country::capital;

	relationship Country belongs_to_country valid state

granularity year

inverse Country::cities;

}

The idea is that a Country is always defined by its name, however more than one countries can have the same name at different time points. Each country can a have an inflation rate that is unique over a period�. The same holds for its population. In the case of the inflation rate the granularity of the periods we are using is of month, while we assume that for the population we keep data with granularity of year.

Each Country has a set of cities that belong to it and one of those cities is the country’s capital. We assume that the changes made to these sets are not important for us - we don’t want to keep the history of them. However in the City object we do keep the history of the relationship belongs_to_country, which states the country in which the city belongs. Each city can be part of only one country at any given moment. Another point is that the name of the City may not be unique, as many cities have the same names. The history of the “belonging” of a city is kept with granularity of year.

Employees - Salaries

We have a company that has employees working at different departments. For each employee we want to know his name, his salary, if he is manager in a department and the department for which he works. For each department we want to keep track of its name, its employees and its manager.

For the employee’s salary we want to keep the history of it, as well as a long of every transaction made on it. For these reasons we define this attribute to have bitemporal characteristics.

We also want to keep the history of the departments in which the employee was manager, so the corresponding relationship has valid time information. Finally we want to log any changes made about the relationship works_for for the Employee, so this relationship has transaction time information.

The inverse relationships of the above mentioned ones, have the same temporal behavior with them.

interface Employee

(extent Employee

	key name, unique point salary)

{

	attribute String name;

	attribute Unsigned Short salary

Valid State Granularity Month Transaction;

	relationship Department isManager

Valid State Granularity Month;

	relationship Department worksFor Transaction;

};

interface Department

(extent	Department

	key	name)

{

	attribute String name;

	relationship Set<Employee> hasEmployee Transaction;

	relationship Employee withManager

Valid State Granularity Month;

};

�Temporal Object Query Language

A Sample Database

In order to demonstrate the functionality of TOQL, a sample database will be used. This database stores data about employees and departments in some company, and is described below in TODL syntax:

interface Employee

(extent	Employee

	key	name

unique point salary)

{

	attribute	String name;

	attribute	Date birthDate;

	attribute	Unsigned Short salary Valid State Granularity Month Transaction;

	relationship	Department isManager Valid State Granularity Month;

	relationship	Department worksFor Transaction;

};

interface Department

(extent	Department

	key	name)

{

	attribute	String name;

	relationship	Set<Employee> hasEmployee Transaction;

	relationship	Employee withManager Valid State Granularity Month;

};

We assume that at some time point the database has the following contents:

� EMBED Word.Picture.6 ���

� EMBED Word.Picture.6 ���

� EMBED Word.Picture.6 ���

� EMBED Word.Picture.6 ���

TOQL

In this section we give the functional specification of TOQL. The new features are given in bold, to make reading easier. In the language extension which is presented below, the following goals were adopted:

TOQL is an upwards compatible extension of OQL.

Every statement that is valid in OQL should be valid in TOQL, so as to allow applications that do not incorporate temporal semantics to function on top of the extended DBMS. TOQL also provides syntactic constructs to invoke special operations on temporal data. These constructs must adhere to the overall syntax of OQL.

Temporal and non-temporal objects should be treated uniformly.

Temporal objects should not present different behaviour than non-temporal objects. They should appear like “normal” objects, equipped with some special functionality.

TOQL should provide complete temporal functionality.

The extended language must provide adequate functionality to support the needs of the applications. Timestamps should be accessible and temporal operations (e.g. temporal selection and temporal join) must be provided.

Temporal query syntax and semantics should be clear.

Despite the fact that temporal queries have an inherent degree of complexity, query syntax should be kept simple and semantics must be clear.

Query evaluation must preserve the updatability of the results to the maximum extent possible.

The default functionality of the language should be oriented towards returning updatable objects, thus the schema of query results should match the schema of the actual database objects. This is compliant to the ODMG semantics, under which no implicit schema transformations ever take place. However, the user must be able to specify and retrieve arbitrary object schemata.

Data Types, Functions and Operators

TOQL queries may be issued against classes without temporal instance properties with or on classes containing temporal instance properties (the term instance property is used to denote both instance attributes and instance relationships). When no temporal instance properties are involved, TOQL queries behave as normal OQL queries. Since the data model is enriched with a new data type, namely PERIOD, constants and attributes of this type, as well as its public class methods and operators may be used in query formulation. Additionally, the following functions and period comparison operators may be used:

Functions

The new TOQL functions allow for the construction of values of type PERIOD (functions period, intersect and merge), event extraction (functions start and stop) and computation of an interval’s duration (function duration). These functions may be defined on the data model level as class methods, and thus may be called using the standard method invocation syntax (e.g. p1�>duration()), but the functional notation is more user friendly. The TOQL processor will arrange for the necessary transformations. Functions intersect, merge and duration are not really needed, since the same results may be computed using expressions, but it is estimated that they will be used quite frequently, so they are provided in order to facilitate more compact query formulation.

