TABLE OF CONTENTS
� TOC \o "1-4" \t "AppendixHead;1;AppendixHead2;2;AppendixHead3;3;UnnumHeading1;1" �Table of contents	� GOTOBUTTON _Toc377288442 � PAGEREF _Toc377288442 �i��
Table of figures	� GOTOBUTTON _Toc377288443 � PAGEREF _Toc377288443 �iv��
1. Specification	� GOTOBUTTON _Toc377288444 � PAGEREF _Toc377288444 �5��
1.1 Introduction/Design Objectives	� GOTOBUTTON _Toc377288445 � PAGEREF _Toc377288445 �5��
1.2 Data types for Time Representation	� GOTOBUTTON _Toc377288446 � PAGEREF _Toc377288446 �5��
1.2.1 Literals	� GOTOBUTTON _Toc377288447 � PAGEREF _Toc377288447 �6��
A. Instants	� GOTOBUTTON _Toc377288448 � PAGEREF _Toc377288448 �6��
B. Intervals	� GOTOBUTTON _Toc377288449 � PAGEREF _Toc377288449 �7��
C. Periods	� GOTOBUTTON _Toc377288450 � PAGEREF _Toc377288450 �8��
D. Period sets	� GOTOBUTTON _Toc377288451 � PAGEREF _Toc377288451 �9��
1.2.2 Functions	� GOTOBUTTON _Toc377288452 � PAGEREF _Toc377288452 �10��
1.2.3 Predicates	� GOTOBUTTON _Toc377288453 � PAGEREF _Toc377288453 �15��
1.2.4 Operators	� GOTOBUTTON _Toc377288454 � PAGEREF _Toc377288454 �16��
1.2.5 Automatic type and granularity conversions	� GOTOBUTTON _Toc377288455 � PAGEREF _Toc377288455 �17��
A. Type conversions	� GOTOBUTTON _Toc377288456 � PAGEREF _Toc377288456 �18��
B. Granularity conversions	� GOTOBUTTON _Toc377288457 � PAGEREF _Toc377288457 �18��
1.3 A Sample Database	� GOTOBUTTON _Toc377288458 � PAGEREF _Toc377288458 �19��
1.4 Queries on Temporal Data	� GOTOBUTTON _Toc377288459 � PAGEREF _Toc377288459 �20��
1.4.1 Expressions for valid state objects not allowing overlapping timestamps and valid event objects	� GOTOBUTTON _Toc377288460 � PAGEREF _Toc377288460 �23��
1.4.2 Expressions for valid state objects that allow overlapping timestamps	� GOTOBUTTON _Toc377288461 � PAGEREF _Toc377288461 �24��
1.4.3 Expressions for transaction time objects	� GOTOBUTTON _Toc377288462 � PAGEREF _Toc377288462 �25��
1.4.4 Expressions for bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects	� GOTOBUTTON _Toc377288463 � PAGEREF _Toc377288463 �26��
1.4.5 Expressions for bitemporal objects that allow overlapping valid timestamps	� GOTOBUTTON _Toc377288464 � PAGEREF _Toc377288464 �28��
1.4.6 Examples	� GOTOBUTTON _Toc377288465 � PAGEREF _Toc377288465 �30��
1.4.7 The type of the result of the subscript operators	� GOTOBUTTON _Toc377288466 � PAGEREF _Toc377288466 �30��
1.4.8 Support for evolved and deleted values	� GOTOBUTTON _Toc377288467 � PAGEREF _Toc377288467 �31��
1.4.9 Extracting object states	� GOTOBUTTON _Toc377288468 � PAGEREF _Toc377288468 �32��
1.4.10 Semantic ambiguity resolution	� GOTOBUTTON _Toc377288469 � PAGEREF _Toc377288469 �33��
1.5 Referencing Object Variants	� GOTOBUTTON _Toc377288470 � PAGEREF _Toc377288470 �34��
1.6 Conversion Between Temporal and Snapshot Values	� GOTOBUTTON _Toc377288471 � PAGEREF _Toc377288471 �35��
A. The snapshot modifier	� GOTOBUTTON _Toc377288472 � PAGEREF _Toc377288472 �35��
B. The valid modifier	� GOTOBUTTON _Toc377288473 � PAGEREF _Toc377288473 �36��
C. The transaction modifier	� GOTOBUTTON _Toc377288474 � PAGEREF _Toc377288474 �37��
D. The bitemporal modifier	� GOTOBUTTON _Toc377288475 � PAGEREF _Toc377288475 �37��
1.7 Temporal Joins	� GOTOBUTTON _Toc377288476 � PAGEREF _Toc377288476 �38��
1.7.1 The type of the result of the temporal join	� GOTOBUTTON _Toc377288477 � PAGEREF _Toc377288477 �39��
1.7.2 The value of the result of a temporal join	� GOTOBUTTON _Toc377288478 � PAGEREF _Toc377288478 �40��
A. Temporal join between two valid state objects not allowing overlapping	� GOTOBUTTON _Toc377288479 � PAGEREF _Toc377288479 �40��
B. Temporal join between two valid state objects allowing overlapping	� GOTOBUTTON _Toc377288480 � PAGEREF _Toc377288480 �40��
C. Temporal join between two valid event objects	� GOTOBUTTON _Toc377288481 � PAGEREF _Toc377288481 �41��
D. Temporal join between a valid state object not allowing overlapping and a valid state object allowing overlapping	� GOTOBUTTON _Toc377288482 � PAGEREF _Toc377288482 �41��
E. Temporal join between a valid state object not allowing overlapping and a valid event object	� GOTOBUTTON _Toc377288483 � PAGEREF _Toc377288483 �41��
1.7.3 Temporal joins involving more than two objects	� GOTOBUTTON _Toc377288484 � PAGEREF _Toc377288484 �42��
1.8 Restructuring Operators	� GOTOBUTTON _Toc377288485 � PAGEREF _Toc377288485 �42��
1.8.1 Converting period timestamping variants to instant timestamping	� GOTOBUTTON _Toc377288486 � PAGEREF _Toc377288486 �42��
1.8.2 Producing maximal timestamps	� GOTOBUTTON _Toc377288487 � PAGEREF _Toc377288487 �44��
1.9 Aggregation	� GOTOBUTTON _Toc377288488 � PAGEREF _Toc377288488 �46��
1.9.1 Partitioning a single temporal object into variant subsets	� GOTOBUTTON _Toc377288489 � PAGEREF _Toc377288489 �47��
1.9.2 Combining variants from multiple temporal objects	� GOTOBUTTON _Toc377288490 � PAGEREF _Toc377288490 �51��
1.10 TOQL and User Requirements	� GOTOBUTTON _Toc377288491 � PAGEREF _Toc377288491 �52��
2. Design	� GOTOBUTTON _Toc377288492 � PAGEREF _Toc377288492 �55��
2.1 Introduction	� GOTOBUTTON _Toc377288493 � PAGEREF _Toc377288493 �55��
2.2 Architecture for the TOQL Processor	� GOTOBUTTON _Toc377288494 � PAGEREF _Toc377288494 �55��
2.3 Query Processing	� GOTOBUTTON _Toc377288495 � PAGEREF _Toc377288495 �58��
2.3.1 Syntactical transformations	� GOTOBUTTON _Toc377288496 � PAGEREF _Toc377288496 �59��
A. Literals	� GOTOBUTTON _Toc377288497 � PAGEREF _Toc377288497 �59��
B. Functions	� GOTOBUTTON _Toc377288498 � PAGEREF _Toc377288498 �59��
C. Predicates	� GOTOBUTTON _Toc377288499 � PAGEREF _Toc377288499 �60��
D. Operators	� GOTOBUTTON _Toc377288500 � PAGEREF _Toc377288500 �60��
E. Type conversions	� GOTOBUTTON _Toc377288501 � PAGEREF _Toc377288501 �61��
F. Retrieval of temporal instance properties	� GOTOBUTTON _Toc377288502 � PAGEREF _Toc377288502 �61��
G. Extracting object states	� GOTOBUTTON _Toc377288503 � PAGEREF _Toc377288503 �63��
H. Referencing object variants	� GOTOBUTTON _Toc377288504 � PAGEREF _Toc377288504 �64��
I. Conversion between temporal and snapshot values	� GOTOBUTTON _Toc377288505 � PAGEREF _Toc377288505 �65��
J. Temporal joins	� GOTOBUTTON _Toc377288506 � PAGEREF _Toc377288506 �66��
K. Restructuring operators	� GOTOBUTTON _Toc377288507 � PAGEREF _Toc377288507 �67��
L. Aggregation	� GOTOBUTTON _Toc377288508 � PAGEREF _Toc377288508 �68��
2.3.2 Auxiliary methods	� GOTOBUTTON _Toc377288509 � PAGEREF _Toc377288509 �70��
2.3.3 Implementation of TOQL on top of an OQL v. 1.1 compliant OODBMS	� GOTOBUTTON _Toc377288510 � PAGEREF _Toc377288510 �71��
2.4 Using TOQL in C++	� GOTOBUTTON _Toc377288511 � PAGEREF _Toc377288511 �71��
3. Conclusions	� GOTOBUTTON _Toc377288512 � PAGEREF _Toc377288512 �73��
Appendix A: TOQL BNF syntax	� GOTOBUTTON _Toc377288513 � PAGEREF _Toc377288513 �74��
1. Axiom	� GOTOBUTTON _Toc377288514 � PAGEREF _Toc377288514 �74��
2. Basic	� GOTOBUTTON _Toc377288515 � PAGEREF _Toc377288515 �74��
3. Simple Expression	� GOTOBUTTON _Toc377288516 � PAGEREF _Toc377288516 �74��
4. Comparison	� GOTOBUTTON _Toc377288517 � PAGEREF _Toc377288517 �75��
5. Boolean expression	� GOTOBUTTON _Toc377288518 � PAGEREF _Toc377288518 �75��
6. Constructor	� GOTOBUTTON _Toc377288519 � PAGEREF _Toc377288519 �75��
7. Accessor	� GOTOBUTTON _Toc377288520 � PAGEREF _Toc377288520 �75��
8. History accessor	� GOTOBUTTON _Toc377288521 � PAGEREF _Toc377288521 �76��
9. Timestamp Accessor	� GOTOBUTTON _Toc377288522 � PAGEREF _Toc377288522 �76��
10. Collection expression	� GOTOBUTTON _Toc377288523 � PAGEREF _Toc377288523 �76��
11. Select Expression	� GOTOBUTTON _Toc377288524 � PAGEREF _Toc377288524 �77��
11. Set expression	� GOTOBUTTON _Toc377288525 � PAGEREF _Toc377288525 �77��
12. Conversion	� GOTOBUTTON _Toc377288526 � PAGEREF _Toc377288526 �77��
13. Temporal Modifiers	� GOTOBUTTON _Toc377288527 � PAGEREF _Toc377288527 �78��
14. Temporal join	� GOTOBUTTON _Toc377288528 � PAGEREF _Toc377288528 �78��
15. Restructuring operator	� GOTOBUTTON _Toc377288529 � PAGEREF _Toc377288529 �78��
Appendix B: Language completeness with respect to the user requirements	� GOTOBUTTON _Toc377288530 � PAGEREF _Toc377288530 �79��
1. Delta Application	� GOTOBUTTON _Toc377288531 � PAGEREF _Toc377288531 �79��
Query A	� GOTOBUTTON _Toc377288532 � PAGEREF _Toc377288532 �79��
Query B	� GOTOBUTTON _Toc377288533 � PAGEREF _Toc377288533 �80��
Query C	� GOTOBUTTON _Toc377288534 � PAGEREF _Toc377288534 �81��
Query D	� GOTOBUTTON _Toc377288535 � PAGEREF _Toc377288535 �81��
Query E	� GOTOBUTTON _Toc377288536 � PAGEREF _Toc377288536 �81��
Query F	� GOTOBUTTON _Toc377288537 � PAGEREF _Toc377288537 �81��
Query G	� GOTOBUTTON _Toc377288538 � PAGEREF _Toc377288538 �82��
Query H	� GOTOBUTTON _Toc377288539 � PAGEREF _Toc377288539 �82��
2. GlaxoWellcome Application	� GOTOBUTTON _Toc377288540 � PAGEREF _Toc377288540 �82��
Query A: Belonging, existence, of one event to a period	� GOTOBUTTON _Toc377288541 � PAGEREF _Toc377288541 �82��
Query B: Comparisons of dates, translation of dates by intervals	� GOTOBUTTON _Toc377288542 � PAGEREF _Toc377288542 �83��
Query C: Comparisons of periods	� GOTOBUTTON _Toc377288543 � PAGEREF _Toc377288543 �83��
Query D: Calculation of interval	� GOTOBUTTON _Toc377288544 � PAGEREF _Toc377288544 �83��
Query E: Comparisons of values on a period, or at different dates	� GOTOBUTTON _Toc377288545 � PAGEREF _Toc377288545 �84��
Query F: Average of a value on a period, or on an interval	� GOTOBUTTON _Toc377288546 � PAGEREF _Toc377288546 �84��
Query G: Search for some periods or intervals that satisfy a criterion	� GOTOBUTTON _Toc377288547 � PAGEREF _Toc377288547 �84��
Query H: Manipulation of relative time	� GOTOBUTTON _Toc377288548 � PAGEREF _Toc377288548 �85��
Appendix C: Snapshot application compatibility	� GOTOBUTTON _Toc377288549 � PAGEREF _Toc377288549 �86��
1. Accessing Temporal Properties	� GOTOBUTTON _Toc377288550 � PAGEREF _Toc377288550 �86��
2. Accessing Objects with Temporal Properties	� GOTOBUTTON _Toc377288551 � PAGEREF _Toc377288551 �87��
3. A Compatibility Example	� GOTOBUTTON _Toc377288552 � PAGEREF _Toc377288552 �87��
Appendix D: Temporal Selection	� GOTOBUTTON _Toc377288553 � PAGEREF _Toc377288553 �91��
The when Clause vs. Subscripting	� GOTOBUTTON _Toc377288554 � PAGEREF _Toc377288554 �91��
Appendix F: References	� GOTOBUTTON _Toc377288555 � PAGEREF _Toc377288555 �94��
�Table of figures
� TOC \c "Figure" �Figure 1 - Specifying literals of type Instant	� GOTOBUTTON _Toc377274857 � PAGEREF _Toc377274857 �7��
Figure 2 - Specifying literals of type Interval	� GOTOBUTTON _Toc377274858 � PAGEREF _Toc377274858 �7��
Figure 3 - Specifying literals of type Period	� GOTOBUTTON _Toc377274859 � PAGEREF _Toc377274859 �9��
Figure 4 - Specifying literals of type Period Set	� GOTOBUTTON _Toc377274860 � PAGEREF _Toc377274860 �10��
Figure 5 - Operations on intervals	� GOTOBUTTON _Toc377274861 � PAGEREF _Toc377274861 �16��
Figure 6 - Operations on instants	� GOTOBUTTON _Toc377274862 � PAGEREF _Toc377274862 �16��
Figure 7 - Operations on periods	� GOTOBUTTON _Toc377274863 � PAGEREF _Toc377274863 �17��
Figure 8 - Operations on period sets	� GOTOBUTTON _Toc377274864 � PAGEREF _Toc377274864 �17��
Figure 9 - Expressions for valid state objects not allowing overlapping and valid event objects	� GOTOBUTTON _Toc377274865 � PAGEREF _Toc377274865 �24��
Figure 10 - Expressions for valid state objects that allow overlapping timestamps	� GOTOBUTTON _Toc377274866 � PAGEREF _Toc377274866 �25��
Figure 11 - Expressions for transaction time objects	� GOTOBUTTON _Toc377274867 � PAGEREF _Toc377274867 �26��
Figure 12 - Expressions on bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects	� GOTOBUTTON _Toc377274868 � PAGEREF _Toc377274868 �27��
Figure 13 - Expressions on bitemporal objects that allow overlapping valid timestamps	� GOTOBUTTON _Toc377274869 � PAGEREF _Toc377274869 �29��
Figure 14 - Type of the result of the tstruct operator	� GOTOBUTTON _Toc377274870 � PAGEREF _Toc377274870 �39��
Figure 15 - Equivalent representations of temporal information	� GOTOBUTTON _Toc377274871 � PAGEREF _Toc377274871 �44��
Figure 16 - TOQL capabilities against user requirements	� GOTOBUTTON _Toc377274872 � PAGEREF _Toc377274872 �54��
Figure 17 - TOQL processor architecture	� GOTOBUTTON _Toc377274873 � PAGEREF _Toc377274873 �55��
Figure 18 - The TOQL processor modules	� GOTOBUTTON _Toc377274874 � PAGEREF _Toc377274874 �56��
Figure 19 - Overhead introduced for lexical analysis, syntax analysis and rewriting	� GOTOBUTTON _Toc377274875 � PAGEREF _Toc377274875 �58��
Figure 20 - Percentage of the introduced overhead to overall query execution time	� GOTOBUTTON _Toc377274876 � PAGEREF _Toc377274876 �58��
Figure 21 - Transformations for literal support	� GOTOBUTTON _Toc377274877 � PAGEREF _Toc377274877 �59��
Figure 22 - Transformations for function support	� GOTOBUTTON _Toc377274878 � PAGEREF _Toc377274878 �59��
Figure 23 - Transformations for predicate support	� GOTOBUTTON _Toc377274879 � PAGEREF _Toc377274879 �60��
Figure 24 - Transformations for standard comparison operators support	� GOTOBUTTON _Toc377274880 � PAGEREF _Toc377274880 �60��
Figure 25 - Transformations for operator support	� GOTOBUTTON _Toc377274881 � PAGEREF _Toc377274881 �61��
Figure 26 - Transformations for implicit conversion support	� GOTOBUTTON _Toc377274882 � PAGEREF _Toc377274882 �61��
Figure 27 - Transformations used for supporting functions count, first and last for temporal objects	� GOTOBUTTON _Toc377274883 � PAGEREF _Toc377274883 �62��
Figure 28 - Transformations for subscript support	� GOTOBUTTON _Toc377274884 � PAGEREF _Toc377274884 �62��
Figure 29 - Transformations for supporting functions valid and transaction on the results of subscript operators	� GOTOBUTTON _Toc377274885 � PAGEREF _Toc377274885 �63��
Figure 30 - Transformations for supporting functions valid and transaction on the results of subscript operators	� GOTOBUTTON _Toc377274886 � PAGEREF _Toc377274886 �63��
Figure 31 - Transformations for object state extraction	� GOTOBUTTON _Toc377274887 � PAGEREF _Toc377274887 �64��
Figure 32 - A sample snapshot database schema	� GOTOBUTTON _Toc377274888 � PAGEREF _Toc377274888 �88��
Figure 33 - Sample snapshot database contents	� GOTOBUTTON _Toc377274889 � PAGEREF _Toc377274889 �88��
Figure 34 - Database contents after the introduction of temporal semantics	� GOTOBUTTON _Toc377274890 � PAGEREF _Toc377274890 �89��
��Specification
Introduction/Design Objectives
In this section we give the functional specification of TOQL. The new features are given in bold, to make reading easier. In the language extension which is presented below, the following goals were adopted:
TOQL is an upwards compatible extension of OQL.
Every statement that is valid in OQL v. 1.2 ([ODMG95]) should be valid in TOQL, so as to allow applications that do not incorporate temporal semantics to function on top of the extended DBMS. TOQL also provides extensions for the management of temporal data. These extensions must adhere to the overall syntax of OQL.
Temporal and non-temporal data should be treated uniformly.
Temporal data� should not present different behaviour than non-temporal data. They should appear like “normal” data, equipped with some special functionality, accessible via methods and language constructs.
TOQL should provide complete temporal functionality.
The extended language must provide adequate functionality to support the needs of the applications. Timestamps should be accessible and temporal operations (e.g. temporal selection and temporal join) must be provided.
Temporal query syntax and semantics should be clear.
Despite the fact that temporal queries have an inherent degree of complexity, query syntax should be kept simple and semantics must be clear.
Query evaluation must preserve the updatability of the results to the maximum extent possible.
The default functionality of the language should be oriented towards returning updatable objects, thus the schema of query results should match the schema of the actual database objects. This is compliant to the ODMG semantics, under which no implicit schema transformations ever take place. However, the user must be able to specify and retrieve arbitrary object schemata.
Data types for Time Representation
TOQL provides with facilities to manipulate the data types which are used for the representation of time, namely INTERVAL, INSTANT, PERIOD, and PERIOD_SET�. A TOQL query may contain literals of these types as well as functions, predicates and operators which can be applied on these data types. In the following paragraphs these features of TOQL are described.
Literals
Instants
A literal of type INSTANT may be specified by using the reserved word INSTANT, followed by a string literal containing the actual value. The string literal is, in turn, followed by a granularity specification. Finally, the granularity specification may be followed by a calendar specification.
If the calendar specification is missing, the default one is used, which is the Gregorian. The granularity specification, if present, should designate a granularity that is valid for the calendar in which the instant is expressed; if the granularity specification is missing, the default granularity for the calendar is used (in the Gregorian calendar, the default granularity is second).
The format of the string literal following the keyword INSTANT is calendar dependent. In the Gregorian calendar, the string literal of an instant specification is YYYY�MM�DD HH:MM:SS, where the first part (i.e. the portion before the space) represents the date and the second part represents the time. Only the year part is mandatory, whereas all other fields are optional. However if some field is present, all other fields between the year and the specified field must be entered (e.g. if the day part is specified, the month field is mandatory).
If the value in the string literal contains more information than is needed in the specified granularity (e.g. in the Gregorian calendar the string literal contains a month specification, whereas a granularity of year is specified for the value), the extra information is ignored; if less information is supplied, the missing parts are filled using default values (in the Gregorian calendar, the default value for months and days is 1; for hours, minutes and seconds, the default value is 0).
The string literal may contain one of the words BEGINNING, FOREVER and NOW, designating the minimum, maximum and the current timestamp, respectively. In particular, the word NOW may be followed by an opening and a closing parenthesis (NOW()), in which case the computation of the value of the system clock is deferred until the actual value of the instant is needed. This feature is useful only when the instant is used as an argument to an update method, since in all other cases the instant will be bound to the value of the system clock at the query’s execution time, and is thus equivalent to NOW. � REF _Ref368138558 * MERGEFORMAT �Figure 1� presents some examples of Instant literals specification.
