TABLE OF CONTENTS

� TOC \o "1-3" �1.	Introduction	� GOTOBUTTON _Toc378676188 � PAGEREF _Toc378676188 �2��

2.	Usability Evaluation	� GOTOBUTTON _Toc378676189 � PAGEREF _Toc378676189 �3��

2.1	Introduction	� GOTOBUTTON _Toc378676190 � PAGEREF _Toc378676190 �3��

2.2	Methods Selection	� GOTOBUTTON _Toc378676191 � PAGEREF _Toc378676191 �3��

2.3	Approach of MUSiC	� GOTOBUTTON _Toc378676192 � PAGEREF _Toc378676192 �5��

2.3.1 SUMI Questionnaire	� GOTOBUTTON _Toc378676193 � PAGEREF _Toc378676193 �5��

2.3.2 Performance Measurement Method	� GOTOBUTTON _Toc378676194 � PAGEREF _Toc378676194 �6��

2.4	General Guidelines for Scenario Building	� GOTOBUTTON _Toc378676195 � PAGEREF _Toc378676195 �6��

2.5	General Guidelines for Specific Scenario Building for Usability Sessions	� GOTOBUTTON _Toc378676196 � PAGEREF _Toc378676196 �8��

2.6	Collection of Objective Data (Direct Observation Method)	� GOTOBUTTON _Toc378676197 � PAGEREF _Toc378676197 �8��

2.7	Collection of Subjective Data (Questionnaire Method)	� GOTOBUTTON _Toc378676198 � PAGEREF _Toc378676198 �11��

3.	Compliance with standards	� GOTOBUTTON _Toc378676199 � PAGEREF _Toc378676199 �12��

4.	Service Level Requirements	� GOTOBUTTON _Toc378676200 � PAGEREF _Toc378676200 �13��

4.1	Evaluation criteria	� GOTOBUTTON _Toc378676201 � PAGEREF _Toc378676201 �13��

4.1.1 Service Hours	� GOTOBUTTON _Toc378676202 � PAGEREF _Toc378676202 �13��

4.1.2 Service Availability	� GOTOBUTTON _Toc378676203 � PAGEREF _Toc378676203 �13��

4.1.3 Responsiveness	� GOTOBUTTON _Toc378676204 � PAGEREF _Toc378676204 �14��

4.1.4 Arrival rate	� GOTOBUTTON _Toc378676205 � PAGEREF _Toc378676205 �14��

4.1.5 Throughput	� GOTOBUTTON _Toc378676206 � PAGEREF _Toc378676206 �14��

4.1.6 Reliability	� GOTOBUTTON _Toc378676207 � PAGEREF _Toc378676207 �14��

4.1.7 Access Restrictions � Security	� GOTOBUTTON _Toc378676208 � PAGEREF _Toc378676208 �15��

4.1.8 Data safety � protection	� GOTOBUTTON _Toc378676209 � PAGEREF _Toc378676209 �15��

4.1.9 Monitoring	� GOTOBUTTON _Toc378676210 � PAGEREF _Toc378676210 �16��

4.1.10 Audit and Control	� GOTOBUTTON _Toc378676211 � PAGEREF _Toc378676211 �16��

4.1.11 Conversion from current system	� GOTOBUTTON _Toc378676212 � PAGEREF _Toc378676212 �16��

4.1.12 Interfaces with other systems	� GOTOBUTTON _Toc378676213 � PAGEREF _Toc378676213 �16��

4.1.13 Archiving	� GOTOBUTTON _Toc378676214 � PAGEREF _Toc378676214 �17��

5.	The Testing Methodology	� GOTOBUTTON _Toc378676215 � PAGEREF _Toc378676215 �18��

5.1	Introduction	� GOTOBUTTON _Toc378676216 � PAGEREF _Toc378676216 �18��

5.2	Methodology Architecture	� GOTOBUTTON _Toc378676217 � PAGEREF _Toc378676217 �19��

5.3	Timing of Activities	� GOTOBUTTON _Toc378676218 � PAGEREF _Toc378676218 �21��

5.4	Workproducts	� GOTOBUTTON _Toc378676219 � PAGEREF _Toc378676219 �23��

5.5	Roles and Responsibilities	� GOTOBUTTON _Toc378676220 � PAGEREF _Toc378676220 �25��

��1.	Introduction

This task is part of the quality procedures running in the TOOBIS project. In general, the evaluation criteria will be designed to test whether the project products are conferment with the scope and the initial objectives of the project. The evaluation framework of the platform developed, measures the effectiveness of the TODBMS system, as well as the two pilot applications and establishes a number of criteria for performing the evaluation.

Pilot applications will be part of the validation�evaluation of TOOBIS process as they will let the Value Added Developers (VADs) and the IT personnel of the end�user organizations. Also, pilot applications will be evaluated against their requirements.