The signatures of the new functions, along with a brief description of their functionality is presented in the following paragraphs.

PERIOD period(in TimePoint TP1, in TimePoint TP2)

Period is a constructor function. It accepts two arguments of type TIME POINT and returns a result of type PERIOD, starting at TP1 and ending at TP2. (The TIME POINT type is used to represent a point on the time axis, using some granularity.) Both arguments must have the same granularity, which is used as the result’s granularity. If TP2 does not follow TP1, the NIL value is returned.

Examples:

period(‘1994-01’, ‘1995-01’) = ‘[1994-01, 1995�01)’

period(‘1995-01’, ‘1994-01’) = NIL

period(min(TP1, TP2), max(TP1, TP2)) returns an interval whose delimited by the time points TP1 and TP2. The earliest time point is used as the period’s start, whereas the latest one is used as the period’s end.

PERIOD intersect(in PERIOD P1, in PERIOD P2)

The intersect function accepts two arguments of type PERIOD and yields a result of the same type. The result contains all time points which are common to the two arguments. If the two arguments do not have common points, the intersect function returns the NIL value.

Examples:

intersect(‘[1994�01, 1995�01)’, ‘[1994�06, 1995�06)’) = ‘[1994�06, 1995�01)’

intersect(‘[1994�01, 1995�01)’, ‘[1995�06, 1996�01)’) = NIL

PERIOD merge(in PERIOD P1, in PERIOD P2)

The merge function accepts two arguments of type PERIOD and yields a result of the same type. The result contains all time points which are included in either argument. If the two arguments are neither overlapping, nor adjacent and thus the result cannot be represented using a single value of type PERIOD, the merge function returns the NIL value.

Examples:

merge(‘[1994�01, 1995�01)’, ‘[1994�06, 1995�06)’) = ‘[1994�01, 1995�06)’

merge(‘[1994�01, 1995�01)’, ‘[1995�06, 1996�01)’) = NIL

TimePoint start(in PERIOD P)

The START function accepts an argument of type PERIOD and returns its starting point. The granularity of the result is the same as the argument’s granularity.

Example: start(‘[1994-01, 1995-01)’) = ‘1994-01’

TimePoint stop(in PERIOD P)

The stop function accepts an argument of type PERIOD and returns its ending point. The granularity of the result is the same as the argument’s granularity.

Example: stop(‘[1994�01, 1995�01)’) = ‘1994�12’ (note that the interval type is closed left-open right, so the time point 1995�01 is not considered to belong to the interval).

unsigned int duration(in PERIOD P)

The duration function accepts an argument of type PERIOD and returns the number of time points included in its argument. The number of time points is computed using the argument’s granularity.

Example: duration(‘[1994�01, 1995�01)’) = 12 (since the argument’s granularity is month, the function returns the number of months included in the argument).

Period Comparison Operators

TOQL supports all comparison operators defined in OQL and introduces xx new operators which facilitating testing of the relative position of period values. The new operators are:

p1 overlaps p2

The overlaps operator may be applied on two operands of type PERIOD. It evaluates to true, when there exists one time point which is included in both operands, otherwise it evaluates to false.

Examples:

‘[1994�01, 1995�01)’ overlaps ‘[1994�06, 1995�06)’ yields true

‘[1994�01, 1995�01)’ overlaps ‘[1995�06, 1996�01)’ yields false

p1 before p2

The overlaps operator may be applied on two operands of type PERIOD. It evaluates to true, when the end of the left operand is earlier than the start of the right operand, otherwise it evaluates to false.

Examples:

‘[1994�01, 1995�01)’ before ‘[1995�06, 1996�01)’ yields true

‘[1994�01, 1995�01)’ before ‘[1994�06, 1995�06)’ yields false

p1 contains p2

The contains operator may be applied on two operands of type PERIOD. It evaluates to true, when every time point included in the right operand is also included in the left operand, otherwise it evaluates to false.

Examples:

‘[1994�01, 1996�01)’ contains ‘[1995�01, 1995�06)’ yields true

‘[1994�01, 1995�01)’ contains ‘[1994�06, 1995�06)’ yields false

p1 meets p2

The meets operator may be applied on two operands of type PERIOD. It evaluates to true, when the end of the left operand is equal to the start of the right operand, otherwise it evaluates to false.