Literal�Value��INSTANT '1990' YEAR CALENDAR Gregorian�An instant for the year 1990 of the Gregorian calendar.��INSTANT '1990-01-01' MONTH�The instant January 1st, 1990, in the Gregorian (default) calendar with a granularity of month. The day specification is ignored, since it is redundant for instants with a granularity of month.��INSTANT '1990-01' DAY�The instant January 1990, in the Gregorian (default) calendar with a granularity of day. The missing part (day specification) is filled with a default value (1), thus the result is the instant January 1st, 1990.��INSTANT 'NOW' MINUTE�The current date and time, expressed in a granularity of minute in the Gregorian (default) calendar.��INSTANT 'Spring 1996' SEMESTER CALENDAR Academic�An instant corresponding to the Spring semester of the academic year 1996. It is expressed in the “Academic” calendar, having a granularity of “Semester”.��Figure � SEQ Figure * ARABIC �1� - Specifying literals of type Instant
Intervals
A literal of type INTERVAL may be specified by using the reserved word INTERVAL, followed by a string literal containing the actual value. The string literal is, in turn, followed by a granularity designation which may be followed by a calendar specification.
If the calendar specification is missing, the Gregorian calendar is used as a default. The granularity specification, if present, should designate a granularity which is valid for the calendar in which the instant is expressed (year, month, day, hour, minute or second, in the Gregorian calendar); if the granularity specification is missing, the default granularity for the specified (or default) calendar is used. � REF _Ref368153501 * MERGEFORMAT �Figure 2� presents some examples of Period literals specification.
Literal�Value��INTERVAL '10' DAY CALENDAR Gregorian�An interval of 10 Gregorian calendar days.��INTERVAL '5' YEAR�An interval of 5 years in the Gregorian (default) calendar.��INTERVAL '2' SEMESTER CALENDAR Academic�An interval of two semesters in the academic calendar.��Figure � SEQ Figure * ARABIC �2� - Specifying literals of type Interval
Periods
Literals of type PERIOD may be specified by using the reserved word PERIOD, followed by a string literal containing the actual value. The string literal is, in turn, followed by a granularity specification (in the Gregorian calendar, acceptable granularities are year, month, day, hour, minute and second). The granularity specification may be followed by a calendar designation.
If the calendar specification is omitted, the Gregorian calendar is used as default. The granularity specification if present, should designate a granularity which is valid for the calendar in which the instant is expressed (year, month, day, hour, minute or second, in the Gregorian calendar); if the granularity specification is missing, the default granularity for the specified (or default) calendar is used.
The string literal must have a value which starts with a left square bracket (‘[’), end with a right parenthesis (‘)’) and contains two comma-separated literals li and lj of type INSTANT, which must be expressed in the period’s calendar. Only the ‘string value’ part of the instant-type literals should be specified, i.e. the reserved word INSTANT, the granularity specification and the calendar designation are omitted. A value of type PERIOD is considered to include all instants from li up to, but not including lj.
The period literal specification is considered valid only if lj designates a time instant which follows li. Note that this check is performed after converting each instant to the designated granularity, so the period literal PERIOD '[1990-01, 1990-04)' YEAR is invalid, since, after converting each endpoint instant to a granularity of year, the second instant is equal to the first one. If any of the endpoints is equal to NOW(), then the following additional conditions must be met:
if the value of the first instant is NOW(), the value of the second instant must be FOREVER.
if the value of the second instant is NOW(), the current value of the system clock should be greater than the first instant.
� REF _Ref368153527 * MERGEFORMAT �Figure 3� presents some examples of Period literals specification.
Literal�Value��PERIOD '[1990, 1991)' YEAR CALENDAR Gregorian�The year 1990 of the Gregorian calendar.��PERIOD '[1990-01, 1992-07)' MONTH�A 30-month period, starting from January 1990 and ending at July 1992 (the last month is not included in the period). The period is expressed in the Gregorian calendar (the default)��PERIOD '[1990, 1991-04)' MONTH CALENDAR Gregorian�An 15-month period, starting from January 1990 and ending at April 1991 in the Gregorian calendar. The information missing from the first instant (the month specification) is filled with a default value (1).��PERIOD '[NOW, 2000-01-01)' DAY�A period starting from the current time and ending at the first day of year 2000. The period is expressed in the Gregorian (default) calendar.��PERIOD '[Winter 1996, Spring 1997)' CALENDAR Academic�A period starting at the Winter semester of the academic year 1996 and ending at the Spring semester of the academic year 1997. ��Figure � SEQ Figure * ARABIC �3� - Specifying literals of type Period
Period sets
Period set literals may be specified by using a constructor, in the same way that set literals may be defined in OQL. The constructor is named period_set, it is followed by a granularity specifier and a calendar designation. The constructor accepts a list of values of type PERIOD, which are the elements of the period sets. For each argument only its string literal part needs to be specified, i.e. the PERIOD keyword and the granularity designation may be omitted. However, the TOQL processor accepts full period specifications for any of the arguments to the constructor.
If the calendar specification is omitted, the default calendar is used, which is the Gregorian one. The granularity specification, if present, should designate a granularity which is valid for the calendar in which the period set is expressed (year, month, day, hour, minute or second, in the Gregorian calendar); if the granularity specification is missing, the default granularity for the specified (or default) calendar is used. All periods that are included in the constructor should be expressed in the calendar of the period set.
All arguments to the constructor are converted to the designated granularity and overlapping or adjacent arguments to the constructor are merged into a single period value, within the period set. � REF _Ref368153741 * MERGEFORMAT �Figure 4� presents some examples of Period set literals specification.
Literal�Value��period_set('[1990, 1991)',
	'[1992, 1994)') YEAR�A period set containing two intervals. The default calendar (Gregorian) is used for the period set.��period_set(PERIOD '[1990, 1991)' YEAR) DAY CALENDAR Gregorian
�A period set of granularity day, containing the period '[1990-01-01, 1991-01-01)' (the result of casting the period '[1990, 1991)' to a granularity of day. The period set is expressed in the Gregorian calendar.��period_set('[1990, 1991)',
	'[1991, 1992)') YEAR�A period set with one element, corresponding to the years 1990 and 1991. Two arguments are listed in the constructor, but since they are adjacent, they are replaced by a single period ('[1990, 1992)') in the result value.��period_set('[Winter 1996, Spring 1997)') SEMESTER CALENDAR Academic�A period set with a single period element, expressed in the Academic calendar.��Figure � SEQ Figure * ARABIC �4� - Specifying literals of type Period Set
Functions
TOQL introduces new functions which can be applied on data of type INSTANT, PERIOD and PERIOD SET. These functions allow for the construction of values of type PERIOD and PERIOD SET (functions period, intersection, merge, and function period_set, presented in the previous section), event and period extraction (functions begin, end, first and last; for Gregorian instants, functions year, month, day, hour, minute, second are also provided) and computation of the duration of periods and period sets (function duration).
These functions are defined at the data model level as class methods, and thus may be called using the standard method invocation syntax (e.g. p1�>duration()), but the functional notation is more user friendly. The TOQL processor will arrange for the necessary transformations. Functions intersection, merge and duration are not really needed, since the same results may be computed using expressions, but it is estimated that they will be used quite frequently, so they are provided in order to facilitate more compact query formulation.
The signatures of the new functions, along with a brief description of their functionality is presented in the following paragraphs.
PERIOD period(in Instant I1, in Instant I2)
Period is a constructor function. It accepts two arguments of type INSTANT and returns a result of type PERIOD, starting at Instant1 and ending at Instant2. (Note that, since the periods are open right, instant Instant2 is not included in the period.) Both arguments must have the same granularity, which determines the result’s granularity. If Instant1 does not occur later on the time axis than Instant1, the NIL value is returned.
Examples:
period(INSTANT ‘1994-01’ MONTH, INSTANT ‘1995-01’ MONTH) = PERIOD ‘[1994�01, 1995�01)’ MONTH
period(INSTANT ‘1995-01’ MONTH, INSTANT ‘1994-01’ MONTH) = NIL
period(min(I1, I2), max(I1, I2)) returns a period which is delimited by the instants I1 and I2. The earliest instant is used as the period’s start, whereas the latest one is used as the period’s end.
PERIOD intersection(in PERIOD P1, in PERIOD P2)
When applied on two arguments of type PERIOD, the intersection yields a result of the same type. The result contains all time points which are common to the two arguments and its granularity is the same as the function’s arguments’ granularity�. If the two arguments do not have common points, the intersection function returns the NIL value.
Examples:
intersection(‘[1994�01, 1995�01)’, ‘[1994�06, 1995�06)’) = ‘[1994�06, 1995�01)’
intersection(‘[1994�01, 1995�01)’, ‘[1995�06, 1996�01)’) = NIL
PERIOD_SET intersection(in PERIOD_SET PS1, in PERIOD_SET PS2)
When applied on two arguments of type PERIOD SET, the intersection yields a result of the same type. The result contains all time points which are common to its two arguments, represented as non adjacent and non overlapping periods. If the two arguments do not have common points, the intersection function returns the empty period set. The granularity of the result is the same as the function’s arguments’ granularity.
Examples:
intersection(period_set(‘[1994�01, 1995�01)’, ‘[1996-01, 1997-01)’) MONTH, period_set(‘[1994�06, 1995�06)’) MONTH) = {‘[1994�06, 1995�01)’}
intersection(period_set(‘[1994�01, 1995�01)’) MONTH, period_set(‘[1995�06, 1996�01)’) MONTH) = {} (empty period set)
PERIOD merge(in PERIOD P1, in PERIOD P2)
When the merge function is applied on two arguments of type PERIOD it yields a result of the same type. The result contains all time points which are included in either argument, and its granularity is the same as the arguments’ granularity. If the two arguments are neither overlapping, nor adjacent and thus the result cannot be represented using a single value of type PERIOD, the merge function returns the NIL value.
Examples:
merge(‘[1994�01, 1995�01)’, ‘[1994�06, 1995�06)’) = ‘[1994�01, 1995�06)’
merge(‘[1994�01, 1995�01)’, ‘[1995�06, 1996�01)’) = NIL
PERIOD_SET merge(in PERIOD_SET P1, in PERIOD_SET P2)
When the merge function is applied on two arguments of type PERIOD SET it yields a result of the same type. The result contains all time points which are included in either argument, expressed as non overlapping and non adjacent periods. The granularity of the result is the same as the arguments’ granularity.
Examples:
merge(period_set(‘[1994�01, 1995�01)’) MONTH, period_set(‘[1994�06, 1995�06)’) MONTH) = {‘[1994�01, 1995�06)’}
merge(period_set(‘[1994�01, 1995�01)’) MONTH, period_set(‘[1995�06, 1996�01)’) MONTH) = {‘[1994�01, 1995�01)’, ‘[1995�06, 1996�01)’}
short year(in Instant I)
Function year accepts an argument of type INSTANT and returns an integer, which corresponds to the year part of the argument. The argument must be an instant of the Gregorian calendar.
Example: year(INSTANT ‘1994-01’ MONTH) = 1994
short month(in Instant I)
Function month accepts an argument of type INSTANT and returns an integer, which corresponds to the month part of the argument. If the argument does not contain a month part (because its granularity is coarser than MONTH), the corresponding default value (1) is returned. The argument must be an instant of the Gregorian calendar.
Examples:
month(INSTANT ‘1994-05’ MONTH) = 5
month(INSTANT ‘1994’ YEAR) = 1
short day(in Instant I)
Function day accepts an argument of type INSTANT and returns an integer, which corresponds to the day part of the argument. If the argument does not contain a day part, the corresponding default value (1) is returned. The argument must be an instant of the Gregorian calendar.
Example: day(INSTANT ‘1994-01-08 04:59:01’ SECOND) = 8
short hour(in Instant I)
Function hour accepts an argument of type INSTANT and returns an integer, which corresponds to the hour part of the argument. If the argument does not contain a hour part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.
Example: hour(INSTANT ‘1994-01-08 04:59:01’ SECOND) = 4
short minute(in Instant I)
Function minute accepts an argument of type INSTANT and returns an integer, which corresponds to the minute part of the argument. If the argument does not contain a minute part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.
Example: minute(INSTANT ‘1994-01-08 04:59:01’ SECOND) = 59
short second(in Instant I)
Function second accepts an argument of type INSTANT and returns an integer, which corresponds to the seconds part of the argument. If the argument does not contain a seconds part, the corresponding default value (0) is returned. The argument must be an instant of the Gregorian calendar.
Example: second(INSTANT ‘1994-01-08 04:59:01’ SECOND) = 01
INSTANT begin(in PERIOD P)
When applied on an argument of type PERIOD the begin function returns an instant, which corresponds to the earliest time point contained in its argument. The granularity of the result is the same as the argument’s granularity.
Example: begin(PERIOD ‘[1994-01, 1995-01)’ MONTH) = ‘1994-01’
INSTANT begin(in PERIOD_SET PS)
When applied on an argument of type PERIOD SET the begin function returns an instant, which corresponds to the earliest time point contained in its argument. The granularity of the result is the same as the argument’s granularity.
Example: begin(PERIOD ‘[1994-01, 1995-01)’ MONTH) = ‘1994-01’
INSTANT end(in PERIOD P)
When applied on an argument of type PERIOD, the end function returns an instant of the same granularity as the function argument. The value of the argument is equal to the ending boundary of the period.
Example: end(PERIOD ‘[1994�01, 1995�01)’ MONTH) = ‘1995�01’.
INSTANT end(in PERIOD_SET PS)
When applied on an argument of type PERIOD SET, the end function returns an instant of the same granularity as the function argument. The value of the result is equal to the ending boundary of the last period included in the argument.
Example: end(period_set(‘[1994�01, 1995�01)’, ‘[1995-06, 1997-01)’) MONTH) = ‘1997�01’ (note that since the period type is closed left-open right the time point 1997�01 is not considered to belong to the period).
INTERVAL duration(in PERIOD P)
When the argument of function duration is of type PERIOD, the function returns the argument’s duration, computed at the argument’s granularity (years, months, etc.).
Example: duration(PERIOD ‘[1994�01, 1995�01)’ MONTH) = INTERVAL ‘12’ MONTH.
INTERVAL duration(in PERIOD_SET PS)
When the argument of function duration is of type PERIOD SET, the function returns the sum of the durations of all the periods that its argument contains. The number of instants is computed at the argument’s granularity.
Example: duration(period_set(‘[1994, 1995)’, ‘[1996, 1997)’) YEAR) = 2
PERIOD first(in PERIOD_SET PS)
Function first accepts an argument of type PERIOD SET and returns a result of type PERIOD, which has the same granularity as the function argument. The value of the result is equal to the earliest period which is included in the argument. If the argument is the empty period set, the value NIL is returned.
Example: first(period_set(‘[1994, 1995)’, ‘[1996, 1997)’) YEAR) = ‘[1994, 1995)’
PERIOD last(in PERIOD_SET PS)
Function last accepts an argument of type PERIOD SET and returns a result of type PERIOD, which has the same granularity as the function argument. The value of the result is equal to the latest period which is included in the argument. If the argument is the empty period set, the value NIL is returned.
Example: last(period_set(‘[1994, 1995)’, ‘[1996, 1997)’) YEAR) = ‘[1996, 1997)’
In addition to the functions presented above, TOQL introduces a syntactic construct to facilitate explicit conversion of types used for time representation to a different granularity. In order to convert a datum of type INSTANT, INTERVAL, PERIOD or PERIOD SET to a different granularity, the CAST construct is used as follows:
CAST datum TO granularity_specification
where granularity_specification is a designation of the desired granularity. The conversion is performed according to the following rules:
when casting an instant to a coarser granularity, the extra information is dropped; when converting to a finer granularity, the missing information is filled with default values, as described in paragraph � REF _Ref368228252 \n �1.2.1�.
when casting a period to some granularity, the starting end point of the period is always converted to the target granularity, as described above. However, the rules for converting the ending instant, depend on whether the original granularity is finer or coarser that the target one:
if the target granularity is finer, then the ending instant is converted to it using the procedure described for instant conversion.
if the target granularity is coarser, then the last instant that is actually contained in the period is computed (note that since the period is open right, the last instant included in the period is the predecessor of the right end point), it is converted to the target granularity by dropping the excessive information, and then its successor is used as the ending instant of the result of the conversion.
These rules guarantee that no conversion leads to an illegal period and preserve the intuitive semantics of granularity conversion.
when casting a period set to another granularity (finer or coarser), each of the periods included of the period set is converted to the designated granularity. If the target granularity is coarser than the original, the conversion may lead to the merging of periods, within the period set.
Predicates
TOQL supports all comparison operators defined in OQL and introduces new predicates which facilitate testing of the relative position of instant, period and period set values. The new predicates are described in the following paragraphs (i1 and i2 denote instant values; p1 and p2 denote period values; ps1 and ps2 denote period set values):
p1 overlaps p2
ps1 overlaps ps2
The overlaps predicate may be applied on two operands of type PERIOD or PERIOD SET. It evaluates to true, when there exists one time point which is included in both operands, otherwise it evaluates to false.
Examples:
PERIOD ‘[1994�01, 1995�01)’ MONTH overlaps PERIOD ‘[1994�06, 1995�06)’ MONTH yields true
PERIOD ‘[1994�01, 1995�01)’ MONTH overlaps PERIOD ‘[1995�06, 1996�01)’ MONTH yields false
i1 precedes i2
p1 precedes p2
ps1 precedes ps2
The precedes predicate may be applied on two operands of type INSTANT, PERIOD or PERIOD SET. It evaluates to true, when all instants included in the left operand are located before all instants included in the right operand, on the time axis.
Examples:
INSTANT ‘1990-01’ MONTH precedes INSTANT ‘1991-01’ MONTH yields true
PERIOD ‘[1994�01, 1995�01)’ MONTH precedes PERIOD ‘[1995�06, 1996�01)’ MONTH yields true
PERIOD ‘[1994�01, 1995�01)’ MONTH precedes PERIOD ‘[1994�06, 1995�06)’ MONTH yields false
p1 contains p2
ps1 contains ps2
The contains predicate may be applied on two operands of type PERIOD or PERIOD SET. It evaluates to true, when every instant included in the right operand is also included in the left operand, otherwise it evaluates to false.
Examples:
PERIOD ‘[1994�01, 1996�01)’ MONTH contains PERIOD ‘[1995�01, 1995�06)’ MONTH yields true
PERIOD ‘[1994�01, 1995�01)’ MONTH contains PERIOD ‘[1994�06, 1995�06)’ MONTH yields false
p1 meets p2
The meets predicate may be applied on two operands of type PERIOD. It evaluates to true, when the end of the left operand is equal to the start of the right operand, otherwise it evaluates to false.
Examples:
‘[1994�01, 1995�01)’ meets ‘[1995�01, 1995�06)’ yields true
‘[1994�01, 1995�01)’ meets ‘[1994�06, 1995�06)’ yields false
Operators
Standard arithmetic and set theoretic operators may be used in order to perform calculations on data types used for time representation. In the following figures, the allowable operations on the different types of data used for time representation are described.
Left operand�Operator�Right operand�Result�Description���-�interval�interval�Negation of the interval’s duration.���+�interval�interval�Unary plus, returns the value of the operand.��interval�+�interval�interval�Adds the duration of the operands.��interval�-�interval�interval�Computes the difference of the operands’ duration.��interval�*�number�interval�Multiplies the interval’s duration by the designated number.��number�*�interval�interval�Equivalent to interval * number.��interval�/�number�interval�Divides the interval’s duration by the designated number.��interval�/�interval�number�Computes how many times the left operand’s duration is greater than the right operand’s duration.��Figure � SEQ Figure * ARABIC �5� - Operations on intervals
Left operand�Operator�Right operand�Result�Description��instant�+�interval�instant�Computes an instant which is moved on the time axis by the duration specified by the designated interval.��interval�+�instant�instant�Equivalent to instant + interval.��instant�-�interval�instant�Equivalent to instant + (- interval).��instant�-�instant�interval�Computes an interval whose duration is equal to the number of instants between the left and the right operand.��Figure � SEQ Figure * ARABIC �6� - Operations on instants
Left operand�Operator�Right operand�Result�Description��period�+�interval�period�Adds the value of the interval to the instants marking the starting and ending points of the period.��period�-�interval�period�Equivalent to period + (- interval).��interval�+�period�period�Equivalent to period + interval.��period�>>�interval�period�Computes a period with the same starting instant as the left operand, but the ending instant is moved towards the end of the time axis by the duration specified by the designated interval. This operator extends the period by the specified interval.��period �<<�interval�period�Computes a period with the same starting instant as the left operand, but the ending instant is moved towards the beginning of the time axis by the duration specified by the designated interval. This operator shrinks the period by the specified interval.��period�union or +�period�period�Equivalent to merge(p1, p2).��period�except or -�period�period�Computes a period which includes all time points contained in the left operand but not in the right operand. If the remaining time points are not consecutive, and thus cannot be represented with a single period value, NIL is returned.��period�intersect or *�period�period�Equivalent to intersection(p1, p2).��Figure � SEQ Figure * ARABIC �7� - Operations on periods
Left operand�Operator�Right operand�Result�Description��period_set�union or +�period_set�period_set�Equivalent to merge(ps1, ps2).��period_set�except or -�period_set�period_set�Computes a period set which includes all time points contained in the left operand but not in the right operand��period_set�intersect or *�period_set�period_set�Equivalent to intersection(ps1, ps2).��period_set�+�interval�period_set�The + operator is applied to each period in the period set.��period_set�-�interval�period_set�The - operator is applied to each period in the period set.��Figure � SEQ Figure * ARABIC �8� - Operations on period sets
Automatic type and granularity conversions
In contexts where one of the functions, predicates and operators described in paragraphs � REF _Ref368225011 \n �1.2.2�, � REF _Ref368225029 \n �1.2.3� and � REF _Ref368139305 \n �1.2.4� is used with arguments which do not match exactly one of the signatures presented in these paragraphs, the TOQL processor introduces automatic type conversions, so as to be able to invoke an appropriate function. Additionally, all operations on which two or more objects representing time (instants, intervals, periods or period sets) are involved, require all their operands to be expressed in the same granularity. If this is not the case, the TOQL processor arranges for automatic conversions, in order to align the operands to the same granularity. In the following paragraphs, these features of TOQL are presented.