Standard test and evaluation methods such as STEP (Systematic Test and Evaluation Process), an established industry methodology for test and evaluation activities in a S/W project, will be examined, and may be adapted and adopted within the task.

Also, the project MUSIC (E�5429) has developed a set of metrics based methods that can be used individually and together to both specify formal requirements for the usability of a product, and to assess whether a product meets those requirements. The project has defined usability in terms of the quality of use of a project, and developed tools and procedures for measuring usability. The results of this project will be studied and applied in TOOBIS.

�2.	Usability Evaluation

2.1	Introduction

Usability is defined as: "the extent to which a product can be used to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use". Much of what constitutes usability of the system is actually rooted in work practice �responsibilities, variety of work, and ease of interaction.

This section describes a usability evaluation procedure appropriate for the applications developed under the TOOBIS project, and provide some guidelines and specific recommendations in order to perform the procedure.

This usability evaluation procedure comprises of two main phases, namely: Data Capture phase and Data Analysis and Reporting Phase.

The Data Capture phase consists in two short term experiments in which two evaluation methods will be performed to collect some objective and subjective data about performance and attitude components of usability. This methods are Direct observation method and Questionnaire method respectively.

An exhaustive short term experiment to collect a lot of performance measures is not justified. Nevertheless, for TOOBIS evaluation, the short term experiments will involve the collection of some performance data to assess this component of usability, and the specific questionnaire selected to collect subjective data will be enough to detect specific aspects where the system is rated significantly better or worse than a comparative standard or norm.

The guidelines and recommendations to perform the Data Capture phase are grouped in two epigraphs:

A Scenario Building Guide, to help in the design of a correct long term evaluation experiment which will assure the validity of the usability assessing

A Data Collection Guide, to increase the quantity and quality of data collected, in order to assess the system usability as reliable as possible.

2.2	Methods Selection

There are a lot of methods to capture data for a usability evaluation; some examples are:

Concept test

Secondary sources

Questionnaires

Interviews

Self descriptive

GOMS analysis

Formal grammars

Method based on Complexity Theory

Analytical indicators of usability

Computer log of user interaction (input logging)

Direct observation of interaction

Video recording of interaction (indirect observation)

Simulating users

Structure walkthroughts

Cognitive walkthroughts

Heuristic evaluation

Audits

Comparison with standards

Replay and post user comments

On line capture of user initiated comments

Psychophysiological measures

The following considerations were taken into account during the selection of the data collection methods for TOOBIS pilot applications evaluation:

The participation of an expert on human factors or on related techniques (such as analytical evaluation techniques) should be avoided.

The use of expensive additional equipment to capture data during the evaluation should not be necessary.

It is not possible to introduce modifications at this stage of development, so the methods suitable at early stages are useless.

Accordingly to these criteria and taking into account that it must be collected data about both components of usability, two data collection methods were selected:

Direct observation of interaction: includes the selection, recording and encoding of a natural set of behaviors through direct observation.

The main advantage of this method, comparing to the Performance Measuring Method of the MUSiC project which will be analyzed in the next section, is that it does not require special equipment and involves the evaluator directly observing the user’s behavior.

A number of different measures of system usage are appropriate for a general usability assessment under the direct observation method:

measures about task completion

measures about user errors

measures about usage of facilities

Other specific measures about the quality and speed of user’s work could be included, as well as performance indexes normally measured by the companies, in order to complement the objective data obtained with this method.

Questionnaire with responses on given rating scales: consisting in a set of a written questions requiring a written response which describes past behaviors.

Specifically, the questionnaire selected is the SUMI (Software Usability Measurement Inventory) developed by members of the Human Factors Research Group (HFRG) as part of the MUSiC project (ESPRIT).

2.3	Approach of MUSiC

The European MUSiC (Measuring Usability of Systems in Context) project developed methods and products for measuring usability. MUSiC is a measurement based approach to evaluating software Quality of Use and usability. MUSiC helps developers and users measure how Efficiently and Effectively software is used and how Satisfying it is to use, by providing a consistent set of practical and efficient tools and techniques.

A major benefit of using MUSiC methods for usability measurement is that they provide a means of specifying usability goals and evaluating whether they have been achieved. The goals are expressed in terms of the purpose of business systems which is to enable users to achieve tasks effectively, efficiently and with satisfaction. It is possible to measure:

whether (or what proportion of) typical users can correctly complete the task,

the productivity (efficiency) of typical users,

how the efficiency of typical users compares with an expert user: this gives an indication of the point on the learning curve and may highlight a need to improve the user interface or to provide more training and,

the proportion of the time for which a user is productive: this may also highlight a need to improve the user interface or to provide more training.

2.3.1	SUMI Questionnaire

It is also important to measure user satisfaction, particularly as poor satisfaction is likely to lead to future deterioration in performance. Satisfaction can be measured with the SUMI (Software Usability Measurement Inventory) questionnaire developed within the MUSiC project. It is essentially a 50 item attitude questionnaire which takes about 10 minutes to complete. SUMI was developed using traditional psychometric techniques to ensure its validity and reliability. It provides three measures:

An overall measure which is a single score that provides a global assessment of usability.