Examples:

‘[1994�01, 1995�01)’ meets ‘[1995�01, 1995�06)’ yields true

‘[1994�01, 1995�01)’ meets ‘[1994�06, 1995�06)’ yields false

Using Temporal Objects

When queries are issued against classes containing temporal instance properties, the following language extensions may be used (in addition to the extensions listed above):

the WHEN clause, which is used to specify the desired valid and transaction time of the selected objects.

usage of temporal objects� in the FROM clause, to facilitate referencing individual object variants.

facilities to convert temporal data to snapshot and vice versa.

temporal joins, facilitating derivation of composite temporal information.

mechanisms to restructure temporal information, producing maximal valid or transaction time periods.

special forms of aggregation, which consider the temporal nature of the data.

These language extensions are discussed in the following paragraphs.

Basic Queries on Classes With Temporal Instance Properties

The simplest query returns all the objects in an extent (e.g. the Employee extent):

Employee

The type of the result of this query is Set<Employee>. The result contains all employee instances, as recorded in the database (Obj01 and Obj02). Note that no filtering of information is performed in such a query, thus Obj01.salary, Obj01.WorksFor and Obj01.isManager contains all the information which is stored in the database about Igor Hunchback’s salary, occupation in various departments and his career as a manager. The masking off of logically deleted information (i.e. transaction time or bitemporal object variants, whose transaction timestamp end is not equal to UC) and variants with past or future valid times (if the latter is desirable) is expected to be encapsulated in the behaviour of the respective objects (i.e. valid, transaction time or bitemporal objects). This means that the default “get value” method of a transaction time (or bitemporal) object should return only the values which have not been logically deleted, and (if desirable) the default “get value” method of a valid time (or bitemporal) object should return only the values whose valid timestamp overlaps the current time point. The two alternatives to this schema possess undesirable properties:

the first alternative is to replace each transaction time (or bitemporal) object by the current snapshot of the object. This leads to having different memory and database schemata (the database schema is a set of timestamped values whereas the memory schema is a single value), and subsequently results that are not updatable objects.

the second alternative is to eliminate object variants whose transaction timestamp end is not equal to UC, from all transaction time and bitemporal objects. This can be achieved in two ways:

by transforming the query to a different form, which ungroups each Employee object, eliminates the logically deleted object variants using appropriate functions and then reconstructs Employee objects:

SELECT Employee(tuple(name: e->name,

salary: e->salary->current(),

isManager: e->isManager,

worksFor: e->worksFor->current()))

FROM e in Employee

In this case, however, each one of the returned object is assigned a new object identifier, and thus cannot be used to update the corresponding database object.

in order to preserve object updatability, an update method may be created for transaction time and bitemporal objects, which eliminates logically deleted verions. In this case, the query would be transformed to:

SELECT e FROM e in Employee

WHERE e->salary->eliminate_past_states()

AND e->worksFor->eliminate_past_states()

(the eliminate_past_states() method is might look like

Boolean TransactionTime::eliminate_past_states() {

for each variant

if (variant.timestamp.end != UC)

self->delete_variant(variant);

return true;

}

)

Although this approach produces updatable objects, it has the undesirable side effect of physically deleting the past states of the object and thus is unacceptable.

The individual employees may also be retrieved by referencing the distinct members of the Employee extent:

SELECT e FROM e IN Employee

The behaviour of the query is identical to the previous one, i.e. it returns a set of employee instances, as recorded in the database.

Individual temporal instance properties may be retrieved by listing them in the selection list. For example, the query ‘For each employee, fetch his/her name and the history of his/her salary’ can be stated as

SELECT tuple(name: e->name, salary: e->salary)

Again the salary field of the selected tuple is a transaction time object, encapsulating the aforementioned behaviour, i.e. masking off by default all logically deleted object variants.

Restrictions on Valid and Transaction Time

TOQL introduces a WHEN clause, which may be used to place explicit restrictions on the valid and transaction time of temporal objects. The syntax of the WHEN clause is

WHEN when�restriction {, when-restriction}

where when�restriction is defined as

variable IN (VALID | TRANSACTION) temporal_object: query

The temporal_object must be either a temporal object referenced in the FROM list, or a temporal instance property of an object referenced in the FROM list. The effect of the WHEN clause is to eliminate all variants of the temporal object for which query evaluates to FALSE. For example, the query 'Fetch all data for each employee, limiting the information about salaries to what was known to the database on 1993/7' can be expressed in TOQL as

SELECT e

FROM e IN Employee

WHEN t IN TRANSACTION e.salary: t OVERLAPS '1993/7'

The result of this query will be a set of Employee objects, depicted below:

� EMBED Word.Picture.6 ���

� EMBED Word.Picture.6 ���

Note that both objects are assigned new object identifiers, and thus cannot be used to update the database objects from which they are derived.