Type conversions
Instants are considered isomorphic to trivial periods, i.e. periods which contain only one time point, thus if an instant is used where a period is expected, the instant I1 of granularity G1 is converted to the period, whose beginning is I1 and its end equal to I1 + INTERVAL ‘1’ G1 (G1 is the granularity designation).
Periods are considered isomorphic to singleton period sets, i.e. period sets containing only one period; thus, if a period P1 with granularity G1 is used where a period set is expected, the period is converted to a period set whose value is equal to period_set(P1) G1.
Combining the two conversion rules presented above, instants should be considered isomorphic to period sets; thus, if an instant is used where a period set is expected, the instant is first converted to a period and then to a period set, following the appropriate conversion rules.
A final conversion rule which is applied by the TOQL processor is casting of string values to instants or periods: if a string is used where an instant, an interval or a period is expected, TOQL tries to convert the string value to the appropriate type. In these conversions, a granularity of second and the Gregorian calendar is used, so as to provide compatibility with the TODL defaults.
Examples:
period1 meets instant1 (period1 meets period(instant1, instant1 + interval '1' G1)
(G1 is the granularity of instant1).
instant1 + period1 (period(instant1, instant1 + interval '1' G1) + period1
(G1 is the granularity of instant1).
period_set1 + period1 (period_set1 + period_set(period1) G1
(G1 is the granularity of period1).
period_set1 + instant1 (period_set1 + period_set(period(instant1, instant1 + INTERVAL '1' G1)) G1
(G1 is the granularity of instant1).
Granularity conversions
TOQL adopts the left operand granularity semantics for granularity conversion, i.e. if two arguments of different granularities are used in a function, predicate or operator, both arguments are converted to the granularity of the left operand before the expression is evaluated. As a consequence, operators like +, union and intersection are not commutative, when applied to operands of different granularities. This approach, however, is more flexible than the finest granularity semantics (which is used in most programming languages), since the latter requires explicit type casts when computation at a coarser level is required, whereas using the left operand granularity semantics, it suffices to rearrange the arguments.
As an exception to this rule, if some operation involves an anchored quantity of time (instant, period or period set) and an unanchored quantity of time (interval), the unanchored quantity of time is not casted to the granularity of the anchored quantity, but the operation is performed directly on the different granularities. This allows the operation to compute the correct result when the mapping between the original and the target granularity of the interval is irregular. For example, consider the operation
INSTANT '1990-01-31' DAY + INTERVAL '1' MONTH
If the interval (1 month) is casted to the granularity of day, it will yield 31, and adding 31 days to the date ‘January 31, 1990’ will result to ‘March 3, 1990’, which is not the expected result. Performing the operation with different argument granularities allows to interpret the unanchored quantity of time relatively to the anchored one, and thus producing the correct result (in this case, ‘February 28, 1990’).
A Sample Database
Before we proceed to the description of the extended functionality of TOQL, regarding temporal data, we present a sample database, which will be used in the examples throughout the following paragraphs. The database contains information about dairy products and the factories in which they are manufactured. Its schema is described via the following TODL statements:
interface	Product
(extent	Products
 key	ProductName)
{
// Instance properties
	attribute String ProductName;
	attribute String Description;
	attribute float AvgSales valid state overlaps
			granularity month;
	attribute List<String> Ingredients transaction;
	attribute Interval LifeTime valid state granularity day;
	relationship Set<Factory> manufactured valid state
granularity month transaction
inverse Factory::manufactures;
}
interface	Factory
(extent	Factories
 key	Owner, Location)
{
// Instance properties
	attribute String Owner;
	attribute String Location;
	attribute String Manager valid state granularity month;
	attribute Long Turnover valid state granularity month;
	relationship Set<Product> manufactures valid state
granularity month transaction
inverse Product::manufactured;
}
In the following, we will assume that the database has the following contents:
� EMBED Word.Picture.6 ���
� EMBED Word.Picture.6 ���
� EMBED Word.Picture.6 ���
� EMBED Word.Picture.6 ���
Queries on Temporal Data
The simplest query returns all the objects in an extent (e.g. the Products extent):
Products
The type of the result of this query is Bag<Product>. The result contains all product instances, as recorded in the database. Note that no filtering of information is performed in such a query, thus the valid time and transaction time attributes of each selected object contain the whole history. The “masking” of logically deleted information (i.e. values of transaction time instance properties that pertain to past states of the database) and variants with past or future valid times is expected to be encapsulated in the behaviour of the respective objects (i.e. valid, transaction time or bitemporal data). This means that the default “get value” method of a transaction time (or bitemporal) object should return only the values which have not been logically deleted, and the default “get value” method of a valid time (or bitemporal) object should return only the values whose valid timestamp overlaps the current time point. Two other approaches to this schema may be identified, but both of them possess undesirable properties:
the first approach is to replace each transaction time (or bitemporal) object by the current snapshot of the object. This leads to having different memory and database schemata (the database schema is a set of timestamped values whereas the memory schema is a single value), and subsequently results that are not updatable objects.
the second approach is to eliminate object variants whose transaction timestamp end is not equal to UC, from all transaction time and bitemporal data. This can be achieved in two ways:
by transforming the query to a different form, which ungroups each Product object, eliminates the logically deleted object variants using appropriate functions and then reconstructs Product objects:
select Product(ProductName: p->ProductName,
Description: p->Description,
LifeTime: p->LifeTime->current(),
Ingredients: p->Ingredients->current(),
manufactured: p->manufactured->current()))
from Products as p
In this case, however, each one of the returned object is assigned a new object identifier, and thus cannot be used to update the corresponding database object.
in order to preserve object updatability, an update method may be created for transaction time and bitemporal data, which eliminates logically deleted versions. In this case, the query would be transformed to:
select p from Products as p
where p->LifeTime->eliminate_past_states() and
	p->Ingredients->eliminate_past_states() and
	p->manufactured->eliminate_past_states()
(the eliminate_past_states() method for transaction time objects might look like:
Boolean TransactionTime::eliminate_past_states() {
for each variant
	if (variant.timestamp.end != UC)
			this->delete_variant(variant);
	return true;
}
)
Although this approach produces updatable objects, it has the undesirable side effect of physically deleting the past states of the object and thus is unacceptable.
The individual products may also be retrieved by referencing the distinct members of the Products extent:
select p from p as Products
The behaviour of the query is identical to the previous one, i.e. it returns a set of product instances, as recorded in the database.
The current value of individual temporal instance properties may be retrieved by listing them in the select list. For example, the query ‘For each product, fetch its name, the current lifetime and the list of ingredients’ can be stated as
select p->ProductName as ProductName
p->LifeTime as LifeTime,
p->Ingredients as Ingredients
from products as p
Although in the database schema attributes LifeTime and Ingredients are declared to have valid time semantics and transaction time semantics, respectively, this query returns only the current value for these attributes. This provides compatibility for applications that have been developed on top of a snapshot database schema, which at some later point has been modified to incorporate temporal semantics. For a more complete description on snapshot applications compatibility, see Appendix C.
If valid time attribute which allows variants with overlapping timestamps is listed in the select list, then a set of structures is returned, each one containing the value and the valid timestamp of a variant whose valid timestamp overlaps with the current time point (since all of them can be considered current information). For example, if the query
select p->AvgSales as AvgSales
from Products as p
where p->ProductName = 'Life Orange Juice'
is evaluated on 31/10/1996, it will return all the estimations about the average sales of product “Life Orange Juice”, for any period that includes October 1996, and is stored in the database, i.e. the set
{(value: 1400, VT: [1996-01, 1997-01)), (value: 1600, VT: [1996-06, 1997-06))}
The complete history of the attributes having valid time, transaction time or bitemporal semantics may be retrieved if the modifier valid, transaction or bitemporal is prepended to the attribute, respectively. Thus, in order to retrieve the complete history of the AvgSales, LifeTime and Ingredients attributes, the previous query would be restated as:
select p->ProductName as ProductName,
	valid p->AvgSales as AvgSales,
	valid p->LifeTime as LifeTime,
	transaction p->Ingredients as Ingredients
from Products as p
In this case, the type of the result would be bag<struct(ProductName: string, AvgSales: float valid state overlaps granularity month, LifeTime: interval valid state granularity day, Ingredients: list<string> transaction)>. This means that the valid, transaction and bitemporal modifiers return the histories of their operands as they are stored in the database; the application may use methods provided by the interface of valid time, transaction time and bitemporal data, in order to extract specific values or iterate over the variants. When applied to bitemporal data the valid and transaction modifiers convert them to valid or transaction time objects, respectively. In the first case, the transaction time history is dropped and the result contains only the current database state. If the transaction modifier is prepended to a bitemporal object, the variants with past and future valid times are dropped and, for the remaining variants, the valid timestamp is removed, resulting thus to a transaction time object. The transaction modifier may not be used with bitemporal objects that allow overlapping of valid timestamps.
Temporal objects (valid time, transaction time and bitemporal objects) may also be treated as indexed collections, orthogonally to lists, sets, bags and arrays supported by OQL. This means that a number of expressions designating a single variant or a set of variants within a temporal object is provided. In the following paragraphs, these expressions are described.
Expressions for valid state objects not allowing overlapping timestamps and valid event objects
In the following figure, the allowable expressions for valid time objects that do not allow variants with overlapping timestamps are described. The type of the result of each operation is determined as follows:
a single value of type T, if the operation results to a single variant. (T is the timestamped type)
set<struct(Value: T, VT: timestampType)>, if the operation results to more than one variants. timestampType is set to period for valid state objects not allowing overlapping timestamps and instant for valid event objects. The calendar and granularity of the VT field are derived from the respective characteristics of the operand’s valid time.
Expression�Description��count(valid_obj)�Returns the number of variants contained in the valid time object��first(valid_obj)�Returns the variant of the element with the smallest� valid timestamp. ��last(valid_obj)�Returns the variant with the greatest valid timestamp��valid_obj[number]�Returns the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.��valid_obj[n1:n2]
�Returns the variants whose ranks are included between numbers n1 and n2.��valid_obj[instant]�Returns the variant whose valid timestamp overlaps with the designated instant. ��valid_obj[period]�Returns the variants whose valid timestamp overlap with the designated period. If a variant’s valid timestamp overlaps partially with the specified period (i.e. it contains some instants that are included in period and some instants that are not), this variant appears in the result, but its timestamp is set to intersection(VT, period), where VT is the variant’s valid timestamp.��Figure � SEQ Figure * ARABIC �9� - Expressions for valid state objects not allowing overlapping and valid event objects
When an instant or a period is used as a subscript, it may be preceded with the valid at designation, e.g. valid_obj[valid at INSTANT ‘1990-01-01’ DAY].
If an expression yields a single variant, then the result is subject to the following operations:
function valid may be applied to the result, so as to return the associated timestamp (e.g. valid(first(valid_obj))).
the modifier weighted (or weighted valid) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.
Expressions for valid state objects that allow overlapping timestamps
In the following figure, the allowable expressions for valid state objects that allow variants with overlapping timestamps are described. The schema of the result of each operation is determined as follows:
a single value of type T, if the operation results to a single variant. (T is the timestamped type)
set<struct(Value: T, VT: period)>, if the operation results to more than one variants. The calendar and granularity of the VT field are derived from the respective characteristics of the operand’s valid time.
Expression�Description��count(valid_obj)�Returns the number of variants contained in the valid time object��first(valid_obj)�Returns the variant with the smallest valid timestamp. ��last(valid_obj)�Returns the variant with the greatest valid timestamp��valid_obj[number]�Returns the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.��valid_obj[n1:n2]
�Returns the variants whose ranks are included between numbers n1 and n2.��valid_obj[instant]�Returns the variants whose valid timestamps overlap with the designated instant. ��valid_obj[period]�Returns the variants whose valid timestamp is contained in the designated period. Variants whose valid timestamp overlaps partially with the specified period, do not appear in the result.��valid_obj[distinct period]�Returns the variant whose valid timestamp is equal to the designated period.��Figure � SEQ Figure * ARABIC �10� - Expressions for valid state objects that allow overlapping timestamps
When an instant or a period is used as a subscript, it may be preceded with the valid at designation, e.g. valid_obj[valid at INSTANT ‘1990-01-01’ DAY].
If an expression yields a single variant, then the result is subject to the following operations:
function valid may be applied to the result, so as to return the associated timestamp, e.g. valid(first(valid_obj)).
the modifier weighted (or weighted valid) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.
Expressions for transaction time objects
In the following figure, the allowable expressions for transaction time objects are described. The schema of the result of each operation is determined as follows:
a single value of type T, if the operation results to a single variant. (T is the timestamped type)
set<struct(Value: T, TT: period)>, if the operation results to more than one variants. The calendar and granularity of the TT field are derived to the system’s settings for transaction timestamp representation.
Expression�Description��count(trans_obj)�Returns the number of variants contained in the transaction time object��first(trans_obj)�Returns the variant of the element with the smallest transaction timestamp. ��last(trans_obj)�Returns the variant with the greatest transaction timestamp.��trans_obj[number]�Returns the variant whose rank within the object matches the subscript. Variants are ordered with respect to their timestamps.��trans_obj[n1:n2]
�Returns the variants whose ranks are included between numbers n1 and n2.��trans_obj[instant]�Returns the variant whose transaction timestamp overlaps with the designated instant.��trans_obj[period]�Returns the variants whose transaction timestamps overlap with the designated period. If a variant’s transaction timestamp overlaps partially with the specified period, this variant appears in the result, but its timestamp is set to intersection(TT, period), where TT is the variant’s transaction timestamp.��Figure � SEQ Figure * ARABIC �11� - Expressions for transaction time objects
When an instant or a period is used as a subscript, it may be preceded with the current at designation, e.g. trans_obj[current at INSTANT ‘1990-01-01’ DAY].
If an expression yields a single variant, then the result is subject to the following operations:
function transaction may be applied to the result, so as to return the associated timestamp (e.g. transaction(first(trans_obj))).
the modifier weighted (or weighted transaction) may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.
Expressions for bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects
In the following figure, the allowable expressions for bitemporal objects that do not allow overlapping valid timestamps and bitemporal event objects are described. The result type for each operation is given, except for the cases that a single variant is returned, in which case the type of the result is T (T is the timestamped type).
Expression�Description��count(bitemp_obj)�Returns the number of variants contained in the bitemporal object.��bitemp_obj[valid at instant]�Returns a set<struct(Value: T, TT: period)>, containing all variants whose valid time overlaps with the designated instant.��bitemp_obj[current at instant]�Returns a set<struct(Value: T, VT:timestampType), containing all variants whose transaction time overlaps with the designated instant. For bitemporal state objects not allowing overlapping timestampType is period, whereas for bitemporal event objects timestampType is instant.��bitemp_obj[valid at instant1, current at instant2]�Returns the variant whose valid and transaction timestamps overlap with instant1 and instant2, respectively.��bitemp_obj[valid at period]�Returns a set<struct(Value: T, VT:timestampType, TT: period)> containing the variants whose valid timestamps overlap with the designated period. For bitemporal state objects not allowing overlapping timestampType is period, whereas for bitemporal event objects timestampType is instant. Variants whose valid timestamp overlaps partially with the designated period, appear in the result with truncated valid timestamps.��bitemp_obj[current at period]�Returns a set<struct(Value: T, VT:timestampType, TT: period)>, containing the variants whose transaction timestamps overlap with the designated period. For bitemporal state objects not allowing overlapping timestampType is period, whereas for bitemporal event objects timestampType is instant. Variants whose transaction timestamp overlaps partially with the designated period, appear in the result with truncated transaction timestamps.��bitemp_obj[valid at period1, current at period2]�Returns a set<struct(Value: T, VT:timestampType, TT: period)> containing the variants whose valid and transaction timestamps overlap with period1 and period2, respectively. For bitemporal state objects not allowing overlapping timestampType is period, whereas for bitemporal event objects timestampType is instant. Variants whose valid or transaction timestamp overlaps partially with the respective period, appear in the result with truncated timestamps.��Figure � SEQ Figure * ARABIC �12� - Expressions on bitemporal objects not allowing overlapping valid timestamps and bitemporal event objects
In the expressions where the valid at and current at designations are listed together, their order may be reversed. Note that it is allowed to specify both designations using an instant with one of them and a period for the other (e.g. bitemp_obj[valid at INSTANT ‘1990’ YEAR, current at PERIOD ‘[1990�1991)’ YEAR]). In this case, the instant is casted to a period, using the rules presented in section � REF _Ref368543646 \n �1.2.5�, and then the expression is evaluated.
If an expression yields a single variant, then the result is subject to the following operations:
functions valid and transaction may be applied to the result, in order to return the associated valid or transaction timestamp respectively, e.g. valid(bitemp_obj[valid at INSTANT ‘1990�01’ DAY, current at INSTANT ‘1990�01’ DAY]).
the modifiers weighted valid or weighted transaction may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.
Expressions for bitemporal objects that allow overlapping valid timestamps
In the following figure, the allowable expressions for bitemporal objects that allow variants with overlapping valid timestamps are described. The result type for each operation is given, except for the cases that a single variant is returned, in which case the type of the result is T (T is the timestamped type).
Expression�Description��count(bitemp_obj)�Returns the number of variants contained in the bitemporal object��bitemp_obj[valid at instant]�Returns a set<struct(Value: T, VT: period, TT: period)> containing the variants whose valid timestamps overlap with the designated instant.��bitemp_obj[current at instant]�Returns a set<struct(Value: T, VT: period)>, containing all variants whose transaction time overlaps with the designated instant.��bitemp_obj[valid at instant1,�current at instant2]�Returns a set<struct(Value: T, VT: period)>, containing all variants whose valid and transaction timestamps overlap with the respective instants.��bitemp_obj[valid at period]�Returns a set<struct(Value: T, VT: period, TT: period)> containing the variants whose valid timestamps overlap with the designated period. Variants whose valid timestamp overlaps partially with the designated period do not appear in the result.��bitemp_obj[valid at distinct period]�Returns a set<struct(Value: T, TT: period)>, containing the variants whose valid timestamps are equal to the designated period.��bitemp_obj[current at period]�Returns a set<struct(Value: T, VT: period, TT: period)> containing the variants whose transaction timestamps overlap with the designated period. Variants whose transaction timestamp overlaps partially with the designated period appear in the result with a truncated timestamp.��bitemp_obj[valid at period1,�current at period2]�Returns a set<struct(Value: T, VT: period, TT: period)> containing the variants whose valid and transaction timestamps overlap with the designated periods. Partially overlapping valid and transaction timestamps are handled as described above.��bitemp_obj[valid at distinct period1,
current at period2]�Returns a set<struct(Value: T, VT: period, TT: period)> containing the variants whose valid timestamp is equal to period1 and whose transaction timestamps overlap with period2. Partially overlapping valid and transaction timestamps are handled as described above.��Figure � SEQ Figure * ARABIC �13� - Expressions on bitemporal objects that allow overlapping valid timestamps
If an expression yields a single variant, then the result is subject to the following operations:
functions valid and transaction may be applied to the result, in order to return the associated valid or transaction timestamp respectively, e.g. valid(bitemp_obj[valid at DISTINCT INSTANT ‘1990�01’ DAY, current at INSTANT ‘1990�01’ DAY]).
the modifiers weighted valid or weighted transaction may be prepended to the expression returning the single variant. In this case, the value of the variant is multiplied by the duration of the variant’s timestamp, in order to produce the final result. This modifier may be used only when the multiplication operation is meaningful for the type of the variant’s value.
Examples
The following queries can be answered by TOQL, using the expressions described in paragraphs � REF _Ref368623459 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5�:
Which was the life time of product “Life Orange Juice” when it was first introduced?
select first(valid p�>LifePeriod)
from Products as p
where p�>ProductName = "Life Orange Juice"
(the expression (valid p->LifePeriod)[1] may also be used, instead of first(valid p�>LifePeriod)).
Which was the life time of product “Life Orange Juice” when it was first introduced and when was this life time changed?
select first(valid p�>LifePeriod) as LifePeriod,
end(valid(first(valid p�>LifePeriod))) as ChangePoint
from Products as p
where p�>ProductName = "Life Orange Juice"
Here, we can see that function valid can be applied on a variant that has been extracted from a valid time object, in order to access its valid timestamp. This function may also be applied on variants of bitemporal objects. Function transaction is also supported and can be applied on variants extracted from transaction time or bitemporal objects.
Which was the life time of product “Life Orange Juice” on 1994-01-01?
select (valid p->LifePeriod)[INSTANT '1994-01-01' DAY]
from Products as p
where p->ProductName = "Life Orange Juice"
How has the life time of product “Life Orange Juice” evolved during 1994?
select (valid p->LifePeriod)[PERIOD '[1994-01-01, 1995-01-01)' DAY]
from Products as p
where p->ProductName = "Life Orange Juice"
Which was the life time of “Champion” milk when it was withdrawn from the market?
select last(valid p->LifePeriod)
from Products as p
where p->ProductName = "Champion"
Which ingredients were used for “Champion” milk throughout its lifetime?
select transaction p->Ingredients
from Products as p
where p->ProductName = "Champion"
The type of the result of the subscript operators
As described in paragraphs � REF _Ref368623459 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5�, if a subscript operator that (potentially) selects more than one variants is applied on a temporal object, the result of the operator is a set of structures, with each structure containing the variant value and one or two timestamps, depending on the subscript operator and the time dimensions supported by the temporal object.
A different approach to the return type would be that in these cases a temporal object would be returned. The timestamped type of the temporal object would be identical to the operand’s timestamp type, while the resulting temporal object would support one or two temporal dimensions. Although this solution seems more “natural”, the semantics of transaction time dimension disallow its adoption. These semantics state that an object’s transaction time starts at the instant the object was inserted in the database and ends at the instant the object was removed from it (deleted or updated). Instance properties cannot be removed from the database; they can only change their value (possibly to nil), and thus a variant must always exist in a temporal instance property which has a transaction timestamp with right boundary equal to UC.
If the subscript operators return temporal objects, it is possible for the user to formulate a query that selects a transaction time object which does not include current information. This object may then be assigned to a temporal instance property using host language code, or via an update method in a query, as shown in the following example:
select p->set_ingredient_history((transaction p->Ingredients)
[period '[1990-01-01, 1991-01-01)' day])
from Products as p
(The set_ingredient_history method used in this example sets the whole history of the attribute Ingredient of the receiving object to be equal to the history included in the argument). In order to avoid such problems, the subscript operators on transaction time objects return sets, so such assignments are not possible. The set return type has been extended to subscript operators operating on valid time and bitemporal objects too, for uniformity reasons.