A usability profile which reflects five main dimensions or sub�scales (i.e., affect, efficiency, helpfulness, control, and learnability).

As the final output, a list of those items where the software or system is rated significantly better or worse than a comparative standard and norm.

Developers must be aware that it is possible also to include particular questions for each sub�system, in order to evaluate specific features, but the answers to these questions must be analyzed separately from the SUMI questionnaire.

In addition, measures of cognitive workload recommended by MUSiC can be used to assess mental effort. These may be useful indicators of situations where users have to expend excessive mental effort to achieve acceptable performance, and are particularly important in safety�critical applications.

2.3.2	Performance Measurement Method

The Performance Measurement Method was developed as part of MUSiC. Observing how users interact with a system gives valuable information about usability, unobtainable by other means.

To get valid and reliable results, the representative users should perform typical tasks in representative environments. The users and the tasks they perform are selected as a result of a context study assisted by the Usability Context Analysis Guide. The method is fully documented in the Performance Measurement Handbook, and is supported by a software tool (DRUM) which greatly speeds up analysis of the video, and helps manage the evaluation.

The Performance Measurement Method gives reliable measures of the effectiveness and efficiency of system use, by evaluating the extent to which specific task goals are achieved, and the times taken to achieve those goals. It also gives measures of time spent unproductively (for example, overcoming problems and seeking help), plus valuable data about the source of such difficulties.

These measures enable comparison of prototypes of alternative designs with earlier versions of a system, for example, or with competing products. The diagnostic information helps identify where specific problems are encountered and where improvements need to be made.

In TOOBIS the Performance Measurement Method will not be applied as documented in the previous section.

2.4	General Guidelines for Scenario Building

Usability measurements must take place in an appropriate “context” in which the pilot applications will be used. Realistic groups of homogeneous users, tasks and environments must be selected from the description of the Context of Use and a plan to install the required equipment should be designed.

Conceptually, the following guidelines should be observed while building the evaluation scenario to assure that measurements are meaningful and reproducible, and to allocate the usability assessed after the evaluation to a specific context of use:

To obtain statistically meaningful results it should be selected 3 to 6 persons of each homogeneous group of realistic users.

Information about each participant should be collected to assist in the interpretation of the results. These data should include:

Job title and job description.

Previous work experience and other knowledge or skills relevant to the system usability.

All users of a homogeneous group should have the same level of experience about similar applications, tasks and input devices, and they should have been involved in the overall management of the appropriate technical equipment for each enterprise during enough time before the experiment starts, to assure the similar levels of initial experience.

All the users of each group should receive exactly the same previous training and instructions, covering:

Who is carrying the evaluation out, for whom, what measures are being made, and why.

The system’s purpose.

Why the participants’ contribution is important

The specific requirements (exactly what they will have to do and how long it will take).

A fully demonstration of the system without allowing the participants to practice with it (in order to assess later the system learnability).

It is useful to write the instructions down and allow the participants to read them in addition to instructing them verbally and, furthermore, they should be encouraged to ask about anything which they do not fully understand.

The collaboration with other users of the same group should be similar for all of them in order to assure a uniform training and a compatible problems solution between them.

The same recommendation about assistance: it should be similar for all users in each group.

The number of interruptions during task execution should not be superior to the interruptions during normal work. The users should not demonstrate the system to anybody out of the normal collaboration between users.

The head of the department should not influence the users to use or to not use the pilot applications.

The positive attitude about information technology of some organizations should not produce differences between users in the time employed in system training. To avoid differences, the workflow of organizations should not change to increase this time, neither extending the work hours.

If the quality and speed of the users’ work is actually monitored, this one should continue during the experiment (including measurements of selected indexes) to compare the results obtained with the TOOBIS pilot applications.

All the software, hardware and reference material components should be available in a similar way for all users of a group.

The accomplishment degree of these guidelines should be registered by monitoring them or by interviewing the users, in order to interpret and validate the results. Also, all information about the actions and decisions taken during the scenario building should be recorder and a report should be produced.

2.5	General Guidelines for Specific Scenario Building for Usability Sessions

In order to produce valid results with the direct observation method it is required a careful planning, including:

Obtaining the agreement of the user (after explaining the aims and what is at stake).

Avoiding interfering with the task (by avoiding any interruption of the task performance where the evaluator sits near the user).

Offering feedback to the user (by giving the results of the completed analysis).

Preserving the anonymity of people, and explaining the procedures to be followed.

Separating carefully the phases of observation and the phases of interpretation. Elaborating observation grids related with tasks of usability sessions helps to overcome this difficulty. These grids should contain only directly observable variables (the related measures with these variables will be calculated at the interpretation phase):

starting and ending times

task correctly completed (productive) or not

type of user and/or system actions during the tasks

type of facility used

break periods

attitude (by user comment or facial expressions and gestures).