In order to facilitate more compact queries, an object containing temporal instance properties may be referenced in the variable definition of the WHEN clause. The net effect of such a clause is to apply the restriction on every temporal instance property of the object (provided that the restriction is applicable). For example the query

SELECT e

FROM e IN Employee

WHEN t IN TRANSACTION e: t OVERLAPS '1993/7',

v IN VALID e: v OVERLAPS ‘1994/01’

causes the transaction time restriction (t OVERLAPS ‘1993/7’) to be applied on the salary and isManager instance properties, whereas the valid time restriction (v OVERLAPS ‘1994/01’) is applied on the salary and worksFor instance properties. Allowing an object containing temporal properties to be used in the WHEN clause is merely syntactic sugar, since the same functionality can be obtained (admittedly in a more verbose manner) by referencing individual temporal instance properties.

If the WHEN clause contains both a restriction applied on an object containing temporal instance properties and a restriction applied on a specific temporal instance property, then only the latter restriction takes effect (i.e. the specific restriction overrides the general one).

In the absence of a WHEN clause, no filtering of information is applied, and the result of using the value of a temporal object is dependent on the object behaviour.

Referencing Object Variants

A temporal instance property is actually a collection of values, each one having one or two associated timestamps (valid and/or transaction time). Since OQL allows collections to be used for variable definition in the FROM clause as well as in collection expressions (universal quantification, existential quantification and membership testing), TOQL should allow temporal instance properties to be used for the same purpose. In such a case, the defined variable iterates over the different variants which are stored in the temporal object. If a transaction time (bitemporal) instance property is used for variable definition, the default behaviour for the variable is to iterate over the variants that have not been logically deleted. No default restrictions are applied to the valid timestamp of temporal objects. The default behaviour may be overridden by using a WHEN clause for the transaction time (bitemporal) object.

The functions VALID and TRANSACTION may be applied to object variants, so as to return the corresponding timestamp (function VALID may be applied to valid time and bitemporal objects, whereas function TRANSACTION may be applied to transaction time and bitemporal objects).

Examples

Select the employees who have received salaries over 3000, (as recorded in the current database state):

SELECT e FROM e IN Employee

WHERE EXISTS s IN e->salary: s > 3000

(Since the WHEN clause is not used, variable s iterates over the variants of salary which have not been logically deleted.)

For each employee, list his/her name, the names of departments he has managed, along with the corresponding period:

SELECT tuple(empName: e->name,

deptName: d->name,

mgmtPeriod: VALID(d))

FROM e IN Employee, d IN e->isManager

For each employee, list his/her name and the names of departments he worked in, as known to the database on 1992/01/01.

SELECT tuple(empName: e->name, deptName: d->name)

FROM e IN Employee, d IN e->isManager

WHEN dt IN TRANSACTION d: dt OVERLAPS '1992/01/01'

(since a WHEN clause is used to select the transaction time period, variable dt iterates over the variants whose transaction time satisfies the respective criterion.)

Converting Between Temporal and Snapshot Values

The SNAPSHOT Modifier

TOQL provides the ability to convert temporal objects to a set of snapshot values, using the SNAPSHOT modifier. The SNAPSHOT modifier may be prepended to any query returning a temporal object and effectively drops all timestamps, returning only plain values. If the query returns a transaction time or bitemporal object, only the values that are not logically deleted are considered, unless a WHEN clause is used to specify the desired transaction time. For example, the query

SELECT tuple(name: e->name,

maxWage: max(SNAPSHOT e->salary))

FROM e IN employee

yields a set of tuples. Each tuple holds the name of an employee, and the maximum salary he/she has ever received, as known currently to the database (logically deleted values for the salary instance property are not considered, since no WHEN clause is present).

The VALID Modifier

The VALID modifier may be used to convert collections to valid time objects. The syntax of the VALID modifier is

VALID '[' period�expression ']'

and may be prepended to any query returning a collection of objects. The returned collection is converted to a valid time object: each element of the collection is converted to an object variant, within the valid time object. The timestamp of each variant is computed by evaluating the period�expression, which evaluates to a value of type PERIOD. For example, the query

VALID [period(e->birthDate, e->birthDate + interval(365 * 18))]

e->name FROM e in Employee

returns a valid time object. Each variant in the object corresponds to an employee’s name, and the associated valid timestamp is the 18 first years of the employee’s life (disregarding leap years), as depicted in the following figure.

� EMBED Equation.2 ���

(the type of the result is valid<String>.)

Coalescing may be performed, so as to reduce the number of variants required to represent the temporal information.