Support for evolved and deleted values
By default, all subscript operators disregard the variants which are tagged as deleted ([TR31TR.1]) and consider only the variants that are tagged as “evolved” or “current”. However, access to the deleted variants is provided by appending to the subscripted expression one of the keywords evolved, deleted or all. Keyword evolved is the default, thus its presence does not modify the result type or values that are described in paragraphs � REF _Ref368623459 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5�. If, however, the expression is followed by the keyword deleted or the keyword all, the result type and values are modified as follows:
the result type is set<struct(value: T, VT: timestampType, TT: period, flag: variant_type)>. T is the timestamped type, timestampType is either instant or period, depending on whether the temporal object’s valid time is designated as event or state, respectively and variant_type is the enumeration (current, evolved, deleted). One of the fields VT and TT may not occur in the result schema, if the result of the respective operator does not include the corresponding field, as described in paragraphs � REF _Ref376956305 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5�.
each structure in the result set corresponds to a variant of the temporal instance property. If the subscripted expression is followed by the deleted specification, only variants that are tagged as deleted will be considered for the formulation of the result value; if the all designation is used, instead of the deleted specification, all variants will be considered. The flag field for each member of the result set will indicate the status of the respective variant (current, evolved or deleted).
According to this description, the query
select (valid p->LifePeriod)[INSTANT '1994-01-01' DAY] all
from Products as p
where p->ProductName = 'Life Orange Juice'
will return a bag containing a single element. This element will be a set of structures, Each structure in the result set has a value of type interval, a timestamp of type period and a flag of type variant_type. These structure correspond to all variants in the valid history of the “Life Orange Juice” product’s life period, whose valid timestamp overlaps with the designated instant (1994-01-01). The status of each variant (evolved or deleted) is reported in the flag field.
Extracting object states
If a class has been declared to have valid time and/or transaction time semantics, the expressions described in paragraphs � REF _Ref368623459 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5� may be used with expressions whose value is an instance of the class. For example, if the Factory class declaration were
interface	Factory
(extent	Factories
 key	Owner, Location) valid state granularity day transaction;
{
// Attributes
	attribute String Owner;
	attribute String Location;
	attribute String Manager;
	relationship Product manufactures
inverse Product::manufactured;
}
then the queries
select (bitemporal state f)[valid at INSTANT '1995-01-01' DAY,
current at INSTANT 'NOW' DAY]
from Factories as f
and
select (bitemporal state f)[current at INSTANT 'NOW' DAY,
valid at PERIOD '[1995-01-01, 1995-06-01)' DAY]
from Factories as f
could be used to retrieve the states of the factories, as recorded in the current database state for the instant January 1, 1995 and the period of the first five months of 1995, respectively. Thus, the syntax for invoking a state extraction operation on an object is
(time_dimension state temporal_object)extraction_operation
where time_dimension may be one of the keywords valid, transaction and bitemporal, and extraction_operation must be a subscript operator which is applicable to objects of the specified time dimension(s). Keyword valid may be used only for valid time and bitemporal objects; keyword transaction is applicable only to transaction time objects, bitemporal event objects and bitemporal state objects not allowing overlapping of valid timestamps; keyword bitemporal is allowed only for bitemporal objects.
The type of the result of a state extraction operation will be either an object state, or a set of structures, with each structure holding an object state and a timestamp (or two timestamps), depending on the number of states returned by the expression: if the expression yields exactly one state, the result type will be an object state; if the expression yields more than one states, the result type is a set of structures. The number of timestamps depends on the valid and transaction time semantics of the operand and the subscript operator. The rules for determining the number of timestamps are analogous to the rules described in paragraphs � REF _Ref368623459 \n �1.4.1� through � REF _Ref368623470 \n �1.4.5�.
According to the above, the first example query returns a bag of factory states, with each state corresponding to the state of each factory on 1995�01�01, as recorded in the current state of the database. The second example query returns a bag of sets. Each set corresponds to a factory, and contains the factory states within the first five months of year 1995, as recorded in the current state of the database.
The allowable expressions and the respective return types for a specific temporal class depend on the temporal characteristics that have been defined for this class, and are in coherence with the allowable expressions and the return types for temporal instance properties.
The same modifiers (i.e. time_dimension state) may be prepended to temporal objects when they are used as an argument to one of the functions count, first and last. In these cases, the functions return number of states in the object, the state with the smallest timestamp and the state with the greatest timestamp, respectively. Functions first and last may not be used when time_dimension is set to bitemporal.
Semantic ambiguity resolution
In expressions involving temporal objects ambiguity may arise from the usage of member accessor operators (. and �>), temporal modifiers (valid, transaction and bitemporal), the subscript operator ([]) and specific functions (count, first, last), since the operators may be meaningful both for the temporal and the snapshot dimension of the arguments. For example, the query
select count(p->Ingredients)
from Products as p
where p->ProductName = "Life Orange Juice"
may be interpreted as “fetch the number of ingredients currently used for product Life Orange Juice” (the function applies to the snapshot dimension of the Ingredients attribute) or “fetch the number of times that the ingredients of product Life Orange Juice have changed” (the function applies to the temporal dimension of the Ingredients attribute). This ambiguity is resolved by introducing a semantic rule, stating that in order for the function or operator to apply to the temporal dimension of its argument, the argument must be preceded with a temporal modifier; otherwise, the function applies to the snapshot dimension. This semantic rule preserves snapshot reducibility, since the semantics of snapshot queries do not change if the database schema has been enriched with temporal semantics.
Note, however, that the temporal modifiers have lower precedence than the member accessor and the subscript operators, so parentheses must be used in order to specify the correct order of evaluation. Thus, in order to retrieve the first list of ingredients for the product “Life Orange Juice” that has been recorded into the database, the following query must be issued:
select (transaction p->Ingredients)[1]
from Products as p
where p->productName = "Life Orange Juice"
If the parentheses were omitted from this query (i.e. the select list read transaction p�>Ingredients[1]), attribute Ingredients would be converted to its snapshot value, the subscript operator would then be applied to it. Finally, the attempt to evaluate the transaction modifier on the string result of the subscript operator would result to a semantic error, since temporal modifiers are not applicable on strings.
Referencing Object Variants
A temporal instance property is actually a collection of values, each one having one or two associated timestamps (valid and/or transaction time). Since OQL allows collections to be used for variable definition in the from clause as well as in collection expressions (universal quantification, existential quantification and membership testing), TOQL allows temporal instance properties to be used for the same purpose.
When a variable is defined in terms of a temporal object, it iterates over the different variants which are stored in the temporal object. All variants are considered, regardless of their valid or transaction timestamp. The defined variable may be used as argument to the functions valid and transaction so as to return the corresponding timestamp (function valid may be applied to valid time and bitemporal objects, whereas function transaction may be applied to transaction time and bitemporal objects). TOQL supports all forms of variable declaration that are defined in OQL v. 1.2, thus a variable iterating over the variants of a temporal object may be defined in the from clause using the syntax
temporal_object as identifier
The as keyword is optional and may thus be omitted. In the existential and universal quantification constructs, a variable is defined using the in keyword. Consequently, an existential quantification query that involves a variable defined on a temporal object has the form
exists identifier in temporal_object: query
whereas a universal quantification query involving a variable defined on a temporal object is written as
for all identifier in temporal_object: query
Temporal objects may be used in the place that a collection is allowed in a membership testing query (item in collection). In this case, each variant of the temporal object is tested, in order to determine if its value is equal to the left hand side value. If any variant is found to have the specified value, the expression evaluates to true, otherwise it evaluates to false. Finally, temporal objects may be used as right hand side queries in composite predicates. If e1 and e2 are expressions with e2 being a temporal object and e1 having the snapshot type of e2, and relation is a relational operator (=, !=, <, <=, > or >=) then e1 relation some e2, e1 relation any e2 and e1 relation all e2 are expressions whose value is of type boolean. Expressions e1 relation some e2 and e1 relation any e2 evaluate to true if the operator relation holds between expression e1 and the value of at least one variant of e2. Expression e1 relation all e2 evaluate to true if the operator relation holds between expression e1 and the values of all variants of e2.
Examples
Select the products that have ever had a life time equal to15 days:
select p from Products as p
where exists l in valid p->LifeTime: l = INTERVAL '15' DAY
This query may also be formulated using membership testing as follows:
select p from Products as p
where INTERVAL '15' DAY in valid p->LifeTime
The same query may be stated using a composite predicate:
select p from Products as p
where INTERVAL '15' DAY = any valid p->LifeTime
For each product, list its name and life time, along with the corresponding period:
select p->ProductName as ProductName,
	l as LifeTime,
	valid(l) as LifeTimePeriod
from Products as p, valid p->LifeTime as l
For each product, list its name and its ingredients, if the ingredients contained ‘E210’. List also the period during which the ingredients were used.
select p->ProductName as ProductName,
	p->Ingredients as Ingredients,
	transaction(Ingredients) as TT
from Products as p, transaction p->Ingredients as Ingredients
where exists Ingredient in Ingredients: Ingredient = 'E210'
Conversion Between Temporal and Snapshot Values
The snapshot modifier
TOQL provides the ability to convert temporal objects to a set of snapshot values, using the snapshot modifier. The snapshot modifier may be prepended to any query returning a temporal object and effectively drops all timestamps, returning only plain values. For example, the query
select p->ProductName as ProductName,
	max(snapshot p->LifeTime) as MaxLifeTime
from Products as p
yields a set of tuples. Each tuple holds the name of an product, and the maximum lifetime it had ever had.
The type of the result depends on the type returned by the query following the snapshot modifier. If the type returned by the query is <type> temporal_spec, then the type of the result is Bag<type>. (temporal_spec is any specification designating valid time and/or transaction time semantics.)
The valid modifier
The valid modifier may be used to convert collections to valid time objects. The syntax of the valid modifier is
valid valid_type [overlaps] [granularity] [calendar]
'['query : expression']'
where query is any query returning the desired collection and expression is a query providing the timestamps. The valid_type designation should be either state or event while granularity and calendar are used to define the desired granularity and calendar of the valid timestamp. Finally, the optional overlaps designation can be used to specify that overlapping valid timestamps are allowed within the valid time object (the default is to disallow overlapping timestamps). This designation may only be used when valid_type is state.
The collection returned by query is converted to a valid time object: each element of the collection is converted to an object variant, within the valid time object. The timestamp of each variant is computed by evaluating the expression, which must yield a value of type INSTANT or PERIOD. For example, the query
valid state [select Ingredient
from transaction aProduct->Ingredients as Ingredient :
transaction(Ingredient)]
produces a valid time object, with each variant corresponding to a snapshot of the transaction time history of the Ingredients attribute. The valid timestamp of each variant is set to be equal to the transaction timestamp of the original variant. Effectively this query converts the transaction time object to a valid time object. Note that the query following the colon (:) may reference variables that are declared in the query preceding the colon. This applies only to variables declared in the top level from clause of the left hand side query, and not to variables that are declared in subqueries.
The type of the result depends on the type returned by the query enclosed in the square brackets (denoted as <type> in the following), the valid_type designation, the existence of the overlap specifier and the granularity and calendar specification. The rules for determining the result type are as follows:
if valid_type is state, the overlaps designation is absent and granularity G and calendar C are specified, then the result type is <type> valid state granularity G calendar C. An error is raised if expression produces overlapping periods.
if valid_type is state, the overlaps designation is present and granularity G and calendar C are specified, then the result type is <type> valid state overlaps granularity G calendar C. An error is raised if expression produces identical periods.
if valid_type is event, the overlaps designation is absent and granularity G and calendar C are specified, then the result type is <type> valid event granularity G calendar C. An error is raised if expression produces identical instants.
if valid_type is event and the overlaps designation is present, an error is raised.
In all cases, the calendar specification may be omitted, in which case it defaults to the Gregorian calendar. Similarly, if the granularity specification is absent, the default granularity for the specific calendar is used. The default granularity for the Gregorian calendar is second. Finally, <type> is not allowed have temporal characteristics, in any case.
The transaction modifier
The transaction modifier may be used to convert snapshot objects to transaction time objects. Its syntax is
transaction '[' query ']'
Where query is any query returning a single object (the query may actually return a collection of objects �e.g. a set� in which case the collection is treated as a single object of type collection). The result contains a single variant, whose value is set to the result of the query, whereas its timestamp is set to [NOW, UC). Note that there is no provision to set the transaction time of the variant, since the transaction time reflects the time period that facts were known to the database, thus it is not reasonable to “force” past or future knowledge. For example, if the query
select transaction [p->ProductName] from Products as p
is issued against the database presented in section � REF _Ref368628967 \n �1.3� on 1996/08, the result will be a set containing the following two elements:
{(value: 'Life Orange Juice', TT: [1996/08, UC))}
{(value: 'Champion', TT: [1996/08, UC))}
Each element of the set is a transaction time object.
The type of the result of the transaction modifier depends on the type returned by the query that is enclosed in square brackets. If the type returned by the query is <type>, then the type of the result of the transaction modifier will be <type> transaction. <type> is not allowed to have temporal semantics.
The bitemporal modifier
The bitemporal modifier may be used to convert collections to bitemporal objects. The syntax of the bitemporal modifier is
bitemporal valid_type [overlaps] [granularity] [calendar]
'['query : expression']'
and its functionality is analogous to the valid modifier, except that it produces bitemporal objects, instead of valid time objects. The transaction timestamp of each variant is set to [NOW, UC).
The rules for determining the type of the results are analogous to the rules applied for the valid modifier, except that bitemporal objects are produced, instead of valid time objects.
Temporal Joins
Temporal joins are needed when the information stored in two (or more) temporal objects must be combined. Consider the query ‘For each factory, list its owner, location and turnover, along with the name of the manager of the corresponding period’. The information about the factory’s turnover is recorded in the turnover instance property, whereas information about the managers of factories is stored in the Manager instance property. Both of these instance properties have valid time semantics.
The query may be answered in TOQL using object variant referencing, as illustrated below:
select f->Owner as Owner, f->Location as Location,
t as TurnOver, m as Manager,
intersection(valid(t), valid(m)) as time
from Factories as f, valid f->Turnover as t, valid f->Manager as m
where valid(t) overlaps valid(m)
The query above may produce many elements for each factory, one for each combination of turnover and manager with overlapping valid time periods. The schema of the result may be changed so as to produce one element for each factory, consisting of three fields, the first two being the factory’s owner and location and the third one being a valid time object of type struct(Turnover: integer, Manager: string) valid state granularity month. This can be achieved using the valid modifier as follows:
select f->Owner as Owner, f->Location as Location,
Info: valid state [select t as Turnover, m as Manager
from valid f->Turnover as t,
valid f->Manager as m
where valid(t) overlaps valid(m)) :
intersection(valid(t), valid(m))]
from Factories as f
The query as presented above is quite verbose, and since it is anticipated that such queries will be frequent, TOQL provides a special operator, tstruct, which may be used to express temporal joins between temporal objects. Using the tstruct operator, the query above may be expressed as
select f->Owner as Owner, f->Location as Location,
tstruct(Turnover: valid f->Turnover,
Manager: valid f->Manager) as Info
from Factories as f
Thus, the syntax for the tstruct operator is similar to the syntax of the standard struct operator, i.e.
tstruct(identifier: query {, identifier: query})
where each query evaluates to a temporal object. Note that the tstruct operator constructs a new temporal object, by setting the variant values and the associated timestamps. Timestamp setting, however, is only allowed on the valid time dimension, since the transaction time axis reflects the evolution of the database through time, and consequently the construction of past or future transaction timestamps should not be permitted. Thus, only valid time objects may be combined using the tstruct operator; bitemporal objects must be first converted to valid time objects by prepending the keyword valid to the corresponding object (resulting in dropping the transaction time dimension) or using the valid modifier, in order to construct arbitrary timestamps for each variant; transaction time objects must be converted to valid time objects, using the valid modifier.
The type of the result of the temporal join
The type of the result of the tstruct operator depends on the types of its arguments. In the following table, the cases of joining two temporal objects using the tstruct operator are summarised.
�query2
query1�
valid state <T2>�
valid state overlap <T2>�
valid event <T2>��valid state <T1>�valid state <cT>�valid state overlap <cT>�valid event <cT>��valid state overlap <T1>�valid state overlap <cT >�valid state overlap <cT>�Not allowed��valid event <T1>�valid event <cT>�Not allowed�valid event <cT>��Figure � SEQ Figure * ARABIC �14� - Type of the result of the tstruct operator
(The notation cT used in the table above, denotes the type struct(id1: T1, id2: T2).) The user is allowed to cast the result of the temporal join to a temporal class that has been declared to the database through TODL, using the standard OQL notation for type conversion, i.e. (class_name)query. In this case, the composite type is set to the snapshot class that corresponds to the temporal class and has been implicitly declared by the TODL processor. Note that such a conversion may be mandatory, if the underlying OODBMS and data model do not allow “on-the-fly” construction of arbitrary temporal classes.
Both arguments to the tstruct operators must use the same calendar for their valid timestamps; the granularity, however, need not be the same and, in the case that the arguments’ granularities do not match, the granularity of the result’s valid time is set to the granularity of the left argument’s valid time. Note that since conversion to coarser granularities may produce identical timestamps out of different ones (e.g. timestamps PERIOD '[1990-01, 1990-02)' MONTH and PERIOD '[1990-04, 1990-06)' MONTH both map to the same period when converted to granularity YEAR, namely PERIOD '[1990, 1991)') it is possible that such a conversion will lead to an attempt to construct an illegal valid time object i.e.
a valid state object not allowing overlapping, containing variants with overlapping timestamps.
a valid state object allowing overlapping, containing variants with identical timestamps.
a valid event object, containing variants with identical timestamps.
In all these cases, an exception is raised to indicate the error.
As shown in � REF _Ref371913770 * MERGEFORMAT �Figure 14�, the result’s valid time characteristics depend on the valid time characteristics of the arguments. The rules for determining the type of a temporal join’s result are derived from the semantics of the different valid time object types:
valid state objects not allowing overlapping store information that applies to period level and instant level as well.
valid state objects allowing overlapping store information that applies to period level only.
valid event objects store information that applies to instant level only.
In all cases, in order for the result of a temporal join to incorporate some level of information (period or instant), this level of information must be included in both operands. This is the reason for which temporal joins between valid state objects allowing timestamp overlapping and valid event objects is disallowed, since these types do not have a common level of information representation.
The value of the result of a temporal join
The value of the result of a temporal join with two arguments is discussed in the following paragraphs. Analogous rules apply when more than two temporal objects are joined via the tstruct operator.
Temporal join between two valid state objects not allowing overlapping
If VO1 and VO2 are two valid state objects that do not allow overlapping of valid timestamps and have types valid state<T1> and valid state<T2> respectively, then tstruct(id1: VO1, id2: VO2) produces a valid state object that does not allow overlapping of valid timestamps and has type valid state<struct(id1: T1, id2: T2)>. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:
a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.
a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.
intersection(validv1, validv2) = validv.
Temporal join between two valid state objects allowing overlapping
If VO1 and VO2 are two valid state objects that do allow overlapping of valid timestamps and have types valid state overlaps<T1> and valid state overlaps<T2> respectively, then tstruct(id1: VO1, id2: VO2) produces a valid time object that allows overlapping of valid timestamps and has type valid state overlaps<struct(id1: T1, id2: T2)>. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:
a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.
a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.
validv1 = validv and validv2 = validv.
Temporal join between two valid event objects
If VO1 and VO2 are two valid event objects and have types valid event<T1> and valid event<T2> respectively, then tstruct(id1: VO1, id2: VO2) produces a valid event object of type valid event<struct(id1: T1, id2: T2)>. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:
a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.
a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.
validv1 = validv and validv2 = validv.
Temporal join between a valid state object not allowing overlapping and a valid state object allowing overlapping
If VO1 is a valid state object that does not allow overlapping of valid timestamps and has type valid state<T1> and VO2 is a valid state object that allows overlapping valid timestamps and has type valid state overlaps<T2>, then tstruct(id1: VO1, id2: VO2) produces a valid state object of type valid state overlaps<struct(id1: T1, id2: T2)> that allows overlapping timestamp. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:
a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.
a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.
(validv1 contains validv or validv1 = validv) and validv2 = validv.
Analogous rules apply when the left operand is a valid state object that allows overlapping and the right operand is a valid state object that doesn’t allow overlapping timestamps.
Temporal join between a valid state object not allowing overlapping and a valid event object
If VO1 is a valid state object that does not allow overlapping of valid timestamps and has type valid state<T1> and VO2 is a valid event object that has type valid event<T2>, then tstruct(id1: VO1, id2: VO2) produces a valid event object of type valid event<struct(id1: T1, id2: T2)>. A variant v with value struct(id1: x1, id2: x2) and valid timestamp validv belongs to the resulting object if the following conditions are met:
a variant v1 with value x1 and valid timestamp validv1 belongs to VO1.
a variant v2 with value x2 and valid timestamp validv2 belongs to VO2.
(validv1 contains validv or validv1 = validv) and validv2 = validv.
Analogous rules apply when the left operand is a valid event object and the right operand is a valid state object that allows overlapping timestamps.
Temporal joins involving more than two objects
The tstruct operator may be applied to any number of temporal objects to1, to2, ..., ton with types <T1> vtc1, <T2> vtc2, ..., <Tn> vtcn, respectively (Ti denotes the timestamped type, while vtci represents the valid time characteristics of the corresponding objects). In this case, the type of the resulting objects is determined as follows:
the timestamped type is struct(id1: T1, id2: T2, ..., idn: Tn), where idi are the identifiers used in the tstruct operator.
The granularity of the valid timestamps is set to the granularity of the valid timestamps of the leftmost object.
the valid time semantics of the result are set to the valid time characteristics with the highest precedence, amongst the involved ones.
Restructuring Operators
Restructuring operators facilitate the formulation of different equivalent representations of temporal data. Two restructuring operators are provided, with the first one converting period-timestamped variants to instant-timestamped ones, while the second restructuring operator allows for selection of the time axis on which maximal timestamps will be produced. These operators are discussed in the following paragraphs.
Converting period timestamping variants to instant timestamping
For valid state objects not allowing overlapping transaction time objects and bitemporal objects, a restructuring operator is provided that breaks down each valid or transaction time period to individual instants, producing thus many object variants out of a single one. The syntax for invoking this restructuring operator is
temporal_object(partition time_axis as instant)
where time_axis is either valid or transaction. time_axis may be valid if the temporal object has valid state semantics and does not allow overlapping for valid timestamps. The value transaction is allowed for time_axis if the temporal object has transaction time semantics.