2.6	Collection of Objective Data (Direct Observation Method)

During usability sessions, the subjects selected, will use the product under test to carry out realistic tasks, under realistic conditions, while an evaluator will observe the user “actions” trying to identify the type of action and the period of time involved.

It is very difficult to obtain these information without a usability laboratory (without video recording facilities and a posterior indirect observation), but in this case it should be enough to measure some task performance time.

Anyway, this deliverable describes a relatively complete observation for the evaluators, who would like to try a more extensive evaluation of the user interface (with or without video recording facilities), taking into account that these evaluators will need to know perfectly the application under evaluation, and they will need also some pilot trials before the usability session.

The data that should be identified during observation of each task execution are:

Staring time of actions. Hours, minutes and seconds.

�Type of action that has just finished (when another action starts). The possible options are:

Productive actions.

Actions that complete a sub�task (from the hierarchical task analysis).

Actions that contribute directly to the task result (or output) by finalizing a sub�task identified with the hierarchical task analysis. These actions produce items that can be seen in the task output, or they are necessary to produce such item.

	Productive actions that does not complete a sub�task.

Other actions that contribute directly to the tasks result (or output) without finalizing a sub�task identified with the hierarchical task analysis. These actions also produce items that can be seen in the task output, or they are necessary to produce such item.

Unproductive actions.

Help actions.

The subject obtains information about the system.

Examples:

referring to the on�line help,

reading an instruction manual,

looking at a reference card, etc.

Unproductive search actions.

The subject explores the structure of the system, displaying parts which are not currently visible, without activating any of the structures which are presented.

Examples:

displaying one or more menus without activating any item,

reeling through listings or icons of files without opening any of them,

opening then canceling a print dialogue box,

or moving through sections, modules or screens without activating any of the functionality.

Snag actions.

Subject or system actions which do not contribute directly or indirectly to the task output, and which cannot be categorized as help or search actions. They provide an objectively identifiable measure of the problems which have arisen during the usability session.

Examples are:

typing characters and then deleting them by backspacing,

performing an action and then selecting the button “undo”,

a system crash followed by actions to recover lost data,

entering commands to which the system fail to respond.

�There are three types of snag actions:

Negating actions.

Subject actions which completely cancel or negate previous subject or system actions. These always cause canceled actions.

Canceled actions.

Subject or system actions which have been completely negated by subject or the system.

Rejected actions.

Subject actions which have been rejected or ignored by the system, and which consequently have no effect.

Authorized break.

The subject takes an authorized break away from the task. During authorized breaks, the subject must be physically distanced from the product, task and instruction manuals.

User attitudes. The recording of perceptible user attitudes toward the action he/she has just finished is useful to find user interface defects (inconsistencies, misunderstandings,...).

User interface state. If the evaluator looks for user interface defects it is necessary to record the state of the user interface which motivated the user to perform unproductive actions.

Some guidelines should be followed in order to categorize the actions observed during the usability session and to facilitate the time annotation:

Categorize pauses

There may be periods of pauses, where the subject is thinking, or where the system is processing an action. These periods are not categorized separately, but are included as part of the series of actions which immediately preceded the pause.

Simultaneous actions

Occasionally, the subject may perform more than one action at a time. For example, the subject may consult a manual while the system is processing a productive action. In such cases, the analyst must attribute the time to one, and only one category according to the following rule:

Productive actions override help actions,

which override search actions,

which override snag actions.

Amalgamating consecutive actions of the same type

The subject and/or the system may perform a series of actions of the same type one after another �e.g. using several different sources of Help consecutively, or encounter a number of separate Snags consecutively. In this case, all of the actions of the same type occurring consecutively are measured as a single period; if this overall period is greater than the minimum time (see below) then the period will be measured and included in the final total.

Minimum time for periods to be counted

If the period which elapses between the start and end points of the series of actions is below a certain minimum time limit, the period need not to be measured. The minimum time limit should be set by the evaluator before commencing the Usability Session. It is recommended 5 seconds or 1% of the estimated task time, whichever is less.

Annotating only unproductive actions

It is not necessary to measure the time involved in productive actions, because it can be found by subtracting the time involved in unproductive actions from the total task time. Thus the times to be taken are:

Start time of task.

Start time of help, search and snag actions.

End time of help, search and snag actions (start time of another action).

End time of task.

Only the period of unproductive actions that complete a sub�task should be annotated if the evaluator is interested in obtaining performance data separately about the task decomposition in order to refine the users interface.

To accelerate the data annotation observing the above guidelines a form incorporating them could be used.

2.7	Collection of Subjective Data (Questionnaire Method)

It is important to follow the precise method that was recommended during the development phases of SUMI questionnaire, because the comparison standard was calculated with the answers given by users of a wide range of systems, and collected following this method.

The questionnaire was completed by people at their desks in the same period of time that they were using the software. They completed the questionnaire in less than ten minutes without too much pondering over the individual items.