In order to preserve the orthogonality between collections and temporal objects, the query following the VALID modifier may yield a single temporal object (i.e. valid time, transaction time, or bitemporal object). In this case, each variant within the temporal object is converted to a variant within the result valid time object. The timestamp of the resulting object is computed by evaluating the period�expression. For example the query

SELECT tuple(name: e->name,

salary: VALID [VALID(s)] s FROM s IN e->salary)

FROM e IN employee

yields a set of tuples. Each tuple holds the name of an employee, and the history of his/her salary, converted to a valid time object. Since no WHEN clause is specified, logically deleted variants of the employee’s salary are not considered.

The TRANSACTION Clause

The TRANSACTION clause may be used to convert objects to transaction time objects. The TRANSACTION clause may be prepended to any query returning a single object, and yields a transaction time object. The result contains a single variant, whose value is set to the value of the argument, whereas its timestamp is set to [NOW, UC). Note that there is no provision to set the transaction time of the variant, since the transaction time reflects the time period that facts were known to the database, thus it is not reasonable to “force” past or future knowledge. For example, if the query

SELECT TRANSACTION e->name FROM e IN employee

is issued against the database presented in section � REF _Ref357695726 \n �2� on 1996/08, the result will be

� EMBED Equation.2 ���

(the type of the result is set<transaction<String>>.)

The TRANSACTION modifier may be prepended to a query yielding a temporal object. In this case, the temporal object may not have more than one variants.

The BITEMPORAL Modifier

The BITEMPORAL modifier may be used to convert collections to bitemporal objects. The syntax of the BITEMPORAL clause is

BITEMPORAL '[' period�expression ']' query

and its functionality is analogous to the VALID clause, except that it produces a bitemporal object, instead of a valid time object. The transaction timestamp of each variant is set to [NOW, UC).

Temporal Joins.

Temporal joins are needed when the information stored in two (or more) temporal objects must be combined. Consider the query ‘For each employee, list his name and his salary, during the periods that he/she was manager of any department, along with the department name and the corresponding period (as recorded in the current state of the database)’. The information about the employee’s salary is recorded in the salary instance property, which is bitemporal, whereas information about the history of each employee as a manager is stored in the isManager instance property, which is a valid time object. The query may be answered in TOQL using object variant referencing, as illustrated below:

SELECT tuple(name: e->name, dept: d, salary: s,

time: INTERSECT(VALID(d), VALID(s)))

FROM e IN Employee, d IN e->isManager, s IN e->salary

WHERE VALID(d) OVERLAPS VALID(s)

The query above may produce many tuples for each employee, one for each combination of department and salary with overlapping valid time periods. The schema of the result may be changed so as to produce one tuple for each employee, consisting of two fields, the first one being the employee’s name and the second one being an object of type valid<struct(dept:Department, salary: Unsigned Int)>. This can be achieved using the VALID clause, as presented below

SELECT tuple(name: e->name,

dept: BITEMPORAL [INTERSECT(VALID(d), VALID(s))]

tuple(dept: d, salary: s)

FROM d IN e->isManager, s IN e->salary

WHERE VALID(d) OVERLAPS VALID(s))

FROM e IN Employee

The query as presented above is quite verbose, and since it is anticipated that such queries will be frequent, TOQL provides a special operator, TJOIN, which may be used to express temporal joins between temporal objects. Using the TJOIN operator, the query above may be expressed as

SELECT tuple(name: e->name,

info: e->worksFor TJOIN(dept, salary) e->salary)

FROM e IN Employee

The syntax for the TJOIN operator is

query1 TJOIN '(' id1 ',' id2 ')' query2

where each query evaluates to a temporal object. The type of the result of the TJOIN operator depends on the types of its arguments. The cases are summarised in the following table:

�� EMBED Word.Picture.6 ���

Type of the result of the TJOIN operator

�Temporal Join Between Two Valid Time Objects

Applying the TJOIN(id1, id2) operator on two valid time objects VO1 and VO2, with types valid<T1> and valid<T2>, respectively produces a valid time object of type valid<struct(id1: T1, id2: T2)>. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:

a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.

a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.

intersect(validv1, validv2) = validv

Temporal Join Between a Valid Time and a Transaction Time Object

Applying the TJOIN(id1, id2) operator on a valid time object VO and a transaction time object TO, with types valid<T1> and transaction<T2>, respectively produces a bitemporal object of type bitemporal<struct(id1: T1, id2: T2)>. A variant b with value struct(id1: x1, id2: x2), valid timestamp validb and transaction timestamp transactionb belongs to the resulting object if the following conditions are met:

a variant v with value x1 and valid timestamp validb belongs to VO.

a variant t with value x2 and valid timestamp transactionb belongs to TO.

Whether logically deleted variants are considered in the formulation of the result of the temporal join depends on the existence of a WHEN clause which references the transaction timestamp of the transaction time object.

Analogous rules apply when the left operand is a transaction time object and the right operand is a valid time object.

Temporal Join Between a Valid Time and a Bitemporal Object

Applying the TJOIN(id1, id2) operator on a valid time object VO and a bitemporal object BO, with types valid<T1> and bitemporal<T2>, respectively produces a bitemporal object of type bitemporal<struct(id1: T1, id2: T2)>. A variant b with value struct(id1: x1, id2: x2), valid timestamp validb and transaction timestamp transactionb belongs to the resulting object if the following conditions are met:

a variant v with value x1 and valid timestamp validv belongs to VO.

a variant b1 with value x2, valid timestamp validb1 and transaction timestamp transactionb1 belongs to BO.

intersect(validv, validb1) = validb

Whether logically deleted variants are considered in the formulation of the result of the temporal join depends on the existence of a WHEN clause which references the transaction timestamp of the bitemporal time object.

Analogous rules apply when the left operand is a bitemporal object and the right operand is a valid time object.

Temporal Join Between two Transaction Time Objects

Applying the TJOIN(id1, id2) operator on two transaction time objects TO1 and TO2, with types transaction<T1> and transaction<T2>, respectively produces a transaction time object of type transaction<struct(id1: T1, id2: T2)>. A variant t with value struct(id1: x1, id2: x2) and transaction timestamp transactiont belongs to the resulting object if the following conditions are met:

a variant t1 with value x1 and transaction timestamp transactiont1 belongs to TO1.

a variant t2 with value x2 and transaction timestamp transactiont2 belongs to TO2.

intersect(transactiont1, transactiont2) = transactiont

Whether logically deleted variants of either transaction time object are considered in the formulation of the result of the temporal join, depends on the existence of a WHEN clause which references the transaction timestamp of each transaction time object.

Temporal Join Between a Transaction Time and a Bitemporal Object

Applying the TJOIN(id1, id2) operator on transaction time objects TO and a bitemporal object BO1, with types transaction<T1> and bitemporal<T2>, respectively, produces a bitemporal object of type bitemporal<struct(id1: T1, id2: T2)>. A variant t with value struct(id1: x1, id2: x2), valid timestamp validb and transaction timestamp transactionb belongs to the resulting object if the following conditions are met:

a variant t1 with value x1 and transaction timestamp transactiont1 belongs to TO1.

a variant b1 with value x2, valid timestamp validb1 and transaction timestamp transactionb1 belongs to BO1.

intersect(transactiont1, transactionb1) = transactionb

Whether logically deleted variants of the transaction time object and the bitemporal object are considered in the formulation of the result of the temporal join, depends on the existence of a WHEN clause which references the transaction timestamp of each object.

Analogous rules apply when the left operand is a bitemporal object and the right operand is a transaction time object.

Temporal Join Between Two Bitemporal Objects

Applying the TJOIN(id1, id2) operator on two bitemporal objects BO1 and BO2, with types bitemporal<T1> and bitemporal<T2>, respectively, produces a bitemporal object of type bitemporal<struct(id1: T1, id2: T2)>. A variant b with value struct(id1: x1, id2: x2), valid timestamp validb and transaction timestamp transactionb belongs to the resulting object if the following conditions are met:

a variant b1 with value x1, valid timestamp validb1 and transaction timestamp transactionb1 belongs to BO1.

a variant b2 with value x2, valid timestamp validb2 and transaction timestamp transactionb2 belongs to BO2.

intersect(validb1, validb2) = validb

intersect(transactionb1, transactionb2) = transactionb

Whether logically deleted variants of the transaction time object and the bitemporal object are considered in the formulation of the result of the temporal join, depends on the existence of a WHEN clause which references the transaction timestamp of each object.

Restructuring Operators.

Restructuring operators facilitate the formulation of different equivalent representations of temporal data. TOQL introduces two such operators, namely FOLD and UNFOLD.

The FOLD operator

The FOLD operator rearranges temporal object variants, so as to produce maximal timestamps either on the valid time or on the transaction time axis. Consider an employee, who signs a contract to work in a company during the period [1994/1, 1996/1) with a monthly salary of 2000, and this fact is recorded in the database on 1993/12. Later, this employee renegotiates his contract, and changes the duration to [1994/1, 1995/1); the database is updated on 1994/4. The latter fact is (logically) deleted from the database on 1995/2. The temporal data described above has many equivalent representations, e.g.:

� EMBED Equation.2 ����� EMBED Equation.2 �����(a)�(b)��Representation (a) has maximal valid timestamps, whereas representation (b) has maximal transaction timestamps. Now consider the queries:

Fetch the employees who had ever signed a contract with duration more than 18 months.

Fetch the employees for which no change for their wages during 1994 were recorded on 1994.

The first query can be expressed in TOQL as

SELECT e FROM e IN EMPLOYEE

WHERE EXISTS s IN e->salary: VALID(e)->duration() > 18

 but it will only yield correct results if evaluated against representation (a) (indeed, if evaluated against representation (b), the employee will not be selected). The second query can be expressed in TOQL as

SELECT e FROM e IN EMPLOYEE

WHERE EXISTS s IN e->salary:

VALID(e) NOT OVERLAPS '[1994/01/01, 1995/01/01)' AND

TRANSACTION(e) NOT OVERLAPS '[1994/01/01, 1995/01/01)'

The query will return correct results if evaluated against representation (b).

Since TOQL cannot automatically determine which representation should be used, it is clear that the user should allow to choose whether maximal valid or maximal transaction timestamps will be used for the representation of temporal data. This facility is provided by the FOLD operator, whose syntax is

FOLD (query) BY VALID

or

FOLD (query) BY TRANSACTION

The query must return a temporal object (valid time, transaction time or bitemporal). The first variant produces maximal valid timestamps, whereas the second form produces maximal transaction timestamps. Using the FOLD operator, the two queries presented above can be expressed in TOQL as:

Query 1:

SELECT e FROM e IN EMPLOYEE

WHERE EXISTS s IN FOLD(e->salary) BY VALID:

VALID(e)->duration() > 18

Query 2:

SELECT e FROM e IN EMPLOYEE

WHERE EXISTS s IN FOLD(e->salary) BY TRANSACTION:

VALID(e) NOT OVERLAPS '[1994/01/01, 1995/01/01)' AND

TRANSACTION(e) NOT OVERLAPS '[1994/01/01, 1995/01/01)'

The FOLD operator provides independence between internal object representation and query evaluation. The data model may choose any of the two representations to store the temporal data in the database (or even a third one, e.g. the representation

� EMBED Equation.2 ���

which does not coalesce values neither on the valid time, nor on the transaction time axis). The TOQL optimiser, however, may detect cases in which the internal representation matches the requested one, and evaluate the result using directly the stored data, without performing any unnecessary processing.

The UNFOLD Operator

The UNFOLD operator breaks down each valid or transaction time period to individual time points, producing thus many object variants out of a single one. For example, in order to produce a report on which departments is employee Dr. Frankenstein Jr. has managed for each individual month, the following query should be issued:

SELECT tuple(dept: dm, mgmtPeriod: VALID(dm))

FROM e IN EMPLOYEE,

dm IN UNFOLD (e->isManager) BY VALID

WHERE e->name = 'Dr. Frankenstein Jr.'

The result of this query is the set {(Ref<Object0005>, ‘1993/04’), (Ref<Object0005>, ‘1993/05’), ..., (Ref<Object0005>, ‘1995/12’)}.

Type Considerations for the FOLD and UNFOLD Operators

In the context of TOQL, the results of operators FOLD and UNFOLD are treated as temporal objects, meaning that they can be used in temporal joins, variables can be defined ranging over the different variants they contain, etc. However, if the result of a FOLD, or UNFOLD operation appears on the select list of a top�level query, the type of the result returned to the host language is set<struct<value: T, validTime: period, transactionTime: period>> (one of the validTime and transactionTime fields may be omitted, if the folded/unfolded temporal object does not have a valid or a transaction timestamp). This guards against assignment of such results to temporal objects, which would violate the internal representation chosen by the data model.

Consider the case that the internal representation of an employee’s salary is

� EMBED Equation.2 ���

i.e. maximal valid timestamps are used. Now if the query

SELECT tuple(emp: e,

funny: FOLD(e->salary) BY TRANSACTION)

FROM e in Employee

is issued and the type of the result of the FOLD operator is bitemporal integer, the assignment

x.emp.salary = x.funny

(where x is a member of the result set) is permissible, and the value of the salary instance property of the Employee object will be set to

� EMBED Equation.2 ���

which is inconsistent with the data model representation. However, if a set type is returned, this assignment cannot be performed before the set is casted to a bitemporal object, in which case the method performing the type cast can arrange so that the proper internal representation is used.

Aggregation.

OQL supports two types of aggregation: the first type partitions sets into subsets, with each subset containing the members of the original set which share a specific property. For example the query

GROUP e IN Employee BY

(junior: e->birthDate >= '1966/01/01',

senior: e->birthDate < '1966/01/01')

returns a set containing two structures, each of which has a property called partition, which contains the set of employees that fall in this category and two boolean properties, namely junior and senior. The first structure contains in the partition property the employees who were born from 1966 and afterwards, while the second one contains in the same property containing the employees who were born before 1966. The values of the boolean variables (junior, senior), are (true, false) and (false, true), for the first and second structure respectively. The type of the result is

set<struct(junior: boolean, senior: boolean, partition: set<Employee>)>

TOQL supports this type of aggregation, allowing for interval comparison operators to be used for condition formulation.

The second type of aggregation is used to compute some aggregate value for objects sharing a specific property using the GROUP/BY/WITH construct. TOQL supports this type of aggregation too, allowing for temporal extensions to be used. For example, the average current salary of employees working currently in the same department, may be computed in TOQL as follows:

GROUP e IN Employee

WHEN v in VALID(e) overlaps NOW

BY (dept: element(SNAPSHOT e->WorksFor))

WITH (avgSal: AVG(SELECT element(SNAPSHOT x->salary)

FROM x IN PARTITION))

In the example above, the WHEN clause is used to select only the information which is valid at the present time point, and converts the resulting temporal objects to single values, before performing the final computations.

Since TOQL treats temporal objects orthogonally to sets, the application of set aggregate functions on temporal objects is allowed. Applying an aggregate function (min, max, sum, avg, count) on a temporal object, computes a scalar result by considering the variants stored in the temporal object (whether logically deleted variants are considered or not, depends on the presence of a WHEN clause referencing the transaction timestamp of the transaction time or bitemporal object). For example the query

SELECT tuple(name: e->name, numDepts: count(e->worksFor))

FROM e in Employee

returns a set of tuples, each one corresponding to an employee. Each tuple holds the employee name and the number of departments he has worked in.

When one of the aggregate functions min, max, sum and avg is applied on a temporal object, the argument may be preceded by the WEIGHTED VALID or WEIGHTED TRANSACTION modifiers. The effect of these modifiers is that the value associated with each variant is multiplied by the length of the associated valid (transaction) timestamp. For example, in order to compute, for each employee, the amount of money that is associated with all the contracts he has signed, the following TOQL query may be issued:

SELECT tuple(name: e->name,

amount: sum(WEIGHTED VALID e->salary))

FROM e in Employee

Aggregate values may be computed against fixed-length time periods, e.g. the average salary for each employee for each year. In this case, the result of the aggregate function is a set of values, rather than a single value. Each value in the resulting set is timestamped with the period over which it is computed. For example, the query

SELECT tuple(name: e->name,

yearlyPmt: sum(WEIGHTED VALID e->salary)

BY VALID PERIOD 1 YEAR)

FROM e in Employee

computes the amount of money paid to each employee for each year. The result is a set of two elements, each of which has a property name, holding the employee’s name, and a property named yearlyPmt. The type of yearlyPmt is

set<struct(value: Unsigned Short, when: Period)>

The when property of each member of yearlyPmt stores a period corresponding to a calendric year, whereas the value property stores the amount of money paid to the employee for that year.

When aggregation is used in the form presented above, it partitions the time axis to non-overlapping segments and computes one value for each segment. TOQL provides the ability to compute aggregate values for overlapping time segments, by using the WINDOW clause. For example, the query

SELECT tuple(name: e->name,

yearlyPmt: sum(WEIGHTED VALID e->salary)

BY VALI have ID PERIOD 1 YEAR WINDOW PERIOD 3 YEARS)

FROM e in Employee

computes the amount of money paid to each employee over periods of three years. The periods may overlap, e.g. an aggregate value may be computed over the period [1991, 1994), and another aggregate value may be computed over the period [1992, 1995). The computation of a value over a period depends on the existence of values whose timestamps overlap the period in question.

The complete syntax of aggregate functions is

<aggregate-function> '(' [WEIGHTED <timestamp-spec>] ')'

[BY <timestamp-spec> <period-expression>

[WINDOW <period-expression>]]

where <timestamp�spec> is one of the keywords VALID and TRANSACTION, and <period�expression> is an expression yielding a value of type PERIOD. The usage of the WEIGHTED modifier is disallowed when <aggregate�function> is count.

� An instance property is either an instance attribute or an instance relationship.

� The exact process of how to define this class will be explained later.

� This is actually the default value for key if the attribute (relationship) has temporal information.

� Note that the period keyword is omitted as it is the default for attributes with temporal characteristics.

� A temporal object is either a temporal instance property, or a valid time, transaction time or bitemporal piece of information, which has been computed within the query.

TOOBIS		T32TR.1 TODL Specifications

�PAGE �

TOOBIS		T32TR.1 & T33TR.1

		TODL & TOQL Specifications

�PAGE �ii�

- -

TOOBIS		T32TR.1 TODL Specifications

TOOBIS		T33TR.1 TOQL Specifications

- � PAGE �37� -