Applying the restructuring operator (partition valid as instant) on an object of type T valid state G1 calendar C1 (G1 is the granularity of valid timestamps) produces a result of type set<struct(Value: Τ, VT: Instant)>, with instants having granularity G1 and calendar C1. An element (vr, vtr) belongs in the result set if a variant (vvar, vtvar) occurs within the valid time object and the following conditions are met:
vr = vvar
vtvar contains vtr
If the same operator is applied on a bitemporal object, the result schema is extended so as the elements of the resulting set include one extra field with type Period and name TT. The value of this field, for each element of the result set, is equal to the transaction timestamp of the respective variant.
The restructuring operator (partition valid as instant) is not applicable on valid state and bitemporal state objects that allow overlapping on valid timestamps, and an attempt to apply this operator on such an object raises a semantic error. This restriction is imposed for semantic purposes, since the values of the variants in valid state and bitemporal state objects allowing overlapping of valid timestamps apply only on period level, and not on instant level.
Similarly, applying the (partition transaction as instant) operator on an object of type T transaction, results in a set of type set<struct(Value: T, TT: Instant)>. An element (vr, ttr) belongs in the result set if a variant (vvar, ttvar) occurs within the transaction time object and the following conditions are met:
vr = vvar
ttvar contains ttr
If the same operator is applied on a bitemporal object, the result schema is extended so as the elements of the resulting set include one extra field with name VT. The type of this field is identical to the type of the valid timestamps of the bitemporal object. The value of this field, for each element of the result set, is equal to the valid timestamp of the respective variant.
Example:
For the factory owned by “Delta Dairy S.A.” and located at “St. Stefanos”, list the manager for each individual month.
select MonthInfo
from Factories as f,
(valid f->Manager)(partition valid as instant) as MonthInfo
where f->Owner = "Delta Dairy S.A" and f->Location = "St. Stefanos"
Since the value of the Manager field for the object containing information on the factory owned by “Delta Dairy S.A.” and located at “St. Stefanos” is the valid state object
{(value: 'Stefanou', VT: [1994-01, 1995-01)),
(value: 'Nikou', VT: [1995-01, 1996-09)}
(see section � REF _Ref368628967 \n �1.3�), the result of this query will be equal to the following set:
{(Value: 'Stefanou', VT: 1994-01),	(Value: 'Stefanou', VT: 1994-02),
	...,	(Value: 'Stefanou', VT: 1994-12),
(Value: 'Nikou', VT: 1995-01),	(Value: 'Nikou', VT: 1995-02),
	...,	(Value: 'Nikou', VT: 1996-08)}
Finally, we note that if the distinguished value forever appears as the end of a valid timestamp, it is substituted by the value of the current timestamp, when conversion to instant timestamping is performed. Indeed, the special value forever is frequently used in valid timestamps having the “until changed” semantics, and not as actually designating the end of the calendar. Thus, in order to avoid computation of unnecessary (and numerous) variants, this substitution is enforced. If the user wants to formulate variants which extend to the end of the calendar, he/she must use explicitly the last timestamp in the calendar, instead of the distinguished timestamp forever.
Producing maximal timestamps
When information evolution is tracked with respect to both time axes, information may be represented using different equivalent forms. For example, consider the case that a contract is signed with a factory to manufacture some product during the period [94, 96), and this fact is recorded in the database on 93�12. Later, the contract is renegotiated, and its duration is changed to [94, 95); the database is updated on 94�04. The temporal data described above can be stored in the Manufactured relationship under many equivalent representations, e.g.
{(value: {Ref<factory>}, VT: [94, 96), TT: [93-12, 94-04)),
 (value: {Ref<factory>}, VT: [94, 95), TT: [94-04, UC))}�(1)��{{value: {Ref<factory>}, VT: [94, 95), TT: [93-12, UC)),
 (value: {Ref<factory>}, VT: [95, 96), TT: [93-12, 94-04))}�(2)��{{value: {Ref<factory>}, VT: [94, 95), TT: [93-12, 94-04)),
 (value: {Ref<Factory>}, VT: [94, 95), TT: [94-04, UC)),
 (value: {Ref<factory>}, VT: [95, 96), TT: [93-12, 94-04))}�(3)��Representation (1) has maximal valid timestamps, whereas representation (2) has maximal transaction timestamps. Representation (3) does not use maximal timestamps on either axis The different coverings of the temporal information, are depicted graphically in � REF _Ref376496013 * MERGEFORMAT �Figure 15�.
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �15� - Equivalent representations of temporal information
The data model may choose any of these representations to store temporal information into the database, but different queries may have different representation needs, in order to produce correct results. For example, consider the following queries:
Fetch the products for which contracts have ever been made to be manufactured by the factory for more than 18 months.
Fetch the products for which information about the production status during 1994 has remained constant for more than 6 months.
The first query can be expressed in TOQL as
select p
from Products as p
where exists m in p->Manufactured:
duration(VALID(m)) > INTERVAL '18' MONTH
but it will only yield correct results if evaluated against representation (a) (indeed, if evaluated against representations (b) or (c), the product will not be selected). The second query can be expressed in TOQL as
select p
from Products as p
where exists m in p->Manufactured:
begin(valid(m)) <= INSTANT '1994' YEAR and
end(valid(m)) >= INSTANT '1995' and
duration(transaction(m)) > INTERVAL '6' MONTH
The query will return correct results if evaluated against representation (b) (indeed, if evaluated against representations (a) and (c), the product will not be selected). Since TOQL cannot automatically determine which representation should be used, it is clear that the user should allow to choose whether maximal valid or maximal transaction timestamps will be used for the representation of temporal data in query processing. This facility is provided via a second restructuring operator, whose syntax is
temporal_object(partition time_axis as period)
where time_axis may be either valid or transaction. When the operator is applied to an object of type T valid state G1 calendar C1 transaction (G1 is the granularity of the valid timestamps), it modifies the variants of the temporal object so as to produce maximal times on the designated axis and produces a result of type set<struct(Value: T, VT: period, TT: Period)>. An element (vres, vtres, ttres) appears in the result set, if a variant with the same value and equal timestamps appears in the restructured form of the temporal object.
Using this restructuring operator, the two queries presented above may be stated as:
Query 1:
select p
from Products as p
where exists m in (p->Manufactured)(partition valid as period):
duration(m->VT) > INTERVAL '18' MONTH
Query 2:
select p
from Products as p
where exists m in (p->Manufactured)(partition transaction as period):
begin(m->VT) <= INSTANT '1994' YEAR and
end(m->VT) >= INSTANT '1995' and
duration(m->TT) > INTERVAL '6' MONTH
Syntactical changes are kept minimal between the initial and the final form of the query. Apart from the addition of the invocation of the restructuring operator, the only change is that variant timestamps are accessed as structure members, while in the original forms functions valid and transaction were used for the same purpose. This is necessary, as the type of the collection, on terms of which the variable in the exists clause is defined has been modified from T valid state G1 calendar C1 transaction to set<struct(Value: T, VT: period, TT: period)>. This modification is necessary, since, if the result of the partitioning operator were identical to the operand type, it would have to retain the data model settings for temporal information representation (in order to maintain consistency), thus restructuring would not be possible.
For symmetry reasons, the (partition valid as period) operator is applicable to valid state objects not allowing overlapping, and the (partition transaction as period) operator is applicable to transaction time objects. In these cases, the result schema is modified, so as each element of the result set does not include the field TT or the field VT, respectively. Since the data model will have probably chosen that objects with a single time dimension shall have maximal timestamps over this dimension, the operator will have no effect in such cases, apart from changing the type of the operand.
Aggregation
OQL v. 1.2 introduces the group by clause, which partitions the result of a select/from/where query into subsets, each one containing elements that have identical values in one or more properties. If the group by clause is used, the result schema of the query is modified so as to include one field for each one of the properties listed in the group by clause, indicating thus the values which are common to the members of the subset and one set-type field named partition, that contains the actual members of the subset.
For example the query
select p
from Products as p
group by p->Description like '*milk*' as IsMilk
selects all products from the Products extent and splits them into two subsets, depending on whether the product description contains the word milk or not. The elements of the first subset share the property that the expression p->Description like '*milk*' that is specified in the group by clause evaluates to true for each one of them, while the same expression evaluates to false for each member of the second subset. The query’s result schema is bag<struct(IsMilk: boolean, partition: bag<Product>)>, where partition stores all the elements of the subset, whereas IsMilk stores the common value of the group-by expression for all members of the subset.
OQL allows for computation of aggregate values over the subsets produced using the group by clause. These values are computed using the count, sum, avg, min and max functions in the select list. For each such function used in the select list, the result schema is extended by one field, in order to accommodate the function’s result. This result is evaluated by applying the function to the members of the corresponding subset. For example the query
select IsMilk, partition as TheProducts, count(partition) as NumProds
from Products as p
group by p->Description like '*milk*' as IsMilk
again partitions the objects in the Product extent into two subsets, depending on whether their description includes the word milk or not, but additionally computes the number of products in each subset and returns the tally into the NumProducts field of the result schema (the result schema is now is bag<struct(IsMilk: boolean, TheProducts: bag<Product>, NumProducts: integer)>).
Finally, after subset formulation has taken place, some subsets may be filtered out of the final result, depending on whether they satisfy a condition or not, using the having clause. The condition in the having clause is evaluated against the elements of each subset (the members of the partition field of each result structure) and the result structure appears in the result only if the condition evaluates to true. Thus the query
select IsMilk, partition as TheProducts, count(partition) as NumProds
from Products as p
group by p->Description like '*milk*' as IsMilk
having avg(select p1->LifeTime
from partition as p1) > INTERVAL '12' DAY
partitions the objects in the Products extent as described above, but includes each subset in the final result only if the average current life time of the objects included in it exceeds 12 days.
Since TOQL operates on database schemata that contain temporal information, it should extend this functionality by allowing for partitioning of temporal information into subsets with respect to the time axis, as well as aggregate computation over the elements of each subset, and subset filtering. TOQL provides two types of temporal partitioning. The first type allows for splitting of a single temporal object into variant subsets, each pertaining to a specific portion of the time axis. The second partitioning method allows for combination of variants of multiple temporal objects that pertain to a specific portion of the time axis into a single set. These two types of partitioning, along with the methods for partition filtering and aggregate value computation are described in the following paragraphs.
Partitioning a single temporal object into variant subsets
The first type of partitioning splits a single temporal object into sets of variants, with each set containing the variants which pertain to a specific period. Partitioning may be performed either on the valid time or on the transaction time axis. The user specifies the desired time axis and an interval, which is used as the basic partitioning unit for the chosen time axis. For example an interval of 1 year specifies that the chosen time axis will be partitioned into segments with duration equal to one calendric year and variants will be included into some partition, if they contain information pertaining to the associated time segment.
Each basic partitioning unit may be extended towards the beginning and/or the end of the time axis by a specified duration, allowing thus for flexible time window formulation. For example, the user may choose a basic partitioning unit of one year and an extension towards the end of the time axis equal to two years, in order to compute aggregates over three-yearly periods, with each period starting at the beginning of each year.
The syntax for invoking this form of partitioning is
TemporalObject(partition time_axis as interval_query
[leading interval_query] [trailing interval_query] [calendar])
i.e. the temporal object is followed by a parenthesised expression which starts with the partition keyword and specifies the time axis on which the splitting operation will be performed (valid or transaction) and the basic partitioning unit. The expression contains two optional fields that may be used to specify the extension of the basic partitioning unit towards the beginning and the end of the time axis (the leading and trailing clauses, respectively). The time dimension specified in the partitioning expression must occur within the partitioned temporal object and the granularity and calendars of all interval queries must be identical, but not necessarily equal to the characteristics of the temporal object’s partitioned time axis (e.g. the temporal object may have valid time semantics with granularity of day, whereas partitioning may be performed on a yearly basis). Finally, the calendar clause, if present, specifies that the starting point for the calculation of the time windows is the beginning of the calendar; if this clause is absent, the starting point is the smallest time instant occurring within the timestamps of the partitioned axis of the temporal object.
This form of aggregation is useful for producing analytical reports over periods, for information that is stored in a temporal object. For example the query “for all products, retrieve the name and the evolution of their life time for each calendric year” could be expressed in TOQL as
select p->ProductName as Name,
(valid p->LifeTime)(partition valid as INTERVAL '1' YEAR calendar)
as YearlyLifeTime
from Products as p
The YearlyLifeTime field in this query’s result schema is a set of structures, with each structure corresponding to a partition of the valid time axis with duration equal to one year. Each structure contains two member fields. The first member is named TimeSlice, its type is Period and contains the portion of the time axis to which the information of this structure pertains. The granularity and calendar of the TimeSlice field is derived from the respective characteristics of the timestamps in the partitioned time axis. The second member is a set named Partition, and contains the values and the valid timestamp of the variants associated with the portion of the valid time axis stored in the respective TimeSlice field. The schema of the Partition member in this example thus is bag<struct(Value: interval, VT: period)> and the query result’s schema is bag<struct(Name: string, YearlyLifeTime: bag<struct(TimeSlice: period, Partition: bag<struct(Value: interval, VT: Period)>)>. If the database contents are as described in section � REF _Ref368628967 \n �1.3� and the query is evaluated on December 15, 1996, the result of the query will be:
{(Name: 'Life Orange Juice',
YearlyLifeTime: {(TimeSlice: [1995-01-01, 1996-01-01),
Partition: {(Value: 18, VT: [1995-01-01, 1995-06-01)),
(Value: 9, VT: [1995-06-01, 1996-06-01))}),
(TimeSlice: [1996-01-01, 1997-01-01),
Partition: {(Value: 18, VT: [1995-06-01, 1996-06-01)),
(Value: 12, VT: [1996-06-01, forever))})}),
(Name: 'Champion',
 YearlyLifeTime: {(TimeSlice: [1994-01-01, 1995-01-01),
Partition: {(Value: 6, VT: [1994-01-01, 1994-06-01)),
(Value: 9, VT: [1994-06-01, 1995-01-01))}),
(TimeSlice: [1995-01-01, 1996-01-01),
Partition: {(Value: 12, VT: [1995-06-01, forever))})
(TimeSlice: [1996-01-01, 1997-01-01),
Partition: {(Value: 12, VT: [1996-06-01, forever)})})}
In the general case, if TO is a temporal object, the schema of the Partition member resulting from a partitioning operation is a structure, whose fields are determined as follows:
the structure always contains a field named Value whose type is identical to the temporal object’s timestamped type.
if TO has valid time semantics, the structure contains a field named VT that stores the variant’s valid time. The type of the VT field is Period, if TO has valid state semantics; if, however, TO has valid event semantics, the type of the VT field is set to Instant. In all cases, the granularity and calendar of the VT field are identical to the respective characteristics of TO’s valid timestamps.
if TO has transaction time semantics, the structure contains a field named TT which stores the variant’s transaction time. The type of the TT field is always Period with the default calendar and granularity used by the system for the transaction time dimension.
In the above example, three additional characteristics of the partitioning operator are demonstrated. The first characteristic is that the distinguished value forever in valid timestamps is substituted by the value of the current timestamp for the purposes of partitioning. Indeed, the special value forever is frequently used in valid timestamps having the “until changed” semantics, and not as actually designating the end of the calendar, so, in order to avoid computation of unnecessary (and numerous) partitions, this substitution is enforced. If the user wants to formulate partitions which extend to the end of the calendar, he/she must use explicitly the last timestamp in the calendar, instead of the distinguished timestamp forever.
The second characteristic of the partitioning procedure demonstrated in the example above is the handling of period-timestamped variants, whose timestamps are not fully contained within a single segment of the time axis. When variants are timestamped using periods, it is possible that some variant timestamp is not fully contained within a single portion of the time axis, as these portions are defined by the basic partitioning unit and the leading, trailing and calendar clauses. The way that these variants are handled depends on the semantics of the partitioned object:
for objects having valid state semantics and not allowing overlapping, the value of the variant appears in every partition whose TimeSlice field overlaps with the variant’s timestamp, since the information in such variants is applicable to subperiods and instants.
for objects having valid state semantics and allowing overlapping, the variant does not appear in any partition, since the information in such variants is meaningless for instants and subperiods.
for transaction time objects, the value of the variant appears in every partition whose TimeSlice field overlaps with the variant’s timestamp.
Note that partial containment situations do not arise for objects with valid event semantics, since instants are either contained in some period, or they are not. In all cases, if the variant appears within some partition, it retains its original timestamp. We choose to keep the original timestamp, instead of using only the part of it that overlaps with the specific portion of the time axis for two reasons: firstly, if the intersection of the periods is used, there is no way for the user to reconstruct the original timestamp; if however, the original timestamp is used, the user may compute the intersection, by applying the intersection function to the timestamp and the respective TimeSlice field. Secondly, as stated above, the distinguished value forever is treated similarly to value NOW for the purposes of partition formulation, thus indications for its presence are not provided by the TimeSlice fields. If the intersection of the periods is used, these indications are not provided by the individual timestamps either. Using thus the original timestamps does not result to any loss of information and allows computations to be made on either the original timestamp or the portion of the original timestamp associated with the respective time window.
Since the result of the partitioning operation is a set, it may be used in the from clause, so as to define a variable iterating over the members of the set. This variable may be used in conditions within the where clause, so as to facilitate subset filtering, or in expressions in the Select-list, in order to compute aggregate values over the variants. For example, the user may request an analytical report for the lifetimes of the products for each even year, which can be computed using the following query:
select p->ProductName as Name,
(select variant
from (valid p->LifeTime)(partition valid as INTERVAL '1' YEAR calendar)
as variant
where year(begin(variant->TimeSlice)) mod 2 = 0) as YearlyLT
from Products as p
If the user wants to compute the average life time for each product over each year, without taking into account the duration that each life time applied within each year, he/she may issue the following query:
select p->ProductName as Name,
(select variant->TimeSlice as TimeSlice,
avg(select LT->Value
from variant->Partition as LT) as AvgLifeTime
from (valid p->LifeTime)(partition valid as INTERVAL '1' YEAR calendar)
as variant) as YearlyLt
from Products as p
Finally, the basic partitioning unit, as well as the interval expressions in the leading and trailing clauses need not be constant for all objects. For example, if the declaration of class Product includes a field ReportingPeriod of type Interval, the query
select p->ProductName as Name,
(valid p->LifeTime)(partition valid as p->ReportingPeriod calendar)
as ReportLT
from Products as p
can be issued to produce analytical reports for history of the lifetime for products in the database, using a potentially different reporting period for each product. For instance, the reporting period for the “Life Orange Juice” product may be set to 1 year, whereas the reporting period for the “Champion” product could be set to 15 months.
Combining variants from multiple temporal objects
The second type of partitioning allows for combination of variants from multiple temporal objects into groups, with each group pertaining to a specific portion of either the valid or the transaction time axis. Groups may be filtered, depending on whether they satisfy some condition, and aggregate values may be computed over the elements of each group. This form of partitioning is provided via a special form of the group by clause, in which the grouping expression is a time dimension (valid time or transaction time), with an associated basic partitioning unit and, optionally, unit extensions towards the beginning or the end of the time axis. Group filtering and aggregate value computation is performed using the standard OQL mechanisms, i.e. the where clause and aggregate functions, respectively. The alternative syntax of the group by clause is
group by time_axis interval_query [leading interval_query]
[trailing interval_query] as identifier
with time_axis being either valid or transaction. This form of the group by clause is available only when the from clause defines a single variable iterating over a set of temporal objects. The time dimension designated in the group by clause must occur in the objects resulting from the select/from/where query. The granularity and calendars of all interval queries must be identical; the granularity must not necessarily match the characteristics of the temporal object’s partitioned time axis (e.g. the temporal objects may have valid time semantics with granularity of day, whereas partitioning may be performed on a yearly basis). If the partitioning expression is time_axis interval_query [optional_time_windows] as identifier, then the result of the grouping is set<struct(identifier: period, Partition: bag<struct(Value: T, VT: period, TT: period)>)>, with T being the timestamped type returned by the from clause. (One of the fields VT and TT may be missing, if the from clause defines a variable iterating over a collection of transaction time objects or a collection of valid time objects, respectively. If the from clause defines a variable iterating over a collection of valid event objects, the VT field will be of type Instant, instead of Period.)
Each element of the returned collection contains the information pertaining to a specific portion of the time axis. Variants that occur in any member of the set defined in the from clause and contain information pertaining to the specific period of the designated time axis, appear as elements in the Partition field of the corresponding structure. After grouping has been performed, the having clause is applied (if present) to eliminate groups not meeting some user-specified condition and, finally, the select-list is evaluated. Both the having clause and the expressions in the select-list may reference the fields identifier and Partition. Handling of the distinguished value forever in valid timestamps and behaviour in the presence of variants whose timestamps are partially contained within a time window are as described in paragraph � REF _Ref376273427 \n �1.9.1�.
For example, the user may want to compute the average yearly lifetime of fresh products, which can be evaluated using the following query:
select TimeSlice, avg(select x from Partition as x) as Average
from (select valid p->LifeTime from Products as p) as LT
group by valid INTERVAL '1' YEAR as TimeSlice
The group by clause causes the restructuring of the collection used in the from clause, so as to create groups, each one containing two fields. The first field is named TimeSlice (as specified in the group by clause) and designates the portion of the time axis with which this structure is associated. The second field is named Partition (which is a system-generated name) and contains all the variants that occur in any of the valid time objects which belong to the bag defined in the from clause, and have a valid timestamp which overlaps with the respective portion of the time axis. For each such group, the select-list is evaluated, so as to produce the final query result.
If the user wanted to report only on products whose current life time exceeds 10 days, the following query could be issued:
select TimeSlice, avg(select x from Partition as x) as Average
from (select valid p->LifeTime from Products as p) as LT
where LT[INSTANT 'NOW' DAY] > INTERVAL '10' DAY
group by valid INTERVAL '1' YEAR as TimeSlice
As in standard OQL, the where clause is applied before the group by clause, so the undesired temporal objects are filtered out before grouping is performed.
If the user wanted to report only on periods that start on an odd year, the following query could be issued:
select TimeSlice, avg(select x from Partition as x)
from (select valid p->LifeTime from Products as p) as LT
group by valid INTERVAL '1' YEAR as TimeSlice
having year(begin(TimeSlice)) mod 2 = 1
As in standard OQL, the having clause is applied after grouping is performed.