It follows from this that the basic requirements for administering SUMI are:

Setting: the questionnaire should be completed by users in their work setting, soon after their use of the software under evaluation during the Usability Session. They should be free from interruption and in as quiet a mode as possible.

Procedure: give the questionnaire to the users and say the following:

“This is a questionnaire which measures how you feel about the [named] software. Please read each statement and indicate by putting a check in the left side box if you agree with the statement or think it is generally similar to what you think, or put a check in the middle box if you are undecided or you find yourself partly agreeing and partly disagreeing with the statement, or put a check in the right most box if you disagree with the statement.”

Point out to the users that some information is required on the front page and reassure them of the confidentiality of their responses.

�3.	Compliance with Standards

The two pilot applications of TOOBIS will be developed for different operating systems. The server of the DELTA application will operate under Windows NT and the clients under Windows 95. The Glaxo�Wellcome application will be build under UNIX. Therefore, standards that can be applied to both applications concern only the Database Management System (DBMS) that will be used and their interface with users.

Concerning the DBMS, databases of both application must be compliant with the ODMG�93 (Object Database Management Group) Standard, and the temporal extensions proposed by the TOOBIS project associates. These extensions apply to the methodology, the TODM (Temporal Object Data Model), the TODL (Temporal Object Definition Language) and the TOQL (Temporal Object Query Language).

The interface of both applications must be graphical in order to be user friendly. This means that multiple windows could exist on screen at the same time, command buttons, radio buttons, list boxes, check boxes, combo boxes, text boxes, images, icons, menus could (and should) be used, as well as other facilities offered by the operating environments (e.g., drag and drop) to help users interact with the applications. For example, for the application of DELTA, as it will be developed in the Microsoft NT operating system, Microsoft guidelines for designing GUIs (Graphical User Interfaces) should be followed.

�4.	Service Level Requirements

4.1	Evaluation criteria

Facilities of the two pilot applications of TOOBIS are provided to the users as "services". Service level requirements are measures of the quality of service required and are crucial to capacity planning and physical design.

Evaluation criteria definition aims to identify realistic, measurable target values for each service level requirement, giving any minimum, maximum or acceptable range of values and indicating ways in which these values may fluctuate.

The evaluation criteria for the two pilot applications comprise the satisfaction of the following service level requirements of the applications.

4.1.1	Service Hours

This measure indicates how many hours a day each service will be working. The two applications should be able to run all their tasks in this specified time period.

For example, DELTA DAIRY’s plants are working all over the week. This happens because milk is a sensitive product and it must be collected from milk producers everyday. On the other hand, distribution of milk products takes place from Monday to Saturday. There is no distribution on Sundays and on holidays. As a result, the pilot application part that is used for the estimation of the consumption of DELTA products has to be running all over the week. From Monday to Saturday in order to update the objects of the database with the day’s transactions and from Sunday to Friday in order to compute the prediction of next day’s consumption and the planning of the production.

4.1.2	Service Availability

This measure reflects the proportion of time during which a service should actually be available for use, expressed as percentage of service hours.

For example, in the application of DELTA, although the application will be running 24 hours a day, it will be used only until 5 p.m., when all the delivery trucks will be back to the loading station, and data from the NORANDs (the hand�held machines) will by that time have been transferred to the main system. Also, management is going to access the system and query the database, in order to estimate the next day’s consumption, during the same period of the day. Therefore, service availability could be limited to 12 (twelve) hours per day, and be equal to the 50% of total service hours.

4.1.3	Responsiveness

This measure reflects the response times of the system to the various transactions. Responsiveness is essential to the system acceptability as it should the time that users will wait whenever they perform a task, and therefore is directly related to user satisfaction and usability of the system.

In the application of DELTA, response times of the transactions have to be as low as possible, because the amount of calculations that have to be performed daily, in order to estimate next day’s production, is very large. Also, as management will have the ability to drill down through the objects of the database, in order to find more details and information related to various customers, distributors and areas, wait times are unacceptable. Generally, for DELTA, response times of usual transactions should be less than ten seconds.

4.1.4	Arrival rate

This measure reflects the number of transactions per hour that will arise in a normal day of operation of the applications. It determines the framework of the expected arrival rates of data for each application.

For example, in the pilot application of DELTA, there will be some peak times, where all data from the hand�helds will be transmitted to the database. Generally, there will not exist a stable arrival rate, but while transferring data from NORANDs the arrival rate will be restrained by the transition rate of the hand�held.

4.1.5	Throughput

This measure reflects the total amount of work processed by the system per unit of time. As unit of time is defined the second. Due to the fact that the operating systems and the OODBMSs are predefined, there is no flexibility to reduce transaction times drastically.

As a result, throughput of the DELTA application for example, during update transactions of the database will be restrained by the throughput of the NORAND hand�helds and during search time by the predefined OODBMS.

4.1.6	Reliability

This measure defines the acceptable number of failures over a time period, the maximum amount of downtime for any failure and the mean time between failures over a time period.

Also, reliability measures the absolute number of faults remaining in the application. This is a number which can be predicted from the development process. The usage patterns and their effect on the software are more difficult to predict. Better fault detection processes could get more faults out and will have a direct effect on the reliability of the system. In order to manage such a detection the methodology proposed by STEP will be used.

4.1.7	Access Restrictions � Security

This measure defines which data need protection, if read and update access to specific data items need to be restricted to particular User Roles, and what level of restriction is required (for example physical, password, or encryption). In TOOBIS project, only specific user roles will have permission to read and/or write over the database items of the two pilot applications.

In the DELTA application for example: all update procedures of the classes of the database that concern transfer of goods, will be performed only through the NORAND hand�helds or the backup system. More specifically, the classes Distributor, Customer, Product, DistributorVisit and Target will be updated by the product manager according to his judgment in order to improve the profit of the company; classes DailyTotal, DailyCirculation, DailyProduction, ProductionStatistics will be updated automatically on specific times of each day or manually from the production or product manager; and finally, classes WeatherCondition, AddressLocation, Area and Event will be updated manually when appropriate (e.g., WeatherConditions will be updated daily). Read access to the objects of the database will have only the production and product managers, who will generate reports. The level of restriction that will be imposed in order to protect the database from intruders will be password. Users will have to enter their password whenever they want to update or read the database.

4.1.8	Data safety � protection

This measure involves the backup and recovery procedures for the protection of the data of the databases. More specifically, it has to define:

what frequency of backup is required,

which are the priorities of recovery,

how quickly must the system be returned to operation in the case of system failure,

how up�to�date must be recovered data be,

if a duplicate system is needed,

what facilities and level of services are required (for example: manual system, reduced system, alternative site) during recovery and

what are the priorities for recovery in the event of a disaster.

To give an example, for the application of DELTA the value of data stored in the database is significant for the prediction of the consumption of goods sold and for the minimization of returns. The backup policy of the company �in the current system� is to take a backup copy weekly. It is suggested to continue the same policy and make a backup copy every Sunday, where there will not be updates of the database. Concerning the recovery, the priorities will be to recover initially the data of the current and the previous months and the data of the same months of the previous year, in order to provide the system with a satisfying level of information in order to predict consumption. In system failure, the system must return to operation as fast as possible. The recovery of data must not last more than 1 hour, in order not to delay the normal operation of the system. The system during recovery stage will be reduced.

4.1.9	Monitoring

This measure describes the level of performance monitoring of the system that is required, which reports and how often are required and if there is a requirement to monitor levels of use in the system.

4.1.10	Audit and Control

As described before, the pilot applications will have access update restrictions. Each user will be able to execute only specific functions over the databases. The control, of the systems over users will be implemented with passwords. An audit of all the transactions of users with the applications will be created daily. The use of these audits will be to examine the level of usage of the system. If the level of usage is too low, maybe there is a need for more training of the users or an internal promotion and advertisement of the usefulness of the system and its special advanced temporal characteristics. Another use of the audits will be to examine the performance of the systems, their response times and the load that each query produces over them.

Another audit will be produced monthly which will include statistics produced to check whether the applications provide the expected benefits. This audit will sum up and average the data recorded from the previous audits, analyzing this way the average characteristics of the performance of the applications.

4.1.11	Conversion from current system

The TOOBIS pilot applications have to increment the decision making functionality provided by the existing systems, as well as to incorporate a number of essential additional general features. The analysts should identify any special requirements for conversion.

For example, it is important that no degradation of service is experienced while conversion is taking place. The old systems will continue to operate after the installation of the new ones, because the new systems are only pilot applications that do not perform all the variety of tasks and do not include all of the functionality of the previous systems. As a result, both systems should operate side by side.

There will, also, be a need to transfer a large amount of data of historical entities of the old databases to the new ones. For DELTA, for example, the amount of data transferred will be transactions of at least two year before the day that the new system will start its operation. The transfer will be automatic and an interface between the two systems should be implemented. As the old system will continue to be in use, the flow of information between the two system should be unidirectional.

4.1.12	Interfaces with other systems

For the Glaxo�Wellcome application there is no need to interface with another system, except, of course, with the present system installed.

On the contrary, for the DELTA application, there is a need to interface with the NORAND hand�held machines. NORANDs are handled by distributors and have recorded all the transactions of the day that the distributor has performed. These data must be transferred to the object�oriented database. The instances of the objects created will be written to the database in the appropriate attributes by creating, at the same time, the appropriate temporal or snapshot relations between them.

4.1.13	Archiving

Archiving, reflects how long will out�of�date data be needed on the live system before they will be archived, which data must be archived and which must be physically deleted and which are the conditions that might trigger the need for an archive.