Finally, the basic partitioning unit as well as the interval expressions in the leading and trailing clauses must be identical for all elements of the collection specified in the from clause, thus only interval literals are allowed in the alternative form of the group by clause and not generic queries.
TOQL and User Requirements
TOQL covers all temporal needs that have been identified in the user requirements analysis phase and reported in [TR22TR.1]. The specific needs are listed in the following figure. Where appropriate, a brief description is given on how TOQL meets the specific needs.
�User requirements needs�Supported?�Comments��Temporal dimension����valid time�ό���transaction time�ό���Typology of objects����snapshot objects�ό���valid time objects�ό���transaction time objects�ό���bitemporal objects�ό���Temporal structure (reasoning)����temporal point�ό�Operations provided on instants��period�ό�Operations provided on periods��set of temporal points�ό�Standard OQL bag/set operators��set of periods�ό�Period sets��Granularity and calendar����calendar�ό�Gregorian. Arbitrary user-defined calendars may be used.��granularities�ό�Year, month, day, hour, minute, second in the Gregorian. Arbitrary in user-defined calendars.��Temporal queries����comparisons of dates�ό�Operators on instants��comparison and construction of periods �ό�Operators on periods and constructor functions��mapping of dates to intervals�ό�Operators on instants; implicit conversion of instants to periods��calculation of intervals�ό�Via operators and constructor functions��relative time manipulation�ό�Relative timestamps��conversion of snapshot objects to valid time, transaction time and bitemporal�ό�valid, transaction and bitemporal modifiers��extraction of an object’s valid time and transaction time�ό�Functions valid and transaction��construction of the valid time related to a result object�ό�Via the valid and bitemporal modifiers��selection of values according to a period�ό�Subscript operators and object variant referencing��selection of periods satisfying a criterion�ό�Object variant referencing��selection of a valid time object from a valid time object�ό�Subscript operators��temporal grouping�ό�Temporal objects are temporally grouped��temporal ordering selection�ό�Sorting on instants and periods��aggregate functions�ό�Standard OQL aggregation and temporal forms of aggregation��extrapolation or calculation of values according to a period��The application needs to define its own extrapolation policy���temporal modal operators�ό�The standard OQL exists and for all predicates may be applied to object variants���User requirements needs�Supported?�Comments��Temporal queries����conversion of valid time objects to snapshot, transaction or bitemporal�ό�snapshot, transaction and bitemporal modifiers��conversion of transaction time objects to snapshot, valid or bitemporal�ό�snapshot, valid and bitemporal modifiers��conversion of bitemporal objects to snapshot, valid and transaction time�ό�snapshot, valid and transaction modifiers��Figure � SEQ Figure * ARABIC �16� - TOQL capabilities against user requirements
TOQL provides additional features which were not identified in the user requirements analysis phase, in order to be temporally complete. Examples of these features are temporal joins, the leading and trailing clauses in aggregation etc.
Design
Introduction
In this section, the design of the TOQL query processor is presented. The following goals were adopted in the design of the processor:
full temporal functionality should be delivered.
The developed TOQL processor should provide all the temporal characteristics described in the specification of TOQL.
full snapshot DBMS compatibility.
The TOQL processor must accept “plain” OQL queries and evaluate them, in order to provide the desired level of compatibility for snapshot applications.
performance.
High performance is a crucial non-functional requirement for applications and the TOQL processor must contribute to this direction. Additionally, it is desirable that snapshot queries on snapshot data are not penalised with any overhead.
portability.
The implementation of the TOQL processor should not be bound to specific characteristics of the underlying system; rather it should be portable to every ODMG-compliant object oriented DBMS.
Architecture for the TOQL Processor
The TOQL processor will be implemented as a software module functioning on top of the OQL processor of O2. TOQL queries will be intercepted and transformed to OQL queries, which will be submitted to the OQL processor for evaluation. The results returned by the OQL processor will be forwarded to the user, or the application which has issued the TOQL query. This scheme is illustrated in � REF _Ref368283081 * MERGEFORMAT �Figure 17�.
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �17� - TOQL processor architecture
The TOQL processor itself is further subdivided into smaller software modules, with each one of them being responsible for one stage of the processing of the query, as illustrated in � REF _Ref368741996 * MERGEFORMAT �Figure 18�. These modules are described in the following paragraphs.
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �18� - The TOQL processor modules
The lexical analyser processes the query which is submitted to the TOQL processor and splits it to lexical tokens, with each one of them corresponding to an element of TOQL. If the query contains a substring which is not a valid element of TOQL, an error condition is raised and further processing is aborted.
The syntax checker reads the stream of lexical tokens produced by the lexical analyser and checks whether this forms a valid TOQL query. The syntactical analyser generates a syntax tree, which describes the structure of the TOQL query. If the query is not found to conform to the TOQL syntax rules, an error is reported and query processing is terminated.
The type checker traverses the syntax tree, checking whether the operation designated in the query are legal, with respect to the types of their arguments. In order to perform this task, the type checker must be able to access information about the objects stored in the database, as well as the method signatures. These data are obtained by querying the database metadata, which are maintained by the TODL processor and stored in the O2 system.
Additionally, the type checker arranges for the insertion of the appropriate type conversions (as described in paragraph � REF _Ref368543646 \n �1.2.5�), when they are not directly supported by the data model. If an operation with illegal argument types is designated (the types of the arguments to the operation do not match one of the legal signatures neither directly, nor after the application of type conversion rules), the type checker module raises an error and the processing of the TOQL query is aborted.
The semantical analyser module determines the actual operations that must be invoked, in order to evaluate the query. These operations cannot always be directly determined from the syntax rules or the type checking but rather from the overall query structure. For example, if a valid time instance property appears in the select-list and is not preceded by the keyword valid, then, according to the TOQL specification, only its current value (as opposed to its full history) should be retrieved. The semantical analyser will arrange for the invocation of the appropriate method which will extract the current value of the object. The data which are necessary to perform the semantical analysis are obtained by querying the database metadata.
The TOQL optimiser arranges for the elimination of redundant operations (such as coalescing a valid time object which is already coalesced) or the compacting of operations wherever possible (e.g. two consecutive type conversions �implicit or explicit� on the same datum may be replaced by a single one).
The OQL generator module processes the syntax tree and the data structures Troduced by the type checker and the semantical analyser modules and formulates an OQL query, which will yield the desired results.
This design scheme enables the fulfilment of the goals outlined in section � REF _Ref370020005 \n �2.1�. Full temporal support can be achieved by query transformations and method invocations, which are described in more detail in paragraph � REF _Ref370021246 \n �2.3�. Compatibility with the snapshot DBMS (O2) is provided, since TOQL is a superset of OQL, thus every statement that is legal in OQL, is also legal in TOQL. Additionally, TOQL has been designed to provide the maximum degree of compatibility for snapshot applications, even if they operate on a temporally enriched database schema (for more details, see Appendix C).
The adopted two-layer schema does not imply poor performance. Admittedly, this approach introduces one new function (query rewriting) and leads to the duplication of three other functions, namely lexical analysis, syntax analysis and type checking, which will be carried out by both the TOQL query processor and OQL query processor. (Semantical analysis and optimisation performed by the TOQL query processor do not overlap with the corresponding actions taken by the OQL processor, since they focus on different aspects; for example, the optimiser of the TOQL processor handles the temporal aspects of the operations, whereas the optimiser of the OQL processor focuses on indexes and physical storage of data.) However, the overall overhead imposed by this duplication is negligible: measurements performed using the ORES parser ([ORES94]) which performed a similar task, showed that the time needed for the lexical analysis, syntax analysis and query rewriting stages of SQL queries ranges from 0.003 seconds for simple select-from-where queries, up to 0.17 seconds for huge, multi-line queries (the query which needed 0.17 seconds for these stages was 110 lines long and was sized over 2 KBytes; queries of this size are not really common). In all cases, the time needed for these three stages does not exceed the 0.08% of the overall query execution time. These measurements are graphically depicted in the following two diagrams.
� EMBED MSGraph.Chart.5 \s ����� EMBED MSGraph.Chart.5 \s �����Figure � SEQ Figure * ARABIC �19� - Overhead introduced for lexical analysis, syntax analysis and rewriting�Figure � SEQ Figure * ARABIC �20� - Percentage of the introduced overhead to overall query execution time��The ORES implementation did not contain a distinct type checker, so the overhead imposed by the type checker could not be measured; however it is estimated that the overhead imposed by the type checker should remain low, and it will not exceed the sum of the overheads imposed by the other modules.
Another aspect that usually affects the performance of extensions implemented outside some DBMS is that processing must take place both in the server side and the client side, necessitating thus the need for numerous data transfers between the client and server; however in the O2 system, processing takes place on the client side only, so data are transferred once from the O2 server to the client, without imposing any overheads.
Moreover, the two-layer scheme guarantees that snapshot applications operating on snapshot data do not pay a performance penalty, because of the introduction of temporal support: these applications may submit their queries directly to the O2 system’s OQL processor, so their performance will not be affected.
Finally, implementing the TOQL processor on top of the O2 database system allows it to be easily ported on top of any ODMG compliant database system, since it does not use any special features of O2. This would be impossible if the TOQL processor was integrated into the O2 system, since the TOQL processor would be tightly bound to special characteristics of the O2 system.
Query Processing
As stated in the previous section, the TOQL processor analyses the queries submitted to it and transforms them to equivalent OQL queries, which are subsequently fed into the O2 system’s OQL processor. In the following sections, the syntactical transformations employed by the TOQL processor and the auxiliary methods which are used within the rewritten queries are presented.
Syntactical transformations
Literals
Each interval, instant, period or period set literal is transformed to an invocation of the corresponding class’s constructor functions. The TOQL processor splits up the literal specification to the corresponding value and granularity fields, calls the constructor of the corresponding class, so as to produce a new object. Period set literals, which are specified via a constructor function (period_set) are transformed to an invocation of the corresponding class’s constructor; in this case, however, the periods comprising the period set are grouped in a set, before they are passed to the constructor, in order to avoid variable length argument lists. Examples of the transformations employed for literal support are illustrated in the following figure.
TOQL syntax�Transformed syntax��INTERVAL '5' DAY�interval()->set_value('5', 'day')��INSTANT '1990-01' MONTH�instant()->set_value('1990-01', 'month')��PERIOD '[1990, 1991)' YEAR�period()->set_value('[1990, 1991)', 'year') ��period_set('[1990, 1991)',
'[1993, 1995)') YEAR�period_set()->set_value(set('[1990, 1991)','[1993, 1995)'), 'year')��Figure � SEQ Figure * ARABIC �21� - Transformations for literal support
Note that the transformations described above are subject to change, in order to match exactly the internal structure of the instant, interval, period and period set objects.
Functions
Since the O2 system allows only class member functions to be used in OQL, the functions described in section � REF _Ref368225011 \n �1.2.2� will be implemented as member functions of the corresponding classes and the TOQL processor will arrange for the transformation of the function call syntax to a member function invocation. The first argument of the function will always be the object through which the member function will be invoked. The remaining arguments (if any) will be passed as parameters to the member function.
The CAST syntactic construct is also mapped to a member function invocation: the datum following the CAST keyword will be the object through which the member function will be invoked and the target granularity will be used as an argument to the member function invocation. Examples of the transformations used for function calling and explicit granularity casting support are illustrated in the following figure.
TOQL syntax�Transformed syntax��begin(some_period)�(some_period)->begin��month(some_instant)�(some_instant)->month��merge(period1, period2)�(period1)->merge(period2)��CAST some_period TO DAY�(some_period)->cast('day')��Figure � SEQ Figure * ARABIC �22� - Transformations for function support
In the transformed syntax, the object through which the member function is invoked is enclosed in parentheses, in order to avoid operator precedence problems.
Predicates
Within the data model, predicates will be implemented as member functions to the corresponding classes. The TOQL processor will transform the infix predicate notation operand1 predicate operand2 to a member function invocation construct. In these transformations, the left operand will be the object through which the member function will be invoked, whereas the right operand will be passed as a parameter to the member function. Examples of the transformations used for the implementation of predicates are illustrated in the following figure.
TOQL syntax�Transformed syntax��instant1 precedes instant2�(instant1)->precedes_inst(instant2)��period1 overlaps period2�(period1)->overlaps_per(period2)��period_set1 contains period_set2�(period_set1)�>
	overlaps_ps(period_set2)��Figure � SEQ Figure * ARABIC �23� - Transformations for predicate support
In the transformed syntax, the object through which the member function is invoked is enclosed in parentheses, in order to avoid operator precedence problems.
The same transformation technique will be used for implementing standard comparison operators (i.e. >, >=, < and <=) for classes instant and interval. Each of these operators will have a corresponding member function (e.g. greater, greater_equal, less and less_equal, respectively), and the TOQL processor will transform comparisons via standard operators to invocations of these member functions, as depicted in the following figure.
TOQL syntax�Transformed syntax��instant1 > instant2�(instant1)->greater(instant2)��interval1 <= interval2�(interval1)->less_equal(interval2)��Figure � SEQ Figure * ARABIC �24� - Transformations for standard comparison operators support
These transformations are required because the O2 system does not allow usage of user-defined C++ operators in OQL queries.
Operators
TOQL introduces new operators on intervals, instants, periods and period sets, as described in paragraph � REF _Ref368139305 \n �1.2.4�. However, since the O2 system disallows the usage of user-defined C++ operators in OQL queries, these operators will be implemented as member functions within the corresponding classes and the TOQL processor will arrange for the transformation of the infix operator syntax to the equivalent member function invocation.
For unary operators (unary plus and unary minus), the operand will be the object through which the member function will be invoked, and no additional parameters will be supplied in this function invocation. For binary operators, the left operand will be the object through which the member function will be invoked, whereas the right operand will be a parameter to this invocation. An exception to this rule is the operator number * interval: in the transformed version of this operator, the right operand (i.e. the interval) is the object through which the member function is invoked, whereas the left operand (i.e. the number) is passed as a parameter to this method invocation. Examples of the transformations used for the implementation of operators are illustrated in the following figure.
TOQL syntax�Transformed syntax��- some_interval�(someinterval)->uminus��interval1 + interval2�(interval1)->plus_int(interval2)��instant1 - interval1�(instant1)->bminus_int(interval1)��number1 * interval1�(interval1)->multiply(number1)��Figure � SEQ Figure * ARABIC �25� - Transformations for operator support
In the transformed syntax, the object through which the member function is invoked is enclosed in parentheses, in order to avoid operator precedence problems.
Type conversions
When an implicit type conversion is needed, the TOQL processor implements it by calling a member function of the object that must be converted. Periods require only one such function, which allows for their conversion to period sets and instants have one member function that converts an instant to a period. Conversions from instants to period sets are implemented by first converting the instant to a period and subsequently converting the result to a period set. If instants have a member function that directly converts instants to period sets, the TOQL optimiser will replace the two successive member function calls by a single call to this member function. Examples of the transformations used for the implementation of implicit transformations are illustrated in the following figure.
TOQL syntax�Transformed syntax��instant1 + period1�((instant1)->to_period)->plus(period1)��period_set1 + period1�(period_set1)�>plus(period1�>
to_period_set)��period_set1 + instant1�(period_set1)�>plus(instant1�>to_period�>
to_period_set)��Figure � SEQ Figure * ARABIC �26� - Transformations for implicit conversion support
Retrieval of temporal instance properties
When a temporal instance property is used in a query and is not preceded by any of the valid, transaction and bitemporal keywords, it is automatically converted to the corresponding snapshot value. This is achieved by replacing the reference to the temporal property with a member function call, which returns the current value of the temporal object (i.e. the variant whose valid and transaction timestamps overlap with the current instant). For example, if the query
select p->ProductName as ProductName,
p->LifeTime as LifeTime,
p->Ingredients as Ingredients
from Products as p
is submitted against the database schema described in section � REF _Ref368628967 \n �1.3�, it will be rewritten by the TOQL processor as
select p->ProductName as ProductName,
(p->LifeTime->current_value) LifeTime,
(p->Ingredients->current_value) as Ingredients
from Products as p
Analogous transformations are used in relationships, too.
When temporal properties are preceded with the corresponding valid, transaction or bitemporal keyword, this transformation is not applied; in these cases, the TOQL processor simply drops the preceding keyword.
The TOQL processor uses additional transformations when the count, first and last functions or the subscript operator are used with temporal instance properties. Functions count, first and last are transformed to member function calls which accept no parameters, as shown in the following figure.
TOQL syntax�Transformed syntax��count(bitemporal bitemp_obj)�(bitemp_obj)->count��first(valid valid_obj)�(valid_obj)->first��last(transaction trans_obj)�(trans_obj)->last��Figure � SEQ Figure * ARABIC �27� - Transformations used for supporting functions count, first and last for temporal objects
Subscript operators are also mapped to calls to member functions. The temporal instance property on which the subscript is applied, is used as the object through which the member function is invoked, whereas the subscripts are passed as parameters to the member function. For valid time and bitemporal objects that allow overlapping of valid timestamps, the usage of the DISTINCT specifier results to the invocation of a different member function. Examples of the transformations employed to implement the subscript operators are shown in the following figure.
TOQL syntax�Transformed syntax��valid_obj[n1]�(valid_obj)->get_value_num(n1)->value��trans_obj[n1:n2]�(trans_obj)->get_value_2num(n1, n2)��valid_obj[instant1]�(valid_obj)->get_value_inst(instant1)
�>value��trans_obj[period1]�(trans_obj)->get_value_per(period1)��o_valid_obj[DISTINCT period1]�(o_valid_obj)->get_value_dper(period1)��>value��bitemp_obj[VALID AT instant1]�(bitemp_obj)->get_valid_hist_inst�(instant1)��bitemp_obj[CURRENT AT period1]�(bitemp_obj)->get_trans_hist_per�(period1)��bitemp_obj[VALID AT instant1, CURRENT AT instant2]�(bitemp_obj)->get_hist_2inst(instant1, instant2)��o_bitemp_obj[CURRENT AT period1, VALID AT DISTINCT period2]�(o_bitemp_obj)�>get_dvalue_per(period2, period1)��Figure � SEQ Figure * ARABIC �28� - Transformations for subscript support
Analogous transformations are applied when the subscripted expression is followed by one of the specifiers deleted or all. The presence of any of these specifiers results to the invocation of a different member function, which returns the desired variants in its result (the variants tagged as deleted or all variants, respectively).
The results of subscript operators returning a single variant can be used, according to the specifications of TOQL, as arguments to functions valid and transaction, in order to access the corresponding timestamps. When such a function reference is encountered, it is modified by the TOQL query processor to a call to the corresponding function, followed by an access to the valid timestamp or the transaction timestamp field. Examples of the transformations employed to implement the valid and transaction functions for subscript operations are given in the following figure.
TOQL syntax�Transformed syntax��valid(valid_obj[n1])�(valid_obj)->get_value_num(n1)->VT��transaction(trans_obj[instant1])�(trans_obj)�>get_value_inst(instant1)
�>TT��valid(o_valid_obj[DISTINCT period1])�(o_valid_obj)->get_dvalue_per(period1)��>VT��valid(bitemp_obj[CURRENT AT instant1, VALID AT instant2])�(bitemp_obj)->get_dvalue(instant2, instant1)�>VT��Figure � SEQ Figure * ARABIC �29� - Transformations for supporting functions valid and transaction on the results of subscript operators
Modifiers weighted valid and weighted transaction are also handled by syntactical transformations. When such a modifier is used, the TOQL processor modifies it to a piece of OQL code which accesses the variant’s value and multiplies it with the duration of the associated timestamp. Examples of this procedure are illustrated in the following figure.
TOQL syntax�Transformed syntax��weighted valid_obj[n1]�(valid_obj->get_value_num(n1)->value *
duration(valid_obj->get_value_num(n1)->VT))��weighted trans_obj[inst1]�(trans_obj�>get_value_inst(inst1)�>value *
duration(trans_obj�>get_value_inst(inst1)
�>TT)��Figure � SEQ Figure * ARABIC �30� - Transformations for supporting functions valid and transaction on the results of subscript operators
Extracting object states
Object state extraction is handled similarly to the application of subscript operations. Each request to extract states of some object possessing temporal semantics as a whole using the square bracket operator ([]), is mapped to a call to a member function of the respective object. The object whose variants are extracted is used as the object through which the member function is invoked, whereas the subscripts are passed as parameters to the member function. For valid time and bitemporal objects that allow overlapping of valid timestamps, the usage of the distinct specifier results to the invocation of a different member function. Examples of the transformations employed to implement the subscript operators are shown in the following figure.
TOQL syntax�Transformed syntax��valid_obj[n1]�valid_obj->get_state_num(n1)->value��trans_obj[n1:n2]�trans_obj->get_state_2num(n1, n2)��valid_obj[instant1]�valid_obj�>get_value_inst(instant1)
�>value��trans_obj[period1]�trans_obj�>get_value_per(period1)��o_valid_obj[DISTINCT period1]�o_valid_obj�>get_dvalue_per(period1)��>value��bitemp_obj[VALID AT instant1]�bitemp_obj�>get_valid_hist_inst
(instant1)��bitemp_obj[CURRENT AT period1]�bitemp_obj�>get_trans_hist_per�(period1)��bitemp_obj[VALID AT instant1, CURRENT AT instant2]�bitemp_obj�>get_hist_inst(instant1, instant2)��o_bitemp_obj[CURRENT AT period1, VALID AT DISTINCT period2]�o_bitemp_obj�>get_dvalue_per(period2, period1)��Figure � SEQ Figure * ARABIC �31� - Transformations for object state extraction
Referencing object variants
A query referencing object variants is transformed by the TOQL processor to a query using standard OQL constructs and features of the temporally enhanced data model. If a variable var is defined in a from clause to iterate over the variants of a temporal instance property t_prop, the TOQL processor applies the following transformations:
The temporal instance property in the from clause is substituted by a call to the data model method which returns the history ([TR31TR.1]) of the temporal property. This method returns the history as a set of structures, with each structure containing the value of the variant its valid timestamp and/or its transaction timestamp, depending on whether the temporal instance property has valid time semantics, transaction time semantics, or both. These three fields of these structures will be denoted in the following as value, VT and TT, respectively.
Since the result of this method invocation is a set, OQL allows the definition of a variable which iterates over the elements of this set.
Each reference to the variable var within the scope of the from clause that does not occur within functions valid and transaction is substituted by the notation var�>value.
Each occurrence of the function valid(var) within the scope of the from clause is replaced by the notation var�>VT.
Each occurrence of the function transaction(var) within the scope of the from clause is replaced by the notation var�>TT.
According to these transformation rules, the query
select xLifeTime as LifeTime, valid(xLifeTime) as When
from Products as p, valid p->LifeTime as xLifeTime
where p->ProductName = "Life Orange Juice"
and xLifeTime > INTERVAL '12' DAY
which selects the periods during which the life time of the product “Life Orange Juice” was longer than 12 days along with actual life time, will be rewritten by the TOQL processor as
select xLifeTime�>value as LifeTime, xLifeTime�>VT as when
from Products as p, (p->LifeTime).get_history as xLifeTime
where p->ProductName = "Life Orange Juice"
and (xLifeTime->VT).greater(interval().set_value('12', 'day'))
Conversion between temporal and snapshot values
TOQL provides four modifiers (snapshot, valid, transaction and bitemporal) for converting between temporal and snapshot values. The syntactical transformations employed in order to implement these transformations are described in the following paragraphs.
The snapshot modifier
The snapshot modifier is implemented by retrieving the full history of the temporal instance property using the appropriate data model method and subsequently selecting the value field from the structures in the resulting set. For example, the query
select p->ProductName as ProductName,
max(snapshot p->LifeTime) as MaxLife
from Products as p
is transformed to
select p->ProductName as ProductName,
max(select toql_var001�>value
from (p�>LifeTime).get_history as toql_var001) as MaxLife
from Products as p
The valid modifier
In order to evaluate the valid modifier, the TOQL processor first identifies the type returned by the query which is enclosed in the brackets. This type, along with the valid type specification (state or event) and the presence of the overlaps designation are used to determine the type which is returned by the valid modifier. The TOQL processor arranges for a call to the target type’s class constructor, using query enclosed in the brackets, together with the expression following the colon (:) to formulate an argument to it. An example of the overall transformation is depicted below. The query
valid state granularity day [select p->productName
from Products as p:
period '[1990-01-01, 1997-01-01)' DAY]
is transformed to
string_vstate_day().set_value(select p->ProductName as Value,
period().set_value('[1990-01-01, 1997-01-01)', 'day' as VT)
from Products as p)
(In this example we assume that the name of the class used to store data of type string valid state granularity day is string_vstate_day.)
The transaction modifier
In order to evaluate the transaction modifier, the TOQL processor first identifies the type returned by the query which is enclosed in the brackets. The TOQL processor arranges for a call to the target type’s class constructor, using query enclosed in the brackets to formulate an argument to it. An example of the overall transformation is depicted below. The query
transaction [select p->productName from Products as p
where p->productName = 'Life Orange Juice']
is transformed to
string_trans().set_value(select p->productName
from Products as p
where p->productName = 'Life Orange Juice')
(In this example we assume that the name of the class used to store data of type string transaction is string_trans.)
The timestamp of the variant is always set to [NOW(), UC), and this is handled by the set_value method, thus the TOQL processor does not pass to the class constructor any information on the timestamp to be used.
The bitemporal modifier
The TOQL processor handles the bitemporal modifier similarly to the valid modifier. Only the target class is changed, so as to select a class that holds bitemporal data, instead of valid time data.
Temporal joins
Temporal joins are implemented through query rewriting. The TOQL processor initially determines the result schema, based on the schemata of the joined queries and the identifiers enclosed in the parentheses following the tstruct keyword (which are used for naming the fields in the resulting temporal object). The TOQL processor arranges for a call to the constructor of the result class, followed by a call to a set_value function, using an appropriate argument. This argument is calculated by declaring two OQL variables that iterate over the variants of the two temporal objects and uses a where clause to filter out the pairs of variants whose corresponding timestamps do not fulfil the criteria that pertain to the specific type of join. For example, the query
select f->owner as Owner, f->Location as Location,
tstruct(Manager: valid f->Manager,
Turnover: valid f->Turnover) as Info
from Factories as f
is rewritten as
select f->owner as Owner, f->Location as Location,
string_int_valid_state().set_value(
select toql_var001->value as Manager,
toql_var002->value as TurnOver) as value,
(toql_var001�>VT)->intersection(toql_var002�>VT) as VT
from (f�>Manager).get_full_history as toql_var001,
(f->Turnover).get_full_history as toql_var002
where (toql_var001�>VT)�>overlaps(toql_var002�>VT)) as Info
from Factories as f
(string_int_valid_state is used in this example as the name of a class that stores valid state information, with each variant being a structure with two fields; the first field is of type string and the second field of type integer.)
If the user provides an explicit cast for the result of the temporal join, the TOQL processor determines the associated snapshot type by querying the database metadata, and arranges for converting the value part of the elements of the argument of the set_value method to this snapshot type. For example, if MgrProfit is a valid time class containing two member fields Manager and Turnover and MgrProfitSnapshot is the respective snapshot class generated by the TODL processor, the query
select f->owner, Location: f->Location as Owner,
(MgrProfit)tstruct(Manager: valid f->Manager,
Turnover: valid f->Turnover) as Info
from Factories as f
is rewritten as
select f->owner as Owner, f->Location as Location,
MgrProfit().set_value(
select MgrProfitSnapshot(Manager: toql_var001->value,
Turnover: toql_var002->value) as value,
(toql_var001�>VT)->intersection(toql_var002�>VT) as VT
from (f�>Manager).get_full_history as toql_var001,
(f->Turnover).get_full_history as toql_var002
where (toql_var001�>VT)�>overlaps(toql_var002�>VT)) as Info
from Factories as f
Restructuring operators
Restructuring operators are implemented via calls to auxiliary methods. Creation of instant-timestamped information out of period-timestamped information is facilitated by the restructure_valid_instant method, which is supported by valid state objects not allowing overlapping and bitemporal state objects not allowing overlapping, and the restructure_transaction_instant method, which is supported by transaction time objects and bitemporal objects. These methods do not accept any arguments and return a set containing structures that correspond to instant-timestamped variants on the valid time axis or the transaction-time axis, respectively.
Formulation of maximal timestamps on the valid time axis is facilitated by the restructure_valid_period method, which is supported by valid state objects not allowing overlapping and bitemporal state objects not allowing overlapping, and the restructure_transaction_period method, which is supported by transaction time objects and bitemporal objects. These methods do not accept any arguments, and return a set containing structures that correspond to variants with maximal timestamps on the valid time axis or the transaction time axis, respectively. If valid state objects not allowing overlapping or transaction time objects store variants with maximal timestamps on their unique time axis, then the respective methods for these classes may simply convert their arguments to variant sets. This may also be true for one of these methods for bitemporal objects.
In all cases, the TOQL processor rewrites invocations of the restructuring operations to calls to the respective methods, e.g. the call
(f->Manager)(partition valid as instant)
is rewritten by the TOQL processor as
(f->Manager).restructure_valid_instant
Aggregation
TOQL introduces additional aggregation methods, allowing for partitioning of temporal objects into variant subsets, each containing information pertaining to a specific portion of some time axis. Each subset may contain variants from a single temporal object or variants from multiple temporal objects.
The first type of partitioning is implemented via auxiliary methods: when such a partitioning is required, a member function of the temporal object is called, and the desired duration of the basic partitioning unit, along with the unit extensions towards the beginning and the end of the time axis are passed as parameters to it (if some unit extension is not specified, a zero-length interval is used in the place of the respective parameter). For example, the query
valid_time_object(partition valid as INTERVAL '12' MONTH
trailing INTERVAL '3' MONTH)
is transformed to the following method invocation:
(valid_time_object).mk_valid_partition(interval().set_value('12', 'month'),
interval().set_value('0', 'month'),
interval().set_value('3', 'month'))
The method mk_valid_partition is part of the behaviour of temporal objects and is responsible for formulating and returning the expected result, as described in paragraph � REF _Ref376406044 \n �1.9.1� and returning it. A similar method is provided for partitioning over the transaction time axis. Once the partitioning has been performed, subgroup filtering and aggregate value computation may be performed using standard OQL methods.
The second partitioning method is more complex, since it requires the combination of variants that belong to multiple temporal objects. Fetching all the involved objects in memory, so as to process them within a method that will formulate the result, as in the previous case is not feasible, since the data volume may be excessively high. In order to avoid such problems, the TOQL processor combines the partitioning method introduced for the previous case with query rewriting, involving standard OQL aggregation, in order to perform the aggregation described in paragraph � REF _Ref376425538 \n �1.9.2�. Recall that the generic form of a query requesting this form of aggregation is
select select-list
from collection-of-temporal-objects as variable
where item-condition
group by time-axis basic-unit [leading leading-interval]
[trailing trailing-interval] as identifier
having group-condition
and in such a query, first the collection specified in the from clause is formulated and then its elements that do not satisfy the condition stated in the where clause are eliminated. The variants of the remaining temporal objects are then restructured, in order to formulate the subgroups, and subgroups not meeting the condition specified in the having clause are eliminated. Finally, the select-list is evaluated, in order to produce the final result.
The steps described above are followed by the TOQL processor in order to evaluate the query. The first step is to formulate the collection specified in the from clause and apply the condition specified in the where clause, which is performed using the query
select * from collection-of-temporal-objects as variable
where item-condition
The result of this query is a collection of temporal objects, which will be denoted as c1 in the following. The TOQL processor defines a variable iterating over the elements of this collection, invokes the partitioning method for each element and finally selects the members of each subcollection returned by the partitioning method, together with the associated time period. This is performed using the query
select toql_var02->TimeSlice as TimeSlice, toql_var03 as Variant
from c1 as toql_var01,
toql_var001->mk_axis_partition(basic-unit, leading-interval,
trailing-interval) as toql_var02,
toql_var02->partition as toql_var03
The result of this query is a collection of structures, with each structure containing two fields. The first field is a period, corresponding to a window of the time axis on which aggregation will be performed. The second field is a variant containing information on that window of the time axis. The result of this query will be denoted as c2 in the following.
The final step is to group together variants pertaining to the same window of the time axis, filter out the variant subgroups that do not meet the condition specified in the having clause and compute the values in the original select-list, which will be the query result. This is accomplished via the query
select select-list
from (select TimeSlice as identifier,
(select toql_var05->variant
from partition as toql_var05) as partition
from c2 as toql_var04
group by c2->TimeSlice as TimeSlice) as toql_var06
where group-condition
In this query, the group by clause partitions the variants into subsets, with respect to the time axis window to which each variant pertains. The select-list of the same select/from/where query arranges so that the schema returned by the original group by clause is set to the expected one. Finally, the outermost select performs subset filtering, applying thus the having clause, and lastly, the requested select-list is evaluated. Gluing together the three steps, we obtain the overall query transformation that is applied for the second type of temporal aggregation:
select select-list
from (select TimeSlice as identifier,
(select toql_var05->variant
from partition as toql_var05) as partition
from (select toql_var02->TimeSlice as TimeSlice,
toql_var03 as Variant
from (select *
from collection-of-temporal-objects as variable
where item-condition) as toql_var01,
toql_var001->mk_axis_partition(basic-unit,
leading-interval,
trailing-interval) as toql_var02,
toql_var02->partition as toql_var03) as toql_var04
group by c2->TimeSlice as TimeSlice) as toql_var06
where group-condition
Auxiliary methods
The syntactical transformations employed by the TOQL processor, in order to implement the temporal extensions to OQL, are complemented with auxiliary methods. These methods are used for:
The implementation of restructuring operators. Methods restructure_valid_instant and restructure_transaction_instant implement transformation of period-timestamped variants to instant-timestamped variants, whereas methods restructure_valid_period and restructure_transaction_period arrange for production of maximal timestamps on the valid time axis or the transaction time axis, respectively. None of these methods accept arguments. Methods restructure_valid_instant and restructure_valid_period are supported by valid state objects not allowing overlapping of valid timestamps and bitemporal objects not allowing overlapping of valid timestamps. Methods restructure_transaction_instant and restructure_transaction_period are supported by transaction time objects and bitemporal objects.
The implementation of partitioning in temporal forms of aggregation. Valid time objects support the mk_valid_partition method while transaction time objects support the mk_transaction_partition method. Bitemporal objects support both methods.
Each of the methods mk_valid_partition and mk_transaction_partition accept three arguments of type interval and one argument of type boolean. The first argument is the basic partitioning unit of the respective time axis. The second argument defines an extension of this partitioning unit towards the beginning of the time axis, corresponding thus to the interval designated in the leading subclause of the partitioning clauses. The third argument defines an extension of the basic partitioning unit towards the end of the time axis, corresponding thus to the interval designated in the trailing subclause of the partitioning clauses. If the basic partitioning unit should not be extended towards the beginning or the end of the time axis, the corresponding parameter to the method should be a zero length interval. Finally, the fourth argument indicates whether time window offsets should be computed starting from the beginning of the calendar or from the smallest timestamp within the temporal object.
Both methods return a set of structures, with each structure containing two fields. The first field designates the time window, defined by the basic partitioning unit and the two extensions; this field is named TimeSlice. The second field is named Partition and contains all the variants of the temporal object that contain information pertaining to the respective time window.
Implementation of TOQL on top of an OQL v. 1.1 compliant OODBMS
TOQL, as described in section � REF _Ref376871199 \n �1.2� to � REF _Ref376871227 \n �1.9� is a consistent extension to the more recent standard of OQL, namely version 1.2 ([ODMG95]). In version 1.2, some syntactic constructs of version 1.1 ([Cattell94]) are not valid, since they have been replaced with SQL-92 resembling syntactic constructs. Examples of such syntactic constructs are the select list (a struct construct is now implicit if more than one attributes are listed; names are assigned to members of the select-list using the as name notation; the asterisk (*) can be used as a select list), the grouping mechanism (the group identifier in query by... query has been replaced by the group by clause), the sorting specification (the order by clause is used instead of the sort identifier in query by... construct) etc. Although the syntactic changes in OQL v. 1.1 are substantial, the modular design of the TOQL processor allows for porting the TOQL processor on top of either an OQL v. 1.1 compliant OO�DBMS or on top of an OQL v. 1.2 compliant OO�DBMS with minimal effort. More specifically, only the OQL Generator module needs to be modified for such a porting, so as to emit version-specific code for syntactical constructs that are not identical in both language specifications. The only feature of OQL v. 1.2 that cannot be directly supported on top of an OQL v. 1.1 conferment OO�DBMS is the generic sorting with arbitrary sorting order. However, two special cases can be handled in such an occasion:
if any numeric attribute is requested to be sorted in descending order, the corresponding expression in the order by clause can be negated (using the unary minus operator) and sorting can be performed with ascending order, with respect to the resulting expression.
if all attributes must be sorted in descending order, then the opposite sorting can be requested from the underlying OO�DBMS and then the resulting list can be inverted using an auxiliary method.
Using TOQL in C++
TOQL queries may be submitted from within a C++ program. In order to submit a TOQL query for evaluation, a C++ program has to perform the following actions:
create a link to the database by connecting to the temporal OODBMS using the d_TSession::begin member function, and opening a database using the d_TDatabase::open member function. d_TSession and d_TDatabase are temporal specialisations of classes d_Session and d_Database ([O2 96]), respectively, and the functionality of these two member functions is similar to the member functions d_Session::begin and d_Database::open ([O2 96]). These two methods need to be invoked only once for each execution of the program.
formulate the query text within an instance of the class d_TOQL_Query. d_TOQL_Query is a temporal specialisation of class d_OQL_Query ([O2 96]). The query text must conform to the syntax and semantic rules of TOQL and may contain bind arguments in any place that a literal value is allowed. Bind arguments have the form $i, where i is a positive integer and can be bound to specific values using the << C++ operator, e.g.
my_query << "Johnes" << "100000";
invoke the function d_toql_execute. This function accepts two arguments. The first argument must be an instance of the class d_TOQL_Query whose bind arguments (if any) must be all bound to specific values. The result of the query is stored in the second argument. The type of the second argument must match the type returned by the query. The prototype of the d_toql_execute function is
int d_toql_execute(d_TOQL_Query &q, T &result);
and is resembling to the standard ODMG function for executing queries, whose prototype is
int d_oql_execute(d_OQL_Query &q, T &result);
Steps (2) and (3) may be performed any number of times within an application, once step (1) has been successfully completed. The TOQL C++ interface is quite similar to the OQL C++ interface. Further details may be found in [O2 96].
Conclusions
In this report we gave the specification and design of a temporal extension to OQL v.1.2. The extension is consistent with OQL, in that it preserves its syntax and semantics. The design of the TOQL processor allows for portability over any ODMG compliant DBMS. Query evaluation is based on query rewriting and method invocation, allowing thus for exploitation of the underlying OODBMS’s optimisation mechanisms.
�Appendix A:	TOQL BNF syntax
The TOQL syntax will be presented in a rather informal BNF. The following notation is used:
{symbol} means a sequence of 0 or n symbols
[symbol] means an optional symbol
keyword is a terminal of the grammar
xxx_name has the syntax of an identifier
xxx_literal is self explanatory, e.g. “a string” is a string_literal
bind_argument stands for a parameter when embedded in a programming language, π.χ. $3
1. Axiom
query_program ::= {define_query;} query
define_query ::= define identifier as query
2. Basic
query ::= nil
query ::= true
query ::= false
query ::= integer_literal
query ::= float_literal
query ::= character_literal
query ::= string_literal
query ::= instant_literal
query ::= interval_literal
query ::= period_literal
query ::= entry_name
query ::= query_name
query ::= bind_argument�
query ::= from_variable_name
query ::= (query)
3. Simple Expression
query ::= query + query�
query ::= query - query
query ::= query * query
query ::= query / query
query ::= - query
query ::= query mod query
query ::= abs (query)
query ::= query || query
4. Comparison
query ::= query comparison_operator query
query ::= query like string_literal
comparison_operator ::= =
comparison_operator ::= !=
comparison_operator ::= <
comparison_operator ::= <=
comparison_operator ::= >
comparison_operator ::= >=
5. Boolean expression
query ::= not query
query ::= query and query
query ::= query or query
operator && is synonymous with and
operator || is synonymous with or
operator ! is synonymous with not
6. Constructor
query ::= type_name ([query])
query ::= type_name (identifier: query
{, identifier: query})
query ::= struct(identifier: query {, identifier: query})
query ::= set([query {, query}])
query ::= bag([query {, query}])
query ::= list([query {, query}])
query ::= array([query {, query}])
query ::= period_set([query {, query}])
7. Accessor
query ::= query dot attribute_name
query ::= query dot relationship_name
query ::= query dot operation_name([query {, query}])
dot ::= . | �>
query ::= query [query]
query ::= query [query : query]
query ::= query [distinct query]
query ::= query [valid at [distinct] query]
query ::= query [current at query]
query ::= query [valid at [distinct] query,
current at query]
query ::= query [current at query,
valid at [distinct] query]
query ::= first(query)
query ::= last(query)
query ::= function_name(query {, query})
8. History accessor
query ::= valid query
query ::= transaction query
query ::= bitemporal query
9. Timestamp Accessor
query ::= valid(query)
query ::= transaction(query)
10. Collection expression
query ::= for all identifier in query: query
query ::= exists identifier in query: query
query ::= exists (query)
query ::= unique (query)
query ::= query in query
query ::= query comparison_operator quantifier query
quantifier ::= some
quantifier ::= any
quantifier ::= all
query ::= count(query)
query ::= count(*)
query ::= sum(query)
query ::= min(query)
query ::= max(query)
query ::= avg(query)
11. Select Expression
query ::= select [distinct] projection_attributes�		from variable_declaration�			{, variable_declaration}�		[where query]�		[group by partition_attributes]�		[having query]�		[order by sort_criterion {, sort_criterion}
projection_attributes ::= projection {, projection}
projection_attributes ::= *
projection ::= query [as identifier]
variable_definition ::= query [[as] identifier]
partition_attributes ::= projection {, projection}
partition_attributes ::= time_axis query [leading query]
[trailing query]
time_axis ::= valid
time_axis ::= transaction
sort_criterion ::= query [ordering]
ordering ::= asc
ordering ::= desc
11. Set expression
query ::= query intersect query
query ::= query union query
query ::= query except query
operator + is synonymous with union
operator - is synonymous with except
operator * is synonymous with intersect
12. Conversion
query ::= listtoset(query)
query ::= element(query)
query ::= flatten(query)
query ::= (class_name)query
query ::= valid (state | event) [overlap] [granularity]
[calendar calendar_spec] [query : query]
query ::= transaction [query]
query ::= bitemporal (state | event) [overlap]
[granularity] [calendar calendar_spec]
[query : query]
�13. Temporal Modifiers
query ::= valid [state] query
query ::= transaction [state] query
query ::= bitemporal [state] query
14. Temporal join
query ::= tstruct(identifier: query
{, identifier: query})
15. Restructuring operator
query ::= query (partition time_axis as restruct_spec)
restruct_spec ::= instant
restruct_spec ::= period
Appendix B:	Language completeness with respect to the user requirements
The purpose of this appendix is to verify that the syntax and semantics of TOQL are rich enough to support the needs of the two pilot applications. The queries and reports that have been identified in the user requirements analysis process ([T22TR.1]) have been extracted and the TOQL queries which produce the appropriate results are given in the following paragraphs. It must be noted that the schema on which these queries operate may not be the schema that will be used by the applications; the final form of the latter will be determined within the application development task, using the methodology produced by task T23. If the final database schema is not as described in [T32TR.1], then the queries presented below will have to be modified accordingly.
1.	Delta Application
The queries producing the reports required for the DELTA application ([T22TR.1] pp. 2.4) are given below. The queries are based on the schema described in [T32TR.1]. Some of the queries are lengthy and look complicated, but it must be pointed out that these queries actually produce reports. In a relational system, the production of these reports would require a number of SQL statements and considerable amount of host language (or 4GL) code.
Query A
All distributors per product type. The report is listing for a specific period the total or incremental (in 15-day or monthly) sales performances. The quantities printed are: last year, target, this year, difference (last year - this year) and deviation (last year - target).
TOQL query
select product, distributor,
(select sum(x->qty) from partition as x
where not (prodData->timestamp overlaps $1) as lastYear,
element(select p
from (valid d->hasTarget)[end($1)])->targetData->products as p
where p = prod) as target
(select sum(x->qty) from partition as x
where prodData->timestamp overlaps $1) as thisYear,
lastYear - thisYear as difference,
target - lastYear as deviation
from (select d as distributor, batchItem->p as prod,
batchItem->Quantity as qty,
batchItem->timestamp as tstamp
from Distributors as d,
(valid d->delivers)[twoYears] as packages
packages as package,
(valid package->packageData->products)[valid(packages)]
as batchItem) as as prodData
group by prodData->prod as product,
prodData->distributor as distributor
Notes:
$1 is a placeholder for the desired period.
the twoYears identifier used in the query is actually a substitute for the expression
period((begin($1) - INTERVAL '1' YEAR), end($1))
This substitution is used for query readability purposes.
Query B
For customers and distributors: quantities, values and average values for a certain period of time.
TOQL query
select c->customerName as customerName,
(select productName,
sum(select x.Quantity
from partition as x) as totalQty,
avg(select x.Quantity * x.price
from partition as x) as avgValue,
sum(select x.Quantity * x.price
from partition as x) as totalValue
from (select prd->p->productName as productName,
prd->p->price[valid(mt)] as price,
prd->Quantity as Quantity
from (valid c->maintains)[$1] as mt,
((valid mt->stockData)[valid(mt)])->products as prd)
as p1
group by p1->productName as productName) as Info
from Customers as c
Notes:
$1 is a placeholder for the desired period.
The query for distributors is not given; it is quite similar to query (A) and can easily be derived from it.
Query C
For a given distributor, customer sales involving quantities of products. This report refers to 15-day and monthly period totals.
TOQL query
select productName, TimeStamp
sum(select x->qty from partition as x) as dailyQty
from (select pr->p->productName as productName,
pr->Quantity as Quantity,
CAST pr->timestamp TO DAY as timeStamp
from DeliveryPackages as dp,
dp->packageData->products as pr
where dp->deliveredBy->distributorName = $1) as prods
group by prods->productName as productName,
prods->timeStamp as TimeStamp
order by productName, timeStamp
Notes:
$1 is a placeholder for the desired distributor name.
This query returns to the application the daily totals per product, sorted by product name and day of sale. Calculation of 15-day totals is trivial, using minimum amount of host language code. Monthly totals can be calculated without any need for application code if the valid timestamp of variable pr is casted to month instead of day.
Query D
History (archived). Sales reports, involving sales per day for distributor, customer, product type.
TOQL query
select dt->isProduct->productName as productName
dt->quantityLoaded - dt->quantityReturned as qty,
dt->returnedAt as ReturnDate
from DailyTotals as dt
order by productName, ReturnDate
Notes:
The query above retrieves the data for a “per product” report. “Per distributor” and “per customer” reports are produced similarly.
Query E
History report for all routes. The customers assigned to distributors over time.
TOQL query
select d->distributorName as distributorName,
valid d->makesVisit as distributorVisits,
valid valid d->serves as distributorServes
from Distributors as d
Query F
Report for the daily loading. Involves date, unit, route, distributor, product type, quantities, value.
TOQL query
select d->distributorName as distributorName,
tstruct(route: valid d->makesVisit,
products: valid d->delivers) as dailyData
from Distributors as d
Query G
Aggregate reports of turnover for 15-day or monthly intervals. The reports indicate the following customer categories: all, old, new, lost to competition.
TOQL query
select TStamp,
sum(select x->batchPrice from partition as x) as TurnOver,
Partition
from (select sum(select prod->Quantity *
prod->p->price->[deliv->timestamp] *
(1.0 - deliv->discount)) as batchPrice,
cast (deliv->timestamp) to MONTH) as tstamp
from CustomerDelivery as cd, cd->deliveryData as deliv
where (cd->receivedBy)->customerType = $1)
group by turnData->tstamp as TStamp
Notes:
$1 is the desired customer type (old, new, lost to competition). If the report should include all customers, the where clause should be omitted.
for 15-day periods, the corresponding period number within a year may be extracted using an appropriate function.
Query H
What is the stock of the customers, every day?
TOQL query
select c->customerName as cust, valid c->maintains as stock
from Customers as c
2.	GlaxoWellcome Application
The queries producing the reports required for the GlaxoWellcome application ([TR22TR.1] pp. 3.10-3.11) are given below. The queries are based on the schema described in [TR32TR.1].
Query A: Belonging, existence, of one event to a period
Does there exist, at least, an undesirable event, occurring between visit 1 and visit 2?
TOQL query
count(select valid(s)
from ObservationNotebooks as on,
valid on->functRespTest as frt
where on->ofPatient->patientName=$1 and
exists s in valid on->undesirableEvent:
valid(valid on->frt[0]) precedes valid(s) and
valid(s) precedes valid(valid on->frt[1])) > 0
Note:
$1 is a placeholder for the desired patient name.
Query B: Comparisons of dates, translation of dates by intervals
Does there exist a concomitant treatment with a beginning date inferior to the visit 1, at least from 28 days?
TOQL query
count(select p->patientName
from Patients as p
where p->patientName = $1 and
exists ct in valid p->observes->concomitant:
valid(ct) < valid(valid(p->observes->functRespTest)[0]) -
INTERVAL '28' DAY) > 0
Note:
$1 is a placeholder for the desired patient name.
Query C: Comparisons of periods
Is the period of treatment included between visits 1 and 5?
TOQL query
count(select p->patientName
from Patients as p
where p->patientName = $1 and
for all frt in (valid p->observes-> functRespTest)[0:4]:
period(p->observes->trialTreatm->timestamp,
p->observes->trialTreatm->timestamp +
p->observes->trialTreatm-> realPeriod)
 contains valid(frt)) > 0
Note:
$1 is a placeholder for the desired patient name.
Query D: Calculation of interval
Is the length of hospitalisation inferior or equal to the delay between the first and the fifth visit?
TOQL query
element(select on->stat4Week->hospitalisationDur <=
(valid(valid on->functRespTest[4]) -
valid(valid on->functRespTest[0]))
from ObservationNotebooks as on
where on->ofPatient->patientName = $1)
Note:
$1 is a placeholder for the desired patient name.
Query E: Comparisons of values on a period, or at different dates
Which is the percentage of patients having an increase of VEMS, between J0 and J14, of 10% with regard to the theoretical value?
Which is the difference between J0 and J28 about the observed values and the theoretical values?
TOQL query
count(select on->ofPatient
from ObservationNotebooks as on
where (valid on->functRespTest[2])->vemsObs -
((valid on->functRespTest)[0])->vemsObs (
1.1 * (((valid on->functRespTest)[2])->vemsTheory -
((valid on->functRespTest)[0])->vemsTheory) /
(select count(p) from Patients as p)
select ((valid on->functRespTest)[4])->vemsObs -
((valid on->functRespTest)[0])->vemsObs as observed,
 ((valid on->functRespTest)[4])->vemsTheory -
((valid on->functRespTest)[0])->vemsTheory as theoret
from ObservationNotebooks as on
where on->ofPatient->patientName = $1
Note:
In the second query, $1 is a placeholder for the desired patient name.
Query F: Average of a value on a period, or on an interval
What are the average values week by week of expiratory debit?
TOQL query
select weekly->TimeSlice as TimeSlice,
(select n->expiratoryDebit
from weekly->partition as n) as AvgVal
from Patients as p,
(valid p->fillsOut)(partition valid as interval '7' day) as weekly
where p->patientName = $1
Note:
$1 is a placeholder for the desired patient name.
Query G: Search for some periods or intervals that satisfy a criterion
What is the time to obtain an increase of VEMS, with regard to J0, of 10% with regard to the theoretical value?
TOQL query
select period(valid((valid on->frt)[0])), min(valid(frt))
from ObservationNotebooks as on,
valid on->functRespTest as frt
where on->ofPatient->patientName = $1 and
frt->vemsTheory (
1.1 * ((valid on->functRespTests[0])->vemsTheory)
Note:
$1 is a placeholder for the desired patient name.
Query H: Manipulation of relative time
Is the date of visit 2, superior of 7 days to the date of visit 1, more or less one day?
TOQL query
element(select valid((valid on->functRespTest)[1]) -
valid((valid on->functRespTest)[0])) >=
INTERVAL '6' DAY and
valid((valid on->functRespTest)[1]) -
valid((valid on->functRespTest)[0]) <=
INTERVAL '8' DAY)
from ObservationNotebooks as on
where on->ofPatient->patientName = $1)
An alternative way to answer this query is:
element(select valid(valid on->frt[1]) + INTERVAL '6' DAY =
valid(valid on->frt[1]) or
valid(valid on->frt[1]) + INTERVAL '7' DAY =
valid(valid on->frt[1]) or
valid(valid on->frt[1]) + INTERVAL '8' DAY =
valid(valid on->frt[0]))
from ObservationNotebooks as on,
where on->ofPatient->patientName = $1)
Note:
In both alternatives, $1 is a placeholder for the desired patient name.
Appendix C:	Snapshot application compatibility
Two of the major design goals of TOQL are upward compatibility with OQL and complete temporal functionality. These two goals may be described in more detail as follows:
Temporally unaware applications should function on top of a temporal object schema, with the minimum amount of changes.
If an existing (snapshot) database is converted, so as to incorporate temporal semantics, applications developed prior to the conversion (temporally unaware applications) should run on top of the updated database schema, with the minimum number of changes. In particular, changes to OQL queries and to the host language code should be avoided.
Temporally aware applications should be able to exploit the enriched functionality offered by the temporal schema.
Applications that have been developed after the conversion to a temporal schema (temporally aware applications), should be able to deal with the temporal aspects of data, and must have access to an enriched object interface, which allows the manipulation of the objects’ variants.
In the following paragraphs, it is described how TOQL achieves these two goals. The retrieval of individual temporal properties and objects containing temporal properties is discussed, and an example of a schema modification to include temporal characteristics is presented.
1.	Accessing Temporal Properties
When a temporal property is used in a TOQL query, the default behaviour is to use its current value (i.e. the value of the variant whose valid and transaction timestamps overlap with the current instant). For example, the query
select p->LifeTime
from Products as p
where p->ProductName = 'Life Orange Juice'
will retrieve only the current value for the life time of the product “Life Orange Juice”, although the stored attribute actually contains the full history of the product’s life time. Analogous conversions are performed for transaction time and bitemporal attributes. The conversion is applied regardless of the attribute’s position within the query, i.e. it performed on all attributes appearing in the select-list, the from clause, the where clause, the group by clause, the having clause and the order by clause.
The implicit conversion guarantees that temporally unaware applications may access temporally enriched data with no modifications to queries. Temporally aware applications are not deprived of the capability to access valid/transaction time histories of temporal attributes; these histories are accessible through the VALID, TRANSACTION and BITEMPORAL modifiers and the subscript notation ([]). For instance, an application willing to access the complete history of the “Life Orange Juice” product’s life time, should use the query
select valid p->LifeTime
from Products as p
where p->ProductName = 'Life Orange Juice'
2.	Accessing Objects with Temporal Properties
When an object containing temporal properties is used in a TOQL query (practically, such an object may appear only in the SELECT list), no conversion is performed on it. The object identifier will be selected and returned to the application, which is consistent with the behaviour of OQL. For example, the query
select p
from Products as p
will return an object identifier for all products appearing in the Products extent, i.e. the set
{Obj001, Obj002}
Once the object identifiers have been returned to the application, the latter may manipulate the corresponding, by invoking the corresponding operations. Since object manipulation is performed entirely via operations, snapshot application compatibility is not jeopardised, as long as the operation signatures remain intact, regardless of changes made to the internal implementation and representation details of the object. However, temporally unaware applications will have to be recompiled, in order to incorporate the updated object definition. This seems unavoidable in an object-oriented environment, since the memory image of an object must match the database schema, in order to have object updatability.
The programmer may equip the temporally enriched class with additional operations which provide access to the temporal characteristics of the individual attributes. These operations may be invoked by the temporally aware applications, when access to the valid/transaction time histories of the objects is required.
3.	A Compatibility Example
Consider a snapshot database containing information about diary products and factories (its schema is depicted in � REF _Ref370121190 * MERGEFORMAT �Figure 32� and sample contents are illustrated in � REF _Ref370121228 * MERGEFORMAT �Figure 33�; details for Factory objects are omitted for brevity reasons). On top of this database, a temporally unaware application has been developed, which performs the following functions:
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �32� - A sample snapshot database schema
� EMBED Word.Picture.6 ���
� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �33� - Sample snapshot database contents
determines which is the lifetime of a specific program by using the query
select p->LifeTime
from Products as p
where p->ProductName = $1
($1 is a placeholder for the product name). The query yields a set intervals containing zero or one elements. The element may be manipulated as any datum of type interval. Evaluating this query for patient “Life Orange Juice” produces the result
12
(we assume that all queries are evaluated on November 1, 1996).
determines the names of the products having life times exceeding a certain amount of days, using the query
select p->ProductName
from Products as p
where p->LifeTime > $1
($1 is a placeholder for the lower limit of the product’s life time). The query yields a set of strings having an arbitrary number of elements. Each of these elements may be manipulated as any datum of type string. Evaluating this query for an interval equal to INTERVAL ‘10’ DAY will produce the result
{'Life Orange Juice', 'Champion'}
produces a report of product names along with their life times. Data are fetched into memory using the query
select p from Products as p
The desired values are extracted from the Product objects using the getName and getLifeTime operations and are displayed on the screen (or printed) using standard library procedures. The outcome of this action is
Life Orange Juice	12 days
Champion	12 days
allows for modification of the life time of a product. The product is retrieved into memory using the query
select p
from Products as p
where p->ProductName = $1
and the product’s life time is modified using the setLifeTime operation. Evaluating the query for product “Champion” fetches into memory the corresponding object, and after updating its life time to INTERVAL ‘10’ DAY, the outcome of operation (3) should change to
Life Orange Juice	12 days
Champion	10 days
At some point, e.g. on 1997-01-01, the database schema is enriched with temporal characteristics and two more attributes are added (AvgSales and Ingredients), as described in section � REF _Ref368628967 \n �1.3�. After the conversion to the temporal schema, the database contents are as follows:
� EMBED Word.Picture.6 ���� EMBED Word.Picture.6 ���
Figure � SEQ Figure * ARABIC �34� - Database contents after the introduction of temporal semantics
After the conversion, all four functions of the snapshot application continue to work as expected, without any modification (apart from recompilation, so as to include the updated object and operation definitions):
the first function continues to work, since the temporal attribute p�>LifeTime is converted to the corresponding current snapshot value, before it is passed back to the application, within the query result. The results returned to the application are identical to the ones that would be returned, if the query result was evaluated against a snapshot schema.
the second function continues to work, since the temporal attribute p�>LifeTime appearing in the where clause is converted to the corresponding current snapshot value, before the truth value of the condition is evaluated. The results returned to the application are identical to the ones that would be returned, if the query result was evaluated against a snapshot schema.
the third function continues to work, since the objects, as stored in the database are returned to the application, and the method getLifeTime returns only the current value for the product’s life time. Note that it’s the programmer’s responsibility to ensure that the functionality of the methods in the snapshot object’s interface does not change in the process of introducing temporal characteristics.
the fourth function continues to work, since the query returns an updatable object, which is modified through the function setLifeTime (which now adds the specified value to the temporal attribute's history, with an appropriate timestamp). The object holding information for patient “Champion” will be changed to
� EMBED Word.Picture.6 ���
(assuming that the modification was performed on 1997-01-01) and, after the modification, the second operation will produce the following result
Life Orange Juice	12 days
Champion	10 days
which is identical to the result that the same functions of the snapshot application would produce if it functioned on top of a snapshot schema.
Appendix D:	Temporal Selection
In [T33TR.1, early] the when clause was described as part of TOQL. In the past few months, a discussion was held between the project partners and the O2 representative in the ODMG board was contacted, in order to assess:
the functionality and the syntax of the when clause, along with alternative ways to provide the same (or enhanced) functionality,
the possibility of promoting the when clause to the ODMG board for standardisation.
The O2 representative in the ODMG board clearly stated that it is highly unlikely that the when clause, since it is a major change to the OQL syntax and, moreover, the where clause is generally sufficient to provide all the necessary restrictions, if explicit usage of temporal objects is permitted. This approach has been adopted in the updated specification of TOQL, and, in the following paragraphs, a discussion can be found, comparing the when clause, as specified in [T33TR.1, early] with the approach that has been adopted in the updated specification.
The when Clause vs. Subscripting
The syntax of the when clause, as described in [TR33TR.1, early] is
when when�restriction {, when-restriction}
where when�restriction is defined as
variable in (valid | transaction) temporal_object: query
Such a clause has the effect of defining a variable, which iterates over the valid time (or transaction time) timestamps of the variants of temporal_object and, for each timestamp the query is evaluated. If, for some timestamp, the query evaluates to true, the corresponding variant is considered in further query processing, otherwise the variant is disregarded. This approach provided the ability to compare valid and transaction timestamps with instants and periods. In the absence of a when clause, the default behaviour of the query was to consider all variants whose transaction timestamp overlaps with the current instant (the variants that have not been logically deleted), regardless of their valid timestamps. The same rules applied to variables that are defined to iterate over temporal objects (the from temporal_object as identifier construct).
In the updated specification, TOQL provides the ability to select variants of a temporal object, based on their valid and/or transaction timestamps by using the more user-friendly and intuitive notation of subscripting. A temporal object may be treated as a collection which can be indexed by numbers, instants or periods. When a number is used to index a temporal object, it specifies the rank of the desired variant (variants are ordered with respect to their valid or transaction timestamps). When a temporal object is indexed by an instant or a period, the subscript designates the time window for which information is desired. In the absence of subscripts, the default behaviour for temporal objects is that one variant is considered (the variant whose valid and transaction timestamps overlap with the current instant). This behaviour may be altered by preceding the temporal object with one of the valid, transaction or bitemporal modifiers. The behaviour of iterations has also been modified, and variables that are defined to iterate over temporal objects, actually iterate over all variants, regardless of their valid and transaction timestamps.
The adopted approach is more flexible than the one originally proposed, since it allows for temporal selection to be used for a temporal object in any place that referencing a temporal object is allowed, rather than “once-per-select/from/where-clause”, as the previous approach did. For example, the current approach allows the queries “For each product whose lifetime on January 1996 exceeded 12 days, fetch the complete life time history” and “For each product whose current lifetime is less than 20 days, fetch its lifetime on January 1995” as depicted below:
select valid p->LifeTime
FROM Products as p
where p->LifeTime[INSTANT '1996-01'] > PERIOD '12' DAY
select p->LifeTime[INSTANT '1995-01']
from Products as p
where p->LifeTime < PERIOD '20' DAY
Neither of these queries could be expressed using the when clause, as described in [TR33TR.1, early]: if the when clause were used, the restriction would apply both to the temporal object in the where clause and the temporal object in the SELECT list, and since different criteria are required for each temporal object, the desired result could not be computed.
The when clause, on the other hand, facilitated the expression of conditions on the duration of the timestamps, which cannot be expressed using subscripts. In the absence of the when clause, such constraints can be modelled by iterating over the variants of the temporal object and explicitly testing the duration of the timestamps using the where clause. Thus, the query “for the product ‘Life Orange Juice’ list the ingredients which were used for more than 12 months” can be expressed using the when clause as
select p->ingredients
from products as p
where p->ProductName = 'Life Orange Juice'
when t in transaction p->ingredients: duration(t) > period '12' month
whereas without the when clause it must be formulated using a slightly more complicated syntax:
select ing
from products as p, transaction p->ingredients as ing
where p->ProductName = 'Life Orange Juice'
and duration(transaction(ing)) > period '12' month
(Another difference between the two queries is that the first one returns a transaction time object containing the respective variants, whereas the second query returns a set, containing the values of the variants; the timestamps need to be explicitly included in the select list.)
The queries identified from the user requirements do not need to test the duration of the timestamps, so they remain unaffected from the removal of the when clause. If, however, extra queries are identified that do need such constraints, and the application programmers request for easy means to express them, the implementation team will consider incorporating the when clause in the TOQL processor, as a TOOBIS addition to the standards extension proposal that will be submitted to the ODMG board.
Appendix F: References
[Cattell94]	R. Cattell (Editor), “The Object Database Standard ODMG-93” (Release 1.1), Morgan Kaufmann Publishers, San Francisco, California.
[O2 96]	O2 Technology, “ODMG C++ Binding Guide” (for release 4.6), 1996.
 [ODMG95]	The ODMG Board, “Object Query Language”, available at URL http://www.odmg.org/odmg93/updates/chap4x.ps.
[ORES94]	ORES Project (ESPRIT III P7224), “Deliverable D4: Implementation of Valid Time SQL”, edited by 01 PLIROFORIKI S.A., University of Athens, Information Dynamics and Agricultural University of Athens, April 1994.
[TR22TR.1]	TOOBIS Project Deliverable T22TR.1 “Requirements Analysis”, edited by Glaxo S.A., Delta S.A., Matra Cap Systems, 01 PLIROFORIKI S.A., University of Sorbone, 1996.
[TR31TR.1]	TOOBIS Project Deliverable T31TR.1 “TODM Specification”, edited by Matra Cap Systems and O2 Technology, 1996.
[TR32TR.1]	TOOBIS Project Deliverable T32TR.1 “TODL Specification”, edited by University of Athens, 01 PLIROFORIKI S.A., National Technical University of Athens and O2 Technology, 1996.
[TR33TR.1, early]	TOOBIS Project Deliverable T33TR.1 (early release) “TOQL Specification”, edited by University of Athens, 01 PLIROFORIKI S.A. and O2 Technology, 1996.
�	Temporal data are objects and instance properties (attribute or relationship) which have valid time semantics, transaction time semantics or both.
�	Each of these types actually hosts a family of types, with each member of the family having a different granularity. The following discussion applies to all members of each family. Rules for granularity conversion are given as needed.
�	The cases where the arguments have different granularities are presented in section � REF _Ref368543646 \n �1.2.5�.
�	A total order is defined for periods. Period p1 = [p1b, p1e) is less than p2 = [p2b, p2e) if one of the following conditions are true:
p1b < p2b
p1b = p2b (p1e < p2e
�	A bind argument allows to bind expressions from a programming language to a query when embedded into this language
�	The operator + is also used for list and array concatenation

�

TOOBIS	T33TR.1: TOQL Specifications and Design

	Page: � PAGE �30�

Continued on the next page

Continued from the previous page