Generally, in the DELTA application the prediction of the consumption of all the customers and the management reports are made on a two year basis. Data before these two years could be archived. The archiving of data will not be automatic. The system administrator will be responsible for that task and according to his judgment he could not archive data until the available space of disk storage becomes quite low.

�5.	The Testing Methodology

5.1	Introduction

In order to perform the test and evaluation activities in the two pilot applications of TOOBIS, standard test and evaluation methods of the STEP methodology will be followed.

Evaluation is defined as that subdiscipline of software engineering concerned with determining whether software products will do what they are supposed to. The major techniques employed in evaluation are analysis, review and test. The focus, in TOOBIS, will be on testing as the most complex of the three but with an overall coordination and planning of all aspects of evaluation.

Testing is being looked as a process to be performed in parallel with the software development or maintenance effort (fig. 1) incorporating the activities of planning (determining risks and selecting strategies); analysis (setting test objectives and requirements); design (specifying tests to be developed); implementation (constructing or acquiring the test procedures and cases); execution (running and rerunning the tests); and maintenance (saving and updating the tests as the software changes).

� EMBED CDraw5 ���

Figure 1 - Views of testing

Testing draws from the established foundation of software methodologies to provide a process model for software testing. The methodology consists of specified tasks, (individual actions); workproducts (documentation and implemented tests); and roles (defined responsibilities associated with groups of tasks) packaged into a system with proven effectiveness for consistently achieving quality software (Fig. 2).

The methodology is not tool dependent and does not assume any particular test organization or staffing (such as independent test groups). It does assume a development (not a research) effort, where the requirements information are comprehensible and available for use as inputs to testing.

Roles�Phases�Work Products���Manager�Plan Strategy�Documentation��Analyst��Procedures��Technician�Acquire Testware�Data�������Reviewer�Measure Behavior�Support Software������Figure 2 - The elements of the Methodology

5.2	Methodology Architecture

The methodology assumes that the total testing job is divided into levels during planning. A level represents a particular testing environment (e.g., unit testing usually refers to the level associated with program testing in a programmer’s personal development library).

Simple projects, such as minor enhancements, may consist of just one or two levels of testing (unit and acceptance). Complex projects, such as a new product development, may have more than five (unit, function, subsystem, system, acceptance, alpha, beta, etc.).

The methodology addresses the set of actions to be performed at every level. These are organized into three principal phases, which are broken down into activities, which are further subdivided into individual tasks and subtasks. (Figure 3)

�

� EMBED Word.Picture.6 ���

Figure 3 - Architecture

Tasks provide a model that can be used as a starting point in establishing a detailed test plan. The tasks will be tailored and revised or extended to fit each one of the two pilot applications.

The three major phases in the methodology are: PLANNING Strategy (selecting strategy and specifying levels and approach), ACQUIRING Testware (specifying detailed test objectives, designing and implementing test sets), and MEASURING Behavior (executing the tests and evaluating the software and the process).

�The phases are further broken down into eight major activities as shown in figure 4.

PLAN STRATEGY��P1.	ESTABLISH the master test plan��P2.	DEVELOP detailed test plans��

ACQUIRE TESTWARE��A1.	INVENTORY test objectives

		Requirements�based

		Implementation�based��A2.	DESIGN tests

		Architecture and Environment

		Requirements�based

		Design�based

		Implementation�based��A3.	IMPLEMENT plans and designs��

MEASURE BEHAVIOR��M1.	EXECUTE the tests��M2.	CHECK test set adequacy��M3.	EVALUATE software and testing process��Figure 4 - Activities

5.3	Timing of Activities

The methodology specifies when testing activities and tasks are to be performed, as well as what the tasks should be and their sequence.

The timing emphasis is based on getting most of the test design work completed before the detailed design of the software. The trigger for beginning the test design work is an external, functional, or black box specification of the software component to be tested (e.g. the two pilot applications). For higher levels (e.g., Acceptance or System), the external specification is equivalent to the System Requirements document. As soon as that document is available, work can (and should) begin on the design of the requirements�based tests.

The test design process will continue as the pilot applications will be designed and additional tests based on the detailed design of the applications will be identified and added to the requirements�based tests. As the applications design process will proceed, detailed design documents will be produced for the various application components and modules comprising the system. These, in turn, will serve as functional specifications for the component or module, and thus might be used to trigger the development of requirements�based tests at the component or module level.

As the applications will move to the coding stage, a third increment of tests will be designed based on the code and implementation details.

� EMBED CDraw5 ���

Figure 5 - Level Timing

Test inventory and design activities at the various levels overlap. The goal at each level is to complete the bulk of the test design work as soon as possible. This will help to ensure that the requirements are “testable” and well thought out and that defects will be discovered early in the process. This strategy supports an effective review and inspection program.

Measurement phase activities will be build up by level. Units will be executed first, then modules or functions will be integrated and systems and acceptance execution will be performed. The sequential execution from small pieces to big pieces is a physical constraint that must be followed.

�

� EMBED CDraw5 ���

Figure 6 - Activity Timing

The timing within a given test level is shown in Figure 6. Plans and objectives come first, then test design, then implementation and finally execution and evaluation. Some overlap of activities will be possible.

5.4	Workproducts

Another aspect of the testing process model is the set of workproducts produced in each phase and activity. In this section, the focus is on these workproducts.

The methodology uses the word testware to refer to the major testing products such as Test Plan and Test Specification documents and the implemented Test Procedures, Test Cases and Test Data files. The word testware is intentionally analogous to software and as suggested by figure 7, is intended to connote a parallel development process. As the two applications will be designed, specified and built, the testware will be designed, specified and built.

�

���SOFTWARE��TESTWARE����

������Software Analysis��Test Analysis�����Software Design��Test Design����Software Specs��Test Specs������

�����Figure 7 - Parallel, Mutually Supportive Development

These two broad classes of workproducts will support each other. Testware development, by relying on software workproducts, will support the prevention and detection of software faults. Software development, by reviewing testware workproducts, will support the prevention and detection of testware faults.

�Descriptions����Formal������Test Plans������Coverage Inventories������Test Specifications��Informal����Test Reports��Clarification Requests����Coverage Traces��Enhancement Requests������Defect Descriptions������Support Software Requirements����Implementations�����Test Procedures������Test Data������Support Software����������Figure 8 - Test Workproducts

Test workproducts are divided into two categories �descriptions and implementations. Descriptions are further classified into formal (often associated with a specified format) and informal (often transmitted orally) as shown in figure 8.

The formal descriptions use the ANSI/IEEE 829 Standard Document templates as a recommended guideline for document structure and content. This includes the following documents:

1.	Test Plan

	Used for the Master Test Plan and for Level Specific Plans

2.	Test Design Specification

	Used at each test level to specify the test set architecture and coverage traces

3.	Test Case Specification

	Used as needed to describe complex cases

4.	Test Procedure Specification

	Used when procedures are not automated

5.	Test Log

	Used as needed to record the execution of manual test procedures

6.	Test Incident Report

	Used to describe problems found in software requirements, designs and code

7.	Test Summary Report

	Used to report completion of testing at a level or a major test objective within a level.

Informal descriptions will include:

Requests for clarification.

Descriptions of problems in the applications’ requirements, design, and code.

Enhancement requests for changes needed to the applications to support testing.

Requirements specifications for any supporting software needed to facilitate testing or establish the test environment.

Implementations will be the actual test procedures to be executed along with their supporting test data and test files or test environments and any supporting test code that will be required.

5.5	Roles and Responsibilities

Roles and responsibilities for various testing activities are defined. The four major roles of MANAGER, ANALYST, TECHNICIAN, and REVIEWER are identified (fig. 9)

Analogous to their counterpart roles on the software side, these roles should be largely self explanatory. The Test Manager will be responsible for providing overall test direction and coordination and communicating key information to all interested partners. The Test Analyst will be responsible for detailed planning, inventorying of test objectives and coverage areas, test designs and specifications, and test review and evaluation. The Test Technician will be responsible for implementation of test procedures and test sets according to the designs provided by the Analyst, for test execution and checking of results for termination criteria and for test logging and problem reporting. The Test Reviewer will provide review and oversight over all steps and workproducts in the process.

MANAGER�ANALYST�TECHNICIAN�REVIEWER��Communicate�Plan�Implement�Examine��Plan�Inventory�Execute�Evaluate��Coordinate�Design�Check����Evaluate����Figure 9 - Roles and Responsibilities

The methodology does not require that these roles be filled by different individuals. On small projects or maintenance efforts, it is likely that one person will wear all the hats. On larger projects and as a test specialty becomes more refined in an organization, the roles will tend to be assigned to different individuals. In TOOBIS, all partners involved in the analysis, design or development of each one of the pilot applications, will decide how many persons are needed to fill these roles.

Figure 10 shows the workproducts that are assigned to each role.

� EMBED Word.Picture.6 �����Master Test Plan��� EMBED Word.Picture.6 �����Detailed Test Plan

Support Software Requirements

Requirements and Design Based Inventories and Traces

Software Clarification Requests

Software Design Enhancement Requests

Test Specifications

Test Incident Reports

Test Summary Reports��� EMBED Word.Picture.6 �����Test Data

Test Procedures

Support Software

Implementation Based Inventories and Traces

Test Logs

Test Incident Reports��� EMBED Word.Picture.6 �����Test Incident Reports

Product Review Reports��Figure 10 - Roles vs. Workproducts

TOOBIS	T42TR.1: Evaluation Procedure Specifications

Table of Contents	Page: � PAGE �1�

Introduction	Page: � PAGE �2�

Usability Evaluation	Page: � PAGE �11�

Compliance with Standards	Page: � PAGE �12�

Service Level Requirements	Page: � PAGE �17�

The Testing Methodology	Page: � PAGE �26�

