

TOOBIS

DELIVERABLE T23D2

�

University of Paris 1-Sorbonne
C. Souveyet, R. Deneckere, C. Rolland
�Contents
� TM \o "1-1" �1. Introduction	� BOUTONATTEINDRE _Toc393852924 � RENVOIPAGE _Toc393852924 �3��
2. The modeling process approach	� BOUTONATTEINDRE _Toc393852925 � RENVOIPAGE _Toc393852925 �6��
3. The Road Map of TOOBIS concepts	� BOUTONATTEINDRE _Toc393852926 � RENVOIPAGE _Toc393852926 �12��
4. Top level guidelines	� BOUTONATTEINDRE _Toc393852927 � RENVOIPAGE _Toc393852927 �20��
5. Extend Guidelines	� BOUTONATTEINDRE _Toc393852928 � RENVOIPAGE _Toc393852928 �50��
6. Map guidelines	� BOUTONATTEINDRE _Toc393852929 � RENVOIPAGE _Toc393852929 �245��
7. Use of external tools	� BOUTONATTEINDRE _Toc393852930 � RENVOIPAGE _Toc393852930 �323��
8. Conclusion	� BOUTONATTEINDRE _Toc393852931 � RENVOIPAGE _Toc393852931 �334��
9. References	� BOUTONATTEINDRE _Toc393852932 � RENVOIPAGE _Toc393852932 �336��
���
Introduction
�The handbook aims at supporting analysts in their analysis process of their applications. The handbook is a companion document of the reference manual. The reference manual describes the concepts promoted by the methodology. The handbook provides a set of guidelines helping analysts during the appliance of the methodology.

The set of guidelines relative to a methodology defines its way of working. A guideline is an guidelineal knowledge gained from the experience; that helps analysts to take design decisions according to the situations they are faced to.

The set of guidelines proposed by the handbook is not an exhaustive one, but it is just a first version. This knowledge should evolve by the experiences gained by analysts. The principle of this handbook is to improve it incrementally by refining the guidelines with the experiences gained during projects developments

The main criticism, we have made in the state of the art on OO methodologies [TOOM-97a] was to have an unequal way to describe guideline and in addition these guidelines are not gathered in one place but spread in the different manuals of the methodology. For avoiding these problems, we have applied systematically a modeling approach to describe guidelines. The model we used to describe them is the NATURE process modeling approach » coming from the NATURE esprit project. This process metamodel permits to define a guideline with two parts « a header » and « a body ». A header is a couple <situation , decision> and the body of a guideline describes what the analyst should do to realize his decision from the situation he faces to.
Section 2 presents the modeling approach we followed and how a guideline is documented in the handbook.

The TOOBIS methodology is designed to help analysts to develop temporal database applications. We remain to the reader that the TOOBIS methodology is built by assembling fragments of methods (see the reference manual deliverable) :
the «basic OO methodology» fragment (OOM),
the «temporal extension» fragment (TOOM).

The aim of the TOOBIS methodology is to support analysts to lead a TOOM specification and developers to implement this specification with the TOOBIS TOODBMS.

Before introducing the guidelines, a road map of the different concepts used in the TOOM specification or in the implementation level is presented in order to have a quicker understanding of the TOOBIS technology. This road map is introduced in section 3, it is composed by the three following metamodels : OOM metamodel, TOOM metamodel and implementation metamodel.

A classification of the guidelines is proposed, it is based on the various kinds of intentions to reach during the development process. The groups of guidelines are the following :
« top level » guidelines helping to choose the adequate development process for the application. The intention to follow in these guidelines are « develop ». These guidelines are described in section 4 of the handbook.

« OOM » guidelines having OOM specification as a target. A complete version is available in an « electronic guide book ».

« TOOM » guidelines having a TOOM specification as target from a OOM specification. The intention carried by these guidelines is « extend ». Section 5 details how to extend temporally a OOM specification.

« mapping » guidelines having the implementation level as target from a TOOM specification. « Map » is the intention embedded in these guidelines and they are illustrated in section 6.

« use of external tools » guidelines allowing to apply external methodological tools according to the intention to reach. The openness of the methodology can be expressed by this kind of guidelines. Some of these guidelines are mentioned in section 7.

��The modeling process approach
2.1 The NATURE process modeling approach	� BOUTONATTEINDRE _Toc393853364 � RENVOIPAGE _Toc393853364 �7��
2.2 Guideline documentation	� BOUTONATTEINDRE _Toc393853365 � RENVOIPAGE _Toc393853365 �9��
2.3 Benefits of this approach	� BOUTONATTEINDRE _Toc393853366 � RENVOIPAGE _Toc393853366 �10��
�A modeling approach has been used to describe the set of guidelines composing the handbook of the methodology. Its benefits are firstly to have a systematic formalism to explain all the guidelines relative to the methodology and secondly to consider the guidelines as important as the concept definition described in the reference manual. Section � RENV _Ref393690626 \n �2.1� describes the process modeling approach we have chosen and how we document each guideline in the handbook is explained to the reader in section � RENV _Ref393690662 \n �2.2�.
The NATURE process modeling approach
The formalism we have chosen, is coming from the NATURE process modeling approach described in [Rolland95-96], [] results of the « NATURE » esprit project (Novel Approaches to Theories Underlying Requirements Engineering) esprit project (n°6353).
The NATURE process modeling approach strongly couples the context of a decision to the decision itself. This approach aims at capturing not only activities but also why these activities are performed (the decisions) and when (the decision contexts).
�
Figure � SEQ Figure * ARABE �1�: A reviewed version of the NATURE process meta model
The central aspect of the process way of modeling is that it makes the notion of situation (in which to decide) explicit and relates it to the broader question of context handling.
� RENV _Ref394115134 * FUSIONFORMAT �Figure 1� gives an overview of the process model, introducing its key concepts and their relationships (with a binary E/R based notation).

The central concept of this metamodel is the one of guideline. A guideline allows to describe a step of the process. In a situation the designer has to make a decision in order to progress in the RE process, therefore, a context is the coupling of a situation and a decision.

A situation is most often a part of the specification it makes sense to take a decision on. Situations are built from parts of the specification undergoing the RE process.
A decision reflects a choice that a requirement engineer makes at a given point in time of the RE process. A decision encapsulates three aspects, namely intention, target and approach. An intention expresses what the engineer wants to achieve, it is a goal. A target is the part of the specification the engineer wants to reach. An approach characterizes ways to fulfill an intention. Considering IS development, we currently recognize two different approaches, namely bottom up and top down. Following a bottom up approach means to define first the component and then the composite concepts, whereas following a top down approach means to first define composite elements and then their components. A decision is defined as an intention coupling to the part of the specification - to achieve - possibly following an approach.
A guideline is characterized by a couple <situation, decision>. It is what we have called « the header of the guideline ». A guideline supporting developers to map a TOOM basic temporal class to the TOOBIS implementation level is described by the following header : <TOOM basic temporal class , Map TOOM basic temporal class to TOOBIS implementation level> where TOOM basic temporal class is the situation and the decision can be also decomposed as follows : < intention : Map, target : TOOBIS implementation level, approach : none>. If we consider a guideline helping analyst to extend temporally a OOM object class, it is described by the header : <OOM object class, extend a OOM object class to the TOOM specification>.

A body of a guideline allows to describe what the analyst should do to operationalise his decision.

There are three different types of guideline :	

the executive based guideline expresses the fact that the execution of an action permits to reach the decision of the context (or a guideline). Therefore, an executive based context is associated to an action. For example, convert a OOM aggregation link to TOOM aggregation is an executable guideline because its body is defined by the performance of the complex action « converting OOM aggregation to a TOOM aggregation ».

the choice based guideline allows to refine the decision by choosing one among a list of alternatives contexts (or guidelines). To help the selection process, arguments and choice criteria are introduced. For example, Map a TOOM temporal class with History<VT> to the implementation level is a choice based guideline because its body is described by a choice of one of the candidate guidelines (� RENV _Ref392665026 * FUSIONFORMAT �Figure 2�). Thus, a choice allows to progress in the process by refinement.
� INCORPORER Word.Picture.6 ���
Figure � SEQ Figure * ARABE �2� : Example of choice based guideline.
the plan based guideline permits to describe its body as a sequence of decisions to take. Each decision to take is described in terms of guideline. Thus, a plan permits to achieve his decision by decomposing it to a sequence of sub-decisions to achieve. For instance, Develop a temporal database application with spiral strategy for the analysis & the design levels is a plan based guideline as shown in � RENV _Ref392665287 * FUSIONFORMAT �Figure 3� because its body is represented by a path to perform among three guidelines : develop a facet at the analysis level, develop this facet at the design level and implement the whole specification. The path is described by a transition graph, the nodes are the guidelines and the links represent the possible transitions from a component guideline to another one. These transitions can be conditional according to the situation to face. Consequently, conditions are specified for each transition link to help the analyst to find the next guideline to apply when he follows a path described in a plan based guideline.

� INCORPORER Word.Picture.6 ���
Figure � SEQ Figure * ARABE �3� : Example of a plan based guideline.

The process is decomposed in several guidelines organized in a tree that permits you to handle the abstraction level of the process definition. For example, the guideline <OOM property, Extend OOM property> is a tree of guidelines which are linked by a refinement link (choice based guideline) or a composition link (plan based guideline). This tree permits to guide analysts or developers from upper level guidelines to lower level guidelines.

�

After having described the process modeling approach we have chosen, we present how we document these three kinds of guidelines in the Handbook.
Guideline documentation
Guidelines for the TOOBIS methodology are modeled with the NATURE process modeling approach and we have defined a Word template to document each guideline for a general audience. It means the document can be understood even if the reader do not know the approach we used.

A guideline is documented by the following sections :
The intention : explains in details the decision achieved by the guideline. We specify the intention with three fields : the verb expressing the intention ; the target representing the part of the specification to achieve and the approach if it is possible to specify it.
When is it used ? : expresses the situation from which this guideline can be applied. This section is defined by two
Motivation : describes why an analyst should used this guideline,
Graphical description : defines graphically the body of the guideline.
Textual description : provides a more detailed description of its body.
Examples : illustrates through examples the use of the guideline. This section is not always specified (in particular in the « Top level » guidelines.
Related guidelines : permits to know where its related guidelines are documented in the handbook. The related guidelines are the (previous guideline if it exists) and the embedded guidelines (for a plan it is the « alternative guidelines » and for a choice it is the « component guidelines »).
Related concepts : allows to know where the concepts used in the guideline are explained in the reference manual deliverable.

The header of the guideline is explained by the three first sections whereas the body of this guideline is detailed in section 4 & 5. And finally sections 6 & 7 provide a way of navigating into the handbook & the reference manual for having a quick access to the required information embedded into these two deliverables.

The description of a plan or a choice based guideline is different because a choice explains how to refine a decision among a list of candidates guidelines where a plan describes the path to follow among component guidelines in order to achieve the initial decision.
Consequently the contents of sections 4 & 5 are dependent to the type of guideline.

For a choice based guideline, section 4 describes the list of « alternatives » among which the analyst has to choose and for each of them an argumentation is provided to help analysts to choose the adequate guideline according to the situation they face to.

For a plan based guideline, section 5 explains the list of « component guidelines » to apply in sequence for achieving the decision of the plan. In addition, the way of progressing among the components are defined in this section. The path to follow is described by a transition graph where nodes are component guidelines and transition links are the possible sequences to follow from a particular component. This transition can be conditional. Thus, arguments assigned to each transition link helps the analysts to know when a transition can be followed.

For describing the TOOBIS guideline, we have defined two Word templates, one for the choice based guideline and one for the plan based guideline. The executable guideline is not detailed because the action has to be performed manually by the analyst.
Benefits of this approach
The benefit of this approach is to have a systematic way of describing guidelines of a methodology. It permits to have a process engineering approach to formalize & capitalize guidelines gained through projects developments. In fact it is a manner to gain maturity in the process development of applications.

The management of these guidelines can be easily done with a DBMS in order to have a « guideline database » on TOOBIS methodology coupled to the specification environment helping analysts to find the adequate guideline to apply according to the problem to solve. We have tried to develop an « electronic handbook » within the TOOBIS project in order to demonstrate its feasibility. The « OOM guidelines » are stored in the database of the « electronic handbook ». Our goal is to put the whole TOOBIS methodology in order to provide an electronic support for the TOOBIS methodology which can be coupled to any CASE tool environment.

The long term benefit of this approach is to have associated to the methodology definition the kernel to build a new CASE tool offering a real guidance to the analysts in their jobs by proposing and enacting the process guidelines associated to the methodology. The CASE tool should also support the capitalization of guidelines in order to offer always an accurate guidance.

Before introducing the guidelines themselves, we try to give a quick understanding of the TOOBIS concepts.

��The Road Map of TOOBIS concepts
3.1 The OOM metamodel	� BOUTONATTEINDRE _Toc393853368 � RENVOIPAGE _Toc393853368 �13��
3.2 The TOOM metamodel	� BOUTONATTEINDRE _Toc393853369 � RENVOIPAGE _Toc393853369 �15��
3.3 The Implementation level metamodel	� BOUTONATTEINDRE _Toc393853370 � RENVOIPAGE _Toc393853370 �17��
�The road map of TOOBIS concepts is presented in this section for understanding quickly the TOOBIS concepts and it provides also a pointer to the TOOBIS deliverables presenting these particular concepts in details. The road map is organized in three metamodels : the OOM metamodel, the TOOM metamodel and the Implementation level metamodel. The formalism used to describe these metamodels are the OOM model.

We have defined these three metamodels because the methodology is composed of two method components : OOM & its temporal extension (TOOM) and finally the mapping from TOOM to the TOODBMS environment must be done by the developers. The conceptual representation of the TOODBMS is designed in the implementation metamodel. The « Extend » guidelines allow to transform the OOM specification level to the TOOM specification level and the « Map » guidelines permit to reach the implementation level from the TOOM specification.
The OOM metamodel
The OOM fragment is composed of the OO concepts helpful for modeling at the conceptual level a database application [TOOM-97b]. The main concepts are : the object class (T23D1.1, p. 66) representing the objects managed in the database and the dynamic of the application modeled in terms of events (T23D1.1, p. 91). Several kinds of events are possible : external events (it is a message sent by an actor of the application from which the application has to respond), internal events (it is a pertinent state change of an object from which a treatment should be performed) and temporal events (it is a particular state change of a predefined clock from which the system has to react by the execution of a particular treatment).
Due to the object oriented paradigm, the event is encapsulated into the class definition as operations. Consequently, an object class is composed of a set of properties (T23D1.1, p. 68), a set of constraints (T23D1.1, p. 82), a set of operations (T23D1.1, p. 85) and a set of internal events (T23D1.1, p. 92). The environment of the database application is modeled by the concepts of actor class (T23D1.1, p. 66) and calendar class (T23D1.1, p. 67). An actor class is composed by a set of attributes, a set of external operations (messages sent by the application to the actor, T23D1.1, p. 89) and a set of external events (messages sent by the actor to the application, T23D1.1, p. 92). And finally a calendar class in the OOM fragment is defined by a set of temporal events (T23D1.1, p. 92).

� RENV _Ref392569581 * FUSIONFORMAT �Figure 4� shows the modeling of the object class definition with the OOM model. For a sake of readability, the concepts of the OOM fragment are mentioned in shadow style and their properties are defined in italic style. An object class is composed by a set of properties, a set of object operations, a set of constraints, and a set of internal events.
A property may be a link to another object or an attribute (T23D1.1, p. 68). Two kinds of links are available : aggregation (T23D1.1, p. 70) & association (T23D1.1, p. 73). An object operation may be a query (without modifying the object, T23D1.1, p. 86) or a basic operation (modifying the object, T23D1.1, p. 86). An internal event is a particular state change of an object of this class requiring the performance of a treatment.

�
Figure � SEQ Figure * ARABE �4� : Object class definition

� RENV _Ref392666314 * FUSIONFORMAT �Figure 5� illustrates graphically the actor class definition (with OOM model). An actor class (T23D1.1, p. 66) is defined by a set of attributes (environment variables), a set of external operations (messages sent by the system to the actor, T23D1.1, p. 89) and a set of external events (messages sent by the actor to the system requiring the execution of operations, T23D1.1, p. 92).

�
Figure � SEQ Figure * ARABE �5� : Actor Class Definition.

� RENV _Ref392666393 * FUSIONFORMAT �Figure 6� describes the Calendar class definition with OOM model (T23D1.1, p. 67). In the OOM fragment, a calendar class is introduced only for modeling the temporal events of the application (T23D1.1, p. 92). A temporal event is a treatment to perform when a temporal assertion becomes true (event predicate). A temporal event inherits from event concept. Therefore it is described by a name, a comment a predicate and a set of triggers.

�
Figure � SEQ Figure * ARABE �6� : Calendar Class Definition.
The TOOM metamodel
The TOOM fragment represents the temporal extension proposed by the TOOBIS project for modeling temporal database applications [TOOM-97c]. The temporal extension is structured on the OO concepts as follows :
temporal extension of the OOM calendar class (T23D1.1, p. 197),
temporal extension of OOM temporal domains (UDT, T23D1.1, p. 201)
specialization of OOM object class into basic or derived object class (T23D1.1, p. 204).
temporal extension of OOM object class : snapshot, temporal and temporal dictionary class (T23D1.1, p. 208).
temporal extension of OOM constraints (T23D1.1, p. 227),
temporal extension of OOM events (T23D1.1, p. 236),

� RENV _Ref393075771 * FUSIONFORMAT �Figure 7� presents the TOOM calendar class definition (T23D1.1, p. 197). In the temporal extension, we define as default calendar the Gregorian calendar, and we give the ability to define new calendars. The OOM concepts are mentioned in underlined style, additional concepts are in shadow style and their properties are defined in italic style. We have also defined a typology of temporal events according to the type of temporal assertions they required (T23D1.1, p. 239).
A user defined calendar is composed of a name, an origin, a basic unit, a set of granules and a set of operators. A granule is described by its name, its coarser and finer granule with their conversion functions.

�
Figure � SEQ Figure * ARABE �7� : TOOM calendar class definition.

� RENV _Ref393076967 * FUSIONFORMAT �Figure 8� explains the TOOM temporal domains definition (T23D1.1, p. 201). It is commonly called User Defined Time (UDT) because analysts use these domains to define the time managed explicitly by the application. For example the birthday of a patient is considered as user defined time which is expressed as an absolute instant at the day level of the Gregorian calendar.

The temporal domains are instant, period and interval. An instant represents a point in the time line whereas a period represents a quantity of time between two instants. And finally an interval represents a duration (or a quantity of time without knowing where this quantity is anchored in the time line).

Instants and periods can express an absolute time or a relative time. For example, « 1997/03/24 » is an absolute instant expressed at the Gregorian Day whereas « 3months after the first visit » is a relative instant which can be determined when the first visit is temporally determined.

�
Figure � SEQ Figure * ARABE �8� : Temporal domain definition.

The TOOM object class definition is graphically defined with � RENV _Ref393078877 * FUSIONFORMAT �Figure 9� (T23D1.1, p. 208).

�
Figure � SEQ Figure * ARABE �9� : TOOM object class definition.

The TOOM actor class definition is illustrated by � RENV _Ref393078226 * FUSIONFORMAT �Figure 10� (T23D1.1, p. 66). The actor class definition does not change from the OOM model. We have classified the external events according to their valid time (T23D1.1, p. 236). An event in time is an external event which is occurred in its validity period. « A priori » event is occurred in advance according to the validity of its message and « a posteriori » event is triggered with delay because the validity of its message is in the past.

�
Figure � SEQ Figure * ARABE �10� : TOOM actor class definition.
The Implementation level metamodel

The implementation level follows the TODM & TODL concepts for the definition of objects, relationship & attributes. The operation of an object can invoke a TOQL query or a function or a procedure available in the TODM API.

The application is defined with the visual C++ programming environment with a binding to the TOODBMS. Consequently an application is composed of :
a database schema,
a class schema (transient),
one or more bases : if the application access to one or several bases,
one or more « Client Application Class ». The application can have several Client Application Classes if for example A client application is dedicated by category of users,
one «Administration Class». This class represents the application for administrating the temporal database. This application is used by the database administrator.

A « Client Application Class » is derived from the WinApp class available in the MFC library. From this class, a user can trigger one or more client interactions. A « client interaction » is a unit of treatment triggered by a user and modifying the database according to the application policy. Consequently, a client interaction is described by a sequence of input screens required for acquiring information and a set of interface procedures associated to these screens to monitor the user interface and the modification of the database. It is why an interface procedure may trigger TOQL queries or operations encapsulated into the objects (persistent or transient).

The ODMG concepts are mentioned in � RENV _Ref393781408 * FUSIONFORMAT �Figure 11� by an underlined style. The temporal extension of each ODMG concept is available in TODM and TODL except the literal extension which is not exploited by the TODL language. The concepts belonging to the temporal extension mentioned between parenthesis are not developed in details specially they are specialized as follows :
event history : history having an instant as valid timestamp,
state history : history having a period as valid timestamp,
state overlap history : history having a period as valid timestamp allowing overlapping valid period.
This specialization is available for example for historical relationship, bitemporal relationship, or historical object ...

The temporal domains are the same as it is defined in TOOM. They are a subtype of literal as it is described below :
�

The User defined Times are managed as temporal domains (as it is defined in the TOOM model). They are referred to a granule of a calendar and they are a particular subtype in the literal hierarchy. The Object type specialization allows to realize the aggregation of objects in the draft of ODMG97.
�
Figure � SEQ Figure * ARABE �11� : Implementation level definition.

��Top level guidelines
4.1 Develop a temporal database application with TOOM methodology	� BOUTONATTEINDRE _Toc393853372 � RENVOIPAGE _Toc393853372 �21��
4.2 Develop with a spiral strategy for the analysis & design levels	� BOUTONATTEINDRE _Toc393853379 � RENVOIPAGE _Toc393853379 �24��
4.3 Develop with a spiral strategy for all the levels	� BOUTONATTEINDRE _Toc393853386 � RENVOIPAGE _Toc393853386 �26��
4.4 Develop with a spiral strategy for the design & implementation levels	� BOUTONATTEINDRE _Toc393853393 � RENVOIPAGE _Toc393853393 �28��
4.5 Develop with a Waterfall strategy for the analysis & design levels	� BOUTONATTEINDRE _Toc393853400 � RENVOIPAGE _Toc393853400 �30��
4.6 Develop with a Waterfall strategy for all the levels	� BOUTONATTEINDRE _Toc393853407 � RENVOIPAGE _Toc393853407 �32��
4.7 Develop with a Waterfall strategy for the design & implementation levels	� BOUTONATTEINDRE _Toc393853414 � RENVOIPAGE _Toc393853414 �34��
4.8 Develop with a Linear strategy for all the levels	� BOUTONATTEINDRE _Toc393853421 � RENVOIPAGE _Toc393853421 �36��
4.9 Develop a facet of the specification at the analysis level	� BOUTONATTEINDRE _Toc393853428 � RENVOIPAGE _Toc393853428 �38��
4.10 Develop this facet specification at the design level	� BOUTONATTEINDRE _Toc393853435 � RENVOIPAGE _Toc393853435 �40��
4.11 Implement this facet	� BOUTONATTEINDRE _Toc393853442 � RENVOIPAGE _Toc393853442 �42��
4.12 Develop the Whole specification at the analysis level	� BOUTONATTEINDRE _Toc393853449 � RENVOIPAGE _Toc393853449 �44��
4.13 Develop the Whole specification at the design level	� BOUTONATTEINDRE _Toc393853456 � RENVOIPAGE _Toc393853456 �46��
4.14 Implement the Whole specification	� BOUTONATTEINDRE _Toc393853463 � RENVOIPAGE _Toc393853463 �48��
�Develop a temporal database application with TOOM methodology
Intention :
Verb : develop
Target : temporal database application
Type of guideline : Choice
When is it used ?
the starting point of the development phase
the situation : set of problem statements describing the application
Motivation :
The purpose is to choose the adequate life cycle of the development process according to the project situation. The development process is composed of three traditional levels : the analysis level, the design level and the implementation level. But you can choose the life cycle you want to follow : a spiral strategy, a waterfall strategy and a linear strategy.
Graphical description :
�
Textual description :
Alternatives :
develop with a spiral strategy for the analysis & design levels : this means that for each spiral, you analyze a particular aspect of the application, you refine it according to technical criteria at the design level and finally you start a new spiral by analyzing another aspect of the application until reaching a complete design specification. The implementation level will start only when the design of the application is reached.
develop with a spiral strategy for all the levels : this means that you analyze, design and implement a particular aspect of the application and you start a new spiral by selecting another aspect of the application.
develop with a spiral strategy for the design & implementation levels : this means that you develop the specification at the analysis level and the design and the implementation levels are developed with a spiral strategy. Each facet is described at the design level and then implements before starting a new spiral by a new facet.
develop with a waterfall strategy for the analysis & design levels. The waterfall strategy means to develop each level in one step but some feedback to previous levels are allowed it is required. Feedback are only allowed from design level to analysis level.
develop with a waterfall strategy for all the levels. This means that feedback from the design and the implementation level are allowed in order to correct the specification according to new requirements or misunderstandings.
develop with a waterfall strategy for the design & implementation levels. Feedback are only allowed from the implementation level to design level in order to redesign the specification according to implementation features or user validation.
(7) develop with a linear strategy for all the levels. The levels are developed in sequence without feedback to previous levels.
Argumentation :
Alternatives�Pros�Cons��(1)
develop with a spiral strategy for the analysis & design levels�- An incremental construction of the specification can permits to have an incremental validation of the specification.
- Improve the quality of the specification.
- This strategy is efficient if the same persons perform the analysis & design levels
�- Each spiral has to be fixed in advance in order to avoid an anarchic process.
- This strategy requires a lot of interaction between analysts, designers and users. This may be difficult to manage.
- This strategy do not obliged to maintain the specification of the application according to its implementation. ��(2)
develop with a spiral strategy for all the levels�- An incremental development permits to have a rapid prototyping of the application.
- This strategy permits to have a strong involvement of the users to the development process.
- A user validation stage for this strategy is done for each spiral ; it permits to reduce the risk of having unsatisfactory users.
- This strategy is efficient if the same persons perform the analysis, the design & the implementation levels�- Each spiral has to be fixed in advance in order to avoid an anarchic process.
- The schedule and the planning is more difficult to realize.
��(3)
develop with a spiral strategy for the design & implementation levels�- Incremental development from the design level to the implementation level.
- This strategy is efficient if the user requirements are not complex and also if designer & programmer are the same persons.�- Each spiral has to be fixed in advance in order to avoid an anarchic process.
- The schedule and the planning is more difficult to realize.
- This strategy do not permit to have feedback to the analysis level. Evolution of user requirements & misunderstandings are corrected only at the design level
��(4)
develop with a waterfall strategy for the analysis & design levels�-This strategy permits to have feedback on the previous levels. It means that the design level can impact the analysis level.
- The interaction between analysts, designers and users is less than the spiral strategy. �- The user validation is not enforced by this strategy. Consequently the bugs and unsatisfactory situations are cost effective but less than the linear strategy.
- The specification could be not accurate to the implementation level ��(5)
develop with a waterfall strategy for all the levels�- The specification should be accurate to the implementation level.
- This strategy permits to have feedback on the previous levels. It means that the implementation can have an impact on the analysis step and the design step.�- The user validation is not enforced by this strategy. Consequently bugs and undesirables situations are cost effective but less than the linear strategy.��(6)
develop with a waterfall strategy for the design & implementation levels�- This strategy is efficient if the design & the implementation levels do not require a feedback to the analysis level (user requirements evolution- misunderstanding) �-- The user validation is not enforced by this strategy. Consequently bugs and undesirables situations are cost effective but less than the linear strategy.��(7)
develop with a linear strategy for all the levels�- more easy to manage, to plan
- the actors of the development process are involved separately�- the linear strategy is a risky strategy because a user validation appears too late in the development process, bugs and unsatisfactory requirements is cost effective with this strategy. If you choose this strategy, you have to enforce the validation tasks and you have to take care about the user requirements.��Related guidelines :
Embedded Guidelines�Section�Page��develop with a spiral strategy for the analysis & design levels�� RENV _Ref393620059 \n �4.2��� RENVOIPAGE _Ref393620059 �24���develop with a spiral strategy for all the levels�� RENV _Ref393620072 \n �4.3��� RENVOIPAGE _Ref393620072 �26���develop with a spiral for the design & implementation levels�� RENV _Ref393620081 \n �4.4��� RENVOIPAGE _Ref393620081 �28���develop with a waterfall strategy for the analysis & design levels�� RENV _Ref393620089 \n �4.5��� RENVOIPAGE _Ref393620089 �30���develop with a waterfall strategy for all the levels�� RENV _Ref393620096 \n �4.6��� RENVOIPAGE _Ref393620096 �32���develop with a waterfall strategy for the design & implementation levels�� RENV _Ref393620102 \n �4.7��� RENVOIPAGE _Ref393620102 �34���develop with a linear strategy for all the levels�� RENV _Ref393620109 \n �4.8��� RENVOIPAGE _Ref393620109 �35����Develop with a spiral strategy for the analysis & design levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : spiral strategy for the analysis & design levels
Type of guideline : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen
The situation : a set of problem statements describing the application.
Motivation :
An incremental construction of the specification can permits to have an incremental validation of the specification.- Improve the quality of the specification.- This strategy is efficient if the same persons perform the analysis & design levels
Graphical description :
�
Textual description :
Components :
Develop a facet of the specification at the analysis level. Several facets can be developed at the analysis level : system environment, structure of the database and dynamic of the application
Develop this facet at the design level. The facets can be developed also at the design level. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement the whole specification. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�-always true��(1)�(2)�- the specification of the chosen facet at the analysis level is completed��(2)�(1)�- back to a new facet to develop or modify a facet existing in the specification.��(2)�(3)�The specification of the temporal database application to develop is complete at the design level��(3)�ending point�the implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop a facet of the specification at the analysis level�� RENV _Ref393620124 \n �4.9��� RENVOIPAGE _Ref393620124 �38���Develop this facet at the design level�� RENV _Ref393620133 \n �4.10��� RENVOIPAGE _Ref393620133 �40���Implement the whole specification�� RENV _Ref393620174 \n �4.14��� RENVOIPAGE _Ref393620174 �48����Develop with a spiral strategy for all the levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : spiral strategy for all the levels
Type of guideline : Plan
When is it used ?
The starting point of the development phase. The development strategy is chosen
The situation : a set of problem statements describing the application
Motivation :
An incremental development permits to have a rapid prototyping of the application. - This strategy permits to have a strong involvement of the users to the development process. - A user validation stage for this strategy is done for each spiral ; it permits to reduce the risk of having unsatisfied users.- This strategy is efficient if the same persons perform the analysis, the design & the implementation levels
Graphical description :
�
Textual description :
Components :
Develop a facet of the specification at the analysis level. Several facets can be developed at the analysis level : system environment, structure of the database and dynamic of the application
Develop this facet at the design level. The facets can be developed also at the design level. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement this facet. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�- the specification of the chosen facet at the analysis level is completed��(2)�(3)�The specification of the chosen facet is complete at the design level��(3)�(1)�Back to a new facet to develop or modify a facet existing in the current specification.��(3)�ending point�The implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop a facet of the specification at the analysis level�� RENV _Ref393620124 \n �4.9��� RENVOIPAGE _Ref393620124 �38���Develop this facet at the design level�� RENV _Ref393620133 \n �4.10��� RENVOIPAGE _Ref393620133 �40���Implement this facet�� RENV _Ref393620146 \n �4.11��� RENVOIPAGE _Ref393620146 �42����Develop with a spiral strategy for the design & implementation levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : spiral strategy for the design & implementation levels
Type of intention : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen.
The situation : a set of problem statements describing the application.
Motivation :
Incremental development from the design level to the implementation level.- This strategy is efficient if the user requirements are not complex and also if designer & programmer are the same persons.
Graphical description :
�
Textual description :
Components :
Develop the specification of the temporal database application to develop at the analysis level. The target of this step is to reach a complete specification at the analysis level. Develop this specification is composed of the « construct » step, the « complete » step, the « check » step and finally the « validate » step.
Develop a facet of this specification at the design level. Several facets can be developed at the analysis level : system environment, structure of the database and dynamic of the application. The facets can be developed also at the design level. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement this facet. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) the user interface by using VisualC++
(b) the structure of the database by using TODL or TODM API
(c) the reporting activities by using TOQL or TODM API
(d) the dynamic of the application by using TODM API & VisualC++.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�- the specification of the temporal database application at the analysis level is complete��(2)�(3)�The specification of the chosen facet is complete at the design level��(3)�(2)�Back to a new facet to develop or modify a facet existing in the current specification.��(3)�ending point�The implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop the whole specification at the analysis level�� RENV _Ref393620154 \n �4.12��� RENVOIPAGE _Ref393620154 �44���Develop a facet at the design level�� RENV _Ref393620133 \n �4.10��� RENVOIPAGE _Ref393620133 �40���Implement this facet of the specification�� RENV _Ref393620146 \n �4.11��� RENVOIPAGE _Ref393620146 �42����Develop with a Waterfall strategy for the analysis & design levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : Waterfall strategy for the analysis & design levels
Type of intention : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen.
The situation : a set of problem statements describing the application.
Motivation :
This strategy permits to have feedback on the previous levels. It means that the design level can impact the analysis level. The interaction between analysts, designers and users is less than the spiral strategy.
Graphical description :
�
Textual description :
Components :
Develop the specification of the temporal database application at the analysis level. The target of this step is to reach a complete specification at the analysis level. Develop this specification is composed of the « construct » step, the « complete » step, the « check » step and finally the « validate » step.
Develop the specification of the temporal database application at the design level. This development is a choice among : system, non functional requirements, structure of the database and the dynamic of the application. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement the whole specification. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�The specification at the analysis level is complete��(2)�(1)�New requirement or Misunderstanding situations requiring to feedback to the analysis level��(2)�(3)�The specification at the design level is complete��(3)�ending point�The Implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop the Whole specification at the analysis level�� RENV _Ref393620154 \n �4.12��� RENVOIPAGE _Ref393620154 �44���Develop the Whole specification at the design level�� RENV _Ref393620163 \n �4.13��� RENVOIPAGE _Ref393620163 �46���Implement the whole specification�� RENV _Ref393620174 \n �4.14��� RENVOIPAGE _Ref393620174 �48���
�Develop with a Waterfall strategy for all the levels
Intention :
Verb : Develop
Target : a temporal database application
	Approach : Waterfall strategy for all the levels
Type of guideline : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen.
The situation : a set of problem statements describing the application.
Motivation :
The specification should be accurate to the implementation level.- This strategy permits to have feedback on the previous levels. It means that the implementation can have an impact on the analysis step and the design step.
Graphical description :
�
Textual description :
Components :
Develop the specification of the temporal database application at the analysis level. The target of this step is to reach a complete specification at the analysis level. Develop this specification is composed of the « construct » step, the « complete » step, the « check » step and finally the « validate » step.
Develop the specification of the temporal database application at the design level. This development is a choice among: system, non functional requirements, structure of the database and the dynamic of the application. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement the whole specification. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�The specification at the analysis level is complete��(2)�(1)�New requirement or Misunderstanding situations requiring to feedback to the analysis level��(2)�(3)�The specification at the design level is complete��(3)�ending point�The Implementation of the specification is complete��(3)�(1)�New requirement or Misunderstanding situations requiring to feedback to the analysis level��(3)�(2)�New technical criteria requires a feedback to the design level��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop the Whole specification at the analysis level�� RENV _Ref393620154 \n �4.12��� RENVOIPAGE _Ref393620154 �44���Develop the Whole specification at the design level�� RENV _Ref393620163 \n �4.13��� RENVOIPAGE _Ref393620163 �46���Implement the whole specification�� RENV _Ref393620174 \n �4.14��� RENVOIPAGE _Ref393620174 �48����Develop with a Waterfall strategy for the design & implementation levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : Waterfall strategy for the design & implementation levels
Type of guideline : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen
The situation : set of problem statements describing the application.
Motivation :
This strategy is efficient if the design & the implementation levels do not require a feedback to the analysis level (user requirements evolution- misunderstanding)
Graphical description :
�
Textual description :
Components :
Develop the specification of the temporal database application at the analysis level. The target of this step is to reach a complete specification at the analysis level. Develop this specification is composed of the « construct » step, the « complete » step, the « check » step and finally the « validate » step.
Develop the specification of the temporal database application at the design level. This development is a choice among: system, non functional requirements, structure of the database and the dynamic of the application. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement the whole specification. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�The specification at the analysis level is complete��(2)�(3)�The specification at the design level is complete��(3)�(2)�New requirement or Misunderstanding situations or technical criteria require to feedback to the analysis level��(3)�ending point�The Implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop the Whole specification at the analysis level�� RENV _Ref393620154 \n �4.12��� RENVOIPAGE _Ref393620154 �44���Develop the Whole specification at the design level�� RENV _Ref393620163 \n �4.13��� RENVOIPAGE _Ref393620163 �46���Implement the whole specification�� RENV _Ref393620174 \n �4.14��� RENVOIPAGE _Ref393620174 �48����Develop with a Linear strategy for all the levels
Intention :
Verb : Develop
Target : a temporal database application
Approach : Linear strategy for all the levels
Type of guideline : Plan
When is it used ?
The starting point of the development phase. This development strategy is chosen.
The situation : set of problem statements describing the application.
Motivation :
 More easy to manage, to plan- the actors of the development process are involved separately
Graphical description :
�
Textual description :
Components :
Develop the specification of the temporal database application at the analysis level. The target of this step is to reach a complete specification at the analysis level. Develop this specification is composed of the « construct » step, the « complete » step (available in OOM guidelines).
Develop the specification of the temporal database application at the design level. This development is a choice among : system, non functional requirements, structure of the database and the dynamic of the application. For example, the system environment can consist of designing the user interface of each actor, and design the software architecture of the application. The structure of the database can be transformed in order to fit to the implementation environment. In the same way, the dynamic of the application can be transformed in order to fit to the implementation environment.
Implement the whole specification. This level is not managed by the methodology. But we can emphasize the fact that several approaches can exist :
(a) use TODL and TOQL when it is required (we have to use TODM API when you want to modify objects),
(b) use TODL and TODM API to implement the methods attached to classes,
(c) use only TODM API to define the classes and also implement the methods attached to classes
(d) use TODM API for defining the classes and implementing their methods and use TOQL when queries are complex and temporal.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�The specification at the analysis level is complete��(2)�(3)�The specification at the design level is complete��(3)�ending point�The Implementation of the specification is complete��Related guidelines :
Previous Guideline�Section�Page��Develop a temporal database application with TOOM methodology �� RENV _Ref393621237 \n �4.1��� RENVOIPAGE _Ref393621237 �20���
Embedded Guidelines�Section�Page��Develop the Whole specification at the analysis level�� RENV _Ref393620154 \n �4.12��� RENVOIPAGE _Ref393620154 �44���Develop the Whole specification at the design level�� RENV _Ref393620163 \n �4.13��� RENVOIPAGE _Ref393620163 �46���Implement the Whole specification�� RENV _Ref393620174 \n �4.14��� RENVOIPAGE _Ref393620174 �48����Develop a facet of the specification at the analysis level
Intention :
Verb : Develop
Target : A facet of the specification at the analysis level.
Type of guideline : Choice
When is it used ?
When the spiral strategy is chosen for the analysis level.
The situation : a set of problem statements describing the application.
Motivation :
The purpose is to choose the facet of the specification to develop. The facets are the system environment, the structure of the database, the dynamic of the application and the administration activities of the database
Graphical description :
�
Textual description :
Alternatives :
Develop the « system environment » at the analysis level. The idea here is to define the set of actors interacting with the application, and for each of them, you have to define the activities they trigger on the database (external event), you can also define the message sent by the application to these actors.
Develop the « structure of the database » at the analysis level. The structure of the database is defined by a set of object classes from which you define its properties and its constraints. Each object class has to be extended to temporal aspects. But its operations & events are described in the « dynamic of the application » facet.
Develop the « dynamic of the application » at the analysis level. The dynamic of the application requires to define all the events of the application (internal, external & temporal) and also all the operations required for all of them.
Develop the « administration activities of the database » at the analysis level. The purpose here is to define the administration policy of the temporal data.
Argumentation :
Alternatives�Pros��(1) Develop the « system environment » facet at the analysis level�- it should be the first facet to analyze. The structure of the database development can imply to modify the informational content of the interaction of the system and its environment.��(2) Develop the « structure of the database » facet at the analysis level�- it should be the second facet to analyze. The dynamic of the application development can imply to modify the structure of the database.��(3) Develop the « dynamic of the application » facet at the analysis level�- it should be performed after the « structure of the database ».��(4) Develop the « administration activities of the database » facet at the analysis level�- it should be the last facet to develop.��Related guidelines :
Previous Guideline�Section�Page��develop with a waterfall strategy for the analysis & design levels�� RENV _Ref393620089 \n �4.5��� RENVOIPAGE _Ref393620089 �30���develop with a spiral strategy for all the levels�� RENV _Ref393620072 \n �4.3��� RENVOIPAGE _Ref393620072 �26���
Embedded Guidelines��Develop the « system environment » facet at the analysis level��Develop the « structure of the database » facet at the analysis level��Develop the « dynamic of the application » facet at the analysis level��Develop the « administration activities of the database » facet at the analysis level���Develop this facet specification at the design level
Intention :
Verb : Develop
Target : A facet of the specification at the design level.
Type of guideline : Choice
When is it used ?
When the spiral strategy is chosen for the design level.
The situation : a facet of the specification at the analysis level.
Motivation :
The purpose is to choose the way of developing this facet at the design level. The facets are the system environment, the structure of the database and the dynamic of the application and the non-functional requirements.
Graphical description :
�
Textual description :
Alternatives :
Develop the « system environment » at the design level. Two major aspects can be designed at this level, the content and the look of the user interface of each actor or/and the content and the look of each report.
Develop the « structure of the database » at the design level. The purpose here is to map a TOOM specification to the TOODBMS concepts for the structural aspects. The mapping concern classes, properties and constraints.
Develop the « dynamic of the application » at the design level. The implementation environment has no automatic agenda for triggering temporal event. Consequently all temporal events must be transformed into external events. In addition this environment is not an active DBMS, consequently all the events must be transformed into database transactions and operations embedded in the class definition.
Develop the « administration activities of the database » at the design level. The user interface, the reports and the dynamic part related to the administration has to be designed as a real application.
Develop the « software architecture of the application » at the design level. The purpose here is to use the actor concept to model the software architecture of the application in order to have a general map.
Elicitate the « Non Functional requirements relative to the application» at the design level. The purpose here is to list all the non functional requirements to take into account at the implementation level.
Elicitate the « Temporal & non temporal queries» at the design level. The purpose here is to prototype the temporal & non temporal queries in order to check the structure of the database and also validate the performance of them.
Argumentation :
Alternatives�Pros��(1) Develop the « system environment » facet at the design level�-It should be useful to prototype the user interface and /or the reports of the application. It is related to the structure of the database.��(2) Develop the « structure of the database » facet at the design level�- it should be the second facet to analyze. The dynamic of the application development at the design can imply to modify the structure of the database.��(3) Develop the « dynamic of the application » facet at the design level�- it should be performed after the « structure of the database ».��(4) Develop the « administration activities of the database » facet at the design level�- it should be the last facet to develop in order to have an efficient temporal database��(5) Develop the « software architecture of the application » at the design level.�- It should be useful to develop the integration of this application into an existing system in order to study their interaction. ��(6) Elicitate the « Non Functional requirements relative to the application» at the design level.�- The list of non functional requirements is useful to have especially for the implementation level. It is better if the information needed is collected in time.��(7) Elicitate the « Temporal & non temporal queries» at the design level �- The prototyping of queries allows to validate the structure of the database and also the performance of queries. ��Related guidelines :
Previous Guideline�Section�Page��develop with a spiral strategy for all the levels�� RENV _Ref393620072 \n �4.3��� RENVOIPAGE _Ref393620072 �26���Develop with a spiral strategy for the analysis & design levels�� RENV _Ref393620059 \n �4.2� �� RENVOIPAGE _Ref393620059 �24���
Embedded Guidelines��Develop the « system environment » facet at the design level��Develop the « structure of the database » facet at the design level��Develop the « dynamic of the application » facet at the design level��Develop the « administration activities of the database » facet at the design level��Develop the « software architecture of the application » facet at the design level��Develop the « software architecture of the application » facet at the design level��Elicitate the « non functional requirements » at the design level��Elicitate the « temporal & non temporal queries » at the design level���Implement this facet
Intention :
Verb : Implement
Target : A facet of the specification at the implementation level.
Type of guideline : Choice
When is it used ?
When the spiral strategy is chosen for the implementation level.
The situation : a facet of the specification at the design level.
Motivation :
The purpose is to choose the way of developing this facet at the implementation level. The facets are the system environment, the structure of the database and the dynamic of the application.
Graphical description :
�
Textual description :
Alternatives :
Implement the « system environment ». The user interface should be done with Visual C++ on WindowsNT and the import/export with other existing systems has to be developed.
Implement the « database design ». The purpose here is to implement the structure of the database or/and the administration activities of temporal data. Consequently two ways can be adopted to implement the structure : TODL or TODM API. TODL is more user-friendly than TODM API but the programmer has to know TODM API for realizing all the activities modifying the database. Consequently, he can find more simple to define his persistent classes with TODM API.
Implement the « dynamic of the application ». The dynamic of the application is realized with TODM API & C++ code. The activities performed on the database is written with TODM API and C++.
Implement the « reporting activities». The reporting activities can be realized in TOQL or TODM API but the report generation can be done by an external tool. The user-friendly way to ask questions to the database is TOQL language but sometimes the queries are simple or the programmer knows TODM API and do not know TOQL.
Argumentation :
Alternatives�Pros��(1) Implement the « system environment »�- It is important to realize the complete environment of the application : user interface & import/export functionality��(2) Implement the « database design »�- The database has to be efficient by realizing its structure and also to implement its administration activities��(3) Implement the « dynamic of the application »�- The dynamic of the application is limited to the activities performed on the database.��(4) Implement the « reporting activities» �- the reporting activities are composed of two aspects : the database query and the display of the result.��Related guidelines :
Previous Guideline�Section�Page��develop with a spiral for the design & implementation levels�� RENV _Ref393620081 \n �4.4��� RENVOIPAGE _Ref393620081 �28���develop with a spiral strategy for all the levels�� RENV _Ref393620072 \n �4.3��� RENVOIPAGE _Ref393620072 �26���
Embedded Guidelines��Implement the « system environment » ��Implement the « database design »��Implement the « dynamic of the application ».��Implement the « reporting activities »���Develop the Whole specification at the analysis level
Intention :
Verb : Develop
Target : Whole specification at the analysis level
Approach : Waterfall or Linear strategy for the analysis level
Type of guideline : Plan
When is it used ?
The starting point of the development phase.
The situation : a set of problem statements describing the application
Motivation :
None
Graphical description :
�
Textual description :
Components :
Construct « an overview of the application environment». The idea is to elicitate the users and the functions of the application. This should be done in two ways with the «use case» model or the actor & external event concepts.
Construct the specification in "spreadin / spreadout" strategy. Different ways can be performed : top/down , bottom up and spreadin/spreadout. We have chosen to develop the last strategy because it is the more flexible way to develop the specification, especially it is an instinctive process.
Refine the specification at the analysis level. The purpose is to refine the specification according to guidelines related to a model when a substantial version of the specification is described.
Check the specification at the analysis level. The check step allows to do some cross-checking among the structure, the dynamic and so on. The checking rules used is model dependent.
Validate the specification according to initial requirements. The validation allows to control the validity and the completeness of the specification according initial requirements. Different ways can be used : the user validation , the traceability of the specification.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�- An overview of the environment of the application is described��(2)�(3)�- A first version of the specification at the analysis level is obtained by an exploratory way.��(3)�(4)�- The specification seems complete because the refinement process is done��(4)�(5)�- The specification appears coherent and consistent according to the model.��(5)�ending point�The specification has been validated according to the user requirements��(4)�(3)�- An inconsistent situation is detected, then the refinement process should be performed on this situation��(4)�(2)�-Missing element is detected, consequently, the construction process should be performed on this incomplete situation.��(5)�(3)�- A user validation implies to correct the situation of existing elements��(5)�(2)�- A user validation leads to integrate new requirements or evolution of initial requirements.��Related guidelines :
Previous Guideline�Section�Page��develop with a spiral for the design & implementation levels�� RENV _Ref393620081 \n �4.4��� RENVOIPAGE _Ref393620081 �28���develop with a waterfall strategy for the analysis & design levels�� RENV _Ref393620089 \n �4.5��� RENVOIPAGE _Ref393620089 �30���develop with a waterfall strategy for all the levels�� RENV _Ref393620096 \n �4.6��� RENVOIPAGE _Ref393620096 �32���develop with a waterfall strategy for the design & implementation levels�� RENV _Ref393620102 \n �4.7��� RENVOIPAGE _Ref393620102 �34���develop with a linear strategy for all the levels�� RENV _Ref393620109 \n �4.8��� RENVOIPAGE _Ref393620109 �35���
Embedded Guidelines�Description��Construct « an overview of the application environment». ���Construct the specification in "spreadin / spreadout" strategy�OOM guidelines available��Refine the specification at the analysis level�in an electronic guidebook��Check the specification at the analysis level���Validate the specification according to initial requirements����Develop the Whole specification at the design level
Intention :
Verb : Develop
Target : Whole specification at the design level
Approach : Waterfall or Linear strategy for the design level
Type of guideline : Plan
When is it used ?
When the whole specification at the design level is complete.
The situation : the Whole specification at the design level.
Motivation :
None
Graphical description :
�
Textual description :
Components :
Develop the « system environment » at the design level. Two major aspects can be designed at this level, the content and the look of the user interface of each actor or/and the content and the look of each report.
Develop the « structure of the database » at the design level. The purpose here is to map a TOOM specification to the TOODBMS concepts for the structural aspects. The mapping concern classes, properties and constraints.
Develop the « dynamic of the application » at the design level. The implementation environment has no automatic agenda for triggering temporal event. Consequently all temporal events must be transformed into external events. In addition this environment is not an active DBMS, consequently all the events must be transformed into database transactions and operations embedded in the class definition.
Develop the « administration activities of the database » at the design level. The user interface, the reports and the dynamic part related to the administration has to be designed as a real application.
Develop the « software architecture of the application » at the design level. The purpose here is to use the actor concept to model the software architecture of the application in order to have a general map.
Elicitate the « Non Functional requirements relative to the application» at the design level. The purpose here is to list all the non functional requirements to take into account at the implementation level.
Elicitate the « Temporal & non temporal queries» at the design level. The purpose here is to prototype the temporal & non temporal queries in order to check the structure of the database and also validate the performance of them.
How to progress from component A to component B :
to�arguments��(1)�The system environment can be done after the "software architecture"��(2)�The database structure can be performed after the environment.��(3)�the dynamic can be performed after the structure��(4)�The administration activities can be performed after the database structure��(5)�The software architecture can be the first step. It is also optional if the cooperation with existing systems is not required.��(6)�The non functional requirements is optional but can be useful at the implementation level.��(7)�The queries elicitation is useful for checking the structure of the database.��
Related guidelines :
Previous Guideline�Section�Page��develop with a waterfall strategy for all the levels�� RENV _Ref393620096 \n �4.6��� RENVOIPAGE _Ref393620096 �32���develop with a waterfall for the analysis & design levels�� RENV _Ref393620089 \n �4.5��� RENVOIPAGE _Ref393620089 �30���develop with a waterfall strategy for the design & implementation levels�� RENV _Ref393620102 \n �4.7��� RENVOIPAGE _Ref393620102 �34���develop with a linear strategy for all the levels�� RENV _Ref393620109 \n �4.8��� RENVOIPAGE _Ref393620109 �35���
Embedded Guidelines�� Develop the « system environment » at the design level��Develop the « structure of the database » at the design level��Develop the « dynamic of the application » at the design level�� Develop the « administration activities of the database » at the design level.��Develop the « software architecture of the application » at the design level. ��Elicitate the « Non Functional requirements relative to the application» at the design level.��Elicitate the « Temporal & non temporal queries» at the design level. ��
�Implement the Whole specification
Intention :
Verb : Implement
Target : The whole specification
Type of guideline : Choice
When is it used ?
When the Linear or Waterfall strategy is applied to the implementation level.
The situation : the whole specification at the design level.
Motivation :
The purpose is to choose the way implementing the application.
Graphical description :
�
Textual description :
Alternatives :
Implement the application by using TODL & TOQL when it is required and TODM API for modifying objects.
Implement the application by using TODL and TODM API for modifying objects.
Implement the application by using only TODM API.
Implement the application by using only TODM API & TOQL only for temporal and complex queries.
Argumentation :
Alternatives�Pros�Cons��(1) Implement the application by using TODL & TOQL when it is required and TODM API for modifying objects. �- it is the normal way of implementing application with TOOBIS environment�- the three components (TODL, TOQL & TODM API) have to be known��(2) Implement the application by using TODL and TODM API for modifying and objects and queries�- no complex & temporal query to implement�- the two languages TODL & TOQL have to be known��(3) Implement the application by using only TODM API.�- Performance is improved.
- Only one component to know�-Programming task is heavy to do.
- Not user-friendly way to define class and describe query ��(4) Implement the application by using only TODM API & TOQL only for temporal and complex queries.�- Performance is improved
- User friendly way of expressing complex & temporal query.���Related guidelines :
Previous Guideline�Section�Page��develop with a waterfall strategy for the analysis & design levels�� RENV _Ref393620089 \n �4.5��� RENVOIPAGE _Ref393620089 �30���develop with a waterfall strategy for all the levels�� RENV _Ref393620096 \n �4.6��� RENVOIPAGE _Ref393620096 �32���develop with a waterfall strategy for the design & implementation levels�� RENV _Ref393620102 \n �4.7��� RENVOIPAGE _Ref393620102 �34���develop with a linear strategy for all the levels�� RENV _Ref393620109 \n �4.8��� RENVOIPAGE _Ref393620109 �35���Develop with a spiral strategy for the analysis & design levels�� RENV _Ref393620059 \n �4.2��� RENVOIPAGE _Ref393620059 �24���
Embedded Guidelines��Implement the application by using TODL & TOQL when it is required and TODM API for modifying objects. ��Implement the application by using TODL and TODM API for modifying and objects and queries��Implement the application by using only TODM API.��Implement the application by using only TODM API & TOQL only for temporal and complex queries.����Extend Guidelines
5.1 « Extend OOM object class »	� BOUTONATTEINDRE _Toc393853471 � RENVOIPAGE _Toc393853471 �53��
5.1.1 Guidelines Graphs	� BOUTONATTEINDRE _Toc393853472 � RENVOIPAGE _Toc393853472 �53��
5.1.2 Extend OOM object class	� BOUTONATTEINDRE _Toc393853473 � RENVOIPAGE _Toc393853473 �60��
5.1.3 Retype OOM class to TOOM object class	� BOUTONATTEINDRE _Toc393853474 � RENVOIPAGE _Toc393853474 �62��
5.1.4 Describe TOOM snapshot class	� BOUTONATTEINDRE _Toc393853475 � RENVOIPAGE _Toc393853475 �64��
5.1.5 Extend OOM property	� BOUTONATTEINDRE _Toc393853476 � RENVOIPAGE _Toc393853476 �67��
5.1.6 Extend OOM attribute	� BOUTONATTEINDRE _Toc393853477 � RENVOIPAGE _Toc393853477 �69��
5.1.7 Extend OOM attribute to TOOM attribute	� BOUTONATTEINDRE _Toc393853478 � RENVOIPAGE _Toc393853478 �71��
5.1.8 Extend OOM attribute with time semantic	� BOUTONATTEINDRE _Toc393853479 � RENVOIPAGE _Toc393853479 �73��
5.1.9 Extend OOM attribute to TOOM attribute with period domain	� BOUTONATTEINDRE _Toc393853480 � RENVOIPAGE _Toc393853480 �75��
5.1.10 Extend OOM attribute to TOOM attribute with absolute period domain	� BOUTONATTEINDRE _Toc393853481 � RENVOIPAGE _Toc393853481 �77��
5.1.11 Extend OOM attribute to TOOM attribute with relative period domain	� BOUTONATTEINDRE _Toc393853482 � RENVOIPAGE _Toc393853482 �79��
5.1.12 Extend OOM attribute to TOOM attribute with instant domain	� BOUTONATTEINDRE _Toc393853483 � RENVOIPAGE _Toc393853483 �81��
5.1.13 Extend OOM attribute to TOOM attribute with absolute instant domain	� BOUTONATTEINDRE _Toc393853484 � RENVOIPAGE _Toc393853484 �83��
5.1.14 Extend OOM attribute to TOOM attribute with relative instant domain	� BOUTONATTEINDRE _Toc393853485 � RENVOIPAGE _Toc393853485 �85��
5.1.15 Extend OOM attribute to TOOM attribute with interval domain	� BOUTONATTEINDRE _Toc393853486 � RENVOIPAGE _Toc393853486 �87��
5.1.16 Describe TOOM attribute with time semantic	� BOUTONATTEINDRE _Toc393853487 � RENVOIPAGE _Toc393853487 �89��
5.1.17 Describe TOOM domain	� BOUTONATTEINDRE _Toc393853488 � RENVOIPAGE _Toc393853488 �91��
5.1.18 Identify and describe calendar	� BOUTONATTEINDRE _Toc393853489 � RENVOIPAGE _Toc393853489 �93��
5.1.19 Extend OOM attribute without time semantic	� BOUTONATTEINDRE _Toc393853490 � RENVOIPAGE _Toc393853490 �95��
5.1.20 Extend OOM link	� BOUTONATTEINDRE _Toc393853491 � RENVOIPAGE _Toc393853491 �97��
5.1.21 Extend OOM aggregation link	� BOUTONATTEINDRE _Toc393853492 � RENVOIPAGE _Toc393853492 �99��
5.1.22 Extend OOM association link	� BOUTONATTEINDRE _Toc393853493 � RENVOIPAGE _Toc393853493 �101��
5.1.23 Extend OOM association link to TOOM association link	� BOUTONATTEINDRE _Toc393853494 � RENVOIPAGE _Toc393853494 �103��
5.1.24 Extend OOM association link to TOOM state association link	� BOUTONATTEINDRE _Toc393853495 � RENVOIPAGE _Toc393853495 �105��
5.1.25 Extend OOM constraint	� BOUTONATTEINDRE _Toc393853496 � RENVOIPAGE _Toc393853496 �107��
5.1.26 Extend OOM constraint to a TOOM uniqueness constraint	� BOUTONATTEINDRE _Toc393853497 � RENVOIPAGE _Toc393853497 �109��
5.1.27 Extend OOM constraint to TOOM non temporal uniqueness constraint	� BOUTONATTEINDRE _Toc393853498 � RENVOIPAGE _Toc393853498 �111��
5.1.28 Extend OOM constraint to TOOM local temporal uniqueness constraint	� BOUTONATTEINDRE _Toc393853499 � RENVOIPAGE _Toc393853499 �113��
5.1.29 Extend OOM constraint to TOOM global temporal uniqueness constraint	� BOUTONATTEINDRE _Toc393853500 � RENVOIPAGE _Toc393853500 �115��
5.1.30 Extend OOM constraint to TOOM attribute constraint	� BOUTONATTEINDRE _Toc393853501 � RENVOIPAGE _Toc393853501 �117��
5.1.31 Extend OOM constraint to TOOM inheritance constraint	� BOUTONATTEINDRE _Toc393853502 � RENVOIPAGE _Toc393853502 �119��
5.1.32 Describe TOOM constraint	� BOUTONATTEINDRE _Toc393853503 � RENVOIPAGE _Toc393853503 �121��
5.1.33 Define object classification to the constraint	� BOUTONATTEINDRE _Toc393853504 � RENVOIPAGE _Toc393853504 �123��
5.1.34 Define time classification to the constraint	� BOUTONATTEINDRE _Toc393853505 � RENVOIPAGE _Toc393853505 �125��
5.1.35 Extend OOM operation	� BOUTONATTEINDRE _Toc393853506 � RENVOIPAGE _Toc393853506 �127��
5.1.36 Extend OOM object operation to TOOM object operation	� BOUTONATTEINDRE _Toc393853507 � RENVOIPAGE _Toc393853507 �129��
5.1.37 Extend OOM query operation	� BOUTONATTEINDRE _Toc393853508 � RENVOIPAGE _Toc393853508 �131��
5.1.38 Extend OOM basic operation	� BOUTONATTEINDRE _Toc393853509 � RENVOIPAGE _Toc393853509 �133��
5.1.39 Extend OOM external operation	� BOUTONATTEINDRE _Toc393853510 � RENVOIPAGE _Toc393853510 �135��
5.1.40 Extend OOM object operation to TOOM derivation function	� BOUTONATTEINDRE _Toc393853511 � RENVOIPAGE _Toc393853511 �137��
5.1.41 Describe TOOM operation	� BOUTONATTEINDRE _Toc393853512 � RENVOIPAGE _Toc393853512 �139��
5.1.42 Extend OOM internal event	� BOUTONATTEINDRE _Toc393853513 � RENVOIPAGE _Toc393853513 �141��
5.1.43 Extend OOM internal event to TOOM internal event on object	� BOUTONATTEINDRE _Toc393853514 � RENVOIPAGE _Toc393853514 �143��
5.1.44 Extend OOM internal event to TOOM internal event on history	� BOUTONATTEINDRE _Toc393853515 � RENVOIPAGE _Toc393853515 �145��
5.1.45 Describe TOOM internal event	� BOUTONATTEINDRE _Toc393853516 � RENVOIPAGE _Toc393853516 �147��
5.1.46 Extend OOM inheritance link	� BOUTONATTEINDRE _Toc393853517 � RENVOIPAGE _Toc393853517 �149��
5.1.47 Attach TOOM object element to TOOM class	� BOUTONATTEINDRE _Toc393853518 � RENVOIPAGE _Toc393853518 �151��
5.1.48 Identify and attach TOOM object element to TOOM object class	� BOUTONATTEINDRE _Toc393853519 � RENVOIPAGE _Toc393853519 �153��
5.1.49 Identify TOOM object class	� BOUTONATTEINDRE _Toc393853520 � RENVOIPAGE _Toc393853520 �155��
5.1.50 Identify TOOM basic temporal class	� BOUTONATTEINDRE _Toc393853521 � RENVOIPAGE _Toc393853521 �157��
5.1.51 Identify TOOM derived temporal class	� BOUTONATTEINDRE _Toc393853522 � RENVOIPAGE _Toc393853522 �159��
5.1.52 Identify TOOM basic temporal dictionary class	� BOUTONATTEINDRE _Toc393853523 � RENVOIPAGE _Toc393853523 �161��
5.1.53 Identify TOOM derived temporal dictionary class	� BOUTONATTEINDRE _Toc393853524 � RENVOIPAGE _Toc393853524 �163��
5.1.54 Select and attach TOOM object element to TOOM object class	� BOUTONATTEINDRE _Toc393853525 � RENVOIPAGE _Toc393853525 �165��
5.1.55 Describe TOOM time dependent class	� BOUTONATTEINDRE _Toc393853526 � RENVOIPAGE _Toc393853526 �167��
5.1.56 Describe the time dimension definition of the TOOM class	� BOUTONATTEINDRE _Toc393853527 � RENVOIPAGE _Toc393853527 �169��
5.1.57 Describe the transaction time dimension of the class	� BOUTONATTEINDRE _Toc393853528 � RENVOIPAGE _Toc393853528 �171��
5.1.58 Describe the valid time dimension definition of the TOOM class	� BOUTONATTEINDRE _Toc393853529 � RENVOIPAGE _Toc393853529 �173��
5.1.59 Describe the type of time management of the TOOM class	� BOUTONATTEINDRE _Toc393853530 � RENVOIPAGE _Toc393853530 �175��
5.1.60 Describe the history valid time definition of the class	� BOUTONATTEINDRE _Toc393853531 � RENVOIPAGE _Toc393853531 �177��
5.1.61 Describe the nature of the time stamp of the TOOM class	� BOUTONATTEINDRE _Toc393853532 � RENVOIPAGE _Toc393853532 �179��
5.2 « Extend OOM actor class »	� BOUTONATTEINDRE _Toc393853533 � RENVOIPAGE _Toc393853533 �181��
5.2.1 Guideline graphs	� BOUTONATTEINDRE _Toc393853534 � RENVOIPAGE _Toc393853534 �181��
5.2.2 Extend OOM actor class	� BOUTONATTEINDRE _Toc393853535 � RENVOIPAGE _Toc393853535 �182��
5.2.3 Extend OOM external event	� BOUTONATTEINDRE _Toc393853536 � RENVOIPAGE _Toc393853536 �184��
5.2.4 Extend OOM external event to TOOM external event a posteriori	� BOUTONATTEINDRE _Toc393853537 � RENVOIPAGE _Toc393853537 �186��
5.2.5 Extend OOM external event to TOOM external event a priori	� BOUTONATTEINDRE _Toc393853538 � RENVOIPAGE _Toc393853538 �188��
5.2.6 Extend OOM external event to TOOM external event in time	� BOUTONATTEINDRE _Toc393853539 � RENVOIPAGE _Toc393853539 �190��
5.2.7 Describe TOOM external event	� BOUTONATTEINDRE _Toc393853540 � RENVOIPAGE _Toc393853540 �192��
5.3 « Extend OOM calendar class »	� BOUTONATTEINDRE _Toc393853541 � RENVOIPAGE _Toc393853541 �194��
5.3.1 Guideline graphs	� BOUTONATTEINDRE _Toc393853542 � RENVOIPAGE _Toc393853542 �194��
5.3.2 Extend OOM Gregorian calendar	� BOUTONATTEINDRE _Toc393853543 � RENVOIPAGE _Toc393853543 �196��
5.3.3 Extend OOM temporal event	� BOUTONATTEINDRE _Toc393853544 � RENVOIPAGE _Toc393853544 �198��
5.3.4 Extend OOM temporal event to TOOM temporal event relative to an object	� BOUTONATTEINDRE _Toc393853545 � RENVOIPAGE _Toc393853545 �201��
5.3.5 Extend OOM temporal event to TOOM temporal event relative to an event	� BOUTONATTEINDRE _Toc393853546 � RENVOIPAGE _Toc393853546 �203��
5.3.6 Extend OOM temporal event to TOOM periodic temporal event	� BOUTONATTEINDRE _Toc393853547 � RENVOIPAGE _Toc393853547 �205��
5.3.7 Extend OOM temporal event to TOOM absolute temporal event	� BOUTONATTEINDRE _Toc393853548 � RENVOIPAGE _Toc393853548 �207��
5.3.8 Describe TOOM temporal event	� BOUTONATTEINDRE _Toc393853549 � RENVOIPAGE _Toc393853549 �209��
5.3.9 Attach TOOM temporal event to TOOM calendar class	� BOUTONATTEINDRE _Toc393853550 � RENVOIPAGE _Toc393853550 �211��
5.3.10 Identify and attach TOOM temporal event to TOOM calendar class	� BOUTONATTEINDRE _Toc393853551 � RENVOIPAGE _Toc393853551 �213��
5.3.11 Identify TOOM calendar class	� BOUTONATTEINDRE _Toc393853552 � RENVOIPAGE _Toc393853552 �215��
5.3.12 Select and attach TOOM temporal event to TOOM calendar class	� BOUTONATTEINDRE _Toc393853553 � RENVOIPAGE _Toc393853553 �217��
5.3.13 Describe TOOM calendar	� BOUTONATTEINDRE _Toc393853554 � RENVOIPAGE _Toc393853554 �219��
5.3.14 Describe granule	� BOUTONATTEINDRE _Toc393853555 � RENVOIPAGE _Toc393853555 �221��
5.3.15 Describe operators	� BOUTONATTEINDRE _Toc393853556 � RENVOIPAGE _Toc393853556 �223��
5.4 Others guidelines	� BOUTONATTEINDRE _Toc393853557 � RENVOIPAGE _Toc393853557 �225��
5.4.1 Guideline graphs	� BOUTONATTEINDRE _Toc393853558 � RENVOIPAGE _Toc393853558 �225��
5.4.2 Describe TOOM link	� BOUTONATTEINDRE _Toc393853559 � RENVOIPAGE _Toc393853559 �227��
5.4.3 Describe TOOM event	� BOUTONATTEINDRE _Toc393853560 � RENVOIPAGE _Toc393853560 �229��
5.4.4 Describe trigger	� BOUTONATTEINDRE _Toc393853561 � RENVOIPAGE _Toc393853561 �231��
5.4.5 Describe factor	� BOUTONATTEINDRE _Toc393853562 � RENVOIPAGE _Toc393853562 �233��
5.4.6 Describe event condition	� BOUTONATTEINDRE _Toc393853563 � RENVOIPAGE _Toc393853563 �235��
5.4.7 Describe triggered operation	� BOUTONATTEINDRE _Toc393853564 � RENVOIPAGE _Toc393853564 �237��
5.4.8 Retype OOM triggered operation to TOOM triggered operation	� BOUTONATTEINDRE _Toc393853565 � RENVOIPAGE _Toc393853565 �239��
5.4.9 Retype OOM triggered operation to TOOM triggered object operation	� BOUTONATTEINDRE _Toc393853566 � RENVOIPAGE _Toc393853566 �241��
5.4.10 Describe TOOM trigger element	� BOUTONATTEINDRE _Toc393853567 � RENVOIPAGE _Toc393853567 �243��
�« Extend OOM object class »

Guidelines Graphs

� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
�Extend OOM object class
Intention :
Verb : Extend
Target : TOOM object class
Type of guideline : Plan
When is it used ?
The extension of a OOM object class to a TOOM object class is required to introduce the temporal data into the database schema. If the application to develop is a temporal database application, a major step to perform is to analyze the database schema and determine which data should have a temporal management and what kind of temporal management is required.
Motivation :
A temporal DBMS is able to manage different kinds of objects: snapshot, rollback, historical and temporal. A snapshot object is managed in non temporal DBMS; historical, rollback and temporal objects are specific to temporal DBMS. Valid time and transaction time are introduced in object classes. Three sub classes are introduced : snapshot class, temporal class and temporal dictionary class.
The Executive information systems (EIS) include basic information about the enterprise but also derived information such as statistics, decisional supports, management reports... The specification of such IS requires to take into account the exploitation of basic information as well as derived information. The TOOM method introduces two concepts for taking into account this specificity. Two sub-classes are defined : basic class and derived class. This classification should be applied in combination with the specialization relative to the time management (snapshot, historical, rollback and temporal).
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
The content of this guideline proposes to convert the class into basic class or derived class and to analyze each element of this OOM class in order to define it with the TOOM definition. (the temporal data are introduced when each property of this OOM class is extended)
Components :
Retype OOM class to TOOM snapshot class : Before extending the elements of the OOM class, it is necessary to have a first step that transforms it into a TOOM snapshot class (basic or derived). As a matter of fact, if you find a time dependent class (temporal or temporal dictionary), you will have to link it to a snapshot class, so it is necessary to create it in the first place.
(2) Describe TOOM snapshot class : After that the OOM class has been retyped into a TOOM snapshot class, it is possible to extend all the object elements (properties, operations, constraints, internal events and inheritance link).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- the OOM class has been retyped into a TOOM snapshot class��(2)�ending point�- The elements of the class have been extended in TOOM concepts��Examples :
�
The class « Employee » has the monthly salary as attribute.
The first step is to transform the OOM class into a TOOM snapshot class.
The second step is to extend its properties.
	There are two properties embedded in the employee OOM class :
Name is an attribute without time semantic so it can be extended with the same domain in TOOM than in OOM.
On the contrary, Monthly Salary is an attribute with time semantic (we need to know the historical values of this attribute in order to perform some operations). As a result, a new temporal class is create for the monthly salary and a temporal aggregation links the snapshot class and the newly created temporal class. This step also performs a description of this new class.
�
Related guidelines :
Embedded Guidelines�Section�Page��Retype OOM object class to TOOM snapshot class�� RENV _Ref390576722 \n �5.1.3��� RENVOIPAGE _Ref390576722 �61���Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM class�3.3.1.2�66��TOOM snapshot class�4.3.4.1�208��TOOM object class�4.3.4�208���Retype OOM class to TOOM object class
Intention :
Verb : Retype
Target : TOOM object class
Type of guideline : Choice
When is it used ?
The first step in the extension of an OOM class is to transform it into a snapshot class.
The starting situation is an OOM class.
Motivation :
Even if you extract a temporal class of this OOM class, it is necessary for this temporal variation to have a snapshot class as origin. The snapshot class is used to model objects which do not require time management. The extension specializes the object class concept in two classes : basic class and derived class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
The analyst has to choose if the class represents a basic or a derived class. A basic class is required when there is no derived information in the class or if this derived information is easy to compute. A derived class is required in the opposite cases.
Alternatives :
	(1) Retype OOM class to TOOM basic snapshot class : the class is describing basic objects of the enterprise so it can be defined as a basic snapshot class, it is now necessary to redefine it as a basic snapshot class and the next step is to describe it (operations, queries, constraints, internal events, inheritance link).
	(2) Retype OOM class to TOOM derived snapshot class : the class can be derived from one or more objects classes, so it can be defined as a derived snapshot class, it is now necessary to redefine it as a derived snapshot class and the next step is to describe it (derivation function, queries, internal events, inheritance link).
Argumentation :
Alternatives�Pros��(1)�If there is no derived information in the class or if this derived information is easy to compute.��(2)�If there is derived information in the class and their computations are complex.��Examples :
�
The object class Employee has one attribute : Name. This class is not derivable so you can transform it into a TOOM basic snapshot class containing all the elements of the OOM object class. The next step will consist to extend these elements.

� INCORPORER Word.Picture.6 ���
The weekly sales can be derived from the order object. As a result, we transform the weekly sales into a derived class created and updated by the performance of the derivation function compute-sales().
Related guidelines :
Previous Guideline �Section�Page��Extend OOM object class�� RENV _Ref390576791 \n �5.1.2��� RENVOIPAGE _Ref390576791 �60���
Embedded Guidelines�Actions��Retype OOM class to TOOM basic snapshot class�The retyping of an OOM class into a TOOM basic snapshot class consists in two steps. The first one is to delete the old OOM class and the second one is to create a new one with the type. « basic snapshot »��Retype OOM class to TOOM derived snapshot class�The retyping of an OOM class into a TOOM derived snapshot class consists in two steps. The first one is to delete the old OOM class and the second one is to create a new one with the type « derived snapshot ».��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM class�3.3.1.2�66��TOOM snapshot class�4.3.4.1�208��TOOM basic class�4.3.3�204��TOOM derived class�4.3.3�204��TOOM object class�4.3.4�208���Describe TOOM snapshot class
Intention :
Verb : Describe
Target : TOOM snapshot class
Type of guideline : Plan
When is it used ?
The extension of an OOM class into a TOOM class leads to retype it into a TOOM basic snapshot class. The next step is to describe it.
The starting situation is a OOM class and all the elements describing this OOM class.
Motivation :
To describe a TOOM class will allow you to extend all the elements contained in the OOM class : its properties, its constraints, its operations, its internal events and its inheritance link, if they exist.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
The purpose of this guideline is to extend the content of a class. That means property, constraint, operation, internal event and inheritance link. The extension of property is the significant part of the temporal analysis. The order is not imposed but it is better to start with the extension of property because it may lead the analyst to introduce new class.
Components :
Extend OOM property : there are two kind of properties : the attributes and the links. If it is an attribute, it can be with or without time semantic and the extension in TOOM is performed differently. If it is a link, it can be an association or an aggregation one. This step has to be performed for each property contained in the OOM class.
Extend OOM constraint : An OOM constraint can be extended in three distinct types of TOOM constraints : uniqueness, attribute or inheritance. This step has to be performed for each constraint contained in the OOM class.
Extend OOM operation : this step allows you to specify the TOOM type of the object operation : query, basic, external or derivation function. This step has to be performed for each operation contained in the OOM class.
Extend OOM internal event : there are two types of internal events : the internal events on history and the internal events on object . In each case, you need firstly to retype the event in TOOM and secondly to describe it. This step has to be performed for each internal event contained in the OOM class.
Extend OOM inheritance link : If it exists an inheritance link on the OOM class, it is possible to extend it into a TOOM inheritance link by retyping and describing it.
How to progress from component A to component B :
from�to�arguments��starting point�(1),(2),(3),(4),(5)�always true��(1),(2),(3),(4),(5)�(1)�an OOM property has not been extended��(1),(2),(3),(4),(5)�(2)�an OOM constraint has not been extended��(1),(2),(3),(4),(5)�(3)�an OOM operation has not been extended��(1),(2),(3),(4),(5)�(4)�an OOM internal event has not been extended��(1),(2),(3),(4)�(5)�the OOM inheritance link has not been extended��(1),(2),(3),(4),(5)�ending point�all the elements of the OOM class have been extended��Examples :
�
The OOM class concerned by the extension is the Employee object class. It has been retyped in a TOOM basic snapshot class and this guideline helps to extend its properties.
This class contains three attributes, one operation and two constraints.
The properties Name and DateOfBirth are extended into attributes of the TOOM class.
Name is an attribute without time semantic so it conserves its domain (Name : String.
DateOfBirth is an attribute with time semantic so it is necessary to retype it with a TOOM domain (DateOfBirth : Instant <Day, Gregorian>
The attribute Monthly salary is an attribute with time semantic and it is necessary to have an history on it. As a result, it is transformed into a TOOM temporal class linked with the snapshot class with a temporal aggregation.
The operation compute-age() doesn’t introduce an object state change and doesn’t derive anything either, it just provides service. As a result, it is extended into a TOOM query in the snapshot class.
The constraint « age>18 » is extended into a TOOM constraint intra-object in the snapshot class.
The constraint « salary does not decrease » is extended into a TOOM constraint intra-object and inter-time (VT) in the history temporal class.
�
Related guidelines :
Previous Guideline�Section�Page��Extend OOM object class�� RENV _Ref390576791 \n �5.1.2��� RENVOIPAGE _Ref390576791 �60���
Embedded Guidelines�Section�Page��Extend OOM property�� RENV _Ref390579396 \n �5.1.5��� RENVOIPAGE _Ref390579396 �67���Extend OOM constraint�� RENV _Ref390664537 \n �5.1.25��� RENVOIPAGE _Ref390664537 �107���Extend OOM operation�� RENV _Ref391801982 \n �5.1.35��� RENVOIPAGE _Ref391802001 �126���Extend OOM internal event�� RENV _Ref391802028 \n �5.1.42��� RENVOIPAGE _Ref391802049 �140���Extend OOM inheritance link�� RENV _Ref391802098 \n �5.1.46��� RENVOIPAGE _Ref391802127 �149���Related concepts in the reference manual :
Related concepts�Section�Page��OOM class�3.3.1.2�66��OOM property�3.3.1.5�68��OOM constraint�3.3.1.7�82��OOM operation�3.3.2.1�85��OOM internal event�3.3.3.1.1�92��OOM inheritance link�3.3.1.6�77��TOOM snapshot class�4.3.4.1�208���Extend OOM property
Intention :
Verb : Extend
Target : TOOM specification
Type of guideline : Choice
When is it used ?
This guideline helps to complete the extension of an OOM object class if some of its properties are still not extended in TOOM specification.
The starting situation is a OOM property.
Motivation :
Using this guideline will help to extend an OOM property. It can be a relationship to another class or an attribute as it is defined in the object class. An attribute property can be with or without time semantic and, in this last case, an extension of the OOM domain in a TOOM domain is necessary. The links between classes contained in the object properties are the aggregations and the associations.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
	(1) Extend OOM attribute : In TOOM, an attribute can be with or without time semantic. In the first case, the extension consists in the retyping the attribute. However, if there is time semantic attached to the attribute, it is necessary to extend its domain in order to transform this property into a concept using the temporal domain of TOOM model
	(2) Extend OOM link : There are two kinds of OOM link : the association and the aggregation ones. In the first case, it can be extended into a TOOM association or in a TOOM state association. In the last case, it is extended into a TOOM aggregation.
Argumentation :
Alternatives�Pros��Extend OOM attribute�The property is an attribute (with or without time semantic). It is a value characterizing objects of the class.��Extend OOM link�The property is a static link (it can be an aggregation or an association link)��Examples :
�

The « loan » OOM object has two properties : the attribute « number » and the link « is relative to ». The two of them have to be extended in TOOM.
The OOM attribute « Number » is extended in a TOOM attribute and the OOM link « is relative to » is extended in a TOOM association because this association refers to a snapshot class.

�
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���
Embedded Guidelines�Section�Page��Extend OOM attribute�� RENV _Ref393617004 \n �5.1.6��� RENVOIPAGE _Ref390579331 �68���Extend OOM link�� RENV _Ref390579351 \n �5.1.20��� RENVOIPAGE _Ref390579351 �97���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM attribute�3.3.1.5.1�68��OOM link�3.3.1.5.2
3.3.1.5.3�70
73���Extend OOM attribute
Intention :
Verb : Extend
Target : TOOM specification
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to the extension of all its elements. There is still an attribute to extend in TOOM.
The starting situation is an OOM attribute.
Motivation :
Using this guideline will help to extend an OOM attribute (with or without time semantic) into a TOOM attribute. The purpose here is to analyze if attributes are user defined time or no and if their evolution are relevant to keep track in the application.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Extend OOM attribute to TOOM attribute : The property is an attribute and this guideline helps to extend it in TOOM.
Create the derivation function : If the attribute is a derived attribute, it is necessary to create the function that will derive it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�ending point�the attribute is not a derived attribute��(1)�(2)�the attribute is a derived attribute��(2)�ending point�the derivation function has been defined.��Examples :
Related guidelines :
Previous Guideline�Section�Page��Extend OOM property�� RENV _Ref390579396 \n �5.1.5��� RENVOIPAGE _Ref390579396 �67���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute�� RENV _Ref393616950 \n �5.1.7��� RENVOIPAGE _Ref393616950 �71���Create the derivation function�The attribute is a derived attribute, as a result, it is necessary to create a new function that will derive it.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM attribute�3.3.1.5.1�68��TOOM domain�4.3.2�201���Extend OOM attribute to TOOM attribute
Intention :
Verb : Extend
Target : TOOM specification
Type of guideline : Choice
When is it used ?
The extension of an OOM object class leads to the extension of all its elements. There is still an attribute to extend in TOOM.
The starting situation is a OOM attribute.
Motivation :
Using this guideline will help to extend an OOM attribute (with or without time semantic) into a TOOM attribute. The purpose here is to analyze if attributes are user defined time or no and if their evolution are relevant to keep track in the application.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM attribute with time semantic : An extension of the OOM domain is necessary in the case of an attribute with time semantic. There is three types of TOOM domains : period, instant and interval. An instant represents a point on the time line. A period represents the quantity of time between two instants. By contrast, an interval is an unanchored quantity of time. An other distinction is made for the first two types of domain : relative and absolute.
Extend OOM attribute without time semantic : there is only need to retype the attribute from OOM to TOOM.
Argumentation :
Alternatives�Pros��Extend OOM attribute with time semantic�The attribute owns a time semantic that can be an instant, a period or an interval. ��Extend OOM attribute without time semantic�The attribute has no time semantic. That means that its domain can be a pre-defined data value like integer, char, string and so on but not « date », an enumerated value or a complex value but without perception of the time.��Examples :
�
The client object has two attributes :
« name » is an attribute without time semantic, so it will be retyped into a TOOM attribute.
(Name : String
« Date of Birth » is an attribute with time semantic so it is necessary to extend its domain too.
(Date of birth : Instant <Day, Gregorian>
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute�� RENV _Ref393617004 \n �5.1.6��� RENVOIPAGE _Ref393617004 �69���
Embedded Guidelines�Section�Page��Extend OOM attribute with time semantic�� RENV _Ref390591083 \n �5.1.8��� RENVOIPAGE _Ref390591083 �73���Extend OOM attribute without time semantic�� RENV _Ref393617063 \n �5.1.19��� RENVOIPAGE _Ref393617063 �95���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM attribute�3.3.1.5.1�68��TOOM domain�4.3.2�201���Extend OOM attribute with time semantic
Intention :
Verb : Extend
Target : TOOM property
Type of guideline : Choice
When is it used ?
The extension of an OOM object class conducts to extend all its elements. It still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
An OOM property can have a time semantic. As a result, it is necessary to find of which specific kind of domain it belongs. The domain can be period, instant or interval. The period and instant domains can be absolute or relative.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM attribute to TOOM attribute with period domain : the time semantic of the attribute is a semantic of period that can be absolute or relative. As a result, this attribute can be extended in a TOOM attribute with a period domain.
Extend OOM attribute to TOOM attribute with instant domain : the time semantic of the attribute is a semantic of instant that can be absolute or relative. As a result, this attribute can be extended in a TOOM attribute with an instant domain.
Extend OOM attribute to TOOM attribute with interval domain : the time semantic of the attribute is a semantic of interval. As a result, this attribute can be extended in a TOOM attribute with an interval domain.
Argumentation :
Alternatives�Pros��Extend OOM attribute to TOOM attribute with period domain�The value of this attribute represents a quantity of time between two instants. That means that this quantity is anchored in the time line.��Extend OOM attribute to TOOM attribute with instant domain�The value of this attribute is represented by a point in the time line.��Extend OOM attribute to TOOM attribute with interval domain�The value of this attribute describes a quantity of time unanchored in the time line. It represents a duration like 3 months.��Examples :
instant :
1996-12-12.
The birthday is an attribute with an instant domain.
period :
[1996-12-12 , 1996-12-15].
The EmployeeTitle is an attribute with a period domain (the employee Annie was Analyst from August 1996 to January 1997 and Project Manager from February 1997 to august 1997).
interval :
3 months.
The Task duration is an attribute with an interval domain (the task t2 is made on three months).
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute�� RENV _Ref393261119 \n �5.1.6��� RENVOIPAGE _Ref393261119 �69���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute with period domain�� RENV _Ref390590745 \n �5.1.9��� RENVOIPAGE _Ref390590745 �75���Extend OOM attribute to TOOM attribute with instant domain�� RENV _Ref390590936 \n �5.1.12��� RENVOIPAGE _Ref390590936 �81���Extend OOM attribute to TOOM attribute with interval domain�� RENV _Ref390590984 \n �5.1.15��� RENVOIPAGE _Ref390590984 �87���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM attribute�3.3.1.5.1�68��TOOM attribute�4.3.4�208��TOOM domain�4.3.2�201��TOOM period domain�4.3.2�201��TOOM instant domain�4.3.2�201��TOOM interval domain�4.3.2�201���Extend OOM attribute to TOOM attribute with period domain
Intention :
Verb : Extend
Target : TOOM period domain
Type of guideline : Choice
When is it used ?
The extension of an OOM object class and all its elements. It still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM property.
Motivation :
The time semantic of the property is one of period. An other specialization can be made : the period domain can be absolute or relative.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM attribute to TOOM attribute with absolute period domain : the time semantic of the OOM property is one of absolute period because it is located in the time line with an anchored quantity of time, so it is possible to retype and describe it
Extend OOM attribute to TOOM attribute with relative period domain : the time semantic of the OOM property is one of relative period because it is delayed to a given quantity of time, so it is possible to retype and describe it.
Argumentation :
Alternatives�Pros��Extend OOM attribute to TOOM attribute with absolute period domain�If the two instants bounding the period are absolute then the period is absolute period��Extend OOM attribute to TOOM attribute with relative period domain�If one of its boundary is a relative instant then the period is relative.��Examples :
�
absolute period :
[1998-4-2 , 1998-4-4]
The EmployeeTitle of Mary Clark has the value « Project Manager » from the absolute instant 1998-4-2 to the other absolute instant 1998-4-4 (these two instants enclosed the absolute period).
relative period
[begin of the project +2months, begin of the project +5 months]
the task period is a relative period which refers to the begin of the project for instance.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute with time semantic�� RENV _Ref390591083 \n �5.1.8��� RENVOIPAGE _Ref390591083 �73���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute with absolute period domain�� RENV _Ref390591115 \n �5.1.10��� RENVOIPAGE _Ref390591115 �77���Extend OOM attribute to TOOM attribute with relative period domain�� RENV _Ref390591132 \n �5.1.11��� RENVOIPAGE _Ref390591132 �79���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM property�3.3.1.5�68��TOOM property�4.3.4�208��TOOM domain�4.3.2�201��TOOM period domain�4.3.2�201��TOOM absolute period domain�4.3.2�201��TOOM relative period domain�4.3.2�201���Extend OOM attribute to TOOM attribute with absolute period domain
Intention :
Verb : Extend
Target : TOOM absolute period domain
Type of guideline : Plan
When is it used ?
The extension of an OOM object class and all its elements leads to extend the attributes. It still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the property is one of period. An other specialization can be made : the period domain can be absolute or relative. The domain has been defined as an absolute period.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute with absolute period domain : the domain has been defined as an absolute period domain so it is necessary to retype it.
Describe TOOM attribute with time semantic : this guideline will help to describe the domain of the attribute and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the domain has been retyped��(2)�ending point�the domain has been described��Examples :
�

The EmployeeTitle of Mary Clark has the value « Project Manager » from the absolute instant 1998-4-2 to the other absolute instant 1998-4-4 (these two instants enclose the absolute period).
for example :	[1998-4-2 , 1998-4-4] Project manager
	[1998-4-4 , 1998-6-7] Computer Department manager
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute to TOOM attribute with period domain�� RENV _Ref390590745 \n �5.1.9��� RENVOIPAGE _Ref390590745 �75���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute with absolute period domain�� RENV _Ref390591115 \n �5.1.10��� RENVOIPAGE _Ref390591115 �77���Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM domain�3.3.1.5.1�68��TOOM domain�4.3.2�201��Absolute domain�4.3.2�201��Absolute period domain�4.3.2�201���Extend OOM attribute to TOOM attribute with relative period domain
Intention :
Verb : Extend
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM object class and all its elements conducts to extend all the attributes of the OOM class. It still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the property is one of period. An other specialization can be made : the period domain can be absolute or relative. The domain has been defined as a relative period.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute with relative period domain : the domain has been defined as a relative period domain so it is necessary to retype it.
Describe TOOM attribute with time semantic : this guideline will help you to describe the domain of the attribute and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the domain has been retyped��(2)�ending point�the domain has been described��Examples :
relative period
[begin of the project +2months, begin of the project +5 months]
the task period is a relative period which refers to the begin of the project for instance.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute to TOOM attribute with period domain�� RENV _Ref390590745 \n �5.1.9��� RENVOIPAGE _Ref390590745 �75���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute with relative period domain�� RENV _Ref390591132 \n �5.1.11��� RENVOIPAGE _Ref390591132 �79���Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM domain�3.3.1.5.1�68��TOOM domain�4.3.2�201��relative domain�4.3.2�201��relative period domain�4.3.2�201���Extend OOM attribute to TOOM attribute with instant domain
Intention :
Verb : Extend
Target : TOOM instant domain
Type of guideline : Choice
When is it used ?
The extension of an OOM object class and all its elements conveys to extend its attributes. It still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the OOM property is the semantic of an instant domain. There are two kinds of instant domain : absolute and relative.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM attribute to TOOM attribute with absolute instant domain : the time semantic of the OOM property is one of absolute instant domain (it has an instant domain that is located in the time line with an anchored quantity of time), so it is possible to retype and describe it.
Extend OOM attribute to TOOM attribute with relative instant domain : the time semantic of the OOM property is one of relative instant domain (it has an instant domain that is delayed to a given quantity of time), so it is possible to retype and describe it.
Argumentation :
Alternatives�Pros��Extend OOM attribute to TOOM attribute with absolute instant domain�The attribute has an instant domain because it is located in the time line with an anchored quantity of time.��Extend OOM attribute to TOOM attribute with relative instant domain�The attribute has an instant domain because it is delayed to a given quantity of time.��Examples :
�
absolute instant :
1998-4-2
the Birthday attribute has an absolute instant domain because it is directly located in the time line without referring to a fact of the application.
relative instant :
2 days after the 1998-4-2
the EffectiveDate of a loan has a relative instant domain (the loan effectively began 3 days after the signature date). It corresponds to point of the time line expressed relatively to the signature date. The signature date is a temporal mark used to express the effective date.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute with time semantic�� RENV _Ref390591083 \n �5.1.8��� RENVOIPAGE _Ref390591083 �73���
Embedded Guidelines�Section�Page��Extend OOM attribute to TOOM attribute with absolute instant domain�� RENV _Ref390591696 \n �5.1.13��� RENVOIPAGE _Ref390591696 �83���Extend OOM attribute to TOOM attribute with relative instant domain�� RENV _Ref390591754 \n �5.1.14��� RENVOIPAGE _Ref390591754 �85���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM property�3.3.1.5�68��TOOM property�4.3.4�208��TOOM domain�4.3.2�201��TOOM instant domain�4.3.2�201��TOOM absolute instant domain�4.3.2�201��TOOM relative instant domain�4.3.2�201���Extend OOM attribute to TOOM attribute with absolute instant domain
Intention :
Verb : Extend
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM object class and all its elements guides to the extension of all its attributes. There is still an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the property is one of period. An other specialization can be made : the instant domain can be absolute or relative. The domain has been defined as a relative instant.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute with absolute instant domain : the domain has been defined as an absolute instant domain so it is necessary to retype it.
Describe TOOM attribute with time semantic : this guideline help to describe the domain of the attribute and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the domain has been retyped��(2)�ending point�the domain has been described��Examples :
�
The Birthday attribute is an absolute instant because its value is expressed by a point in the time line.
for example : 1998-4-2
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute to TOOM attribute with instant domain�� RENV _Ref390590936 \n �5.1.12��� RENVOIPAGE _Ref390590936 �81���
Embedded Guidelines�Section�Page��Retype OOM attribute to TOOM attribute with absolute instant domain�To retype an OOM attribute into a TOOM attribute consists in the deletion of the old OOM one and the creation of the new TOOM one.��Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM domain�3.3.1.5.1�68��TOOM domain�4.3.2�201��absolute domain�4.3.2�201��absolute instant domain�4.3.2�201���Extend OOM attribute to TOOM attribute with relative instant domain
Intention :
Verb : Extend
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM attribute of an OOM class conducts to choose a certain kind of corresponding TOOM attribute. The OOM class still contains an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the property is one of period. An other specialization can be made : the instant domain can be absolute or relative. The domain has been defined as an relative instant.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute with relative instant domain : the domain has been defined as a relative instant domain so it is necessary to retype it.
Describe TOOM attribute with time semantic : this guideline helps to describe the domain of the attribute and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the domain has been retyped��(2)�ending point�the domain has been described��Examples :
�
The loan object has an attribute called « Effective Date » which could be "the day of the signature plus 2 days". The extension of the class Loan leads to the extension of this attribute. It has an instant time semantic because it is a point in the time line. It is a relative time because it is a time expressed relatively to a temporal mark (day of the signature). As a result, it can be extended as an Instant-R<Gregorian,Day>.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute to TOOM attribute with instant domain�� RENV _Ref390590936 \n �5.1.12��� RENVOIPAGE _Ref390590936 �81���
Embedded Guidelines�Section�Page��Retype OOM attribute to TOOM attribute with relative instant domain�To retype an OOM attribute into a TOOM attribute consists in two actions : ; the deletion of the old OOM attribute and the creation of the new TOOM attribute.��Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM domain�3.3.1.5.1�68��TOOM domain�4.3.2�201��relative domain�4.3.2�201��relative instant domain�4.3.2�201���Extend OOM attribute to TOOM attribute with interval domain
Intention :
Verb : Extend
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM object class and all its elements lead to extend its attributes. There is still an attribute with time semantic that has not been extended in TOOM.
The starting situation is an OOM attribute.
Motivation :
The time semantic of the property is one of interval.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute with interval domain : the domain has been defined as an interval domain so it is necessary to retype it.
Describe TOOM attribute with time semantic : this guideline will help you to describe the domain of the attribute and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the domain has been retyped��(2)�ending point�the domain has been described��Examples :
�
The Loan object has an attribute « LoanDuration » that represents the duration of the loan. It is an interval attribute because it is a quantity of time which is not anchored in the time line (for example two months) . The extension of this attribute leads to the definition of its domain : an interval defined on the Gregorian calendar and at the month granule. Interval<Gregorian,Month>.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute with time semantic�� RENV _Ref390591083 \n �5.1.8��� RENVOIPAGE _Ref390591083 �73���
Embedded Guidelines�Section�Page��Retype OOM attribute to TOOM attribute with interval domain�The retyping of the attribute conducts to two steps : the first one is the deletion of the old OOM attribute and the second one is the creation of the new TOOM attribute.��Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���Related concepts of the reference manual :
Related concepts�Section�Page��OOM domain�3.3.1.5.1�68��TOOM domain�4.3.2�201��interval domain�4.3.2�201���Describe TOOM attribute with time semantic
Intention :
Verb : Describe
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to extend an attribute with time semantic. After having retyped it in TOOM, the next step is to describe it.
The starting situation is a TOOM attribute with time semantic.
Motivation :
To extend an OOM attribute with time semantic in TOOM will allow you to affect a TOOM domain to this attribute. Describing the TOOM attribute consists now to finalize the description of its domain and to attach the constraint to an object class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Describe TOOM domain : this guideline will help you to define the name and granules of the domain attribute. It will also allow you to identify and describe the calendar.
Attach TOOM object element to TOOM class : the last step of the description is to attach the attribute to an object class. If the correct one doesn’t exist yet, it is possible to create it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM domain has been described��(2)�ending point�the attribute has been attached to the class��Examples :
�
The Client object class has an attribute « Date of birth ». It is an instant attribute because it represents a point in the time line. It is defined on the Gregorian calendar with the day granule. This attribute will never change in the future, as a result, it can be placed on a snapshot class : the class Client.
domain : instant < day, Gregorian >
snapshot class : client
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute�� RENV _Ref393261119 \n �5.1.6��� RENVOIPAGE _Ref393261119 �69���
Embedded Guidelines�Section�Page��Describe TOOM domain�� RENV _Ref390591384 \n �5.1.17��� RENVOIPAGE _Ref390591384 �91���Attach TOOM object element to TOOM class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM attribute�4.3.4�208��TOOM domain�4.3.2�201���Describe TOOM domain
Intention :
Verb : Describe
Target : TOOM domain
Type of guideline : Choice
When is it used ?
The retyping of an OOM attribute into a TOOM attribute conducts to describe its domain.
The starting situation is a TOOM attribute with time semantic.
Motivation :
To describe a TOOM domain permits to select a calendar. If this one does not exist, it is necessary to identify and describe it..
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Select calendar : Select a calendar is the only step to perform if the domain is using an existing calendar.
Identify and describe calendar :this guideline allows to identify the calendar and to describe it (if it is necessary).
Argumentation :
Alternatives�Pros��Select calendar and granule�the calendar exists in the application��Identify and describe calendar�the calendar does not exist in the application so it is necessary to identify it.��Examples :
�
The Client object class has an attribute « Date of birth » : instant domain
	domain name : instant_A
	domain granule : day
	domain calendar : Gregorian
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16��� RENVOIPAGE _Ref390591399 �89���
Embedded Guidelines�Section�Page��Select calendar and granule�If the calendar is already existing in the database, the only step to perform is to select it in order to describe the domain.��Identify and describe calendar�� RENV _Ref393263044 \n �5.1.18��� RENVOIPAGE _Ref393263045 �93���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM attribute�4.3.4�208��TOOM domain�4.3.2�201���Identify and describe calendar
Intention :
Verb : Identify and describe
Target : TOOM calendar
Type of guideline : Plan
When is it used ?
The description of the domain of a TOOM attribute guides to one of the step that is to identify the calendar and to describe it.
The starting situation is a TOOM attribute with time semantic.
Motivation :
Each TOOM domain for an attribute with time semantic is composed of a name, granule and calendar. The calendar has to be identified and described.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Identify calendar and granule : the calendar has to be identified for this domain.
Describe TOOM calendar : after that the calendar has been identified, it is necessary to describe its origin, granules, operations and external formats.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the calendar has been identified��(2)�ending point�the calendar has been described��Examples :
�
Some enterprise needs to have some information in halfyears in order to do some temporal manipulation. It means that time manipulation and physical storage can require the granularity of the Halfyear. The way to do it is to define a new calendar to use this granularity. This calendar has an origin based on 01/0001 and a unit of month. Two granules are possible to use : the year one and the halfyear one.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM domain�� RENV _Ref390591384 \n �5.1.17��� RENVOIPAGE _Ref390591384 �91���
Embedded Guidelines�Section�Page��Identify calendar and granule�The calendar is identified from the problem statements of the application. If it needs a granularity in order to do some temporal manipulations, a calendar can be defined with it.��Describe TOOM calendar�� RENV _Ref390757452 \n �5.3.13��� RENVOIPAGE _Ref390757452 �219���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM domain�4.3.2�201��TOOM calendar�4.3.1�197���Extend OOM attribute without time semantic
Intention :
Verb : Extend
Target : TOOM attribute
Type of guideline : Plan
When is it used ?
The extension of an OOM class to a TOOM class leads to extend its properties. If one of these properties is an attribute without time semantic, this guideline will help you to extend it.
The starting situation is an OOM attribute without time semantic.
Motivation :
To extend an OOM attribute without time semantic to a TOOM attribute is composed of two steps that will allow you to retype and describe it (find its domain in TOOM and attach it to an object class).
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM attribute to TOOM attribute : The first step to extend an OOM attribute is to retype it as a TOOM attribute.
Attach TOOM object element to TOOM object class : the next step in the extension of an attribute is to attach it to an object class. If the correct class doesn’t exist, it is possible to create it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the attribute is a derived attribute��(1)�(3)�the attribute is not a derived attribute��(2)�(3)�the derivation function has been created��(3)�ending point�the attribute has been attached��Examples :
�

The OOM client object has one attribute « name » that is an attribute without time semantic, so it will be retyped into a TOOM attribute (Name : String and attached to the TOOM class Client.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM attribute�� RENV _Ref390579331 \n �5.1.6��� RENVOIPAGE _Ref390579331 �68���
Embedded Guidelines�Section�Page��Retype OOM attribute to TOOM attribute�This guideline is composed of two actions. The first one is to delete the old OOM attribute. The second one is to create a new TOOM attribute with the same domain.��Attach TOOM object element to TOOM class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM attribute�3.3.1.5.1�68���Extend OOM link
Intention :
Verb : Extend
Target : TOOM link
Type of guideline : Choice
When is it used ?
The extension of an OOM object class to a TOOM object class make it necessary to extend all its elements. This guideline is used when there is still a link to extend in the properties of this object class.
The starting situation is an OOM link.
Motivation :
To extend the links of an object class will allow you to refine the type of the link in TOOM and perhaps to find that it will be better to retype a link in a state association, concept that does not exist in OOM.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM association link : There are two kinds of TOOM association : the association which is the same concept than in OOM and the state association which is an association with time semantic referring a particular state of a temporal object. This guideline will help you to choose in which type of link this OOM association will be extended in TOOM.
Extend OOM aggregation link : the extension of an aggregation consists in a retyping of the link in TOOM and describing it.
Argumentation :
Alternatives�Pros��Extend OOM association link�If the OOM link is an association.��Extend OOM aggregation link�If the OOM link is an aggregation.��Examples :
�
The « loan » object class has two links :
the « client » link is an association one. That means that a Loan object is related to one Client and that a Client object is related to one or many Loans.
the « payment » link is an aggregation one. That means that a Loan is composed of one or many Payments and that a Payment is a part of only one Loan.
�
The extension of this OOM example to TOOM does not change the semantic of the links.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM property�� RENV _Ref390579396 \n �5.1.5��� RENVOIPAGE _Ref390579396 �67���
Embedded Guidelines�Section�Page��Extend OOM association link�� RENV _Ref390579567 \n �5.1.21��� RENVOIPAGE _Ref390579567 �99���Extend OOM aggregation link�� RENV _Ref393264832 \n �5.1.21��� RENVOIPAGE _Ref393264839 �99���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM association�3.3.1.5.3�73��OOM aggregation�3.3.1.5.2�70��TOOM link�4.3.5�225���Extend OOM aggregation link
Intention :
Verb : Extend
Target : TOOM link
Type of guideline : Plan
When is it used ?
The extension of an OOM class to a TOOM class leads to extend its properties. If one of these properties is an aggregation link that can be extended to a TOOM aggregation link, this guideline will help to do it.
The starting situation is an OOM aggregation link.
Motivation :
The aggregation link existing in the OO method is used to express the composition of objects of snapshot classes. It is a time independent link. To extend an OOM association link to a TOOM association link is a process composed of two steps that will allow you to retype and describe it (find its cardinalities in TOOM, attach it to an object class...).
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM aggregation link to TOOM aggregation link : The link has been identified as an aggregation one because it represents the composition of objects. The first step to extend it is to retype it as a TOOM link.
Describe TOOM link : The second step to extend an OOM link in TOOM is to describe its cardinalities and to attach it to an object class (if the correct one doesn’t exist, it is possible to create it).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the link has been retyped��(2)�ending point�the link has been described��Examples :
� INCORPORER Word.Picture.6 ���

The basic class Order has an aggregation link with the basic class Order line. That means that an Order is composed of a set of Order lines. As a result, this OOM aggregation is extended into a TOOM aggregation (same concept).

Related guidelines :
Previous Guideline�Section�Page��Extend OOM link�� RENV _Ref390579351 \n �5.1.20��� RENVOIPAGE _Ref390579351 �97���
Embedded Guidelines�Section�Page��Retype OOM aggregation link to TOOM aggregation link�The retyping of an OOM aggregation link into a TOOM aggregation link is composed of two actions : one is the deletion of the old OOM link and the other is the creation of the new TOOM link.��Describe TOOM link�� RENV _Ref393265470 \n �5.4.2��� RENVOIPAGE _Ref393265470 �226���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM aggregation link�3.3.1.5.2�70��TOOM link�4.3.5�225���Extend OOM association link
Intention :
Verb : Extend
Target : TOOM link
Type of guideline : Choice
When is it used ?
The extension of an OOM object class to a TOOM object class implies to extend all its elements. This guideline is used when there is still an association link to extend for this object class.
The starting situation is an OOM association link.
Motivation :
To extend the links of an object class will allow to refine the type of the link in TOOM and perhaps to find that it will be better to retype a link in a state association, concept that does not exist in OOM.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM association link to TOOM association link : the link is an OOM association one, so it can be retyped and described as a TOOM association link.
Extend OOM association link to TOOM state association link : the link needs to own some time semantic so it is possible to retype it as a state association and to describe it.
Argumentation :
Alternatives�Pros��Extend OOM association link to TOOM association link�The association links two objects A and B, even if these two objects store their history.
If one of these objects store its history, it is not necessary to mention a time into the association.��Extend OOM association link to TOOM state association link�One of the objects participating to the association must store its history and the association needs to carry the time allowing to refer a specific state of the object.��Examples :
�

The loan object class has a is made by link that is an association one. The extension in TOOM does not modify the specification.

�

A customer has a particular version of a software ; it means a state of a software object. As a result, this association can be retyped into a TOOM state association that will represent this particular point of view.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM link�� RENV _Ref390579351 \n �5.1.20��� RENVOIPAGE _Ref390579351 �97���
Embedded Guidelines�Section�Page��Extend OOM association link to TOOM association link�� RENV _Ref390579654 \n �5.1.23��� RENVOIPAGE _Ref390579654 �103���Extend OOM association link to TOOM association link�� RENV _Ref390579663 \n �5.1.24��� RENVOIPAGE _Ref390579663 �105���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM association�3.3.1.5.3�73��TOOM link�4.3.5�225���Extend OOM association link to TOOM association link
Intention :
Verb : Extend
Target : TOOM link
Type of guideline : Plan
When is it used ?
The extension of an OOM class to a TOOM class conducts to extend its properties. If one of these properties is an association link that can be extended to a TOOM association link, this guideline will help to do it.
The starting situation is an OOM association link.
Motivation :
The association is defined in the OO method. It is applied on snapshot or temporal or temporal dictionary class. An association between a snapshot class and a temporal class expresses a link between objects. As the target objects are time dependent, the link provides the whole history of the target. To extend an OOM association link to a TOOM association link is composed of two steps that will allow you to retype and describe it (find its cardinalities in TOOM, attach it to an object class...).
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM association link to TOOM association link : The first step to extend an OOM link is to retype it as a TOOM link.
Describe TOOM link : The second step to extend an OOM link in TOOM is to describe its cardinalities and to attach it to an object class (if the correct one doesn’t exist, it is possible to create it).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the link has been retyped��(2)�ending point�the link has been described��Examples :
�*
The OOM property « client » of the object « loan » is an association. This association doesn’t need any time semantic. As a result, this OOM link is extended into a TOOM association link.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM association link�� RENV _Ref390579567 \n �5.1.21��� RENVOIPAGE _Ref390579567 �99���
Embedded Guidelines�Section�Page��Retype OOM association link to TOOM association link�The step of retype OOM association link in a TOOM association link consists in two actions. The first one is to delete the old OOM association link and the second one is to create a new TOOM association link between the classes with the same cardinality.��Describe TOOM link�� RENV _Ref393265470 \n �5.4.2��� RENVOIPAGE _Ref393265470 �226���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM association link�3.3.1.5.3�73��TOOM link�4.3.5�225���Extend OOM association link to TOOM state association link
Intention :
Verb : Extend
Target : TOOM state association
Type of guideline : Plan
When is it used ?
The extension of an OOM class to a TOOM class conducts to extend its properties. If one of these properties is an association link that can be extended to a TOOM state association link, this guideline will help to do it.
The starting situation is an OOM association link.
Motivation :
A state association expresses the fact that an object is linked to a specific state of an other object. It means that the time of the state to refer is mentioned in the association state. To extend an OOM association link to a TOOM state association link is composed of two steps that will allow you to retype and describe it (find its cardinalities in TOOM, attach it to an object class...).
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM association link to TOOM state association link : The association link needs some time semantic so it is possible to extend it as a TOOM state association link. The first step to do it is to retype it as a TOOM link.
Describe TOOM link : The second step to extend an OOM link in TOOM is to describe its cardinalities and to attach it to an object class (if the correct one doesn’t exist, it is possible to create it).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the link has been retyped��(2)�ending point�the link has been described��Examples :
�

A customer has a particular version of a software ; it means a state of a software object. As a result, the association between Customer and Version can own a time semantic and it can be extended into a TOOM state association link.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM association link�� RENV _Ref390579567 \n �5.1.21��� RENVOIPAGE _Ref390579567 �99���
Embedded Guidelines�Section�Page��Retype OOM association link to TOOM state association link�The retyping of an OOM link into a TOOM link consists in two actions. The first one is to delete the OOM link and the second one is to create the TOOM one, with the time key.��Describe TOOM link�� RENV _Ref393265470 \n �5.4.2��� RENVOIPAGE _Ref393265470 �226���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM association link�3.3.1.5.3�73��TOOM link�4.3.5�225���Extend OOM constraint
Intention :
Verb : Extend
Target : TOOM constraint
Type of guideline : Choice
When is it used ?
The extension of an OOM object class guides to extend all the elements contained in it into TOOM concepts. If it exists an OOM constraint not extended in TOOM, this guideline can be performed.
The starting situation is an OOM constraint.
Motivation :
The kinds of constraints available in OOM are uniqueness, referential, cardinality, attribute and inheritance constraints (the referential and cardinality constraints are embedded in the definition of associations and aggregations). In TOOM, we keep this classification and refine the one of uniqueness.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM constraint to TOOM uniqueness constraint : the constraint has been defined as a TOOM uniqueness constraint. It is necessary to retype and describe it with the classification of TOOM. There are three types of uniqueness constraints (uniqueness, local temporal, global temporal).
Extend OOM constraint to TOOM attribute constraint : the constraint has been defined as a TOOM attribute constraint. It is necessary to retype and describe it with the classification of TOOM.
Extend OOM constraint to TOOM inheritance constraint : the constraint has been defined as a TOOM inheritance constraint. It is necessary to retype and describe it with the classification of TOOM.
Argumentation :
Alternatives�Pros��Extend OOM constraint to TOOM uniqueness constraint�If the constraint expresses that a value of an attribute or a set of attributes is unique in a specific collection of objects or state of objects.��Extend OOM constraint to TOOM attribute constraint�If the constraint is an assertion applied on properties of an object express a restriction on values taken by one or several properties of an object.��Extend OOM constraint to TOOM inheritance constraint�If the constraint express a restriction on a set of specialized objects. These constraints are constraints of partition, disjunction, clustering and covering.��Examples :
The OOM constraint « the age of an employee is more than 18 » is an assertion applied on properties of an object of the Employee class, so it can be extended in a TOOM attribute constraint. It has an intra-object classification because it is applied only on one object.
The OOM constraint « the IdentificationNumber of a dog must be unique in the set of dogs> allows to define that the value of the attribute IdentificationNumber is unique in the specific collection of the Dogs class, so it can be extended in a TOOM uniqueness constraint.
The OOM constraint « the specialized classes Man and Woman build a partition of the class Person » is an inheritance constraint.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���
Embedded Guidelines�Section�Page��Extend OOM constraint to TOOM uniqueness constraint�� RENV _Ref390664462 \n �5.1.26��� RENVOIPAGE _Ref390664462 �109���Extend OOM constraint to TOOM attribute constraint�� RENV _Ref390664479 \n �5.1.30��� RENVOIPAGE _Ref390664479 �117���Extend OOM constraint to TOOM inheritance constraint�� RENV _Ref390664486 \n �5.1.31��� RENVOIPAGE _Ref390664486 �119���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM constraint�4.3.6�227��TOOM uniqueness constraint�4.3.6�227��TOOM attribute constraint�4.3.6�227��TOOM inheritance constraint�4.3.6�227���Extend OOM constraint to a TOOM uniqueness constraint
Intention :
Verb : Extend
Target : A TOOM uniqueness constraint
Type of guideline : Choice
When is it used ?
The description of the TOOM snapshot class leads to extend the OOM constraints. If the constraint allows to define that a value of an attribute or a set of attributes is unique in a specific collection, it is an uniqueness constraint and this guideline helps to progress.
The starting situation is an OOM constraint.
Motivation :
The constraint allows to define that a value of an attribute or a set of attributes is unique in a specific collection. As a result, the OOM constraint can be refine and retype in a TOOM uniqueness constraint. There are three different kinds of uniqueness constraints in TOOM : « uniqueness constraint », « local temporal uniqueness constraint » and « global temporal uniqueness constraint ».
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM constraint to TOOM non temporal uniqueness constraint : This alternative allows to retype the constraint into a TOOM constraint of type « uniqueness » and to describe it in order to find its classification. This alternative helps if the constraint is defined on a non temporal collection.
Extend OOM constraint to TOOM local temporal uniqueness constraint : This alternative allows to retype the constraint into a TOOM constraint of type « local temporal uniqueness » and to describe it in order to find its classification. This alternative helps if the constraint is applied inside an object.
Extend OOM constraint to TOOM global temporal uniqueness constraint : This alternative allows to retype the constraint into a TOOM constraint of type « global temporal uniqueness » and to describe it in order to find its classification. This alternative helps if the constraint is applied on a temporal collection relative to several objects.
Argumentation :
Alternatives�Pros��Extend OOM constraint to TOOM non temporal uniqueness constraint�If the constraint is based on a collection of snapshot objects.��Extend OOM constraint to TOOM local temporal uniqueness constraint�If the constraint is applied inside the history of an object.��Extend OOM constraint to TOOM global temporal uniqueness constraint.�If the constraint is applied on a temporal collection relative to several objects.��Examples :
uniqueness constraint
the attribute SocialSecurityNumber of a person must be unique in the set of Persons (collection associated to the class Person).
local temporal uniqueness constraint
each instant belonging to the VT period must be unique inside the ownership (temporal class with history<VT>) of a car.
global temporal uniqueness constraint
the « SIRET » number of a company of a car at a given instant must be unique in the set of companies at every instant.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint�� RENV _Ref390664537 \n �5.1.25��� RENVOIPAGE _Ref390664537 �107���
Embedded Guidelines�Section�Page��Extend OOM constraint to TOOM uniqueness constraint�� RENV _Ref390664462 \n �5.1.26��� RENVOIPAGE _Ref390664462 �109���Extend OOM constraint to TOOM local temporal uniqueness constraint�� RENV _Ref390664560 \n �5.1.27��� RENVOIPAGE _Ref390664560 �111���Extend OOM constraint to TOOM global temporal uniqueness constraint.�� RENV _Ref390664615 \n �5.1.29��� RENVOIPAGE _Ref390664615 �115���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM uniqueness constraint�4.3.6.2�229��TOOM local temporal uniqueness constraint�4.3.6.2�229��TOOM global temporal uniqueness constraint�4.3.6.2�229���Extend OOM constraint to TOOM non temporal uniqueness constraint
Intention :
Verb : Extend
Target : TOOM uniqueness constraint
Type of guideline : Plan
When is it used ?
There are three kinds of uniqueness constraints : uniqueness, global temporal uniqueness and local temporal uniqueness. A constraint of the extended OOM class is defined on a non temporal collection so it is a uniqueness constraint and this guideline will help to extend it.
The starting situation is an OOM constraint.
Motivation :
The constraint is an uniqueness constraint and has to be retyped and described as a TOOM uniqueness constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM constraint to TOOM non temporal uniqueness constraint : the first step to perform to transform an OOM constraint into a TOOM uniqueness constraint is to retype it.
Describe TOOM constraint : after having retyped the constraint, it is necessary to describe it in order to know what kind of constraint it is exactly in terms of time and object classification (to know when the constraint has to be applied).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM constraint has been retyped into a TOOM uniqueness constraint.��(2)�ending point�- The classification has been applied to the constraint.��Examples :
�
Uniqueness constraint :
-> the attribute SocialSecurityNumber of a person must be unique in the set of Persons (collection associated to the class Person). Its classification is intra time, inter object.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint to a TOOM uniqueness constraint�� RENV _Ref390664462 \n �5.1.26��� RENVOIPAGE _Ref390664462 �109���
Embedded Guidelines�Section�Page��Retype the OOM constraint to TOOM uniqueness constraint�To retype an OOM constraint is a process composed of two actions : the deletion of the OOM constraint and the creation of the TOOM one.��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM uniqueness constraint�4.3.6.2�229��TOOM basic class�4.3.3�204���Extend OOM constraint to TOOM local temporal uniqueness constraint
Intention :
Verb : Extend
Target : TOOM local temporal uniqueness constraint
Type of guideline : Plan
When is it used ?
There are three kinds of uniqueness constraints : uniqueness, global temporal uniqueness and local temporal uniqueness. There is an OOM constraint that is applied inside an object, so it is a local temporal uniqueness constraint and this guideline will help to extend it in TOOM.
The starting situation is an OOM constraint.
Motivation :
The constraint is a local temporal uniqueness constraint because it is applied inside the history of an object, so it has to be retyped and described as a TOOM local temporal uniqueness constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM constraint to TOOM local temporal uniqueness constraint : the first step to perform to transform an OOM constraint into a TOOM local temporal uniqueness constraint is to retype it.
Describe TOOM constraint : after having retyped the constraint, it is necessary to describe it in order to know what kind of constraint it is exactly in terms of time and object classification (to know when the constraint has to be applied).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM constraint has been retyped into a TOOM local temporal uniqueness constraint.��(2)�ending point�- The classification has been applied to the constraint.��Examples :
�
Local temporal uniqueness constraint :
Each instant belonging to the VT period must be unique inside the ownership (temporal class with history<VT>) of a car.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint to a TOOM uniqueness constraint�� RENV _Ref390664462 \n �5.1.26��� RENVOIPAGE _Ref390664462 �109���
Embedded Guidelines�Section�Page��Retype the OOM constraint to TOOM local temporal uniqueness constraint�To retype an OOM constraint is composed of two steps. The first one is to delete the old OOM constraint and the second one is to create the new TOOM one.��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM local temporal uniqueness constraint�4.3.6.2�229��TOOM basic class�4.3.3�204���Extend OOM constraint to TOOM global temporal uniqueness constraint
Intention :
Verb : Extend
Target : TOOM global temporal uniqueness constraint
Type of guideline : Plan
When is it used ?
There are three kinds of uniqueness constraints : uniqueness, global temporal uniqueness and local temporal uniqueness. The constraint concerned by the extension in TOOM is applied on a temporal collection relative to several objects, as a result, it is a global temporal uniqueness constraint and this guideline will help to extend it.
The starting situation is an OOM constraint.
Motivation :
The constraint is a global temporal uniqueness constraint because it is applied on a temporal collection relative to several objects, so it has to be retyped and described as a TOOM local temporal uniqueness constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM constraint to TOOM global temporal uniqueness constraint : the first step to perform in order to transform an OOM constraint into a TOOM global temporal uniqueness constraint is to retype it.
Describe TOOM constraint : after having retyped the constraint, it is necessary to describe it in order to know what kind of constraint it is exactly in terms of time and object classification (to know when the constraint has to be applied).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM constraint has been retyped into a TOOM global temporal uniqueness constraint.��(2)�ending point�- The classification has been applied to the constraint.��Examples :
�
Global temporal uniqueness constraint :
The ImmatriculationNumber of a car at a given instant must be unique in the set of cars at every instant.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint to a TOOM uniqueness constraint�� RENV _Ref390664462 \n �5.1.26��� RENVOIPAGE _Ref390664462 �109���
Embedded Guidelines�Section�Page��Retype the OOM constraint to TOOM global temporal uniqueness constraint�The retyping of the OOM constraint is a process composed of two actions : the first one is to delete the OOM constraint and the second one is to crate the TOOM one.��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM global temporal uniqueness constraint�4.3.6.2�229��TOOM basic class�4.3.3�204���Extend OOM constraint to TOOM attribute constraint
Intention :
Verb : Extend
Target : TOOM attribute constraint
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to describe a TOOM snapshot class and all its elements. There is still an attribute constraint that has not been extended in TOOM and this guideline helps to do it.
The starting situation is an OOM constraint.
Motivation :
The constraint is an attribute constraint if it is applied on the properties of an object. As a result, the OOM constraint has to be retyped and described as a TOOM attribute constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM constraint to TOOM attribute constraint : the first step to perform in order to transform an OOM constraint into a TOOM attribute constraint is to retype it.
Describe TOOM constraint : after having retyped the constraint, it is necessary to describe it in order to know what kind of constraint it is exactly in terms of time and object classification (to know which part of the temporal database to check and when the constraint has to be applied).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM constraint has been retyped into a TOOM attribute constraint.��(2)�ending point�- The classification has been applied to the constraint.��Examples :
Here, some examples illustrates the possible combinations due to the time and object classifications.

�intra-object�inter-object��without time�age of a person is less than 200 years�date of visit2 < date of visit1 + 1,5 months��intra-vt�for each snapshot of the real world, effort declared by an employee for a project and for a week (temporal class with history<VT>) < 60 hours�effort declared by an employee for a week = sum of efforts per project declared by this employee for this week.��intra-tt�for each database snapshot, weight of a patient (temporal class with History<TT>) is less than 200 kilos�for each database snapshot, the assignment of an employee to a project is allowed if they belong to the same department��intra-Bi�for each snapshot of the real world stored in a database snapshot, effort declared by an employee for a project and for a week (temporal class with history<VT, TT>) < 60 hours�for each snapshot of the real world stored in a database snapshot, effort (temporal class with History<VT, TT>) declared by an employee for a week = sum of efforts per project declared by this employee for this week.��inter-vt�the salary of an employee (temporal class with History<VT>) can not be updated by increasing it by two
�the salary of an employee (History<VT>) can not be increased by a percentage superior to the limit defined by department for the same period��inter-tt�the name of a person (temporal class with History<TT>) can not change more than three times�a person can not be employed two times by the same company with a lower salary (temporal class with History<TT>)��inter-Bi�the weight of a patient (temporal class with History<VT, TT>) for a specific valid can not be corrected more than three times�.a reviewer assigned to a project (temporal class with History<VT, TT>) should not belong to a company of the consortium at any time in the past or present time.��Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint�� RENV _Ref390664537 \n �5.1.25��� RENVOIPAGE _Ref390664537 �107���
Embedded Guidelines�Section�Page��Retype the OOM constraint to TOOM attribute constraint�The first step to retype an OOM constraint into a TOOM attribute constraint is to delete the old OOM constraint and to create the new TOOM one.��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM attribute constraint�4.3.6.2�229��TOOM basic class�4.3.3�204���Extend OOM constraint to TOOM inheritance constraint
Intention :
Verb : Extend
Target : TOOM inheritance constraint
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to extend its constraints. This guideline helps to extend the inheritance ones.
The starting situation is an OOM constraint.
Motivation :
The constraint is an inheritance constraint if it is applied on the specialization of an object. As a result, the OOM constraint has to be retyped and described as a TOOM inheritance constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM constraint to TOOM inheritance constraint : the first step to perform in order to transform an OOM constraint into a TOOM inheritance constraint is to retype it.
Describe TOOM constraint : after having retyped the constraint, it is necessary to describe it in order to know what kind of constraint it is exactly in terms of time and object classification (to know when the constraint has to be applied).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM constraint has been retyped into a TOOM inheritance constraint.��(2)�ending point�- The classification has been applied to the constraint.��Examples :
�
The « Employee » object class has two specialization : « Department Leader » and « Department Employee ». The inheritance constraint is a covering constraint. That means that every object of the Employee class must always corresponds to at least an object belonging to one of the two specialized class.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint�� RENV _Ref391350808 \n �5.1.25��� RENVOIPAGE _Ref391350808 �107���
Embedded Guidelines�Section�Page��Retype the OOM constraint to TOOM inheritance constraint�To retype the OOM constraint is composed of two steps : to delete it and to create a new one in TOOM.��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM constraint�3.3.1.7�82��TOOM inheritance constraint�4.3.6.2�229��TOOM basic class�4.3.3�204���Describe TOOM constraint
Intention :
Verb : Describe
Target : TOOM constraint
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to classify this constraint according to two classifications : object and time classifications. The first step was to retype an OOM constraint into a TOOM constraint and the next step is to describe it.
The starting situation is a TOOM constraint.
Motivation :
A constraint is composed of some elements : a name, a text and a comment. Moreover, TOOBIS combines the features of an OODBMS (with the classification in two groups : intra object and inter object) and of temporal DBMS (with the classification in three categories : intra time, inter time and without time). As a result, the description of the constraint obliged to define which is the category of the concerned constraint.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define time classification of the constraint : the first classification applied to the constraint is the time classification. It permits to define if the constraint is an intra time, an inter time or a without time constraint, so it allows to know what part of the temporal database should be verified.
Define object classification of the constraint : the second classification applied to the constraint is the object classification. It permits to define if the constraint is an inter object or intra object constraint. It allows us to know when the constraint should be verified.
Attach TOOM object element to TOOM object class : The last step is to attach the constraint to the right TOOM class (if it is a temporal variation that does not exists, it is necessary to create it before).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the time classification has been defined��(2)�(3)�the object classification has been defined��(3)�ending point�the constraint has been attached to a TOOM class��Examples :
Name : Assignment constraint
Text : For each database snapshot, the assignment of an employee to a project is allowed if they belong to the same department.
Time classification : Intra time
Object classification : Inter object
Class : Assignment (temporal class)

Name : Weight constraint
Text : The weight of a patient can not exceed 200 kilos.
Time classification : intra-time
Object classification : intra-object
Class : Weight (temporal class)
Related guidelines :
Previous Guideline�Section�Page��Extend OOM constraint to TOOM non temporal uniqueness constraint�� RENV _Ref390664560 \n �5.1.27��� RENVOIPAGE _Ref390664560 �111���Extend OOM constraint to TOOM local temporal uniqueness constraint�� RENV _Ref390664817 \n �5.1.28��� RENVOIPAGE _Ref390664817 �113���Extend OOM constraint to TOOM global temporal uniqueness�� RENV _Ref390664615 \n �5.1.29��� RENVOIPAGE _Ref390664615 �115���Extend OOM constraint to TOOM attribute constraint�� RENV _Ref390664479 \n �5.1.30��� RENVOIPAGE _Ref390664479 �117���Extend OOM constraint to TOOM inheritance constrain�� RENV _Ref390664486 \n �5.1.31��� RENVOIPAGE _Ref390664486 �119���
Embedded Guidelines�Section�Page��Define time classification of the constraint�� RENV _Ref390665604 \n �5.1.34��� RENVOIPAGE _Ref390665604 �125���Define object classification of the constraint�� RENV _Ref390665597 \n �5.1.33��� RENVOIPAGE _Ref390665597 �123���Attach TOOM object element to TOOM object class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM constraint�4.3.6.2�229���Define object classification to the constraint
Intention :
Verb : Define
Target : TOOM constraint
Type of guideline : Choice
When is it used ?
The extension of an OOM class guides to the extension of its constraints. The first step was to retype it as TOOM constraints and one of the next step is to define its object classification.
The starting situation is a TOOM constraint.
Motivation :
In the active OODBMS, constraints are classified in two groups : intra object and inter object constraints. This distinction allows us to determine on when the constraint has to be verified. An intra object constraint is defined locally to an object and can be checked at the end of each method execution. On the contrary, an inter-object constraint uses several objects, thus it has to be checked at the end of the database transaction.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Define the constraint as an intra object constraint : The constraint is defined in TOOM but its object classification needs to be refined into an intra object classification because it is defined locally to an object and can be checked at the end of each method execution of this object.
Define the constraint as an inter object constraint : The constraint is described in TOOM as an inter object classification because it uses several objects and has to be checked at the end of the database transaction
Argumentation :
Alternatives�Pros��Define the constraint as an intra object constraint�The constraint is defined locally to an object and can be checked at the end of each method execution, as a result, it is an intra-object constraint.��Define the constraint as an inter object constraint�The constraint uses several objects thus it has to be checked at the end of the database transaction, as a result, it is an inter-object constraint.��Examples :
Inter object constraint :
Name : Effort constraint.
Text : The effort declared for an employee for a week = sum of efforts per project declared by this employee for this week.
Intra object constraint :
Name : Weight constraint
Text : The weight of a patient can not exceed 200 kilos.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���
Embedded Guidelines�Description��Define the constraint as an intra object constraint�The object classification is applied on the constraint and the constraint is converted into an intra object constraint.��Define the constraint as an inter object constraint�The object classification is applied on the constraint and the constraint is converted into an inter object constraint.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM constraint�4.3.6.2�229���Define time classification to the constraint
Intention :
Verb : Define
Target : TOOM constraint
Type of guideline : Choice
When is it used ?
The extension of a constraint leads to define its time classification.
The starting situation is a TOOM constraint.
Motivation :
In the temporal database field (Böhlen, « valid time integrity constraints », 1994), constraints are grouped in two main categories : intra time and inter time constraints. The TOOBIS methodology uses this classification to refine the constraints in order to know which part of the temporal database should be verified. An intra-time constraint is only dependent of an instant t (each instant t should verify the constraint). On the contrary, an inter-time constraint is defined by using information available or valid at different instants.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Define the constraint as an intra time constraint : The constraint has been retyped into a TOOM constraint but its time classification needs to be refined into an intra time classification because it is only dependent of an instant t.
Define the constraint as an inter time constraint : The constraint has been retyped into a TOOM constraint but its time classification needs to be refined into an inter time classification because each instant t should verify it.
Argumentation :
Alternatives�Pros��Define the constraint as an intra time constraint�The constraint is only dependent of an instant t (so each instant t should verify the constraint), as a result it is an intra-time constraint.��Define the constraint as an inter time constraint�The constraint is defined by using information available or valid at different instants (so each instant t should verify the constraint) , as a result it is an inter-time constraint.��Examples :
inter time constraints :
The valid timestamp must be unique in the temporal class with history<VT>.
The name of a person cannot change more than three times.
The weight of a patient for a specific valid time cannot be corrected more than three times.

Intra time constraints :
For each week declared in the Weekly effort, an assignment of this employee for this project must exist.
The name of a company must be unique in each database state
The valid time of a weight value cannot be superior to its transaction time.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���
Embedded Guidelines�Description��Define the constraint as an intra time constraint�The time classification is applied on the constraint and the constraint is converted into an intra object constraint.��Define the constraint as an inter time constraint�The time classification is applied on the constraint and the constraint is converted into an inter object constraint.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM constraint�4.3.6.2�229���Extend OOM operation
Intention :
Verb : Extend
Target : OOM object operation
Type of guideline : Choice
When is it used ?
The extension of an OOM object class leads you to extend all its elements. There is still an operation that has not been extended in TOOM.
The starting situation is an OOM object operation.
Motivation :
To extend the OOM operation in TOOM allows to specialize it. There are three different kinds of operations : the object ones, the external ones and the derivation functions. The objects operations can be specialized in queries or basic operations.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM object operation to TOOM object operation : the operation is an operation that is a query or a basic one. This guideline helps to choose one of these and leads to retype and describe it.
Extend OOM object operation to TOOM external operation : the operation is an external operation (message sent to an actor). This guideline will help to retype and describe it.
Extend OOM object operation to TOOM derivation function : the operation is a derivation function (operation that create a class by derivation). This guideline will help to retype and describe it.
Argumentation :
Alternatives�Pros��Extend OOM object operation to TOOM object operation�If the operation is an operation that acts on an object (query or state change), it is an object operation. It is embedded into a basic or derived object class.��Extend OOM object operation to TOOM external operation�If the operation is a message sent to an actor, it is an external operation. It is embedded into an actor class.��Extend OOM object operation to TOOM derivation function�If the operation creates a class by derivation, it is a derivation function. It is embedded into a derived class.��Examples :
� INCORPORER Word.Picture.6 ���
The operation delete-loan() is a basic operation because it acts on the state of an object.
The operation compute-age() is a query because it doesn’t change anything in the object.
� INCORPORER Word.Picture.6 ���
The operation « send notice » allows to send a notice to the subscriber when his waiting request is selected. As a result, it is an external operation.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���
Embedded Guidelines�Section�Page��Extend OOM object operation to TOOM object operation�� RENV _Ref390595796 \n �5.1.36��� RENVOIPAGE _Ref390595796 �129���Extend OOM object operation to TOOM external operation�� RENV _Ref390595813 \n �5.1.39��� RENVOIPAGE _Ref390595813 �135���Extend OOM object operation to TOOM derivation function�� RENV _Ref390595821 \n �5.1.40��� RENVOIPAGE _Ref390595821 �137���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM operation�3.3.2.1�85��TOOM operation�4.3.4�208���Extend OOM object operation to TOOM object operation
Intention :
Verb : Extend
Target : TOOM operation
Type of guideline : Choice
When is it used ?
The extension of an OOM object class guides to the extension of its elements. There is still an object operation that has not been extended in TOOM.
The starting situation is an OOM object operation.
Motivation :
To extend the OOM object operation in TOOM allows to specialize it. There is two different kinds of operations : the basic ones and the queries.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM query operation : the operation is a query. This guideline helps to retype and describe it.
Extend OOM basic operation : the operation is a basic operation (state modified of an object). This guideline helps to retype and describe it.
Argumentation :
Alternatives�Pros��Extend OOM basic operation�If the operation is an operation that leads to a state change of an object, it is a basic operation.��Extend OOM query operation�The operation is a query��Examples :
� INCORPORER Word.Picture.6 ���
The operation delete-loan() is a basic operation.
The operation compute-age() is a query because it doesn’t change anything in the object. It is a way to access to information carried by an object.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM operation�� RENV _Ref391295756 \n �5.1.25��� RENVOIPAGE _Ref391295756 �107���
Embedded Guidelines�Section�Page��Extend OOM basic operation�� RENV _Ref390595897 \n �5.1.38��� RENVOIPAGE _Ref390595897 �133���Extend OOM query operation�� RENV _Ref390595905 \n �5.1.37��� RENVOIPAGE _Ref390595905 �131���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM operation�3.3.2.1�85��TOOM operation�4.3.4�208���Extend OOM query operation
Intention :
Verb : Extend
Target : TOOM operation
Type of guideline : Plan
When is it used ?
The extension of an OOM object class introduces the extension of its elements. There is still an OOM query that is not extended.
The starting situation is an OOM operation.
Motivation :
The concept of query in OOM and TOOM is the same. It does not cause state changes to objects. It only provides services to other objects either by retrieving a class, and returns a computed result. Extend an OOM query allows to retype and describe it in TOOM.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM query to TOOM query : the first step to extend an OOM query is to retype it into a TOOM query.
Describe TOOM operation : After the retyping of the OOM operation, it is necessary to describe it in order to know its name, signature, text and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the operation has been retyped��(2)�ending point�the operation has been attached to an object class��Examples :
�
OOM query : compute-age()
TOOM query :
Name : compute-age
Signature : ClientNumber
Text : « This operation permits to know the age of a client »
Object : Client
Related guidelines :
Previous Guideline�Section�Page��Extend OOM object operation�� RENV _Ref390595796 \n �5.1.36��� RENVOIPAGE _Ref390595796 �129���
Embedded Guidelines�Section�Page��Retype OOM query to TOOM query�To retype an OOM query into a TOOM query consists in two actions : one is the deletion of the old OOM query and the second is the creation of the new TOOM one.��Describe TOOM operation�� RENV _Ref390595952 \n �5.1.41��� RENVOIPAGE _Ref390595952 �139���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM query�3.3.2.1�85��TOOM operation�4.3.4�208���Extend OOM basic operation
Intention :
Verb : Extend
Target : TOOM basic operation
Type of guideline : Plan
When is it used ?
The extension of an OOM object class guides to the extension of its elements. There is still an OOM basic operation that is not extended.
The starting situation is an OOM operation.
Motivation :
Basic operations correspond to actions that change objects states, they are encapsulated into object classes. A operation is characterized by a name, a signature and a text. A basic operation is characterized by an operation type that can be « create », « delete » or « update ». Extend an OOM basic operation allows to retype and describe it in TOOM.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM basic operation to TOOM basic operation : the first step to extend an OOM basic operation is to retype it into a TOOM basic operation.
Describe TOOM operation : After the retyping of the OOM operation, it is necessary to describe it in order to know its name, signature, text and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the operation has been retyped��(2)�ending point�the operation has been attached to an object class��Examples :
�
OOM basic operation : delete-loan ()
TOOM basic operation :
Name : delete-loan
Signature : LoanNumber
Text : « This operation permits to delete a loan »
Object : Loan
Related guidelines :
Previous Guideline�Section�Page��Extend OOM object operation�� RENV _Ref390595796 \n �5.1.36��� RENVOIPAGE _Ref390595796 �129���
Embedded Guidelines�Section�Page��Retype OOM basic operation to TOOM basic operation�To retype a basic operation in TOOM is a process composed of two steps : one is to delete the old OOM concept and the second one is to create the new TOOM concept.��Describe TOOM operation�� RENV _Ref390595952 \n �5.1.41��� RENVOIPAGE _Ref390595952 �139���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM basic operation�3.3.2.1.1�86��TOOM operation�4.3.4�208���Extend OOM external operation
Intention :
Verb : Extend
Target : TOOM operation
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to the extension of its elements. There is still an OOM external operation that is not extended.
The starting situation is an OOM operation.
Motivation :
Actor classes are used to describe the environment of the system. The impact of an actor on the system is illustrated in terms of external events. The interactions of the system to its environment are shown in terms of external operations. They allow to describe how messages are sent to an actor.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM external operation to TOOM external operation : the first step to extend an OOM external operation is to retype it into a TOOM external operation.
Describe TOOM operation : After the retyping of the OOM operation, it is necessary to describe it in order to know its name, signature, text and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the operation has been retyped��(2)�ending point�the operation has been attached to an object class��Examples :
� INCORPORER Word.Picture.6 ���
The operation « send notice » allows to send a notice to the subscriber when his waiting request is selected. As a result, this operation is an external one.
OOM basic operation : send-notice ()
TOOM basic operation :
Name :	Send-notice
Signature :	Send-notice (reservation number, copynumber,)
Text : 	« This operation permits to send a notice to the subscriber in order to inform him of the reservation of the required book »
Object :	Subscriber
Related guidelines :
Previous Guideline�Section�Page��Extend OOM operation�� RENV _Ref390595813 \n �5.1.39��� RENVOIPAGE _Ref390595813 �135���
Embedded Guidelines�Section�Page��Retype OOM external operation to TOOM external operation�The retyping of an external operation in TOOM is composed of two actions : the deletion of the OOM operation and the creation of the TOOM one.��Describe TOOM operation�� RENV _Ref390595952 \n �5.1.41��� RENVOIPAGE _Ref390595952 �139���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM external operation�3.3.2.3�89��TOOM operation�4.3.4�208���Extend OOM object operation to TOOM derivation function
Intention :
Verb : Extend
Target : TOOM derivation function
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to extend its elements. There is still an OOM derivation function that is not extended.
The starting situation is an OOM operation.
Motivation :
A derived class is an object class derived from one or more object classes. It means that a derived object can be created or updated through its derivation function. Extend an OOM derivation function allows to retype and describe it in TOOM.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM object operation to TOOM derivation function : the first step to extend an OOM derivation function is to retype it into a TOOM derivation function.
Describe TOOM operation : After the retyping of the OOM operation, it is necessary to describe it in order to know its name, signature, text and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the operation has been retyped��(2)�ending point�the operation has been attached to an object class��Examples :
�
« Weekly sales » is a derived class. It is created when its derivation function is performed at the demand of the class « order ».
Name :	DeriveWeeklySales()
Signature :	DeriveWeeklySales (vendor number, week)
Text : 	« This operation derives the object WeeklySales »
Object :	WeeklySales
Related guidelines :
Previous Guideline�Section�Page��Extend OOM object operation to TOOM object operation�� RENV _Ref393278605 \n �5.1.36��� RENVOIPAGE _Ref393278605 �129���
Embedded Guidelines�Section�Page��Retype OOM derivation function to TOOM derivation function�To retype a derivation function is a process composed of two steps : the deletion of the old one and the creation of the TOOM derivation function.��Describe TOOM operation�� RENV _Ref390595952 \n �5.1.41��� RENVOIPAGE _Ref390595952 �139���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM operation�4.3.4�208���Describe TOOM operation
Intention :
Verb : Describe
Target : TOOM operation
Type of guideline : Plan
When is it used ?
The extension of an OOM operation has leaded to the retyping into a TOOM operation. The next step is to describe it.
The starting situation is a TOOM operation.
Motivation :
To describe an operation allows to define its elements : name, signature, text ; and to attach it to an object class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define name : the first step in the description an operation is to define its name.
Define signature : a signature is necessary when using an operation, so it is necessary to define it.
Define text : a text may describe the operation so it is possible to define it.
Attach TOOM object class element to TOOM object class : the last step is to attach the operation to an object class. If the correct one doesn’t exist , it is possible to create it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2),(3)�the name has been defined��(2)�(3)�the text hasn’t been defined��(3)�(2)�the signature hasn’t been defined��(2),(3)�(4)�everything has been defined in the operation��(4)�ending point�the operation has been attached to an object class��Examples :
compute-age() is an operation that does not change the state of an object (query
delete-loan() is an operation that changes the state of an object (basic operation
send-notice() is an operation that inform an actor (external operation
Name :	Send-notice
Signature :	SendNotice (reservation number, copy number)
Text : 	« This operation permits to send a notice to the subscriber in order to inform him of the availability of a copy »
Object :	Subscriber
Related guidelines :
Previous Guideline�Section�Page��Extend OOM query�� RENV _Ref390595905 \n �5.1.37��� RENVOIPAGE _Ref390595905 �131���Extend OOM basic operation�� RENV _Ref390595897 \n �5.1.38��� RENVOIPAGE _Ref390595897 �133���Extend OOM external operation�� RENV _Ref390595813 \n �5.1.39��� RENVOIPAGE _Ref390595813 �135���Extend OOM derivation function�� RENV _Ref390595821 \n �5.1.40��� RENVOIPAGE _Ref390595821 �137���
Embedded Guidelines�Section�Page��Define Name�action defining the name of the operation.��Define Signature�action defining the signature of the operation.��Define Text�action defining the text of the operation.��Attach TOOM object class element to TOOM object class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM operation�3.3.2.1�85��TOOM operation�4.3.4�208���Extend OOM internal event
Intention :
Verb : Extend
Target : TOOM internal event
Type of guideline : Choice
When is it used ?
The extension of an OOM object class leads to the extension of all its elements. There is still an internal event that has not been extended in TOOM.
The starting situation is an OOM internal event.
Motivation :
Because temporal database managed objects including their history, we have extended the definition of an internal event. The predicate of an internal event expresses the state change of an object. This type of event is called « on object ». The extension of object classes to temporal classes with history implies a new class of events based on the state of the history instead of on the state of an object. This kind of event is called « on history ».
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM internal event to TOOM internal event on object. : the event has been defined as an internal event on object (because it expresses the state change of an object), it is now necessary to retype it with this particular type and to describe it.
Extend OOM internal event to TOOM internal event on history : the event has been defined as an internal event on history (because it expresses the state changes of an history), it is now necessary to retype it with this particular type and to describe it.
Argumentation :
Alternatives�Pros��Extend OOM internal event to TOOM internal event on object.�If the predicate of the event expresses the state change of an object, it is an internal event on object.��Extend OOM internal event to TOOM internal event on history.�If the predicate of the event expresses the state change of an history, it is an internal event on history.��
Examples :
�

« Out of order is an event on object because it is based on an object state change. It happens when the stock attribute comes is less than a a stock limit.
�
This event is an event on history because it is based on the state change of an history. It happens when there are four updates of salary of an employee inside the last three years.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���
Embedded Guidelines�Section�Page��Extend OOM internal event to TOOM internal event on object.�� RENV _Ref390659769 \n �5.1.43��� RENVOIPAGE _Ref390659769 �142���Extend OOM internal event to TOOM internal event on history.�� RENV _Ref390659778 \n �5.1.44��� RENVOIPAGE _Ref390659778 �145���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM internal event�3.3.3.1.1�92��TOOM internal event on object�4.3.7.2�237��TOOM internal event on history�4.3.7.2�237���Extend OOM internal event to TOOM internal event on object
Intention :
Verb : Extend
Target : TOOM internal event on object
Type of guideline : Plan
When is it used ?
The extension of an OOM object class conducts to the extension of its elements. There is still an internal event that has not been extended. It is an event that expresses the state change of an object.
The starting situation is an OOM internal event.
Motivation :
The OOM internal event can be extended into a TOOM internal event on object. This specialization will help to refine the schema.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM internal event to TOOM internal event on object : the first step to perform when choosing to transform an OOM internal event into a TOOM internal event is to retype it.
Describe TOOM internal event : after having retyped the event, it is necessary to describe its elements and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM internal event has been retyped into a TOOM internal event on object.��(2)�ending point�- the event has been described.��Examples :
�

« Out of order is an event on object because it is based on an object state change. It happens when the stock attribute becomes less than a stock limit.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM internal event�� RENV _Ref393279253 \n �5.1.42��� RENVOIPAGE _Ref393279253 �141���
Embedded Guidelines�Section�Page��Retype the OOM internal event to TOOM internal event on object�To retype an OOM event into a TOOM event consists in two actions : the deletion of the old OOM event and the creation of the new TOOM one.��Describe TOOM internal event�� RENV _Ref391293818 \n �5.1.45��� RENVOIPAGE _Ref391293818 �147���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM internal event�3.3.3.1.1�92��TOOM internal event on object�4.3.7.2�237���Extend OOM internal event to TOOM internal event on history
Intention :
Verb : Extend
Target : TOOM internal event on history
Type of guideline : Plan
When is it used ?
You extend an OOM object class and there is still an internal event that has not been extended. It is an event that expresses the state change of an history.
The starting situation is an OOM internal event.
Motivation :
The OOM internal event can be extended into a TOOM internal event on history. This specialization will help you to refine the schema.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM internal event to TOOM internal event on history : the first step to perform when choosing to transform an OOM internal event into a TOOM internal event on history is to retype it.
Describe TOOM internal event : after having retyped the event, it is necessary to describe its elements and to attach it to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM internal event has been retyped into a TOOM internal event on history.��(2)�ending point�- The event has been described.��Examples :
�
This event is an event on history because it is based on the state change of the salary history. It occurs when the fourth update on a salary of an employee is performed in the three last years.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM internal event�� RENV _Ref393279253 \n �5.1.42��� RENVOIPAGE _Ref393279253 �141���
Embedded Guidelines�Section�Page��Retype the OOM internal event to TOOM internal event on history�To retype an event in TOOM is a process composed of two steps : the first one is to delete the old event and the second one is to create a new one in TOOM.��Describe TOOM internal event�� RENV _Ref391293818 \n �5.1.45��� RENVOIPAGE _Ref391293818 �147���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM internal event�3.3.3.1.1�92��TOOM internal event on history�4.3.7.2�237���Describe TOOM internal event
Intention :
Verb : Describe
Target : TOOM internal event
Type of guideline : Plan
When is it used ?
The extension of an OOM event into a TOOM internal event has a first step that is to retype it and the second one that is to describe it.
The starting situation is a TOOM internal event.
Motivation :
When you extend an OOM event into a TOOM internal event, you have to describe its elements and to attach it to a TOOM object class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Describe event : this guideline allows to describe the elements of an event (name, predicate, trigger...).
Attach TOOM object element to TOOM object class : an important step is to attach the internal event to an object class. If the correct class doesn’t exist, it is possible to create and to describe it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the event has been described��(2)�ending point�the event has been attached to the class��Examples :
�
This event is an event on history because it is based on the state change of an history.
The description of the event guides to the definition of its predicate : « Employee salary increased four times in the last three years », its name : « Increasing of salary », its trigger : An external operation that send a message to the manager.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM internal event to TOOM internal event on object�� RENV _Ref393279455 \n �5.1.43� �� RENVOIPAGE _Ref393279457 �143���Extend OOM internal event to TOOM internal event on state�� RENV _Ref390659778 \n �5.1.44��� RENVOIPAGE _Ref390659778 �145���
Embedded Guidelines�Section�Page��Describe event�� RENV _Ref393787514 \n �5.4.3��� RENVOIPAGE _Ref393787537 �229���Attach TOOM object element to TOOM object class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM internal event�4.3.7.2�237��TOOM event�4.3.7�236��TOOM object class�4.3.4�208���Extend OOM inheritance link
Intention :
Verb : Extend
Target : TOOM inheritance link
Type of guideline : Plan
When is it used ?
If the OOM class concerned by the extension is a specialized class, it owns an inheritance link, so it is necessary to extend it in the TOOM class.
The starting situation is an OOM inheritance link
Motivation :
The inheritance concept is the same in TOOM and OOM. It means that a class inherits from an other class all the structural properties as well as the behavioral properties (in particular, all the temporal variations). When you describe the TOOM snapshot class, it is also necessary to retype this link in TOOM and to describe it.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM inheritance link to TOOM inheritance link : the first step to extend the inheritance link in TOOM is to retype it.
Attach TOOM link to TOOM target class : After that the OOM inheritance link has been retyped into a TOOM inheritance link, it is necessary to attach it to the target object class.
Attach TOOM link to TOOM class : After that the OOM inheritance link has been retyped into a TOOM inheritance link, it is necessary to attach it to the object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the OOM inheritance link has been retyped into a TOOM inheritance link��(2)�(3)�the link has been attached to the target class��(3)�ending point�the link has been attached to the object class��Examples :
The OOM class Employee is a specialization of the OOM class Person. As a result, it inherits of all its properties.
�
Like the inheritance link in OOM is the same in TOOM, the first step is to retype it.
The second step is to attach the class to the specializing class (Person.
The third step is to attach it to the specialized class (Employee.
�
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM snapshot class�� RENV _Ref390576749 \n �5.1.4��� RENVOIPAGE _Ref390576749 �64���
Embedded Guidelines�Section�Page��Retype OOM inheritance link to TOOM inheritance link�The retyping of an OOM inheritance link into a TOOM inheritance link consists in two steps. The first one is to delete the old OOM link and the second one is to create a new one with the TOOM type.��Attach TOOM link to the TOOM target class�An inheritance link has to be attached to a specializing class.��Attach TOOM link to the TOOM class�The extended inheritance link comes from a specialized class that receives the attachment of this link.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM class�3.3.1.2�66��TOOM snapshot class�4.3.4.1�208��TOOM object class�4.3.4�208��OOM inheritance link�3.3.1.6�77��TOOM inheritance link�4.3.5�225���Attach TOOM object element to TOOM class
Intention :
Verb : Attach
Target : TOOM object class
Type of guideline : Choice
When is it used ?
The extension of an OOM object class conducts to the extension of all its elements (properties, constraints, internal events). These elements have to be attached to an object class after their extension in TOOM.
The starting situation is a TOOM object element.
Motivation :
To attach an element to an object class raise two possible solutions : one is that the object class already exists in the extension (it can be the origin class of the element) ; the other one is that this desired class doesn’t exist yet, so it is essential to identify it before the attachment of the element.
Graphical description :
� INCORPORER Word.Picture.6 ���(
Textual description :
Alternatives :
Identify and attach TOOM object element to TOOM object class : to attach the element to a TOOM class is indispensable. If this class does not exist in the database, it is essential to identify it firstly and to attach the element to it finally.
Select and attach TOOM object element to TOOM object class : the other possibility is that the class is already present so the first step is to select it and the second one is to attach the element to it.
Argumentation :
Alternatives�Pros��Identify and attach TOOM object element to TOOM object class�An object class is necessary to attach the element to it. If the needed object class doesn’t exist, it is necessary to identify it.��Select and attach TOOM object element to TOOM object class�An object class is necessary to attach the element to it. If the needed object class already exists, there is only need to select it before.��Examples :
� INCORPORER Word.Picture.6 ���
First step of the extension of the OOM class into a TOOM class :
transform the OOM class into a TOOM basic snapshot class.
Second step : extension of the properties.
Name is an attribute without time semantic (Name : String. The evolution of the attribute is not relevant to keep in the database, consequently we attach it to the basic snapshot class Employee.
Monthly salary is an attribute with time semantic (Monthly salary : Real. The evolution of this attribute is relevant to keep in the database. Thus, we find which temporal variation of the Employee class should be adequate to this attribute. No temporal variation of the class Employee exists, thus we attach it to a new basic temporal class : Monthly Salary.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM attribute with time semantic�� RENV _Ref390591399 \n �5.1.16� �� RENVOIPAGE _Ref390591399 �89���Describe TOOM internal event�� RENV _Ref391293818 \n �5.1.45��� RENVOIPAGE _Ref391293818 �147���Describe TOOM operation�� RENV _Ref390595952 \n �5.1.41��� RENVOIPAGE _Ref390595952 �139���Describe TOOM constraint�� RENV _Ref390664700 \n �5.1.32��� RENVOIPAGE _Ref390664700 �121���
Embedded Guidelines�Section�Page��Identify and attach TOOM object element to TOOM object class�� RENV _Ref392390241 \n �5.1.48��� RENVOIPAGE _Ref392390241 �153���Select and attach TOOM object element to TOOM object class�� RENV _Ref392390256 \n �5.1.54��� RENVOIPAGE _Ref392390256 �165���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify and attach TOOM object element to TOOM object class
Intention :
Verb : Identify and attach
Target : TOOM object class
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to the extension of its elements. When these elements have been retyped, transformed or described ; it is indispensable to attach them to a TOOM object class. If this one isn’t present yet in the database, this guideline will help you to continue.
The starting situation is a TOOM object element.
Motivation :
All the elements relative to object classes need to be attached to an object class. This is the case for the constraints, the attributes, the static links and the internal events.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Identify TOOM object class : this guideline is composed of two finer steps. The first one is the creation of this new class. The second one concerns its description.
Attach the TOOM object element to the TOOM object class : an essential step is the attachment of the element to the new object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the object class has been identified��(2)�ending point�the element has been attached to the object class��Examples :
� INCORPORER Word.Picture.6 ���
First step of the extension of the OOM class into a TOOM class :
transform the OOM class into a TOOM basic snapshot class.
Second step : extension of the properties.
Monthly salary is an attribute with time semantic (Monthly salary : Real. The evolution of this attribute is relevant to keep in the database. Thus, we find which temporal variation of the Employee class should be adequate to this attribute. No temporal variation of the class Employee exists, thus we attach it to a new basic temporal class : Monthly Salary.
Related guidelines :
Previous Guideline�Section�Page��Attach TOOM object element to TOOM class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���
Embedded Guidelines�Section�Page��Identify TOOM object class�� RENV _Ref392394733 \n �5.1.49��� RENVOIPAGE _Ref392394733 �155���Attach the TOOM object element to the TOOM object class�This guideline will allow to affect an object class to an element.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify TOOM object class
Intention :
Verb : Identify
Target : TOOM object class
Type of guideline : Choice
When is it used ?
The extension of an object class element leads to the attachment of this element to a TOOM object class. If this class isn’t present in the database, this guideline will help to identify it.
Motivation :
To identify a TOOM object class will help to attach an element to it. This guideline is helpful to find all the temporal variations of a snapshot class. There is two kinds of them : the temporal class and the temporal dictionary class. An other distinction can be made : these classes can be basic or derived.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Identify TOOM basic temporal class : this alternative allows to put the object element into a new basic temporal class that will be a temporal variation of the origin snapshot class.
Identify TOOM derived temporal class : this alternative permits to put the object element into a new derived temporal class that will be a temporal variation of the origin snapshot class.
Identify TOOM basic temporal dictionary class : this alternative allows to put the object element into a new basic temporal dictionary class that will be a temporal variation of the origin snapshot class.
Identify TOOM derived temporal dictionary class : this alternative permits to put the object element into a new derived temporal dictionary class that will be a temporal variation of the origin snapshot class.
Argumentation :
Alternatives�Pros�Cons��Identify TOOM basic temporal class�All the values of the class will build the evolution of the data.�The class can be derived.��Identify TOOM derived temporal class�All the values of the class will build the evolution of the data. The class can be derived.���Identify TOOM basic temporal dictionary class�The valid time periods of the data can overlap.�The class can be derived.��Identify TOOM derived temporal dictionary class�The valid time periods of the data can overlap.���Examples :
� INCORPORER Word.Picture.6 ���

The inflation rate can be a temporal variation of the basic class country. As the key of this new class is the valid time period of this data, it is a temporal dictionary class. This data cannot be derived, as a result, it is a basic class.
Related guidelines :
Previous Guideline�Section�Page��Identify and attach TOOM object element to TOOM object class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���
Embedded Guidelines�Section�Page��Identify TOOM basic temporal class�� RENV _Ref392559423 \n �5.1.50��� RENVOIPAGE _Ref392559423 �157���Identify TOOM derived temporal class�� RENV _Ref392559428 \n �5.1.51��� RENVOIPAGE _Ref392559428 �159���Identify TOOM basic temporal dictionary class�� RENV _Ref392559434 \n �5.1.52��� RENVOIPAGE _Ref392559434 �161���Identify TOOM derived temporal dictionary class�� RENV _Ref392559444 \n �5.1.53��� RENVOIPAGE _Ref392559444 �163���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify TOOM basic temporal class
Intention :
Verb : Identify
Target : TOOM basic temporal class
Type of guideline : Plan
When is it used ?
The extension of an object class element leads to the attachment of this element to a TOOM object class. This class doesn’t exist in the database so it is necessary to identify it.
The starting situation is a TOOM object element.
Motivation :
To identify a TOOM object class will help to attach an element to it. This guideline is helpful to find all the temporal variations of a snapshot class. There are two kinds of them : the temporal class and the temporal dictionary class. An other distinction can be made : these classes can be basic or derived.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create TOOM basic temporal class : the first step to identify a new object class is to create it in the database.
Describe TOOM time dependent class : the second step is to describe this new class in order to define the temporal aggregation, the name and the time dimension of the class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM object class has been created��(2)�ending point�the TOOM object class has been described��Examples :
� INCORPORER Word.Picture.6 ���

The attribute Monthly salary of the client class can be extended in a temporal variation in TOOM. Its valid time period can overlap, as a result, it is a temporal class. It cannot be derived, as a result, it is a basic temporal class.
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM object class�� RENV _Ref392394733 \n �5.1.49��� RENVOIPAGE _Ref392394733 �155���
Embedded Guidelines�Section�Page��Create TOOM basic temporal class�The first step in the identification of a class is to create it in the database.��Describe TOOM time dependent class�� RENV _Ref392564170 \n �5.1.56��� RENVOIPAGE _Ref392564170 �169���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify TOOM derived temporal class
Intention :
Verb : Identify
Target : TOOM derived temporal class
Type of guideline : Plan
When is it used ?
The extension of an object class element leads to the attachment of this element to a TOOM object class. This class isn’t present in the database so it is necessary to identify it. The valid time periods of the class can overlap so it is a temporal class. It can be derived, as a result, it is a derived temporal class.
The starting situation is a TOOM object element.
Motivation :
To identify a TOOM object class will help to attach an element to it. This guideline is helpful to find all the temporal variations of a snapshot class. There are two kinds of them : the temporal class and the temporal dictionary class. An other distinction can be made : these classes can be basic or derived.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create TOOM derived temporal class : the first step to identify a new object class is to create it in the database.
Describe TOOM time dependent class : the second step is to describe this new class in order to define the temporal aggregation, the name and the time dimension of the class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM object class has been created��(2)�ending point�the TOOM object class has been described��Examples :
� INCORPORER Word.Picture.6 ���

The weekly sales class can be derived from the order class. As a result, this class is a derived class. The valid time periods can overlap, as a result it is a temporal class.
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM object class�� RENV _Ref392394733 \n �5.1.49��� RENVOIPAGE _Ref392394733 �155���
Embedded Guidelines�Section�Page��Create TOOM derived temporal class�The first step in the identification of a class is its creation.��Describe TOOM time dependent class�� RENV _Ref392568051 \n �5.1.55��� RENVOIPAGE _Ref392568051 �167���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify TOOM basic temporal dictionary class
Intention :
Verb : Identify
Target : TOOM basic temporal dictionary class
Type of guideline : Plan
When is it used ?
The extension of an object class element leads to the attachment of this element to a TOOM object class. This class isn’t present in the database so it is necessary to identify it. The valid time periods of the class cannot overlap so it is a temporal dictionary class. It can’t be derived, as a result, it is a basic temporal class.
The starting situation is a TOOM object element.
Motivation :
To identify a TOOM object class will help to attach an element to it. This guideline is helpful to find all the temporal variations of a snapshot class. There are two kinds of them : the temporal class and the temporal dictionary class. An other distinction can be made : these classes can be basic or derived.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create TOOM basic temporal dictionary class : the first step to identify a new object class is to create it in the database.
Describe TOOM time dependent class : the second step is to describe this new class in order to define the temporal aggregation, the name and the time dimension of the class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM object class has been created��(2)�ending point�the TOOM object class has been described��Examples :
� INCORPORER Word.Picture.6 ���

The key of the Inflation_rate class is the valid time period of the data. As a result, it is a temporal dictionary class. This data cannot be derived, so it is a basic class.
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM object class�� RENV _Ref392394733 \n �5.1.49��� RENVOIPAGE _Ref392394733 �155���
Embedded Guidelines�Section�Page��Create TOOM basic temporal dictionary class�The first step to identify a new class is to create it.��Describe TOOM time dependent class�� RENV _Ref392568051 \n �5.1.55��� RENVOIPAGE _Ref392568051 �167���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Identify TOOM derived temporal dictionary class
Intention :
Verb : Identify
Target : TOOM derived temporal dictionary class
Type of guideline : Plan
When is it used ?
The extension of an object class element leads to the attachment of this element to a TOOM object class. This class isn’t present in the database so it is necessary to identify it. The valid time periods of the class cannot overlap so it is a temporal dictionary class. It can be derived, as a result, it is a derived temporal class.
The starting situation is a TOOM object element.
Motivation :
To identify a TOOM object class will help to attach an element to it. This guideline is helpful to find all the temporal variations of a snapshot class. There are two kinds of them : the temporal class and the temporal dictionary class. An other distinction can be made : these classes can be basic or derived.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create TOOM derived temporal dictionary class : the first step to identify a new object class is to create it in the database.
Describe TOOM time dependent class : the second step is to describe this new class in order to define the temporal aggregation, the name and the time dimension of the class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM object class has been created��(2)�ending point�the TOOM object class has been described��Examples :
�
The sales of a vendor may be stocked in a temporal dictionary class because they are time dependent and that the valid time periods of the data can overlap. As the data can be derived, it is a derived temporal dictionary class.
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM object class�� RENV _Ref392394733 \n �5.1.49��� RENVOIPAGE _Ref392394733 �155���
Embedded Guidelines�Section�Page��Create TOOM derived temporal dictionary class�The first step in order to identify a class in TOOM is to create it.��Describe TOOM time dependent class�� RENV _Ref392564170 \n �5.1.56��� RENVOIPAGE _Ref392564170 �169���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Select and attach TOOM object element to TOOM object class
Intention :
Verb : Select and attach
Target : TOOM object class
Type of guideline : Plan
When is it used ?
The extension of an OOM object class leads to the extension of its elements. When these elements have been retyped, transformed or described ; it is indispensable to attach them to a TOOM object class. If this one is already present in the database, this guideline will help you to continue.
The starting situation is a TOOM object element.
Motivation :
All the elements relative to object classes need to be attached to an object class. This is the case for the constraints, the attributes, the static links and the internal events.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Select TOOM object class : This guideline helps to select an object class in order to attach an object class element (which can be a property, a constraint or an internal event).
Attach the TOOM object element to the TOOM object class : After selecting the right object class, the attachment of the object element can be performed.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the object class has been selected��(2)�ending point�the element has been attached to the object class��Examples :

�

The attribute « name » has the domain « string ». This attribute can be attached to the object class « client » that already exists in the database (That means that one of the properties of the Client object class is the attribute « Name »).
Related guidelines :
Previous Guideline�Section�Page��Attach TOOM object element to TOOM class�� RENV _Ref392394619 \n �5.1.47��� RENVOIPAGE _Ref392394619 �151���
Embedded Guidelines�Section�Page��Select TOOM object class�This guideline allows to choose an existing object class in the database in order to attach an element to it.��Attach the TOOM object element to the TOOM object class�This guideline permits to attach an element to an object class.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM object class�4.3.4�208���Describe TOOM time dependent class
Intention :
Verb : Describe
Target : TOOM time dependent class
Type of guideline : Plan
When is it used ?
The extension of the elements of an OOM object class sometimes leads to the creation of a new temporal variation. In this case, it is necessary to describe it.
The starting situation is a TOOM time dependent class (temporal class or temporal dictionary class).
Motivation :
The temporal variation of a snapshot class is described by its name, its link with the snapshot class and the time definition associated to it.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define class name : the first step to describe a TOOM time dependent class is to define its name.
Define temporal aggregation : A temporal variation needs to be attached to a snapshot class. As a result, it is necessary to create a temporal aggregation between these two classes. The identification of a temporal aggregation is composed of two steps, a creation of the link and a description of it.
Describe the time dimension definition of the TOOM class : The time dimension can be valid time and/or transaction time.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�the name has been defined��(1)�(2)�The temporal aggregation has been identified��(2)�(3)�The time dimension definition of the TOOM class has been described.��(3)�ending point�Everything has been described��Examples :
Temporal-class for basic class Weight of patient extents Weights
time dimensions VT INSTANT-A<Gregorian, day> as history partial with extrapolation
properties weight : REAL ;
constraints 0 < weight < 200 kilos ;
operations
create_weight (w : REAL, t : INSTANT<Gregorian, day>) type create
update_weight (w : REAL, t : INSTANT<Gregorian, day>) type evolution
correct_weight (w : REAL, t : INSTANT<Gregorian, day>) type correction
queries
REAL get_value (t : INSTANT<Gregorian, day>)
events ...
endtemporal-class

Temporal-dictionary class for basic class Inflation_rate of country extents Infl_set
key VT PERIOD-A<Gregorian, day>
time dimension TT as history
properties inflation_rate : REAL ;
operations
...
events ...
endtemporaldictionary-class
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM basic temporal class�� RENV _Ref392559423 \n �5.1.50��� RENVOIPAGE _Ref392559423 �157���Identify TOOM derived temporal class�� RENV _Ref392559428 \n �5.1.51��� RENVOIPAGE _Ref392559428 �159���Identify TOOM basic temporal dictionary class�� RENV _Ref392559434 \n �5.1.52��� RENVOIPAGE _Ref392559434 �161���Identify TOOM derived temporal dictionary class�� RENV _Ref392559444 \n �5.1.53��� RENVOIPAGE _Ref392559444 �163���
Embedded Guidelines�Section�Page��Identify temporal aggregation����Describe the time dimension definition of the TOOM class�� RENV _Ref392564170 \n �5.1.56��� RENVOIPAGE _Ref392564170 �169���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218��TOOM temporal aggregation�4.3.4�208��TOOM temporal dimension of a TOOM class�4.3.4�208���Describe the time dimension definition of the TOOM class
Intention :
Verb : Describe
Target : Time dimension definition
Type of guideline : Plan
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe its time dimension.
The starting situation is a TOOM class.
Motivation :
A time dependent class represents the way to define historical, rollback and bi temporal objects. As a result, it is necessary to define the valid and transaction time dimensions of the class. In the case of a temporal dictionary class, the valid time is the key of the class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Describe the transaction time dimension of the TOOM class : Each time dependent class can have a transaction time that has to be defined.
Describe the valid time dimension of the TOOM class : Each time dependent class can have a valid time that has to be defined.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�the class need a transaction time definition.��starting point�(2)�the class need a valid time definition, but no transaction time definition.��(1)�(2)�the transaction time has been defined and the class need a valid time definition.��(2)�ending point�the valid time and the transaction time has been defined for the class.��(1)�ending point�the transaction time has been defined and the class doesn’t need to have a valid time definition.��Examples :
Temporal-class for basic class Weight of patient extents Weights
time dimensions VT INSTANT-A<Gregorian, day> as history partial with extrapolation
...
endtemporal-class

Related guidelines :
Previous Guideline�Section�Page��Describe TOOM time dependent class�� RENV _Ref392568051 \n �5.1.55��� RENVOIPAGE _Ref392568051 �167���
Embedded Guidelines�Section�Page��Describe the transaction time dimension of the TOOM class�� RENV _Ref392572335 \n �5.1.57��� RENVOIPAGE _Ref392572335 �171���Describe the valid time dimension of the TOOM class�� RENV _Ref392572340 \n �5.1.59��� RENVOIPAGE _Ref392572340 �175���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��Transaction time�4.4.1.4�254��Valid time�4.4.1.4�254���Describe the transaction time dimension of the class
Intention :
Verb : Describe
Target : time dimension
Type of guideline : Choice
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe its time dimension.
The starting situation is a TOOM class.
Motivation :
The type of management characteristic of the transaction time has to be defined. It can be of two types : history or state.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Describe the history transaction time definition of the TOOM class : The transaction time definition can be refined in an history transaction time definition and it is necessary to describe it.
Describe the state transaction time definition of the TOOM class : The transaction time definition can be refined in a state transaction time definition and it is necessary to describe it.
Argumentation :
Alternatives�Pros��Describe the history transaction time definition of the TOOM class�This option permits to have all the database states of an object.��Describe the state transaction time definition of the TOOM class�This option permits to manipulate the last database state of an object.��Examples :
Temporal-class for derived class WeeklySales of vendor extents Wcollection
time dimensions VT PERIOD-A<MyWeek, week> as history complete
 TT as history
...
endtemporal-class

Temporal-class for basic class Position of EnemyUnit extents Pcollection
time dimensions VT PERIOD-A <Gregorian, minute> as partial history
 TT as state
...
endtemporal-class
Related guidelines :
Previous Guideline�Section�Page��Describe the time dimension of the class�� RENV _Ref392564170 \n �5.1.56��� RENVOIPAGE _Ref392564170 �169���
Embedded Guidelines�Section�Page��Describe the history transaction time definition of the TOOM class�The class can be defined with an history type of time management.��Describe the state transaction time definition of the TOOM class�The class can be defined with a state type of time management.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��Transaction time�4.4.1.4�254��Valid time�4.4.1.4�254���Describe the valid time dimension definition of the TOOM class
Intention :
Verb : Describe
Target : Time dimension definition
Type of guideline : Plan
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe its valid time dimension.
The starting situation is a TOOM class.
Motivation :
A time dependent class represents the way to define historical, rollback and bi temporal objects. As a result, it is necessary to define the valid and transaction time dimensions of the class. In the case of a temporal dictionary class, the valid time is the key of the class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Describe the type of time management of the class : the type of management is defined by two options : state or history. This guideline will helps to choose one of these options.
Describe the nature of the time stamp of the class : the nature of the valid time can be an instant or a period. This guideline will allow to choose between these options.
How to progress from component A to component B :
from�to�arguments��starting point�(1)���starting point�(2)���(1)�(2)�the type of time management has been described but not the nature of the valid time.��(2)�(1)�the nature of the valid time has been described but not the type of time management.��(1)�ending point�everything has been described.��(2)�ending point�everything has been described.��Examples :
Temporal-class for basic class Weight of patient extents Weights
time dimensions VT INSTANT-A<Gregorian, day> as history partial with extrapolation
...
endtemporal-class
Related guidelines :
Previous Guideline�Section�Page��Describe the time dimension definition of the TOOM class�� RENV _Ref392564170 \n �5.1.56��� RENVOIPAGE _Ref392564170 �169���
Embedded Guidelines�Section�Page��Describe the type of time management of the TOOM class�� RENV _Ref392572340 \n �5.1.59��� RENVOIPAGE _Ref392572340 �175���Describe the nature of the time stamp of the TOOM class�� RENV _Ref392574653 \n �5.1.61��� RENVOIPAGE _Ref392574653 �179���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��Transaction time�4.4.1.4�254��Valid time�4.4.1.4�254���Describe the type of time management of the TOOM class
Intention :
Verb : Describe
Target : time dimension
Type of guideline : Choice
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe the type of time management of the TOOM class.
The starting situation is a TOOM class.
Motivation :
The type of management in the valid time dimension is defined by two options : state or history.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Describe the history valid time definition of the TOOM class : the valid time definition can be refined in an history valid time. There is three kind of valid time history : complete and partial, if the history is partial, it is possible to create an extrapolation function in order to consider it as complete.
Describe the state valid time definition of the TOOM class : the valid time needed by the class is a state valid time.
Argumentation :
Alternatives�Pros��Describe the history valid time definition of the TOOM class�This option permits to have all the valid states of an object.��Describe the state valid time definition of the TOOM class�This option permits to manipulate the last valid state of an object.��Examples :
Temporal-class for derived class WeeklySales of vendor extents Wcollection
time dimensions VT PERIOD-A<MyWeek, week> as history complete
...
endtemporal-class

Temporal-class for basic class Family_status of Employee extents Fcollection
time dimensions VT PERIOD-A <Gregorian, day> as state
...
endtemporal-class

The temporal class concept may be used to manage only the last state of an object instead of an history. For instance, FamilyStatus of an employee can be managed as a state whereas WeeklySales is managed as a complete history.
Related guidelines :
Previous Guideline�Section�Page��Describe the valid time dimension of the class�� RENV _Ref392574749 \n �5.1.58��� RENVOIPAGE _Ref392574749 �173���
Embedded Guidelines�Section�Page��Describe the history valid time definition of the TOOM class�� RENV _Ref393600318 \n �5.1.60��� RENVOIPAGE _Ref393600318 �177���Describe the state valid time definition of the TOOM class�The class can be defined with a valid state time definition.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��valid time�4.4.1.4�254���Describe the history valid time definition of the class
Intention :
Verb : Describe
Target : time dimension
Type of guideline : Choice
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe the type of time management of the TOOM class. The concerned class can be defined with an history type of management.
The starting situation is a TOOM time dependent class.
Motivation :
The history type of management in the valid time dimension is defined by three options : complete history, partial history with extrapolation and partial history without extrapolation.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Describe the complete history valid time definition of the TOOM class : the valid time definition can be refined in a complete history valid time.
Describe the partial history with extrapolation valid time definition of the TOOM class : the valid time definition can be refined in a partial history with extrapolation valid time.
Describe the partial history without extrapolation valid time definition of the TOOM class : : the valid time definition can be refined in a partial history without extrapolation valid time.
Argumentation :
Alternatives�Pros�Cons��Describe the complete history transaction time definition of the TOOM class�A complete history implies that the union of all periods of validity forms a period.���Describe the partial history with extrapolation valid time definition of the TOOM class�A partial history implies that the union of all periods of validity forms a set of periods. If the history must be viewed as a complete one, the extrapolation function has to be defined for this class.���Describe the partial history without extrapolation valid time definition of the TOOM class�A partial history implies that the union of all periods of validity forms a set of periods.�The partial history must be viewed as a complete one.��Examples :
Temporal-class for derived class WeeklySales of vendor extents Wcollection
time dimensions VT PERIOD-A<MyWeek, week> as history complete
...
endtemporal-class

Temporal-class for basic class Position of EnemyUnit extents Pcollection
time dimensions VT PERIOD-A <Gregorian, minute> as partial history
 TT as state
...
endtemporal-class

Temporal-class for basic class Weight of patient extents Weights
time dimensions VT INSTANT-A<Gregorian, day> as history partial with extrapolation
...
endtemporal-class

The WeeklySales of a vendor is a complete history because the union of all periods forms a period. On the contrary, the Position of an EnemyUnit is a partial history because we cannot determine a state for each instant belonging to the life span of the object.
If the history must be seen as a complete history, as for the weight of a patient, an extrapolation function can be defined in order to determine the state of the object at a given instant which are not part of the history.
Related guidelines :
Previous Guideline�Section�Page��Describe the type of time management of the TOOM class�� RENV _Ref392572340 \n �5.1.59��� RENVOIPAGE _Ref392572340 �175���
Embedded Guidelines�Description��Describe the complete history transaction time definition of the TOOM class�The history definition of the class is a complete one.��Describe the partial history with extrapolation valid time definition of the TOOM class�The history definition of the class is a partial one. An extrapolation function is defined for this class.��Describe the partial history without extrapolation valid time definition of the TOOM class�The history definition of the class is a partial one.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��valid time�4.4.1.4�254���Describe the nature of the time stamp of the TOOM class
Intention :
Verb : Describe
Target : Time dimension definition
Type of guideline : choice
When is it used ?
The creation of a temporal variation of a snapshot class conducts to its description. One of the step is to describe the nature of the time stamp.
The starting situation is a TOOM class.
Motivation :
A time dependent class represents the way to define historical, rollback and bi temporal objects. As a result, it is necessary to define the valid and transaction time dimensions of the class. In the case of a temporal dictionary class, the valid time is the key of the class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
	(1) Select calendar and granule : this alternative helps to choose an existing calendar in the database.
	(2) Identify and describe calendar : On the contrary, if the calendar does not exist, it is necessary to identify it.
Argumentation :
Alternatives�Pros��Select calendar and granule�The calendar already exists in the database.��Identify and describe calendar�The calendar does not exist in the database.��Examples :
Temporal-class for basic class Weight of patient extents Weights
time dimensions VT INSTANT-A<Gregorian, day> as history partial with extrapolation
...
endtemporal-class
Related guidelines :
Previous Guideline�Section�Page��Describe the valid time dimension definition of the TOOM class�� RENV _Ref392574749 \n �5.1.58� �� RENVOIPAGE _Ref392574749 �173���
Embedded Guidelines�Description��Select calendar and granule�this guideline helps to choose a calendar in the database and to select a granule.��Identify calendar and granule�this guideline allows to identify a new calendar in the database.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM time dimension definition�4.4.1.4�254��Valid time�4.4.1.4�254���« Extend OOM actor class »
Guideline graphs
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
�Extend OOM actor class
Intention :
Verb : Extend
Target : TOOM actor class
Type of guideline : Plan
When is it used ?
Introducing time in an OOM system leads to extend all its three kinds of classes : the OOM classes, the OOM calendar classes and finally the OOM actor classes. This guideline helps to perform the extension of the last one.
The starting situation is an OOM actor class.
Motivation :
An actor interact with the system by producing stimuli to the system in terms of messages. Their reception implies a reaction of the system which is described in the external event. In addition, the system can interact with actors by triggering external operations. As a result, it is necessary to extend all the OOM actors in order to extend all the external events of the system.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM actor class to TOOM actor class : The first step in the extension of an actor class is to retype it in TOOM.
Extend OOM external event : the external events describe how an actor can affect the structure of the system. They can be extended in three different type of events : a posteriori, a priori or in time. This step must be performed for all the external events of the actor class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the actor class has been retyped��(2)�ending point�the events of the actor class has been extended��Examples :
� INCORPORER Word.Picture.6 ���

The actor « Subscriber » has two elements : the external operation « send waiting request message » and the external event « loan request ». The extend process obliges to classify the external event « loan request » in the « event in time » category.
Related guidelines :
Embedded Guidelines�Section�Page��Retype OOM actor class to TOOM actor class�To retype an OOM actor class in TOOM is a process composed of a deletion of the old OOM class and the creation of the new TOOM one. The properties and the external operations move from the OOM actor to the new TOOM actor class.��Extend OOM external events�� RENV _Ref390682261 \n �5.2.3��� RENVOIPAGE _Ref390682261 �184���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM actor class�3.3.1.3�66��� OOM external operations�3.3.2.3�89��OOM external event�3.3.3.1.1�92��TOOM external event�4.3.7.1�236���Extend OOM external event
Intention :
Verb : Extend
Target : TOOM external event
Type of guideline : Choice
When is it used ?
The emission of a message by an actor to the system is an external event. This guideline helps to extend it in TOOM.
The starting situation is an OOM external event.
Motivation :
The introduction of the time dimension in the database leads to take into account the valid and the transaction times into the event concept. The transaction time of an event is the instant of happening of its occurrence. The valid time of the event is the valid time associated to the message. There are three kinds of TOOM external events : an event « in time » is an event whose valid time is the present time ; an « a priori » event has a valid time in the future and an « a posteriori » event has a valid time in the past.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Extend OOM external event to TOOM external event in time : the event has been defined as an external event in time because its valid time is the present time, it is now necessary to retyped it with this particular type and to describe it.
Extend OOM external event to TOOM external event a priori : the event has been defined as an external event a priori because its valid time is in the future, it is now necessary to retyped it with this particular type and to describe it.
Extend OOM external event to TOOM external event a posteriori : the event has been defined as an external event a posteriori because its valid time is in the past, it is now necessary to retyped it with this particular type and to describe it.
Argumentation :
Alternatives�Pros��Extend OOM external event to TOOM external event in time.�The valid time of the external event is the present time, as a result this event is an event in time.��Extend OOM external event to TOOM external event a priori.�The valid time of the external event is in the future, as a result this event is an event a priori.��Extend OOM external event to TOOM external event a posteriori.�The valid time of the external event is in the past, as a result this event is an event a posteriori.��Examples :
�
This event is an a posteriori event because it happens after the « normal » time. This means that it represents a late happening and that it is necessary to correct the database.
�
This is an a priori event because it happens before the « normal » time. This means that it is a modification that would be taken into account only when the valid time of the event will be the present time of the system.
�
This is an event in time. That means that it happens at the « normal » time. This concept is the same as the external event of OOM.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM actor class�� RENV _Ref390682163 \n �0��� RENVOIPAGE _Ref390682163 �183���
Embedded Guidelines�Section�Page��Extend OOM external event to TOOM external event in time.�� RENV _Ref390682383 \n �5.2.6��� RENVOIPAGE _Ref390682383 �190���Extend OOM external event to TOOM external event a priori.�� RENV _Ref390682377 \n �5.2.5��� RENVOIPAGE _Ref390682377 �188���Extend OOM external event to TOOM external event a posteriori.�� RENV _Ref390682371 \n �5.2.4��� RENVOIPAGE _Ref390682371 �186���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM external event�3.3.3.1.1�92��TOOM external event�4.3.7.1�236��TOOM external event in time�4.3.7.1�236��TOOM external event a priori�4.3.7.1�236��TOOM external event a posteriori�4.3.7.1�236���Extend OOM external event to TOOM external event a posteriori
Intention :
Verb : Extend
Target : TOOM external event a posteriori
Type of guideline : Plan
When is it used ?
The extension of an external event leads you to choose a certain kind of TOOM event. If the event corresponds to an exceptional situation of the application requiring exceptional business rules to apply, it is an event a posteriori.
The starting situation is an OOM external event.
Motivation :
The valid time of the event is in the past so the OOM external event can be extended into a TOOM external event « a posteriori ». It is an event that is limited to exceptional cases aiming at correcting the modeled real world stored in the database. The treatment associated to this event has to correct the situation by erasing the treatment made with the « wrong » account and apply the treatment with the « right » one.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype the OOM external event to TOOM external event a posteriori : the first step to perform in order to transform an OOM external event into a TOOM external event a posteriori is to retype it.
Describe TOOM external event: after having retyped the event, it is necessary to describe it and to attach it to the actor class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM external event has been retyped into a TOOM external event a posteriori.��(2)�ending point�- the event has been described.��Examples :
�

This event is an a posteriori event because it happens after the « normal » time. This means that it represents a late happening and that it is necessary to correct the database. The events of correction are always TOOM external events « a posteriori ».
Related guidelines :
Previous Guideline�Section�Page��Extend OOM external event�� RENV _Ref390682261 \n �5.2.3��� RENVOIPAGE _Ref390682261 �184���
Embedded Guidelines�Section�Page��Retype the OOM external event to TOOM external event a posteriori�To retype an OOM event into a TOOM event is a process composed of two steps. The first one is to delete the old OOM event and the second one is to create the new TOOM event.��Describe TOOM external event�� RENV _Ref390682458 \n �5.2.7��� RENVOIPAGE _Ref390682458 �192���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM external event�3.3.3.1.1�92��TOOM external event a posteriori�4.3.7.1�236���Extend OOM external event to TOOM external event a priori
Intention :
Verb : Extend
Target : TOOM external event a priori
Type of guideline : Plan
When is it used ?
The extension of an external event leads to choose a certain kind of TOOM event. If the event corresponds to a treatment in advance, it has to be extended as an event a priori.
The starting situation is an OOM external event.
Motivation :
The valid time of the event is in the future so the OOM external event can be extended into a TOOM external event a priori. An a priori event allows to trigger treatment in advance. In order to avoid problems relative to the management of post-actions, the acquisition of the message is done in advance but the treatment associated to the event is executed in time.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype the OOM external event to TOOM external event a priori : the first step to perform in order to transform an OOM external event into a TOOM external event a priori is to retype it.
	(2) Describe TOOM external event: after having retyped the event, it is necessary to describe it and to attach it to an actor class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM external event has been retyped into a TOOM external event a priori.��(2)�ending point�- The event has been described.��Examples :
�

This is an a priori event because it happens before the « normal » time. This means that it is a modification that would be taken into account only when the valid time of the event will be the present time of the system.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM external event�� RENV _Ref390682261 \n �5.2.3��� RENVOIPAGE _Ref390682261 �184���
Embedded Guidelines�Section�Page��Retype OOM external event to TOOM external event a priori.�To retype of an OOM event into TOOM is a process composed of two actions : the deletion of the old OOM event and the creation of the new TOOM event.��Describe TOOM external event�� RENV _Ref390682458 \n �5.2.7��� RENVOIPAGE _Ref390682458 �192���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM external event�3.3.3.1.1�92��TOOM external event�4.3.7.1�236��TOOM external event a priori�4.3.7.1�236���Extend OOM external event to TOOM external event in time
Intention :
Verb : Extend
Target : TOOM external event in time
Type of guideline : Plan
When is it used ?
The extension of an external event leads to choose a certain kind of TOOM event. If the event corresponds to an event whose treatment has to be executed in time and doesn’t correct anything, it is an event « in time ».
The starting situation is an OOM external event.
Motivation :
The valid time of the event is in the present so the OOM external event can be extended into a TOOM external event in time. This concept is the same than the OOM external event concept.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype the OOM external event to TOOM external event in time: the first step to perform in order to transform an OOM external event into a TOOM external event in time is to retype it.
	(2) Describe TOOM external event: after having retyped the event, it is necessary to describe it and to attach it to an actor class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM external event has been retyped into a TOOM external event in time.��(2)�ending point�- The event has been decribed.��Examples :
�

This is an event in time. That means that it happens at the « normal » time. This concept is the same as the external event of OOM.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM external event�� RENV _Ref390682261 \n �5.2.3��� RENVOIPAGE _Ref390682261 �184���
Embedded Guidelines�Section�Page��Retype OOM external event to TOOM external event in time�To retype an event in TOOM is a process composed of two steps. The first one is to delete the old OOM event and the second one is to create the TOOM event.��Describe TOOM external event�� RENV _Ref390682458 \n �5.2.7��� RENVOIPAGE _Ref390682458 �192���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM external event�3.3.3.1.1�92��TOOM external event�4.3.7.1�236��TOOM external event in time�4.3.7.1�236���Describe TOOM external event
Intention :
Verb : Describe
Target : TOOM external event
Type of guideline : Plan
When is it used ?
The extension of an OOM event into a TOOM external event has lead to retype it. The next step is to describe it.
The starting situation is a TOOM external event.
Motivation :
When you extend an OOM event into a TOOM external event, you have to describe it and to attach it to a class.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Describe event : this guideline helps to define the event elements : its name, its predicate and so on.
	(2) Attach TOOM external event to TOOM actor class : an external event is always owns by a TOOM actor. As a result, it is necessary to attach the event to an actor.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the event has been described��(2)�ending point�the event has been attached to the class��Examples :
�

The first step will process the description of the event :

	Name : New client
	Predicate : the client doesn’t exist
	Trigger :
		client.create()
		client-status.inactivate()
		monthly-salary.create()

The second state will attach this event to the actor class « Client »
Related guidelines :
Previous Guideline�Section�Page��Extend OOM external event to TOOM external event a posteriori�� RENV _Ref390682371 \n �5.2.4��� RENVOIPAGE _Ref390682371 �186���Extend OOM external event to TOOM external event a priori�� RENV _Ref390682377 \n �5.2.5��� RENVOIPAGE _Ref390682377 �188���Extend OOM external event to TOOM external event in time�� RENV _Ref390682383 \n �5.2.6��� RENVOIPAGE _Ref390682383 �190���
Embedded Guidelines�Section�Page��Describe event�� RENV _Ref392579253 \n �5.4.3��� RENVOIPAGE _Ref392579253 �228���Attach TOOM external event to TOOM actor class�This guideline allows to attach an external event to the corresponding actor class.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM external event�4.3.7.1�236��TOOM event�4.3.7�236���« Extend OOM calendar class »
Guideline graphs
� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���

�Extend OOM Gregorian calendar
Intention :
Verb : Extend
Target : TOOM calendar
Type of guideline : Plan
When is it used ?
The extension of an OOM product to a TOOM product is composed of three steps : extend all the OOM object classes, all the OOM actor classes and the OOM Gregorian calendar.
The starting situation is the OOM Gregorian calendar.
Motivation :
A calendar is a metric system to apply on the time line. The OO method proposes the concept of calendar class for defining temporal events of the application. In the basic OO method, the calendar is the Gregorian one. At the object level, the calendar has only one instance : the clock of the Gregorian calendar. We extend the definition of the calendar class for defining any calendar useful for the application.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM Gregorian calendar to TOOM Gregorian calendar : the first step is to extend the Gregorian calendar himself. This guideline permits to retype the calendar and to describe its external formats if there is any.
	(2) Extend Temporal event : When the Gregorian calendar has been extended, it is time to extend its temporal events (retyping, description and attachment to a calendar).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the Gregorian calendar has been retyped��(2)�ending point�all the temporal events have been extended��(2)�(2)�It exists a temporal event that has not been extended��Examples :
�

The OOM calendar possesses the « Christmas day » event.
The first step will convert the OOM calendar in TOOM.
The second step will extend the OOM event in a TOOM absolute event and describe it.
Related guidelines :
Embedded Guidelines�Section�Page��Retype OOM Gregorian calendar to TOOM Gregorian calendar�The conversion of the OOM Gregorian in TOOM is composed of two actions, the first one is the deletion of the old Gregorian calendar and the second one is the creation of the TOOM one.��Extend temporal event�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM Gregorian calendar�3.3.1.4�67��TOOM calendar�4.3.1�197��TOOM temporal event�4.3.7.3�239���Extend OOM temporal event
Intention :
Verb : Extend
Target : TOOM temporal event
Type of guideline : Choice
When is it used ?
The extension of the OOM Gregorian calendar class in TOOM leads to the extension of its temporal events. There is still a temporal event that has not been extended.
The starting situation is an OOM temporal event.
Motivation :
The valid time of the temporal event is a period during which its predicate is true. There are four kinds of TOOM temporal event : « relative to an object », « relative to an event », « periodic » and « absolute ».
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
	(1) Extend OOM temporal event to TOOM temporal event relative to an object : the event has been defined as a temporal event relative to an object, it is now necessary to retype it with this particular type, to describe it and to attach it to a calendar.
	(2) Extend OOM temporal event to TOOM temporal event relative to an event : the event has been defined as a temporal event relative to an event, it is now necessary to retype it with this particular type, to describe it and to attach it to a calendar.
	(3) Extend OOM temporal event to TOOM absolute temporal event : the event has been defined as an absolute temporal event, it is now necessary to retype it with this particular type, to describe it and to attach it to a calendar.
	(4) Extend OOM temporal event to TOOM periodic temporal event : the event has been defined as a periodic temporal event, it is now necessary to retype it with this particular type, to describe it and to attach it to a calendar.
Argumentation :
Alternatives�Pros��Extend OOM temporal event to TOOM temporal event relative to an object.�The predicate of the event is a relative time expression and the temporal mark is an attribute with time semantic.��Extend OOM temporal event to TOOM temporal event relative to an event.�The predicate of the event is a relative time expression and the valid time of the temporal mark is a time of an event occurrence, as a result, it is a temporal event relative to an event.��Extend OOM temporal event to TOOM absolute temporal event.�The predicate of the event is an absolute expression, as a result it is an absolute temporal event.��Extend OOM temporal event to TOOM periodic temporal event.�The predicate of the event is an periodic expression, as a result it is a periodic temporal event.��
Examples :
� INCORPORER Word.Picture.6 ���

This event is an absolute event because the 25th of December 1996 just happens one time.

� INCORPORER Word.Picture.6 ���

« Each 25th of December » is a periodic event because it happens one time per year, at a regular date.

� INCORPORER Word.Picture.6 ���

« 1 month after the expiration of the loan » is an event relative to an object because the expiration of a loan is an attribute of a loan object.

� INCORPORER Word.Picture.6 ���

« 15 days after the arrival of an order » is an event relative to an event because it happens 15 days after the occurrence of the other event « arrival of an order ».
Related guidelines :
Previous Guideline�Section�Page��Extend OOM Gregorian calendar�� RENV _Ref391367064 \n �5.3.2��� RENVOIPAGE _Ref391367064 �196���
Embedded Guidelines�Section�Page��Extend OOM temporal event to TOOM temporal event relative to an object.�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���Extend OOM temporal event to TOOM temporal event relative to an event.�� RENV _Ref390756433 \n �5.3.4��� RENVOIPAGE _Ref390756433 �201���Extend OOM temporal event to TOOM absolute temporal event.�� RENV _Ref390756440 \n �5.3.5��� RENVOIPAGE _Ref390756440 �203���Extend OOM temporal event to TOOM periodic temporal event.�� RENV _Ref390756446 \n �5.3.6��� RENVOIPAGE _Ref390756446 �205���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM temporal event relative to an object�4.3.7.3�239��TOOM temporal event relative to an event�4.3.7.3�239��TOOM absolute temporal event�4.3.7.3�239��TOOM periodic temporal event�4.3.7.3�239���Extend OOM temporal event to TOOM temporal event relative to an object
Intention :
Verb : Extend
Target : TOOM temporal event relative to an object
Type of guideline : Plan
When is it used ?
The extension of the OOM calendar class in TOOM guides to extend its temporal events. One of them has not been extended. This event can be defined as a TOOM temporal event relative to an object.
The starting situation is an OOM temporal event.
Motivation :
To extend an event in TOOM conducts to introduce time in the type of this event. As the predicate of the event is a relative time expression and that its valid time is derived from the attribute used as temporal mark, the OOM temporal event can be retyped and described as a TOOM temporal event relative to an object.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM temporal event to TOOM temporal event relative to an object : The first step to extend an event is to retype it.
	(2) Describe TOOM temporal event: after having retyped the event, it is necessary to describe it in order to give a complete description of the event : predicate, name, trigger and to attach it to a calendar class
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The event has been retyped into a TOOM temporal event relative to an object��(2)�ending point�- The event has been described��Examples :
� INCORPORER Word.Picture.6 ���

« 1 month after the expiration of the loan » is an event relative to an object because « expiration of the loan » is an attribute of the object « loan ». The first step will refine it with the correct type and the second step will describe it more precisely.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM temporal event�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���
Embedded Guidelines�Section�Page��Retype OOM temporal event to TOOM temporal event relative to an object.�To retype an OOM event is a process composed of two actions : to delete the old OOM event and to create the new TOOM event.��Describe TOOM temporal event.�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM temporal event relative to an object�4.3.7.3�239���Extend OOM temporal event to TOOM temporal event relative to an event
Intention :
Verb : Extend
Target : TOOM temporal event relative to an event
Type of guideline : Plan
When is it used ?
The extension of an OOM calendar class in TOOM conducts to extend all its temporal events and there is still one that has not been extended. It can be define as a TOOM temporal event relative to an event.
The starting situation is an OOM temporal event.
Motivation :
The predicate of the event is a relative time expression. The valid time of the event is derived from the attribute used as temporal mark. As a result, the OOM temporal event can be retyped and described as a TOOM temporal event relative to an object.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM temporal event to TOOM temporal event relative to an event : The first step to extend an OOM event in a TOOM event is to retype it.
	(2) Describe temporal event: after having retyped the event, it is necessary to describe it in order to give a complete description of the event : predicate, name, trigger and to attach it to a calendar class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The event has been retyped��(2)�ending point�- The event has been described��Examples :
� INCORPORER Word.Picture.6 ���

The OOM event « 15 days after the arrival of an order » is a TOOM temporal event relative to an event. The first step will refine it with the correct type and the second step will describe it more precisely.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM temporal event�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���
Embedded Guidelines�Section�Page��Retype OOM temporal event to TOOM temporal event relative to an event�To retype an OOM temporal event is a process composed of two actions : to delete the old OOM event and to create the new TOOM event.��Describe TOOM temporal event.�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM temporal event relative to an event�4.3.7.3�239���Extend OOM temporal event to TOOM periodic temporal event
Intention :
Verb : Extend
Target : TOOM periodic temporal event
Type of guideline : Plan
When is it used ?
The extension of the OOM calendar class in TOOM conducts to extend its temporal events. There is still a temporal event that has not been extended and it can be define as a TOOM periodic temporal event.
The starting situation is an OOM temporal event.
Motivation :
The predicate of the event is a periodic time expression. As a result, the OOM temporal event can be retyped and described as a TOOM periodic temporal event.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM temporal event to TOOM periodic temporal event : The first step to extend an event is to retype it.
	(2) Describe TOOM temporal event: after having retyped the event, it is necessary to describe it in order to give a complete description of the event : predicate, name, trigger and to attach it to a calendar class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The event has been retyped into a TOOM periodic temporal event��(2)�ending point�- The event has been described��Examples :
� INCORPORER Word.Picture.6 ���

« Each 25th of December » is a periodic event because it happens one time per year, at a regular date. The first step will refine it with the correct type and the second step will describe it more precisely.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM temporal event�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���
Embedded Guidelines�Section�Page��Retype OOM temporal event to TOOM periodic temporal even�To retype a OOM event into a TOOM event is a process composed of two actions : the deletion of the old OOM event and the creation of the new TOOM event.��Describe TOOM temporal event.�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM periodic temporal event�4.3.7.3�239���Extend OOM temporal event to TOOM absolute temporal event
Intention :
Verb : Extend
Target : TOOM absolute temporal event
Type of guideline : Plan
When is it used ?
The extension of the OOM calendar class in TOOM conducts to extend all its temporal events. There is still a temporal event that has not been extended and it can be define as a TOOM absolute temporal event.
The starting situation is an OOM temporal event.
Motivation :
The predicate of the event is an absolute expression. As a result, the OOM temporal event can be retyped and described as a TOOM absolute temporal event.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM temporal event to TOOM absolute temporal event : The first step to extend an event is to retype it.
	(2) Describe TOOM temporal event: after having retyped the event, it is necessary to describe it in order to give a complete description of the event : predicate, name, trigger and to attach it to a calendar class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The event has been retyped into a TOOM absolute temporal event��(2)�ending point�- The event has been described��Examples :
� INCORPORER Word.Picture.6 ���

This event is an absolute event because the 25th of December 1996 just happens one time. The first step will refine it with the correct type and the second step will describe it more precisely.
Related guidelines :
Previous Guideline�Section�Page��Extend OOM temporal event�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���
Embedded Guidelines�Section�Page��Retype OOM temporal event to TOOM absolute temporal even�To retype an OOM event is a process composed of two steps : the first one is to delete the OOM event and the second one is to create the TOOM one.��Describe TOOM temporal event.�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM absolute temporal event�4.3.7.3�239���Describe TOOM temporal event
Intention :
Verb : Describe
Target : TOOM temporal event
Type of guideline : Plan
When is it used ?
To extend a calendar class directs to extend one part of its elements : the temporal events. The first step was to retype it into the right type of TOOM event, the next step is to describe it.
The starting situation is a TOOM temporal event.
Motivation :
There are four kinds of TOOM temporal event : « relative to an object », « relative to an event », « periodic » and « absolute ».
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Describe event : the first step to extend a temporal event is to describe it. It is essential to know its name, predicate and trigger before attaching it to a calendar class.
	(2) Attach TOOM temporal event to TOOM calendar class: the second step to extend a temporal event in TOOM is to attach it to a specific TOOM calendar (that we have to create if it does not exist at this time of the development).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�- always true��(1)�(2)�- The OOM temporal event has been retyped into a TOOM temporal event��(2)�ending point�- The event has been attached to a specific TOOM calendar.��Examples :
�

Firstly, the TOOM periodic temporal event « the first of each month » is described :

predicate : « for each first day of a month »
name : the first of each month
trigger : For each c in loans c..send-loan-statement()

Secondly, this event is attached to the Gregorian calendar class because the predicate is expressed with the month granule of the Gregorian calendar..
Related guidelines :
Previous Guideline�Section�Page��Extend OOM temporal event to TOOM temporal event relative to an object.�� RENV _Ref390756277 \n �5.3.3��� RENVOIPAGE _Ref390756277 �198���Extend OOM temporal event to TOOM temporal event relative to an event.�� RENV _Ref390756433 \n �5.3.4��� RENVOIPAGE _Ref390756433 �201���Extend OOM temporal event to TOOM absolute temporal event.�� RENV _Ref390756440 \n �5.3.5��� RENVOIPAGE _Ref390756440 �203���Extend OOM temporal event to TOOM periodic temporal event.�� RENV _Ref390756446 \n �5.3.6��� RENVOIPAGE _Ref390756446 �205���
Embedded Guidelines�Section�Page��Describe TOOM event�� RENV _Ref392579253 \n �5.4.3��� RENVOIPAGE _Ref392579253 �228���Attach TOOM temporal event to TOOM calendar class�This guideline helps to attach a temporal event to its corresponding calendar class.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM temporal event�3.3.3.1.1�92��TOOM temporal event�4.3.7.3�239��TOOM calendar�4.3.1�197���Attach TOOM temporal event to TOOM calendar class
Intention :
Verb : Attach
Target : TOOM temporal event
Type of guideline :Choice
When is it used ?
The event has been defined as a temporal event, it has been described and it is now necessary to attach it to a calendar class.
The starting situation is a TOOM temporal event.
Motivation :
A temporal event is a temporal expression based on one of the calendars of the application. If the application requires several calendars, temporal events are local to a calendar. Each calendar class is characterized by the definition of the calendar and the set of temporal events based on the clock of this calendar (Each calendar class is realized at the instance level by a clock. By default, OOM provides the clock of the Gregorian calendar).
As a result, after the OOM temporal event has been retyped into a TOOM temporal event, it is necessary to attach this event to a TOOM calendar.
There is two possibilities : if the calendar already exists, it is sufficient to select it and to attach the event to it. However, if the calendar doesn’t exist, it is indispensable to identify it before.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
	(1) Identify and attach TOOM temporal event to TOOM calendar class : the event cannot be attached to an existing calendar so it is essential to create a new one and to describe it before attaching the event to it.
	(2) Select and attach TOOM temporal event to TOOM calendar class : the event has to be attached to a calendar. Following its description, the event can be attached to a calendar that already exists in the database.
Argumentation :
Alternatives�Pros��Select and attach TOOM temporal event to TOOM calendar class�If the event corresponds to the definition of an existing calendar, the process is to select this calendar and to attach the event to it ..��Identify and attach TOOM temporal event to TOOM calendar class�The event cannot be attached to an existing calendar because it is using a granule that isn’t embedded in its definition. As a result it is necessary to create a new one.��Examples :
�

The « 3 working week after before the review date » event can be attached to a new calendar called « working days calendar ». If this calendar doesn’t exist yet, it is necessary to create it.
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM temporal event.�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���
Embedded Guidelines�Section�Page��Identify and attach TOOM temporal event to TOOM calendar class�� RENV _Ref390757097 \n �5.3.11��� RENVOIPAGE _Ref390757097 �215���Select and attach TOOM temporal event to TOOM calendar class�� RENV _Ref390757103 \n �5.3.12��� RENVOIPAGE _Ref390757103 �217���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236��TOOM temporal event�4.3.7.3�239��TOOM calendar�4.3.1�197���Identify and attach TOOM temporal event to TOOM calendar class
Intention :
Verb : Identify
Target : TOOM temporal event
Type of guideline : Plan
When is it used ?
The event has been defined as a temporal event, it has been described and it is now necessary to attach it to a calendar class. The event is using a granule that doesn’t exist in the definition of the existing calendars.
The starting situation is a TOOM temporal event.
Motivation :
A temporal event is a temporal expression based on one of the calendars of the application. If the application requires several calendars, temporal events are local to a calendar. All the calendars already existing in the database don’t correspond to the event. It is possible to create a new user-defined calendar in order to attach the event to it.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Identify TOOM temporal calendar class : the first step introduce a new calendar in the database by creating and describing it.
	(2) Attach TOOM temporal event to TOOM calendar class : each event has to be attached to a TOOM calendar. This guideline will help to do it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the calendar has been identified��(2)�ending point�the event has been attached to the calendar��Examples :
The event « end of week » is a periodic event that happens at the end of a specific granule of a calendar : the week granule. If the week means here the « working week » (composed of only five days : the working days), that means that it is necessary to identify a new calendar « working days » that will have the « week » granule.
The first step will create and describe this new calendar and the second step will attach this event to this user-defined calendar.
Related guidelines :
Previous Guideline�Section�Page��Attach TOOM temporal event to TOOM calendar class�� RENV _Ref390757177 \n �5.3.9.1��� RENVOIPAGE _Ref390757177 �211���
Embedded Guidelines�Section�Page��Identify TOOM calendar class�� RENV _Ref390757097 \n �5.3.11��� RENVOIPAGE _Ref390757097 �215���Attach TOOM temporal event to TOOM calendar class����Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM temporal event�4.3.7.3�239��TOOM calendar class�4.3.1�197���Identify TOOM calendar class
Intention :
Verb : Identify
Target : TOOM calendar class
Type of guideline : Plan
When is it used ?
The extension of a temporal event leads to attach it to a calendar. If the granule needed for the event isn’t embedded in the definition of the existing calendars and that there will be a lot of time manipulation on it, it is essential to identify a new calendar using this granule.
The starting situation is a TOOM calendar class.
Motivation :
The introduction of time in the OO method conveys to identify new calendars. They are user defined and corresponds to the requirements of the system.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Create TOOM calendar class : the first step to identify a TOOM calendar is to create it.
	(2) Describe TOOM calendar class : each calendar needs to be defined in order to know all its elements : origin, granule, operators and perhaps external formats.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM calendar class is created��(2)�ending point�the TOOM calendar class has been described��Examples :
�

The event « End of the week » needs a granule of week. This granule was ‘t embedded in the existing calendars so it was necessary to create a new one.
Related guidelines :
Previous Guideline�Section�Page��Identify and attach TOOM temporal event to TOOM calendar class�� RENV _Ref390757097 \n �5.3.11��� RENVOIPAGE _Ref390757097 �215���
Embedded Guidelines�Section�Page��Create TOOM calendar class�This guideline allows to create a new TOOM calendar class.��Describe TOOM calendar�� RENV _Ref390757452 \n �5.3.13��� RENVOIPAGE _Ref390757452 �219���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM calendar class�4.3.1�197���Select and attach TOOM temporal event to TOOM calendar class
Intention :
Verb : Select and attach
Target : TOOM temporal event
Type of guideline : Choice
When is it used ?
The extension of an OOM temporal event in TOOM guides to retype, describe and attach it to a calendar. If the calendar already exists in the database, this guideline will help you to do it.
The starting situation is a TOOM temporal event.
Motivation :
If the application requires several calendars, temporal events are local to a calendar. As a result, after the OOM temporal event has been retyped into a TOOM temporal event, it is necessary to attach this event to a TOOM calendar. If the calendar already exists, it is sufficient to select it and to attach the event to it.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Select TOOM temporal calendar class : the calendar corresponding to the event already exists. This step consists in the selection of this calendar.
	(2) Attach TOOM temporal event to TOOM calendar class : each temporal event needs to be attached to a calendar class so this step will help you to do it.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the TOOM calendar class has been selected��(2)�ending point�the event has been attached to the calendar��Examples :
� INCORPORER Word.Picture.6 ���
The event « one month after the expiration of the loan » has to be attached to a calendar that take the month into account. The most logical choice seems to be the Gregorian calendar.
Related guidelines :
Previous Guideline�Section�Page��Attach TOOM temporal event to TOOM calendar class�� RENV _Ref390757321 \n �5.3.9��� RENVOIPAGE _Ref390757321 �211���
Embedded Guidelines�Description��Select TOOM calendar class�This guideline allows to select an existing calendar class in the database..��Attach TOOM temporal event to TOOM calendar class�This guideline permits to attach a temporal event to its corresponding calendar class.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM temporal event�4.3.7.3�239��TOOM calendar class�4.3.1�197���Describe TOOM calendar
Intention :
Verb : Describe
Target : TOOM calendar
Type of guideline : Plan
When is it used ?
The identification of an OOM calendar for the needs of the system conducts to its creation and its description.
The starting situation is a TOOM calendar.
Motivation :
To create a TOOM calendar is not sufficient, it is also necessary to describe its origin, granule, operators. When it is finished, it is possible to detach some events of the Gregorian calendar in order to attach them to the new user defined calendar.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Define origin : the first step to execute to define a TOOM calendar is to know its origin (an instant).
	(2) Define granule : to describe the granule is the second step of the description of the calendar. It allows you to follow the time line with the correct way. A granule is identified by a name and it has a coarser and a finer conversions.
	(3) Describe operators : They allow to add or subtract instants or intervals.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the origin has been described��(2)�(3)�the granule has been described��(3)�ending point�everything has been defined��Examples :
�

First step :	The origin of this calendar is the 01/0001.
Second step :	The basic unit is the day of the Gregorian calendar.
Third step :	The granules are the week and the year.
Fourth step :	The operators are defined.
Related guidelines :
Previous Guideline�Section�Page��Identify TOOM calendar class�� RENV _Ref390757097 \n �5.3.11��� RENVOIPAGE _Ref390757097 �215���
Embedded Guidelines�Section�Page��Define origin�This guideline allows to define the granule of the calendar.��Describe granule�� RENV _Ref393607998 \n �5.3.14��� RENVOIPAGE _Ref393607998 �221���Describe operators�� RENV _Ref390757388 \n �5.3.15��� RENVOIPAGE _Ref390757388 �223���Related concepts of the Reference manual :
Related concepts�Section�Page��OOM calendar�3.3.1.4�67��TOOM calendar�4.3.1�197��temporal event�4.3.7�236���Describe granule
Intention :
Verb : Describe
Target : TOOM calendar
Type of guideline : Plan
When is it used ?
The description of a calendar conducts to define all its elements, like the granules.
Motivation :
The identification of an OOM calendar for the needs of the system conducts to its creation and its description. One of the steps of the description consists in the description of the granule.
The starting situation is a TOOM calendar.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Define granule name
	(2) Define coarser conversion
	(3) Define finer conversion
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the granule name has been defined��(2)�(3)�the coarser conversion has been defined��(3)�ending point�the finer conversion has been defined��Examples :

Related guidelines :
Previous Guideline�Section�Page��Describe TOOM calendar�� RENV _Ref390757452 \n �5.3.13��� RENVOIPAGE _Ref390757452 �219���
Embedded Guidelines�Description��Define granule name�This guideline allows to define the name of the granule.��Define coarser conversion�This guideline permits to define the coarser conversion.��Define finer conversion�This guideline permits to define the finer conversion.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM calendar�4.3.1�197���Describe operators
Intention :
Verb : Describe
Target : TOOM calendar
Type of guideline : Plan
When is it used ?
The description of a calendar conducts to define all its elements, like the operators.
The starting situation is a TOOM calendar.
Motivation :
There are three kinds of calendar operators : the addition of an interval to an instant, the addition of an instant to an interval and the extraction of an interval between two instants.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Define addition interval-instant operator : this operator allows you to add an interval to an instant.
	(2) Define addition instant-interval operator : this operator allows you to add an instant to an interval.
	(3) Define extraction interval-2instants operator : this operator allows you to subtract two intervals.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the first operator has been defined��(2)�(3)�the second operator has been defined��(3)�ending point�the third operator has been defined��Examples :
�
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM calendar�� RENV _Ref390757452 \n �5.3.13��� RENVOIPAGE _Ref390757452 �219���
Embedded Guidelines�Description��Define addition interval-instant operator�This guideline permits to define the first operator of the calendar.��Define addition instant-interval operator�This guideline permits to define the second operator of the calendar.��Define extraction interval-2instants operators�This guideline permits to define the third operator of the calendar.��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM calendar�4.3.1�197��TOOM operators�4.3.1�197���Others guidelines
Guideline graphs
� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���
� INCORPORER Word.Picture.6 ���
�Describe TOOM link
Intention :
Verb : Describe
Target : TOOM link
Type of guideline : Plan
When is it used ?
The extension of a static link leads to its description.
The starting situation is a TOOM link.
Motivation :
This guideline can be used for four types of links : association, state association, aggregation and temporal aggregation. There is need to define the link cardinality and the inverse link cardinality for the association and state association. It is also indispensable to attach the link between two TOOM object classes.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define cardinality : cardinalities can be defined on the link. They are used to express how many instances of a class are connected to one instance of the associated class at a given time.
Define cardinality of the inverse link : On the same way, the cardinality of the inverse link of an association or a state association has to be defined.
Attach TOOM link to TOOM target class : a link has to be attached to an object class as a property.
Attach TOOM link to TOOM class : a link refer an other object so it is necessary to attach the link to this target object (as an inverse link in the properties).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the cardinality has been defined. The link is an association or a state association.��(1)�(3)�the cardinality has been defined. The link is an aggregation or a temporal aggregation.��(2)�(3)�the cardinality of the inverse link has been defined��(3)�(4)�the link has been attached to the target class��(4)�ending point�the link has been attached to an object class��Examples :
basic class LOAN extents loans
properties
	loan_request : asso (one, LOAN_REQUEST, inverse of loan)
endbasic-class

basic class LOAN-REQUEST extents loan_requests
properties
	loan : inverse (zeroone, LOAN::loan_request)
endbasic-class
Related guidelines :
Previous Guideline�Section�Page��Extend OOM association to TOOM association link�� RENV _Ref390579654 \n �5.1.23��� RENVOIPAGE _Ref390579654 �103���Extend OOM association link to TOOM state association link�� RENV _Ref390579663 \n �5.1.24��� RENVOIPAGE _Ref390579663 �105���Extend OOM aggregation link�� RENV _Ref393609369 \n �5.1.21��� RENVOIPAGE _Ref393609403 �99���
Embedded Guidelines�Section�Page��Define cardinality�This guideline consists in the definition of the cardinality of the link (from object class to target class). It can be « one », « many », « zeroone » or « zeromany ».��Define cardinality of the inverse link�This guideline allows to define the cardinality of the inverse link.��Attach TOOM link to TOOM target class�This guideline allows to attach the link to the target class.��Attach TOOM link to TOOM class�This guideline permits to attach the link to a TOOM class.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM link�3.3.1.5.2
3.3.1.5.3
3.3.1.6�70
73
77��TOOM link�4.3.5�225���Describe TOOM event
Intention :
Verb : Describe
Target : TOOM event
Type of guideline : Plan
When is it used ?
You are extending an OOM event to a TOOM event. You have retyped it and it is necessary to describe it.
The starting situation is a TOOM event.
Motivation :
An event occurrence is a projection of a real world phenomenon whose occurrence at a given instant generates an impact on some objects of the information system. There is three types of events : internal, external and temporal. Each of them is defined by a name, a predicate and a trigger set.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define Predicate : the next step is to define its predicate.
Define Name : the first step in the description of an event is to define its name.
Describe trigger : the last step in the description of an event is to describe its triggers. This guideline has to be performed for each trigger of the event.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the name has been defined��(2)�(3)�the predicate of the event has been defined��(3)�(3)�A trigger has been defined but there is still one that has not been studied.��(3)�ending point�all the triggers has been defined��Examples :
�
predicate : « for each first day of a month »
name : the first of each month
trigger : For each c in loans c..send-loan-statement()
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM internal event�� RENV _Ref391293818 \n �5.1.45��� RENVOIPAGE _Ref391293818 �147���Describe TOOM external event�� RENV _Ref390682458 \n �5.2.7��� RENVOIPAGE _Ref390682458 �192���Describe TOOM temporal event�� RENV _Ref390756854 \n �5.3.8��� RENVOIPAGE _Ref390756854 �209���
Embedded Guidelines�Section�Page��Define Name�This guideline allows to define the name of the event.��Define Predicate�This guideline permits to define the predicate of the event.��Describe Trigger�� RENV _Ref392578999 \n �5.4.4��� RENVOIPAGE _Ref392578999 �231���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236���Describe trigger
Intention :
Verb : Describe
Target : TOOM trigger
Type of guideline : Plan
When is it used ?
You are describing a TOOM event and you need to describe the trigger of it.
The starting situation is a TOOM trigger.
Motivation :
An event occurrence is a projection of a real world phenomenon whose occurrence at a given instant generates an impact on some objects of the information system. There is three types of events : internal, external and temporal. Each of them is defined by a name, a predicate and a trigger set. The trigger involves the verification of the associated triggering condition and the evaluation of the associated triggering factor for each operation triggered.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Describe Factor : One of the step in the description of the triggers of an event is to describe its factor. This step will permits you to retype the trigger and to define its name, signature, text, and comment and to attach to an event.
Describe Condition : On the same way, if there is a condition on the trigger, it will be necessary to retype and describe it.
Describe triggered operation : All the triggered operations needs to be retyped and described.
How to progress from component A to component B :
from�to�arguments��starting point�(1),(2),(3)�always true��(1),(3)�(2)�the condition hasn’t been described��(1),(2)�(3)�the operation haven’t been described��(2),(3)�(1)�the factor hasn’t been described��(1),(2),(3)�ending point�everything has been described��Examples :
�
factor :		For each c in loans
condition :	none
operation :	c..send-loan-statement()

factor : 		none
condition : 	none
operation :	Update-account()
Related guidelines :
Previous Guideline�Section�Page��Describe TOOM event�� RENV _Ref392579253 \n �5.4.3��� RENVOIPAGE _Ref392579253 �228���
Embedded Guidelines�Section�Page��Describe Factor�� RENV _Ref392579276 \n �5.4.5��� RENVOIPAGE _Ref392579276 �233���Describe Condition�� RENV _Ref392579282 \n �5.4.6��� RENVOIPAGE _Ref392579282 �235���Describe triggered operation�� RENV _Ref392579287 \n �5.4.7��� RENVOIPAGE _Ref392579287 �237���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236���Describe factor
Intention :
Verb : Describe
Target : TOOM event
Type of guideline : Plan
When is it used ?
You are extending an OOM event to a TOOM event. You have retyped it and it is necessary to describe its triggering factor.
The starting situation is a TOOM event.
Motivation :
An event occurrence is a projection of a real world phenomenon whose occurrence at a given instant generates an impact on some objects of the information system. There are three types of events : internal, external and temporal. Each of them is defined by a name, a predicate and a trigger set.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Retype OOM event factor to TOOM event factor : the first step in the description of the factor is to retype it in TOOM.
	(2) Describe TOOM trigger element : The description of the factor will contain the description of its name, signature, text, comment and its attachment to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the factor has been retyped��(2)�ending point�the factor has been described��Related guidelines :
Previous Guideline�Section�Page��Describe trigger�� RENV _Ref392578999 \n �5.4.4��� RENVOIPAGE _Ref392578999 �231���
Embedded Guidelines�Section�Page��Retype OOM event factor to TOOM event factor�This guideline allows to convert an OOM event factor into a TOOM event factor. This is composed of two steps : a deletion of the old event factor and a creation of the new TOOM event factor.��Describe TOOM trigger element�� RENV _Ref392579502 \n �5.4.10��� RENVOIPAGE _Ref392579502 �243���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236���Describe event condition
Intention :
Verb : Describe
Target : TOOM event
Type of guideline : Plan
When is it used ?
You are extending an OOM event to a TOOM event. You have retyped it and are describing its trigger. It is necessary to describe its condition.
The starting situation is an OOM event condition.
Motivation :
Before the operation is invoked, its control condition is checked. If the results of evaluating the condition are true, its operation is invoked. If false, the operation is not invoked.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM event condition to TOOM event condition: the first step in the description of the condition is to retype it in TOOM.
Describe TOOM event element : The description of the condition will contains the description of its name, signature, text, comment and its attachment to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the condition has been retyped��(2)�ending point�the condition has been described��Related guidelines :
Previous Guideline�Section�Page��Describe trigger�� RENV _Ref392578999 \n �5.4.4��� RENVOIPAGE _Ref392578999 �231���
Embedded Guidelines�Section�Page��Retype OOM event condition to TOOM event condition�This guideline allows to convert an event condition in TOOM. IT is composed of two steps : the first one is the deletion of the old OOM condition and the second one is the creation of the new TOOM condition.��Describe TOOM event element�� RENV _Ref392579502 \n �5.4.10��� RENVOIPAGE _Ref392579502 �243���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236���Describe triggered operation
Intention :
Verb : Describe
Target : TOOM event
Type of guideline : Plan
When is it used ?
You are extending an OOM event to a TOOM event. You have retyped it and are describing its trigger. It is necessary to describe its triggered operation.
The starting situation is a TOOM event.
Motivation :
An operation is an action that can be processed alone in the organization and can change the state of its objects. An operation is invoked by one or several events.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Retype OOM triggered operation to TOOM triggered operation: the first step in the description is to retype it in TOOM.
Describe TOOM event element : The description of the triggered operation will contain the description of its name, signature, text, comment and its attachment to an object class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the triggered operation has been retyped��(2)�ending point�the triggered operation has been described��Related guidelines :
Previous Guideline�Section�Page��Describe trigger�� RENV _Ref392578999 \n �5.4.4��� RENVOIPAGE _Ref392578999 �231���
Embedded Guidelines�Section�Page��Retype OOM triggered operation to TOOM triggered operation�This guideline allows to convert the triggered operation from OOM to TOOM by deleting the old one and creating the new one.��Describe TOOM event element�� RENV _Ref392579502 \n �5.4.10��� RENVOIPAGE _Ref392579502 �243���Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236���Retype OOM triggered operation to TOOM triggered operation
Intention :
Verb : Retype
Target : TOOM operation
Type of guideline : Choice
When is it used ?
You are describing the trigger of a TOOM event. One of the step of this description is to describe the triggered operations. The first step is to retype the OOM operation in TOOM operation.
The starting situation is an OOM triggered operation.
Motivation :
	There are three kind of operations : the object operation (that changes the states of objects), the derivation function (that create a derived class) and the external operation (that send messages to the actors). Each of these operations can be triggered by the event and has to be retyped.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
	(1) Retype OOM triggered operation to TOOM triggered object operation
	(2) Retype OOM triggered operation to TOOM triggered derivation function
	(3) Retype OOM triggered operation to TOOM triggered external operation
Argumentation :
Alternatives�Pros��Retype OOM triggered operation to TOOM triggered object operation�If the operation acts on an object, it is an object operation.��Retype OOM triggered operation to TOOM triggered derivation function�If the operation trigger the derivation of a derived class, it is a derivation function.��Retype OOM triggered operation to TOOM triggered external operation�If the operation represents a message sent to an actor, it is an external operation.��
Examples :

Related guidelines :
Previous Guideline�Section�Page��Describe triggered operation�� RENV _Ref392579287 \n �5.4.7��� RENVOIPAGE _Ref392579287 �237���
Embedded Guidelines�Description��Retype OOM triggered operation to TOOM triggered object operation�This guideline allows to convert an OOM operation into a TOOM object operation.��Retype OOM triggered operation to TOOM triggered derivation function�This guideline allows to convert an OOM operation into a TOOM derivation function.��Retype OOM triggered operation to TOOM triggered external operation�This guideline allows to convert an OOM operation into a TOOM external operation.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM operation�3.3.2.1�85��TOOM operation�4.3.4�208��TOOM event�4.3.7�236���Retype OOM triggered operation to TOOM triggered object operation
Intention :
Verb : Retype
Target : TOOM operation
Type of guideline : Choice
When is it used ?
You are describing the trigger of a TOOM event. One of the step of this description is to describe the triggered operations. The first step is to retype the OOM operation in TOOM operation.
The starting situation is an OOM operation.
Motivation :
An operation that acts on an object is an object operation. There are two types of object operations : the query ones and the basic ones.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Retype OOM triggered operation to TOOM triggered query operation : if the operation represents an action on an object that doesn’t change its state, it is a query operation and it is necessary to retype it in TOOM.
Retype OOM triggered operation to TOOM triggered basic operation : if the operation changes the state of an objects, it is a basic operation and it is necessary to retype it in TOOM.
Argumentation :
Alternatives�Pros��Retype OOM triggered operation to TOOM triggered query operation�If the operation represents an action on an object that doesn’t change its state, it is a query operation.��Retype OOM triggered operation to TOOM triggered basic operation�If the operation changes the state of an objects, it is a basic operation.��Related guidelines :
Previous Guideline�Section�Page��Retype OOM triggered operation to TOOM triggered operation�� RENV _Ref392581135 \n �5.4.8��� RENVOIPAGE _Ref392581135 �239���
Embedded Guidelines�Description��Retype OOM triggered operation to TOOM triggered query operation�This guideline allows to convert an OOM operation into a TOOM query operation.��Retype OOM triggered operation to TOOM triggered basic operation�This guideline allows to convert an OOM operation into a TOOM basic operation.��Related concepts of the Reference manual :
Related concepts�Section�Page��OOM operation�3.3.2.1�85��TOOM operation�4.3.4�208��TOOM event�4.3.7�236���Describe TOOM trigger element
Intention :
Verb : Describe
Target : TOOM event
Type of guideline : Plan
When is it used ?
The extension of an event leads to its conversion in TOOM. The next step is to describe it. This leads to the description of all its elements.
The starting situation is a TOOM trigger element.
Motivation :
A trigger element is defined by its name, its signature, its text and its comment. It is also indispensable to attach this element to an event.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
	(1) Define Name : the first step in the description of an event element is to define its name.
	(2) Define Signature : the next step is to define its signature.
	(3) Define text : the next step is to define its text.
	(4) Define comment : some comment can be defined.
	(5) Attach TOOM event element to TOOM event : this guideline helps to attach the event element to an event.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the name has been defined��(2)�(3)�the signature has been defined��(3)�(4)�the text has been defined��(4)�(5)�the comment has been defined��(5)�ending point�the element has been attached to an event.��Examples :

Related guidelines :
Previous Guideline�Section�Page��Describe Factor�� RENV _Ref392579276 \n �5.4.5��� RENVOIPAGE _Ref392579276 �233���Describe Condition�� RENV _Ref392579282 \n �5.4.6��� RENVOIPAGE _Ref392579282 �235���Describe triggered operation�� RENV _Ref392579287 \n �5.4.7��� RENVOIPAGE _Ref392579287 �237���
Embedded Guidelines�Section��Define name�action defining the name of the trigger element��Define signature�action defining the signature of the trigger element��Define text�action defining the text of the trigger element��Define comment�action defining the comment of the trigger element��Attach TOOM trigger element to TOOM trigger�action attaching the trigger element to the trigger��Related concepts of the Reference manual :
Related concepts�Section�Page��TOOM event�4.3.7�236��
��Map guidelines
6.1 « Map TOOM object class »	� BOUTONATTEINDRE _Toc393853569 � RENVOIPAGE _Toc393853569 �247��
6.1.1 Heuristics Graphs	� BOUTONATTEINDRE _Toc393853570 � RENVOIPAGE _Toc393853570 �247��
6.1.2 Map TOOM object class	� BOUTONATTEINDRE _Toc393853571 � RENVOIPAGE _Toc393853571 �253��
6.1.3 Map TOOM basic class	� BOUTONATTEINDRE _Toc393853572 � RENVOIPAGE _Toc393853572 �255��
6.1.4 Map TOOM basic snapshot class	� BOUTONATTEINDRE _Toc393853573 � RENVOIPAGE _Toc393853573 �257��
6.1.5 Map TOOM constraint	� BOUTONATTEINDRE _Toc393853574 � RENVOIPAGE _Toc393853574 �260��
6.1.6 Map TOOM constraint to the implementation level	� BOUTONATTEINDRE _Toc393853575 � RENVOIPAGE _Toc393853575 �262��
6.1.7 Create a function to verify the constraint	� BOUTONATTEINDRE _Toc393853576 � RENVOIPAGE _Toc393853576 �264��
6.1.8 Create the exception mechanism handling	� BOUTONATTEINDRE _Toc393853577 � RENVOIPAGE _Toc393853577 �266��
6.1.9 Define the triggering of the function	� BOUTONATTEINDRE _Toc393853578 � RENVOIPAGE _Toc393853578 �268��
6.1.10 Add the constraint in the function delayed-check()	� BOUTONATTEINDRE _Toc393853579 � RENVOIPAGE _Toc393853579 �270��
6.1.11 Add the constraint in the function immediate-check()	� BOUTONATTEINDRE _Toc393853580 � RENVOIPAGE _Toc393853580 �272��
6.1.12 Map TOOM attribute	� BOUTONATTEINDRE _Toc393853581 � RENVOIPAGE _Toc393853581 �274��
6.1.13 Map TOOM derived attribute	� BOUTONATTEINDRE _Toc393853582 � RENVOIPAGE _Toc393853582 �276��
6.1.14 Map TOOM attribute with time semantic	� BOUTONATTEINDRE _Toc393853583 � RENVOIPAGE _Toc393853583 �278��
6.1.15 Map TOOM link	� BOUTONATTEINDRE _Toc393853584 � RENVOIPAGE _Toc393853584 �280��
6.1.16 Map TOOM aggregation link	� BOUTONATTEINDRE _Toc393853585 � RENVOIPAGE _Toc393853585 �282��
6.1.17 Map TOOM aggregation link with single cardinality	� BOUTONATTEINDRE _Toc393853586 � RENVOIPAGE _Toc393853586 �284��
6.1.18 Map TOOM aggregation link with multiple cardinality	� BOUTONATTEINDRE _Toc393853587 � RENVOIPAGE _Toc393853587 �287��
6.1.19 Map TOOM association link	� BOUTONATTEINDRE _Toc393853588 � RENVOIPAGE _Toc393853588 �290��
6.1.20 Map TOOM basic time dependent class	� BOUTONATTEINDRE _Toc393853589 � RENVOIPAGE _Toc393853589 �292��
6.1.21 Map TOOM time dependent class with history	� BOUTONATTEINDRE _Toc393853590 � RENVOIPAGE _Toc393853590 �294��
6.1.22 Map TOOM temporal class with history	� BOUTONATTEINDRE _Toc393853591 � RENVOIPAGE _Toc393853591 �296��
6.1.23 Map TOOM temporal dictionary class with history	� BOUTONATTEINDRE _Toc393853592 � RENVOIPAGE _Toc393853592 �298��
6.1.24 Map the class into an element	� BOUTONATTEINDRE _Toc393853593 � RENVOIPAGE _Toc393853593 �300��
6.1.25 Map TOOM time dependent class with state	� BOUTONATTEINDRE _Toc393853594 � RENVOIPAGE _Toc393853594 �303��
6.1.26 Map TOOM time dependent class with state to history management	� BOUTONATTEINDRE _Toc393853595 � RENVOIPAGE _Toc393853595 �305��
6.1.27 Map TOOM time dependent class with state to UDT management	� BOUTONATTEINDRE _Toc393853596 � RENVOIPAGE _Toc393853596 �307��
6.1.28 Map TOOM derived class	� BOUTONATTEINDRE _Toc393853597 � RENVOIPAGE _Toc393853597 �309��
6.2 « Map TOOM calendar class »	� BOUTONATTEINDRE _Toc393853598 � RENVOIPAGE _Toc393853598 �311��
6.2.1 Heuristic graph	� BOUTONATTEINDRE _Toc393853599 � RENVOIPAGE _Toc393853599 �311��
6.2.2 Map TOOM calendar class	� BOUTONATTEINDRE _Toc393853600 � RENVOIPAGE _Toc393853600 �312��
6.2.3 Map TOOM temporal event	� BOUTONATTEINDRE _Toc393853601 � RENVOIPAGE _Toc393853601 �314��
6.3 « Map TOOM actor class »	� BOUTONATTEINDRE _Toc393853602 � RENVOIPAGE _Toc393853602 �316��
6.3.1 Heuristic graph	� BOUTONATTEINDRE _Toc393853603 � RENVOIPAGE _Toc393853603 �316��
6.3.2 Map TOOM actor class	� BOUTONATTEINDRE _Toc393853604 � RENVOIPAGE _Toc393853604 �317��
6.3.3 Map TOOM actor class to a particular client application	� BOUTONATTEINDRE _Toc393853605 � RENVOIPAGE _Toc393853605 �319��
6.3.4 Map TOOM actor class to an existing application	� BOUTONATTEINDRE _Toc393853606 � RENVOIPAGE _Toc393853606 �321��
�« Map TOOM object class »
Heuristics Graphs
�INCORPORER Word.Picture.6���
�INCORPORER Word.Picture.6���
�INCORPORER Word.Picture.6���
�INCORPORER Word.Picture.6���
� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���

� INCORPORER Word.Picture.6 ���

�Map TOOM object class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The TOOM model is composed of three different types of classes : the object classes, the calendar classes and the actor classes. It is essential to map all of them in order to have a complete mapping to the implementation level.
	The starting situation is a TOOM object class.
Motivation :
	To map the object classes will provide in the implementation step all the structural aspects that are necessary to the application. There are two types of object classes : the basic ones and the derived ones.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM basic class : This option is chosen if the TOOM class is a basic snapshot class, a basic temporal class or a basic temporal dictionary class, in order to retype it into an implementation class, map its constraints, its attributes, its internal events, its operations and its links.
Map TOOM derived class : If the class is a derived class, there are two possible alternatives. On one hand, it is possible to choose to keep it and to transform it into a TODL class. On the other hand, it is possible to decide not to keep it and transform it into a TODL function.
Argumentation :
Alternatives�Pros��Map TOOM basic class�The TOOM class is a basic class.��Map TOOM derived class�the TOOM class is a derived class.��Examples :
� INCORPORER Word.Picture.6 ���
interface product
(extent products
keys ProductCode
{
	attribute String ProductCode ;
	attribute String Name ;
	attribute String Type ;
	attribute String Status valid event granularity day ;
	attribute Interval Duration valid state granularity day ;
}
Related heuristics :
Embedded Heuristics�Section�Page��Map TOOM basic class�� RENV _Ref392992854 \n �6.1.3��� RENVOIPAGE _Ref392992854 �255���Map TOOM derived class�� RENV _Ref393011063 \n �6.1.28��� RENVOIPAGE _Ref393011063 �309���Related concepts :
Related concepts�Section�Page��TOOM basic and derived class�4.3.3�204���Map TOOM basic class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	TOOM specializes the concept of object class into the basic and the derived object classes. If the class is an object class describing basic objects of the enterprise (not derivable), this heuristic will help to map it into the implementation level.
	The starting situation is a TOOM basic class.
Motivation :
	There are two kinds of basic object classes : the snapshot ones and the time dependent class. This last type can be specialized in two other kinds of classes : the temporal ones and the temporal dictionary ones.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM basic snapshot class : this heuristic allows to map a basic snapshot class by mapping all its elements (attributes, links, events, operations, constraints and temporal variation).
Map TOOM basic temporal variation : this alternative permits to map the temporal class or the temporal dictionary class.
Argumentation :
Alternatives�Pros��Map TOOM basic snapshot class�The class is a basic snapshot class.��Map TOOM basic time dependent class�The class is a temporal class or a temporal dictionary class.��Examples :
� INCORPORER Word.Picture.6 ���
interface product
(extent products
keys ProductCode
{
	attribute String ProductCode ;
	attribute String Name ;
	attribute String Type ;
	attribute String Status valid event granularity day ;
	attribute Interval Duration valid state granularity day ;
}
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM object class�� RENV _Ref393075648 \n �6.1��� RENVOIPAGE _Ref392992174 �246���
Embedded Heuristics�Section�Page��Map TOOM basic snapshot class�� RENV _Ref392993602 \n �6.1.4��� RENVOIPAGE _Ref392993602 �257���Map TOOM basic temporal variation�� RENV _Ref393003290 \n �6.1.20��� RENVOIPAGE _Ref393003290 �292���Related concepts :
Related concepts�Section�Page��TOOM basic class�4.3.3�204��TOOM snapshot class�4.3.4.1�208��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM basic snapshot class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The TOOM schema contains at least a TOOM basic snapshot class. This heuristic allows to map it into the implementation level.
	The starting situation is a TOOM basic snapshot class.
Motivation :
	To map a basic snapshot class leads to map all its elements : structural and behavioral ones.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Map TOOM basic snapshot class to implementation snapshot class : this heuristic permits to transform a TOOM class in a TODL class.
Map TOOM constraint : this step allows to map a constraint of the class. This heuristic has to be performed for all the constraints of the class.
Map TOOM attribute to implementation attribute : this step allows to map an attribute of the class. This heuristic has to be performed for all the attributes of the class.
Map TOOM operation to implementation operation : this step allows to map an operation of the class. This heuristic has to be performed for all the operations of the class.
Map TOOM internal event to procedure triggered by the code of the external event : this step allows to map an event of the class. This heuristic has to be performed for all the events of the class.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1),(3),(4),(5)�(2)�there is a constraint that has not been mapped��(1),(2),(4),(5)�(3)�there is an attribute that has not been mapped��(1),(2),(3),(5)�(4)�there is an operation that has not been mapped��(1),(2),(3),(4)�(5)�there is an internal event that has not been mapped��(2),(3),(4),(5)�ending point�everything has been mapped��Examples :
� INCORPORER Word.Picture.6 ����interface product
(extent products
keys ProductCode
{
	attribute String ProductCode ;
	attribute String Name ;
	attribute String Type ;
	attribute String Status valid event granularity day ;
	attribute Interval Duration valid state granularity day ;
}��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM basic class�� RENV _Ref392992854 \n �6.1.3��� RENVOIPAGE _Ref392992854 �255���
Embedded Heuristics�Section�Page��Map TOOM basic snapshot class to implementation snapshot class�The TOOM basic snapshot class has a corresponding concept into the implementation level that is also called a snapshot class. This heuristic allows this conversion.��Map TOOM constraint�� RENV _Ref392994010 \n �6.1.5��� RENVOIPAGE _Ref392994010 �260���Map TOOM attribute�� RENV _Ref392996442 \n �6.1.12��� RENVOIPAGE _Ref392996442 �274���Map TOOM operation to implementation operation�The TOOM operation has a corresponding concept into the implementation level that is also called an operation. This heuristic allows this conversion.��Map TOOM internal event to procedure triggered by the code of the external event�There is no internal event at the implementation level. As a result, each of them have to be transformed into a procedure that will be triggered by the code of an external event.��Related concepts :
Related concepts�Section�Page��TOOM basic class�4.3.3�204��TOOM snapshot class�4.3.4.1�208��TOOM constraint�4.3.6�227��TOOM internal event�4.3.7.2�237��TOOM links�4.3.5�225���Map TOOM constraint
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of its elements. If this class was containing some constraints, it is essential to map them also and this heuristic helps to do it.
	The starting situation is a TOOM constraint.
Motivation :
	TOOM specializes the concept of constraint. In TODL, there is only the key constraint but some rules can be followed in order to map the other types of constraints.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM uniqueness constraint to TODL key constraint : the uniqueness constraint is the only constraint that has a correspondence in TODL (that is called the key constraint). This heuristic allows to do the mapping of this TOOM constraint into the TODL constraint.
Map TOOM constraint to the implementation level : the constraints of TOOM can be mapped in TODL following some specific guidelines as the creation of different functions, exception classes and so on.
Argumentation :
Alternatives�Pros��Map TOOM uniqueness constraint to TODL key constraint�the TOOM constraint is a uniqueness constraint��Map TOOM constraint to the implementation level�the TOOM constraint is not a uniqueness constraint (attribute, inheritance)��Examples :
� INCORPORER Word.Picture.6 ����interface product
(extent products
keys ProductCode
{
	attribute String ProductCode ;
	attribute String Name ;
	attribute String Type ;
	attribute Interval Duration valid state granularity day ;
}��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM basic snapshot class�� RENV _Ref392993602 \n �6.1.4��� RENVOIPAGE _Ref392993602 �257���
Embedded Heuristics�Section�Page��Map TOOM uniqueness constraint to TODL key constraint�the uniqueness constraint is the only constraint that has a correspondence in TODL (that is called the key constraint). This heuristic allows to do this mapping.��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���Related concepts :
Related concepts�Section�Page��TOOM basic class�4.3.3�204��TOOM snapshot class�4.3.4.1�208��TOOM constraint�4.3.6�227���Map TOOM constraint to the implementation level
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of its elements. If this class was containing some constraints, it is essential to map them also. This heuristic helps to map constraints that are not uniqueness constraints, that is to say the attribute and the inheritance constraints.
	The starting situation is a TOOM constraint.
Motivation :
	TOOM specializes the concept of constraint. In TODL, there is only the key constraint but some rules can be followed in order to map the other types of constraints.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create a function to verify the constraint : this step allows to create a specific function that will check the constraint.
Create the exception mechanism handling : the exception mechanism handling is composed of two steps : one is the creation of the exception class and the other is the creation of the function triggered when this exception is raised.
Define triggering of the function : the constraint can be attached in one of these two functions : one is the delayed-check() and the other one is the immediate-check(). The delayed check function is used to trigger the check of all the inter-object constraints available on this class whereas the immediate check function is defined to check all the intra-object constraints of this class.
Integrate try block and catch instruction into client interaction when it is required. Each client interaction modifying at least one object of this class should integrate a try block and a catch instruction to treat exceptions when one of these constraints is not respected.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the function to verify the constraint has been created��(2)�(3)�the exception mechanism handling has been created��(3)�(4)�the trigger of the function has been defined��(4)�ending point�the try block and catch instruction has been integrated��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint�� RENV _Ref392994010 \n �6.1.5��� RENVOIPAGE _Ref392994010 �260���
Embedded Heuristics�Section�Page��Create a function to verify the constraint�� RENV _Ref392995937 \n �6.1.7��� RENVOIPAGE _Ref392995937 �264���Create the exception mechanism handling�� RENV _Ref392995946 \n �6.1.8��� RENVOIPAGE _Ref392995946 �266���Define triggering of the function�� RENV _Ref392995954 \n �6.1.9��� RENVOIPAGE _Ref392995954 �268���Integrate try block and catch instruction into client interaction when it is required�The programmer should integrate into his C++ code of the client interaction, the try block and the catch instruction for managing the exception associated to this class because this client interaction modifies a state of at least one object of this class.��Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227���Create a function to verify the constraint
Intention :
Verb : Create
Target : Implementation level
Type of guideline : Choice
When it is used ?
	To map a constraint of a TOOM basic snapshot class leads to some steps of functions creations. This heuristic allows to create a function that will check the constraint in OQL or in TOQL according to the time classification of the constraint.
	The starting situation is a TOOM constraint.
Motivation :
	TOOM uses particular constraints classifications. : object classification and time classification .The mapping to the implementation level will use the time specification in order to choose the query language that has to be use for this function, either OQL or TOQL.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Create a function to verify the constraint in OQL : if the TOOM constraint has the classification of an intra time constraint, this heuristic permits to write the function in OQL.
Create a function to verify the constraint in TOQL : if the TOOM constraint has the classification of an inter time constraint, this heuristic permits to write the function in TOQL.
Argumentation :
Alternatives�Pros�Cons��Create a function to verify the constraint in OQL�the constraint is intra-time constraint : that means that the constraint is only dependent of an instant t.�the constraint is an inter time constrain : that means that the constraint is defined by using information available or valid at different instants.��Create a function to verify the constraint in TOQL�the constraint is an inter time constrain : that means that the constraint is defined by using information available or valid at different instants.�the constraint is an intra time constraint : that means that the constraint is only dependent of an instant t.��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���
Embedded Heuristics�Description��Create a function to verify the constraint in OQL�The programmer should add a function to verify this constraint into the class. The function can be developed with the OQL statement (because there is no time reference).��Create a function to verify the constraint in TOQL�The programmer should add a function to verify this constraint into the class. The function can be developed with the TOQL statement (because temporal query is required).��Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227��Classification applied on constraints�4.3.6.1�228���Create the exception mechanism handling
Intention :
Verb : Create
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To map a constraint of a TOOM basic snapshot class leads to the creation of some implementation concepts. One of them is the creation of the exception mechanism handling.
	The starting situation is a TOOM constraint.
Motivation :
	A way of managing constraints of an application can be the exception mechanism handling. TOOBIS environment manages its errors with this way and the application built with the TOOBIS environment uses the same way for managing its errors.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create the exception class : the first step is to create the VisualC++ exception class.
Create the function called when the exception is raised : the second step is to create a function triggered when the exception will be raised in order to perform some instructions representing the constraint.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the exception class has been created��(2)�ending point�the function has been created��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���
Embedded Heuristics�Section��Create the exception class�The exception class is a class representing a class of errors. If the VisualC++ environment is used and the MFC library, this class should inherit from the Exception class available in the MFC library.��Create the function called when the exception is raised�The idea here is to have a systematic way for solving the error when the exception is raised. We suggest to code it into a function called for treating the exception.��Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227���Define the triggering of the function
Intention :
Verb : Define
Target : Implementation level
Type of guideline : Choice
When it is used ?
	Each implementation class has two functions containing the constraints. One is the delayed-check() and the other one is the immediate-check(). According to the object classification of the TOOM constraint, the instructions called when the exception is raised will be put in one of these functions.
	The starting situation is a TOOM constraint.
Motivation :
	TOOM uses particular constraints classifications. : object classification and time classification .The mapping to the implementation level will use the object specification in order to choose the object function that will receive the constraint instructions.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Add the constraint in the function delayed-check() : this heuristic allows to create the function delayed-check() if it does not exist yet for this particular object and to attach the concerned constraint to it.
Add the constraint in the function immediate-check() : this heuristic allows to create the function immediate-check() if it does not exist yet for this particular object and to attach the concerned constraint to it.
Argumentation :
Alternatives�Pros��Add the constraint in the function delayed-check()�the TOOM constraint is an inter-object constraint.��Add the constraint in the function immediate-check()�the TOOM constraint is an intra object constraint .��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���
Embedded Heuristics�Section�Page��Add the constraint in the function delayed-check()�� RENV _Ref392996003 \n �6.1.10��� RENVOIPAGE _Ref392996003 �270���Add the constraint in the function immediate-check()�� RENV _Ref392996010 \n �6.1.11��� RENVOIPAGE _Ref392996010 �272���Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227��Classification applied on constraints�4.3.6.1�228���Add the constraint in the function delayed-check()
Intention :
Verb : Add
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To map a TOOM basic snapshot class to the implementation level leads to the mapping of its constraints. This step has to follow some rules in order to be performed properly because the TOOM specialization of the constraint concept doesn’t exist in TODL. This heuristic is one of the steps that have to be followed if the constraint is an inter object constraint.
	The starting situation is a TOOM constraint.
Motivation :
	Each implementation class can own two specific functions that are the delayed-check() and the immediate-check(). These functions contain the call instruction of function verifying the constraints of the object. This heuristic will allow to create the function if this one does not exist yet for this particular object and to attach the instructions to this function.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create the delayed-check() function : this action permits to create this function if the class has inter-object constraint.
Attach the constraint to the function delayed-check() : this heuristic permits to attach the call of the function verifying the constraint into the function delayed-check().
How to progress from component A to component B :
from�to�arguments��starting point�(1)�the function doesn’t exist for this object��starting point�(2)�the function already exists for this object��(1)�(2)�the function has been created��(2)�ending point�the constraint has been attached to the function��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���
Embedded Heuristics�Description��Create the delayed-check() function�creation of this function embedded into the class for triggering the check of all the inter-object constraints.��Attach the constraint to the function delayed-check()�this heuristic permits to add the call function allowing to check the constraint into the function delayed-check().��Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227��Classification applied on constraint�4.3.6.1�228���Add the constraint in the function immediate-check()
Intention :
Verb : Add
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To map a TOOM basic snapshot class to the implementation level leads to the mapping of its constraints. This step has to follow some rules in order to be performed properly because the TOOM specialization of the constraint concept doesn’t exist in TODL. This heuristic is one of the steps that have to be followed if the constraint is an intra object constraint.
	The starting situation is a TOOM constraint.
Motivation :
	Each implementation class can own two specific functions that are the delayed-check() and the immediate-check(). These functions contain the call instruction of function verifying the constraints of the object. This heuristic will allow to create the function if this one does not exist yet for this particular object and to attach the instructions to this function.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Create the immediate-check() function : this action permits to create this function if the class has intra-object constraint.
Attach the constraint to the function immediate-check() : this heuristic permits to attach the instructions concerning the constraint into the function immediate-check().
How to progress from component A to component B :
from�to�arguments��starting point�(1)�the function doesn’t exist for this object��starting point�(2)�the function already exists for this object��(1)�(2)�the function has been created��(2)�ending point�the constraint has been attached to the function��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM constraint to the implementation level�� RENV _Ref392994567 \n �6.1.6��� RENVOIPAGE _Ref392994567 �262���
Embedded Heuristics�Description��Create the immediate-check() function�creation of this function embedded into the class for triggering the check of all the intra-object constraints.��Attach the constraint to the function immediate-check()�this heuristic permits to attach the instructions concerning the constraint into the function immediate-check()��Related concepts :
Related concepts�Section�Page��TOOM constraint�4.3.6�227��Classification applied on constraint�4.3.6.1�228���Map TOOM attribute
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	To map a TOOM basic snapshot class leads to the mapping of all its elements. If the class contains attributes, this heuristic will help to map them to the implementation level.
	The starting situation is a TOOM attribute.
Motivation :
	There are three types of TOOM attributes that can be mapped into the implementation level: the temporal ones, the non temporal ones and the specific kind of attribute that are the derived ones.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM derived attribute : there are two ways of mapping a derived attribute, one is to map it into a function and the other one is to map it into a function and an attribute, according to the guessed evolution of the data and of its facility to be derived.
Map TOOM non temporal attribute to a snapshot attribute without time semantic at the implementation level : if the attribute has no time semantic, the only way to map it into the implementation level is to convert it into a snapshot attribute with the same domain.
Map TOOM attribute with time semantic to a snapshot attribute with an UDT domain: the way to map a TOOM attribute with time semantic is composed of two steps : the first one allows to map the attribute itself and the second one helps to map its domain.
Argumentation :
Alternatives�Pros��Map TOOM derived attribute�the attribute is a derived attribute (query operation with no arguments)��Map TOOM non temporal attribute to a snapshot attribute without time semantic at the implementation level�the attribute has no time semantic��Map TOOM attribute with a time semantic to a snapshot attribute with an UDT domain �the attribute has a semantic of time ; it is a user defined time (UDT).��Examples :
The Age of a Patient is a derived attribute of the Patient class. At the implementation level, this derived attribute is mapped into a query function computing its value because this data evolves during the time.
The ProductCode of a Product has a string domain in TOOM and that does not change at the implementation level.
Birthday is an attribute with time semantic. Its TOOM domain is INSTANT-A <Gregorian, Day>. It is mapped at the implementation level into :
« attribute Instant granularity day calendar Gregorian Birthday ; ».
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM basic snapshot class�� RENV _Ref392993602 \n �6.1.4��� RENVOIPAGE _Ref392993602 �257���
Embedded Heuristics�Section�Page��Map TOOM derived attribute�� RENV _Ref392996923 \n �6.1.13��� RENVOIPAGE _Ref392996923 �276���Map TOOM non temporal attribute to a snapshot attribute without time semantic�if the attribute has no time semantic, the only way to map it into the implementation level is to convert it as a snapshot attribute with the same domain.��Map TOOM attribute with time semantic to a snapshot attribute with an UDT domain�� RENV _Ref392997267 \n �6.1.14��� RENVOIPAGE _Ref392997267 �278���Related concepts :
Related concepts�Section�Page��TOOM temporal attribute�4.3.2�201���Map TOOM derived attribute
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	To map a TOOM basic snapshot class leads to the mapping of all of its elements. If it contains a derived attribute, this heuristic will help to map it.
	The starting situation is a TOOM attribute.
Motivation :
	Derived attributes represent information that can be computed by the system (query operations with no argument) At the implementation level, it is necessary to choose if the attribute will be kept as a data in the database or if it will be derived when it is required.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM derived attribute to a function at the implementation level : this alternative will transform the derived attribute into a function. As a result, it will not be stored as a data but computed at each call.
Map TOOM derived attribute to a function and an attribute at the implementation level : this heuristic allows to store the computed data that will be refreshed by the application.
Argumentation :
Alternatives�Pros��Map TOOM derived attribute to a function at the implementation level�the derivation is easy to do
there is an important evolution of the derived data��Map TOOM derived attribute to a function and a snapshot attribute at the implementation level�The derived data doesn’t evolve on an important way.
The derivation is not easy to perform
the refreshment of the stored data should be taken into account by the application.��Examples :
The Age of a Patient is a derived attribute of the Patient class. At the implementation level, this derived attribute is mapped into a query function computing its value because this data evolves during the time.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM attribute�� RENV _Ref392996442 \n �6.1.12��� RENVOIPAGE _Ref392996442 �274���
Embedded Heuristics�Section��Map TOOM derived attribute to a function at the implementation level�this alternative will transform the derived attribute into a function. As a result, it will not be stored as a data but computed at each call.��Map TOOM derived attribute to a function and a snapshot attribute at the implementation level�this heuristic allows to store the data that will be refreshed by the application at some regular times by the linked function.���Map TOOM attribute with time semantic
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To map a TOOM basic snapshot class leads to map its attributes. If there is a attribute with time semantic contained in the class, this heuristic will help to map it to the implementation level.
	The starting situation is a TOOM attribute.
Motivation :
	The temporal extension of TOOM introduces the attributes with time semantic (attributes with an UDT domain). It is possible to map them in the implementation level by mapping firstly the attribute and secondly the domain.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Map TOOM attribute with time semantic to a snapshot attribute at the implementation level : the first step to map a attribute with time semantic is to convert the TOOM attribute into a snapshot attribute.
Map TOOM domain : the second step is to map the TOOM domain into a corresponding UDT domain.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the attribute has been mapped��(2)�ending point�the domain of the attribute has been mapped��Examples :
Birthday is an attribute with time semantic. Its TOOM domain is INSTANT-A <Gregorian, Day>. It is mapped at the implementation level into :
« attribute Instant granularity day calendar Gregorian Birthday ; ».
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM attribute�� RENV _Ref392996442 \n �6.1.12��� RENVOIPAGE _Ref392996442 �274���
Embedded Heuristics�Description��Map TOOM attribute with time semantic to a snapshot attribute �The first step of the mapping is to convert the TOOM attribute into a snapshot attribute.��Map TOOM domain�the second step is to map the TOOM domain into a corresponding UDT domain.��Related concepts :
Related concepts�Section�Page��TOOM attribute with time semantic�4.3.2�201��TOOM domain�4.3.2�201���Map TOOM link
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	To map a basic snapshot class to the implementation level leads to map all its elements. If the class owns some links, it is essential to map them and this heuristic will allow to do it.
	The starting situation is a TOOM link.
Motivation :
	A basic snapshot class can have five types of links : the aggregation one, the association one, the state association one, the inheritance one and the temporal variation one. In this last case, the heuristic will lead to the mapping of the temporal variation of the class (the temporal or the temporal dictionary classes)
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM aggregation link : There are two possibilities to map an aggregation link into the implementation level, according to its cardinality and this heuristic helps to do it.
Map TOOM association link : There are three possibilities to map an association link into the implementation level, according to its cardinality and this heuristic helps to do it.
Map TOOM state association link to state relationship : The TOOM state association has a corresponding concept in TODL that is called « state relationship » and this heuristic allows this mapping.
Map TOOM inheritance link to TODL inheritance link : The TOOM inheritance link has a corresponding concept in TODL that has the same name and this heuristic allows this mapping.
Map the basic temporal variation : There are two different kinds of temporal variation : the temporal classes and the temporal dictionary classes.
Argumentation :
Alternatives�Pros��Map TOOM aggregation link�the link is an aggregation link��Map TOOM association link�the link is an association link ��Map TOOM state association link to state relationship�the link is a state association link��Map TOOM inheritance link to TODL inheritance link�the link is an inheritance link ��Map the basic temporal variation�the link is a temporal aggregation link ��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM basic snapshot class�� RENV _Ref392993602 \n �6.1.4��� RENVOIPAGE _Ref392993602 �257���
Embedded Heuristics�Section�Page��Map TOOM aggregation link�� RENV _Ref393001936 \n �6.1.16��� RENVOIPAGE _Ref393001936 �282���Map TOOM association link�� RENV _Ref393003139 \n �6.1.19��� RENVOIPAGE _Ref393003139 �290���Map TOOM state association link to state relationship�The concept of state association has a corresponding concept in the implementation level that is called « state relationship ».��Map TOOM inheritance link to TODL inheritance link�The concept of inheritance link has the same corresponding concept in TODL.��Map the basic temporal variation�� RENV _Ref393003290 \n �6.1.20��� RENVOIPAGE _Ref393003290 �292���Related concepts :
Related concepts�Section�Page��TOOM links�4.3.5�225���Map TOOM aggregation link
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of all of its elements. If the class contains an aggregation link, it is essential to map it also to the implementation level.
	The starting situation is a TOOM aggregation link.
Motivation :
	An aggregation is a specific links between classes. It represents the composition of objects (It establishes a strong structural relationship between each object of the former class). Aggregation link can be associated with one of the following cardinalities : « zeone », « one », « zeromany », « many ». To map this particular link will permit to map some of the structural aspects of the schema.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM aggregation link with simple cardinality : The link has a simple cardinality. There are three ways of mapping that type of link, according to the view we have of the component class.
Map TOOM aggregation link with multiple cardinality : On the same way, there are three different ways of mapping an aggregation with multiple cardinality.
Argumentation :
Alternatives�Pros��Map TOOM aggregation link with simple cardinality�the cardinality of the link is either « one » or « zeroone »��Map TOOM aggregation link with multiple cardinality�the cardinality of the link is either « many » or « zeromany »��Examples :
�
Interface Order
(extent Orders
keys Ordercode)
{
//attributes
 attribute String OrderCode
 attribute Instant granularity day calendar Gregorian OrderDate
 relationship set <Orderline> Orders inverse Orderline::Part-of
}�Interface Orderline
(extent Orderlines
keys OrderLineNumber)
{
//attributes
 attribute String OrderLineNumber
 relationship Order Part-of inverse Order::Orderlines
}��The component class OrderLine of the Order class cannot be mapped into a structured attribute because it contains a link with an other class : the Product class. As it is necessary to know the inverse link of this aggregation (queries from the Orderline to the Order objects), it can be mapped into a relationship with inverse link.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM link�� RENV _Ref393001912 \n �6.1.15��� RENVOIPAGE _Ref393001912 �280���
Embedded Heuristics�Section�Page��Map TOOM aggregation link with single cardinality�� RENV _Ref393001990 \n �6.1.17��� RENVOIPAGE _Ref393001990 �284���Map TOOM aggregation link with multiple cardinality�� RENV _Ref393002657 \n �6.1.18��� RENVOIPAGE _Ref393002657 �287���Related concepts :
Related concepts�Section�Page��TOOM link�4.3.5�225���Map TOOM aggregation link with single cardinality
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of all of its elements. If the class contains an aggregation link, it is essential to map it also to the implementation level. This heuristic will help to map an aggregation link with a simple cardinality (« zeroone » or « one »).
	The starting situation is a TOOM aggregation link.
Motivation :
	An aggregation is a specific links between classes. It represents the composition of objects (It establishes a strong structural relationship between each object of the former class). Aggregation link can be associated with one of the following cardinalities : « zeone », « one », « zeromany », « many ». To map this particular link will permit to map some of the structural aspects of the schema.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM aggregation link with simple cardinality to a snapshot attribute with a structured domain : if the component class should be seen as a domain, the TOOM aggregation link can be mapped to the implementation level in an attribute with a structured domain.
Map TOOM aggregation link with simple cardinality to a snapshot attribute with object type domain : if the component class should be seen as a class, the TOOM aggregation link can be mapped to the implementation level in an attribute with an object type domain.
Map TOOM aggregation link with simple cardinality to a snapshot relationship with simple cardinality : if the inverse link of the aggregation is required, the TOOM aggregation link can be mapped to the implementation level in a relationship with simple cardinality.
Argumentation :
Alternatives�Pros��Map TOOM aggregation link with simple cardinality to TODL attribute with a structured domain�the component class should be seen as a domain��Map TOOM aggregation link with simple cardinality to TODL attribute with object type domain�the component class should be seen as a class��Map TOOM aggregation link with simple cardinality to TODL relationship with simple cardinality�the inverse link of the aggregation is required��Examples :
�
Interface Person
(extent Persons
keys Name)
{
//attributes
 attribute String Name ;
 attribute AddressDomain address ;
}�Struct AddressDomain
{
 String StreetName ;
 Integer Number ;
 String ZipCode ;
 String Town ;
 String Country ;
}��The component class Address of the class Person should be seen as a domain because this class is only composed of atomic attributes. As a result, the component class Address is converted into the structured domain AddressDomain and the aggregation link is mapped into the attribute Address with this structured domain in the class Person.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM aggregation link�� RENV _Ref393001936 \n �6.1.16��� RENVOIPAGE _Ref393001936 �282���
Embedded Heuristics�Description��Map TOOM aggregation link with simple cardinality to a snapshot attribute with a structured domain�the component class is converted into a structured domain and the aggregation link is mapped into a snapshot attribute with this structured domain.��Map TOOM aggregation link with simple cardinality to a snapshot attribute with object type domain�The component class is still implemented as a class and the aggregation link is converted into a snapshot attribute with an object type as a domain (ODMG97)��Map TOOM aggregation link with simple cardinality to a snapshot relationship with simple cardinality�the component class is still implemented as a class and the aggregation link is converted into a snapshot relationship with inverse link.��Related concepts :
Related concepts�Section�Page��TOOM link�4.3.5�225���Map TOOM aggregation link with multiple cardinality
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of all of its elements. If the class contains an aggregation link, it is essential to map it also to the implementation level. This heuristic will help to map an aggregation link with a multiple cardinality (« zemany » or « many »).
	The starting situation is a TOOM aggregation link.
Motivation :
	An aggregation is a specific link between classes. It represents the composition of objects (It establishes a strong structural relationship between each object of the former class). Aggregation link can be associated with one of the following cardinalities : « zeone », « one », « zeromany », « many ». To map this particular link will permit to map some of the structural aspects of the schema.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM aggregation link with multiple cardinality to TODL attribute with a set defined on a structured domain : if the component class should be seen as a domain, the TOOM aggregation link can be mapped to the implementation level in an attribute with a structured domain.
Map TOOM aggregation link with multiple cardinality to TODL attribute with a set defined on the component class : if the component class should be seen as a class, the TOOM aggregation link can be mapped to the implementation level in an attribute with a set defined on the component class.
Map TOOM aggregation link with multiple cardinality to TODL relationship with multiple cardinality : if the inverse link of the aggregation is required, the TOOM aggregation link can be mapped to the implementation level in a relationship with multiple cardinality.
Argumentation :
Alternatives�Pros��Map TOOM aggregation link with multiple cardinality to a snapshot attribute with a set defined on a structured domain�the component class should be seen as a domain��Map TOOM aggregation link with multiple cardinality to a snapshot attribute with a set defined on the component class�the component class should be seen as a class��Map TOOM aggregation link with multiple cardinality to a snapshot relationship with multiple cardinality�the inverse link of the aggregation is required��Examples :
�
Interface Order
(extent Orders
keys Ordercode)
{
//attributes
 attribute String OrderCode
 attribute Instant granularity day calendar Gregorian OrderDate
 relationship set <Orderline> Orders inverse Orderline::Part-of
}�Interface Orderline
(extent Orderlines
keys OrderLineNumber)
{
//attributes
 attribute String OrderLineNumber
 relationship Order Part-of inverse Order::Orderlines
}��The component class OrderLine of the Order class cannot be mapped into a structured attribute because it contains a link with an other class : the Product class. As it is necessary to know the inverse link of this aggregation (queries from the Orderline to the Order objects), it can be mapped into a relationship with inverse link.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM aggregation link�� RENV _Ref393001936 \n �6.1.16��� RENVOIPAGE _Ref393001936 �282���
Embedded Heuristics�Description��Map TOOM aggregation link with multiple cardinality to a snapshot attribute with a set defined on a structured domain�the component class is converted into a structured domain and the aggregation link is mapped into a snapshot attribute with a set defined on this structured domain.��Map TOOM aggregation link with multiple cardinality to a snapshot attribute with a set defined on the component class�The component class is still implemented as a class and the aggregation link is converted into a snapshot attribute with a set defined on this object type (ODMG97)��Map TOOM aggregation link with multiple cardinality to a snapshot relationship with multiple cardinality�the component class is still implemented as a class and the aggregation link is converted into a snapshot relationship with set option and inverse link.��Related concepts :
Related concepts�Section�Page��TOOM link�4.3.5�225���Map TOOM association link
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a basic snapshot class leads to the mapping of all of its elements. If the class contains an association link, it is essential to map it also to the implementation level.
	The starting situation is a TOOM association link.
Motivation :
	An association allows to link an object of a class to an object or several objects of an other class. To map this particular link will permit to map some of the structural aspects of the schema.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Alternatives :
Map TOOM association link with simple cardinality to a relationship with simple cardinality : the TOOM association link can be mapped in a snapshot relationship with respect of its cardinality.
Map TOOM association link with multiple cardinality to a relationship with a multiple cardinality : the TOOM association link can be mapped in a snapshot relationship with respect of its cardinality.
Map TOOM association inverse link to snapshot relationship inverse link : the inverse link is a concept that exists in TOOM and that can be mapped in the inverse link of ODMG.
Argumentation :
Alternatives�Pros��Map TOOM association link with simple cardinality to a relationship with simple cardinality�the association has a simple cardinality : that means that the cardinality is « zeroone » or « one »��Map TOOM association link with multiple cardinality to a relationship with a multiple cardinality�the association as a multiple cardinality : that means that the cardinality is « zeromany » or « many ».��Map TOOM association inverse link to TODL relationship inverse link�the association is an inverse link��Examples :
�
Interface Order
(extent Orders
keys Ordercode)
{
//attributes
 attribute String OrderCode
 attribute Instant granularity day calendar Gregorian OrderDate
 relationship Client Ordered-by inverse client::Orders
}�Interface Client
(extent Clients
keys Clientcode)
{
//attributes
 attribute String ClientCode
 relationship set <Order> Orders inverse Order::Ordered-by
}��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM link�� RENV _Ref393001912 \n �6.1.15��� RENVOIPAGE _Ref393001912 �280���
Embedded Heuristics�Description��Map TOOM association link with simple cardinality to a relationship with simple cardinality�The concept of TOOM association is corresponding to the snapshot relationship. If the cardinality is simple in the association, the cardinality will be simple in the relationship.��Map TOOM association link with multiple cardinality to a relationship with a multiple cardinality�The concept of TOOM association is corresponding to the snapshot relationship. If the cardinality is multiple in the association, the cardinality will be multiple in the relationship.��Map TOOM association inverse link to snapshot relationship inverse link�The concept of TOOM association is corresponding to the snapshot relationship concept. IT also contains the inverse-link concept..��Related concepts :
Related concepts�Section�Page��TOOM links�4.3.5�225���Map TOOM basic time dependent class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of the elements of a basic snapshot class leads to the mapping of its temporal variation. This heuristic can also be used when mapping directly a temporal or a temporal dictionary class.
	The starting situation is a TOOM class.
Motivation :
	TOOM specializes the concept of class into two types of classes : the snapshot class and the temporal variation of these snapshot classes. The temporal variations can be temporal classes or temporal dictionary classes.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Alternatives :
Map TOOM time dependent class with history : if the class is a TOOM temporal class or a TOOM temporal dictionary class with history, this heuristic will help to map it to the implementation level.
Map TOOM time dependent class with state : on the contrary, this heuristic will help you to map the temporal class or the temporal dictionary class with state to the implementation level.
Argumentation :
Alternatives�Pros��Map TOOM time dependent class with history�the class is a temporal class with history or a temporal dictionary with history.��Map TOOM time dependent class with state�the class is a temporal class with history or a temporal dictionary with state.��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM link�� RENV _Ref393001912 \n �6.1.15��� RENVOIPAGE _Ref393001912 �280���
Embedded Heuristics�Section�Page��Map TOOM time dependent class with history�� RENV _Ref393102557 \n �6.1.21��� RENVOIPAGE _Ref393102557 �294���Map TOOM time dependent class with state�� RENV _Ref393093077 \n �6.1.25��� RENVOIPAGE _Ref393093077 �303���Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM time dependent class with history
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a snapshot class leads to the mapping of its temporal variations, and this heuristic helps to map the time dependent class with history management.
	The starting situation is a TOOM time dependent class with history.
Motivation :
	A TOOM time dependent class is a class with time management. There are two types of time dependent classes : the temporal classes and the temporal dictionary classes.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM temporal class with history : there are three steps to follow in order to map a temporal class with history : type definition of the type of management, the type of element and the valid time definition.
Map TOOM temporal dictionary with history : On the same way, these steps have to be followed to map a TOOM temporal dictionary with history.
Argumentation :
Alternatives�Pros��Map TOOM temporal class with history�the class is a temporal class with history��Map TOOM temporal dictionary with history�the class is a temporal dictionary class with history.��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class�� RENV _Ref393772475 \n �6.1.20��� RENVOIPAGE _Ref393772475 �292���
Embedded Heuristics�Section�Page��Map TOOM temporal class with history�� RENV _Ref393093064 \n �6.1.22��� RENVOIPAGE _Ref393093064 �296���Map TOOM temporal dictionary class with history�� RENV _Ref393095278 \n �6.1.23��� RENVOIPAGE _Ref393095278 �298���Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212���Map TOOM temporal class with history
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a temporal class leads to choose one alternative according to the type of time management that can be state or history. This heuristic helps to map an history temporal class.
	The starting situation is a TOOM temporal class with history.
Motivation :
	An history management of a temporal class allows to manipulate all the valid states of an object.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define the type of time management : this heuristic allows to map the class between three types of implementation time management, according to the TOOM time management of the class (VT, TT or Bi).
Map the class into a TODL element : this heuristic allows to map the class between four types of implementation elements, according to the TOOM elements contains in the class.
Define the valid time definition : the mapping of the valid time definition is made according to the TOOM nature of the valid time (period or instant).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the type of time management has been defined��(2)�(3)�the type of element has been defined and the class is a temporal class with history <VT> or history <Bi>��(2)�ending point�the type of element has been defined and the class is a temporal class with history <TT>��(3)�ending point�the valid time definition has been made��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class with history�� RENV _Ref393772467 \n �6.1.21��� RENVOIPAGE _Ref393772467 �294���
Embedded Heuristics�Section�Page��Define the type of time management�the class is a temporal class with history <VT> (historical element
the class is a temporal class with history <TT> (rollback element
the class is a temporal class with history <Bi> (bitemporal element��Map the class into an implementation element�� RENV _Ref393861899 \n �6.1.24��� RENVOIPAGE _Ref393861906 �300���Define the valid time definition�the valid time definition of the TOOM class is one of period (<state,calendar,gragule>
the valid time definition of the TOOM class is one of instant (<event,calendar,granule>��Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212���Map TOOM temporal dictionary class with history
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a temporal dictionary class leads to choose one alternative according to the type of time management that can be state or history. This heuristic helps to map an history temporal class.
	The starting situation is a TOOM temporal dictionary class with history.
Motivation :
	An history management of a temporal dictionary class allows to manipulate all the valid states of an object.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Define the type of time management : this heuristic allows to map the class between two types of implementation time management, according to the TOOM time management of the class (VT or Bi).
Map the class into a TODL element : this heuristic allows to map the class between four types of implementation elements, according to the TOOM elements contains in the class.
Define the valid time definition : the mapping of the valid time definition is made according to the TOOM nature of the valid time (period).
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the type of time management has been defined��(2)�(3)�the type of element has been defined��(3)�ending point�the valid time definition has been made��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class with history�� RENV _Ref393772467 \n �6.1.21��� RENVOIPAGE _Ref393772467 �294���
Embedded Heuristics�Section�Page��Define the type of time management�the class is a temporal class with history <VT> (historical element
the class is a temporal class with history <Bi> (bitemporal element��Map the class into an implementation element�� RENV _Ref393861899 \n �6.1.24��� RENVOIPAGE _Ref393861906 �300���Define the valid time definition�the valid time definition of the TOOM class is one of period (<state,calendar,gragule>��Related concepts :
Related concepts�Section�Page��TOOM temporal dictionary class�4.3.4.3�218���Map the class into an implementation element
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a TOOM temporal class or a TOOM temporal dictionary class into the implementation level leads to the choice of the type of implementation element according to the contents of the TOOM class.
	The starting situation is a TOOM time dependent class.
Motivation :
	How to represent the time dependent class of TOOM into TODM or TODL.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map the class into an attribute : the class contains only one attribute, as a result, the mapping can be made to a TODL or TODM attribute.
Map the class into a relationship : the class contains only one relationship, as a result, the mapping can be made to a TODL or TODM relationship.
Map the class into an object : the class contains several attributes, as a result, the mapping can be made to a TODL or TODM object.
Map the class into an attribute with a structured domain : the class contains several properties which are attributes with atomic domains, as a result, the mapping can be made to a TODL or TODM attribute with a structured domain.
Argumentation :
Alternatives�Pros��Map the class into an attribute�The time dependent class contains only one property which is an attribute.��Map the class into a relationship�The time dependent class contains only one property which is a relationship��Map the class into an object�The time dependent class contains several attributes.��Map the class into an attribute with a structured domain�The time dependent class contains several properties which are attributes with atomic domains
The set of attributes can compose a coherent structured domain��Examples :

��Interface Employee
(extent Employees
keys Emplnumber)
{
//attributes
 attribute String Emplnumber
 attribute Real Salary valid state granularity day
}��The time dependent class Salary contains only one property Salary which is an attribute. As a result, it can be mapped into an attribute with time semantic and included into the snapshot class Employee.

��Interface Car
(extent Cars
keys Idnumber)
{
//attributes
 attribute String Idnumber
 relationship Person owner valid state granularity day
}
��The time dependent class Ownership contains only one property Owner which is a relationship with the snapshot class Person. As a result, it can be mapped into a relationship with time semantic in the snapshot class Car.

��Interface DailyCirculation
(extent DailyCirculations
keys)
valid event granularity day
{
//attributes
 attribute Long DeliveryQuantity
 attribute Long ReturnQuantity
 relationship Product relative-to inverse Product::Performance ;
}��The time dependent class Dailycirculation contains two attributesn and a link with the Product class. As a result, it can be mapped into an implementation class containing these properties.

�
Interface ObservationNotebook
(extent ObservationNotebooks
keys)
{
//attributes
 attribute SMDomain SexualMaturity valid event granularity day transaction ;
 attribute OSDomain ObservationStatement valid event granularity day transaction ;
}�Struct OSDomain
{
	Boolean apptRandom ;
Boolean treatmModif ;
}�Struct SMDomain
{
	Short pubic ;
	Short Breast ;
	Short Penis ;
	Short Testicles ;
}��The time dependent classes SexualMaturity and ObservationStatement contains several properties which are attributes with atomic domains. These sets of attributes can compose coherent structured domains : SMDomain and OSDomain of two attributes of the snapshot class ObservationNotebook.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM temporal class with history�� RENV _Ref393093064 \n �6.1.22��� RENVOIPAGE _Ref393093064 �296���Map TOOM temporal dictionary class with history�� RENV _Ref393095278 \n �6.1.23��� RENVOIPAGE _Ref393095278 �298���
Embedded Heuristics�Description��Map the class into an attribute�This process is compose of two actions : the deletion of the TOOM class and the creation of an implementation attribute.��Map the class into a relationship�This process is compose of two actions : the deletion of the TOOM class and the creation of an implementation relationship.��Map the class into an object�This process is compose of two actions : the deletion of the TOOM class and the creation of an implementation object.��Map the class into an attribute with a structured domain�This process is compose of two actions : the deletion of the TOOM class and the creation of an implementation structured domain.��Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM time dependent class with state
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The mapping of a time dependent class leads to choose one alternative according to the type of time management that can be state or history. This heuristic helps to map a state temporal class or a state temporal dictionary class.
	The starting situation is a TOOM time dependent class with state.
Motivation :
	A state management of a time dependent class allows to manipulate only the last state of an object.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Alternatives :
Map TOOM time dependent class with state to history management : if the evolution of the class may be useful and does not need too much storage, it is better to transform the class in order to have an history management.
Map TOOM time dependent class with state to UDT management : on the contrary, if the evolution does not need to be known, it is a better solution to transform the class in order to just have a snapshot class containing the concerned attribute.
Argumentation :
Alternatives�Pros��Map TOOM time dependent class with state to history management�The history of temporal information may be useful and the management of the evolution does not require too much storage.��Map TOOM time dependent class with state to UDT management�The application only requires the last state of the attribute and will never need more.��Examples :
�
The application only requires the last valid state of the attribute Lifespan, As a result, it is possible to map it into an user defined time attribute contained in the snapshot class DFC. The next step will be to map the snapshot class.

�
The history of the temporal InformationPosition may be useful and the management of the evolution does not require too much storage. As a result, it can be converted into an history and the next step will be to map this history class into the implementation level.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class�� RENV _Ref393772475 \n �6.1.20��� RENVOIPAGE _Ref393772475 �292���
Embedded Heuristics�Section�Page��Map TOOM time dependent class with state to history management�� RENV _Ref393011248 \n �6.1.26��� RENVOIPAGE _Ref393011248 �305���Map TOOM time dependent class with state to UDT management�� RENV _Ref393011253 \n �6.1.27��� RENVOIPAGE _Ref393011253 �307���Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM time dependent class with state to history management
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a TOOM state temporal class or a TOOM temporal dictionary class into the implementation level leads to choose one alternative according to the desired management of the data. That is to say if the class should be mapped into an history management or an UDT management.
	The starting situation is a TOOM time dependent class with state.
Motivation :
	State management is not available in TODM and TODL. One solution is to manage it at the implementation level as an history management.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Transform TOOM time dependent class with state into TOOM time dependent class with history : the first step is to convert the state class into an history class
Map TOOM time dependent class with history : the second step is to map this history class into the implementation level.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the temporal class has been converted��(2)�ending point�the temporal class has been mapped��Examples :
�
The history of the temporal InformationPosition may be useful and the management of the evolution does not require too much storage. As a result, it can be converted into an history and the next step will be to map this history class into the implementation level.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class with state�� RENV _Ref393095573 \n �6.1.25��� RENVOIPAGE _Ref393095573 �303���
Embedded Heuristics�Description��Transform TOOM time dependent class with state into TOOM time dependent class with history�This guideline allows to convert the state class into an history class.��Map TOOM time dependent class with history �This guideline permits to map the new history class.��Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM time dependent class with state to UDT management
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a TOOM state temporal class or a TOOM temporal dictionary class into the implementation level leads to choose one alternative according to the desired management of the data. That is to say if the class should be mapped into an history management or an UDT management.
	The starting situation is a TOOM time dependent class with state.
Motivation :
	State management is not available in TODM and TODL. One solution is to manage it at the implementation level as a UDT management.
Graphical description :
� INCORPORER Word.Picture.6 ���
Textual description :
Components :
Transform TOOM time dependent class with state to TOOM snapshot class : the first step is to transform the state time dependent class into a snapshot class.
Add a user defined time attribute in the TOOM snapshot class : the second step is to add an UDT into this snapshot class representing the evolving data.
Map TOOM basic snapshot class : the last step is to map the snapshot class containing the UDT to the implementation level.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the temporal class has been converted��(2)�(3)�the attribute has been added��(3)�ending point�the snapshot class has been mapped��Examples :
�
The application only requires the last valid state of the attribute Lifespan, As a result, it is possible to map it into an user defined time attribute contained in the snapshot class DFC. The next step will be to map the snapshot class.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM time dependent class with state�� RENV _Ref393095573 \n �6.1.25��� RENVOIPAGE _Ref393095573 �303���
Embedded Heuristics�Section�Page��Transform TOOM time dependent class with state to TOOM snapshot class�This guideline allows to convert the time dependent class into a snapshot class.��Add a user defined time attribute in the TOOM snapshot class�This process permits to add a user defined time attribute into the new snapshot class.��Map TOOM basic snapshot class�� RENV _Ref393174715 \n �6.1.4��� RENVOIPAGE _Ref393174715 �257���Related concepts :
Related concepts�Section�Page��TOOM temporal class�4.3.4.2�212��TOOM temporal dictionary class�4.3.4.3�218���Map TOOM derived class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	The TOOM schema can own some derived class. As a result, the mapping of an object class can lead to the mapping of one of them. Two mapping alternatives are possible according to the derivation cost of the class.
	The starting situation is a TOOM derived class.
Motivation :
	A derived class is an object class derived from one or more object classes (it can be created through its derivation function). To map this kind of classes allows to map some structural aspects of the TOOM schema into the implementation level.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Alternatives :
Map TOOM derived class to an implementation class and function : this heuristic helps to transform a TOOM derived class into TODL class and function. This is the better way to manage information for which the derivation is cost effective.
Map TOOM derived class to an implementation function : To map a TOOM derived class into a TODL function is the best way to map an information for which the derivation is easy to do.
Argumentation :
Alternatives�Pros��Map TOOM derived class to an implementation class and function�derivation is cost effective or initial information are available in a distant system.
If the derived class requires temporal management it should be better if it is stored effectively.��Map TOOM derived class to an implementation function�the derivation is easy to do.
The derived class does not require temporal management.��Examples :
�
The derived class CirculationStatistics is derived from the DeliveryQuantity and the ReturnQuantity for each customer (daily circulation). This derivation is easy to do, as a result, it is mapped into a TOQL function (with the day as parameter) embedded in the Product snapshot class that will derived these two attributes.

�
The derivation is cost effective and it is necessary to know the evolution of the data, as a result, it is better to store it in a class that will be derived if needed.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM class�� RENV _Ref392992174 \n �6.1��� RENVOIPAGE _Ref392992174 �246���
Embedded Heuristics�Description��Map TOOM derived class to an implementation class and function�This alternative allows to convert the derived class into two implementation element : a class and a function (that will derive the class).��Map TOOM derived class to an implementation function�This alternative permits to map the class into an implementation function.��Related concepts :
Related concepts�Section�Page��TOOM derived class�4.3.3�204���« Map TOOM calendar class »
Heuristic graph
�INCORPORER Word.Picture.6���

�Map TOOM calendar class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	A TOOM schema at least contains one calendar : the Gregorian one. The mapping of a calendar will lead to the mapping of all its elements (granule, conversion operations and temporal events).
	The starting situation is a TOOM calendar class.
Motivation :
	A calendar is a metric system to apply on the time line. TOOM generalizes the concept of calendar and integrates the concept of temporal events. To map these concepts allows to map behavioral aspects of the TOOM schema.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Components :
Map the calendar granule : the first step in the mapping of a TOOM calendar into the implementation level is to map the granule.
Map the calendar conversion operation : the second step is to map the conversion operations. This heuristic has to be performed for all the conversion operations of the calendar.
Map TOOM temporal event : the third step is to map the temporal events embedded in the calendar.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the granule has been mapped��(2)�(3)�all the operations conversions has been mapped��(2)�(2)�an operation conversion has not been mapped��(3)�(3)�A temporal event hasn’t been mapped��(3)�ending point�all the temporal event have been mapped��Related heuristics :
Embedded Heuristics�Section�Page��Map the calendar granule�This guideline allows to map the granule of the calendar from TOOM to the implementation level.��Map the calendar conversion operation�The conversion operations can be mapped into the implementation level as well.��Map TOOM temporal event�� RENV _Ref393010894 \n �6.2.3��� RENVOIPAGE _Ref393010894 �314���Related concepts :
Related concepts�Section�Page��TOOM calendar�4.3.1�197��TOOM temporal event�4.3.7.3�239���Map TOOM temporal event
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	The mapping of a TOOM calendar leads to the mapping of all of its elements. This heuristic helps to map the temporal events belonging to a calendar.
	The starting situation is a TOOM temporal event.
Motivation :
	a temporal event is a temporal expression based on one of the calendars of the application. To map them allows to map behavioral aspects of the information system.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Components :
Transform TOOM temporal event to TOOM external event : As TODL has no correspondence for the temporal event, the first step is to convert the TOOM temporal event into a TOOM external event.
Map TOOM external event to client interaction : the second step is to map this TOOM external event into the implementation level as a client interaction.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�the event has been retyped��(2)�ending point�the event has been mapped��Examples :
�
The temporal event « One month after the expiration of the loan » is converted into an external event « Loan expiration treatment » of the administrator staff. actor The next step will be to map this external event into the implementation level.
Related heuristics :
Previous Heuristic�Section�Page��Map TOOM calendar class�� RENV _Ref393009313 \n �6.2��� RENVOIPAGE _Ref393009313 �311���
Embedded Heuristics�Description��Transform TOOM temporal event to TOOM external event�As the temporal events are not available in the implementation level, this guideline allows to convert a TOOM temporal event into a TOOM external event.��Map TOOM external event to « client interaction »�This process permits to map the new external event.��Related concepts :
Related concepts�Section�Page��TOOM calendar�4.3.1�197��TOOM temporal event�4.3.7.3�239��TOOM external event�4.3.7.1�236���« Map TOOM actor class »
Heuristic graph

�INCORPORER Word.Picture.6���
�Map TOOM actor class
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Choice
When it is used ?
	There is two possibilities concerning the mapping of an actor class into the implementation level. The first one is to map it to a particular new client application and the other one is to integrate it in an existing one.
	The starting situation is a TOOM actor class.
Motivation :
	An actor class shows the interactions between the system and its environment (they are described in terms of external events and external operations).
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Alternatives :
Map TOOM actor class to a particular client application : if each actor class requires a specific client application.
Map TOOM actor class to an existing client application : several actor classes are gathered in one client application.
Argumentation :
Alternatives�Pros��Map TOOM actor class to a particular client application�if each actor class has its own client application ;��Map TOOM actor class to an existing client application�if several actor classes are gathered in one client application.��Related heuristics :
Embedded Heuristics�Section�Page��Map TOOM actor class to a particular client application�� RENV _Ref393009625 \n �6.3.3��� RENVOIPAGE _Ref393009625 �319���Map TOOM actor class to an existing client application�� RENV _Ref393010681 \n �6.3.4��� RENVOIPAGE _Ref393010681 �321���Related concepts :
Related concepts�Section�Page��TOOM actor class�3.3.1.3�66���Map TOOM actor class to a particular client application
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To realize actor class in VisulC++ environment.
	The starting situation is a TOOM actor class.
Motivation :
	An actor class shows the interaction between the system and a user. The chosen strategy is to define a WinApp class for this actor.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Components :
Map TOOM external event to « client interaction » for a particular application : this guideline helps to implement an external event as a client interaction.
Map TOOM external operation to message box belonging to the particular client application : this guidelines permits to materialize an external operation with a message box.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�all the external events have been mapped��(1)�(1)�an external event has not been mapped��(2)�(2)�an external operation has not been mapped��(2)�ending point�all the external operations have been mapped��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM actor class�� RENV _Ref393010419 \n �6.3��� RENVOIPAGE _Ref393010419 �316���
Embedded Heuristics�Section��Map TOOM external event to « client interaction » for a particular application�The programmer must realize the input form for the message and realize the trigger part of the event in the interface procedure associated to that dialogue.��Map TOOM external operation to message box belonging to the particular client application�the programmer must build a specific message box class.��Related concepts :
Related concepts�Section�Page��TOOM actor class�3.3.1.3�66��TOOM external event�4.3.7.1�236��TOOM external operation�3.3.2.3�89���Map TOOM actor class to an existing application
Intention :
Verb : Map
Target : Implementation level
Type of guideline : Plan
When it is used ?
	To realize actor class in VisualC++ environment.
	The starting situation is a TOOM actor class.
Motivation :
	Actor class shows the interaction between the system and a user. The chosen strategy is to have only one WinApp class for all the actor class.
Graphical description :
�INCORPORER Word.Picture.6���
Textual description :
Components :
Map TOOM external event to « client interaction »into the existing client application : this guideline helps to define the external events as a menu actions.
Map TOOM external operation to message box belonging to the existing client application : this guideline leads to define one message box class per message.
How to progress from component A to component B :
from�to�arguments��starting point�(1)�always true��(1)�(2)�all the external events have been mapped��(1)�(1)�an external event has not been mapped��(2)�(2)�an external operation has not been mapped��(2)�ending point�all the external operations have been mapped��Related heuristics :
Previous Heuristic�Section�Page��Map TOOM actor class�� RENV _Ref393010419 \n �6.3��� RENVOIPAGE _Ref393010419 �316���
Embedded Heuristics�Section��Map TOOM external event to « client interaction »into the existing client application�The programmer should integrate into an existing WinApp class, and each external event is a client interaction activated by a menu option.��Map TOOM external operation to message box belonging to the existing client application�The programmer can create a message box class for the external operation.��Related concepts :
Related concepts�Section�Page��TOOM actor class�3.3.1.3�66��TOOM external event�4.3.7.1�236��TOOM external operation�3.3.2.3�89��
��Use of external tools
7.1 Use case	� BOUTONATTEINDRE _Toc393853608 � RENVOIPAGE _Toc393853608 �324��
7.2 State transition graph	� BOUTONATTEINDRE _Toc393853612 � RENVOIPAGE _Toc393853612 �326��
7.3 Normal forms	� BOUTONATTEINDRE _Toc393853616 � RENVOIPAGE _Toc393853616 �328��
7.4 Permanent functional dependency	� BOUTONATTEINDRE _Toc393853620 � RENVOIPAGE _Toc393853620 �331��
�Use case
The OOSE method [Jacobson93] gets its originality from the introduction of use cases.
Goals
Using Use Case in TOOM allows to:
find the actors.
find the operations.
find the events.
What is a Use Case ?
A use case defines the functionality that have to be realized by the system, and is a specific way of using some part of this functionality. By the way, the use cases set specifies all the possible ways of using the system.
When a user is using the system, he performs a set of transactions having a behavioral link between each other (the source of this set is the dialog between the actor and the system). An actor has one or more use cases, which are specific ways of using the system. Use cases are structured according to the organizational functions (tasks/activities) that the actor performs. They also describe the information system acts, i.e. a special sequence of related transactions in the interaction between the actor and the system.
Each use case is associated with a specific actor, but at the same time, several actors can be involved in a single use case description. An actor is something that interacts with the system. There's a difference between an actor and a user:�-Êa user uses the system (it can be a human, a device...), 	�-Êan actor is a specific role played by a user. The same person may play several roles. For example, a manager is also an employee of the enterprise, so he represents two different actors in the application.
There are two different types of actors, the primary actors which are actors that will directly use the system (for example, a client is a primary actor because it is for him that the system has been created) and the secondary actors which are actors that supervise and maintain the system (for example, an operator is a secondary actor). These last ones exist only to allow a primary actor to use the system.
Each use case needs a description of a basic scenario and some substitute scenarios. The first one explains the normal case of use, the second ones describe the error cases.
The user inserts the card. The system checks if the card is valid. If it is the case, a prompt for the code is given. The user enters the code and the system checks if the code is valid. If it is the case, a prompt "enter amount or select balance" is given. The user enters the amount and the system check if the amount is valid. If it is the case, the system collects the cash and ejects it. A prompt "take cash" is given and the user takes the cash. The card is ejected and a prompt "take card" is given. The user takes the card. The system collects receipt information, print it and eject it. A prompt "take receipt" is given and the user takes the receipt.
 Figure � SEQ Figure * ARABE �12�: Example of the Autoteller Case study basic scenario
The user inserts the card. The system checks if the card is valid. If it is the case, a prompt for the code is given. The user enters the code and the system checks if the code is valid. If it is the case, a prompt "enter amount or select balance" is given. The user enters the amount and the system check if the amount is valid. The "invalid amount" message and a prompt for "retry" are given. The user abort the transaction. The card is ejected and a prompt "take card" is given. The user takes the card.
 Figure � SEQ Figure * ARABE �13�: Example of a Autoteller Case study substitute scenario
Process
�
 Figure � SEQ Figure * ARABE �14�: The tree of the Use Case Elaboration.
First, identify the actors: the primaries and secondary ones.
Then, for each actor, define all what they can do with the system. There are different questions that can be made:
what are the principal tasks of each actor ?
would the actor be able to read/write/modify an information of the system ?
must the actor inform the system of external modifications ?
does the actor wish to be informed of the unexpected modifications ?
Iterate this step in order to find the maximum of transactions.
Then describe each use case in details. The natural language is used in the description of use cases in order to construct a complete explanation of the transaction. If the system needs an interface system, the use cases are useful to describe them in details.
Define the abstract use cases.
Identify and isolate the similarly parts of the use cases. In this way, we will have to describe the same parts only one time instead of doing it in each use case containing this particular part. A modification of one of this parts will immediately have an impact on each use cases sharing this part.
For instance, if it exists two use cases using the same printing treatment, this one can be abstract in a new use case "Print' that will be used in each of the first use cases.
Construct the instances of the abstract use cases, the concrete use cases.
For instance, the abstract use case "Print" can become "Print bank-document" in a use case and "Print assurance-document" in an other one.
Finally, define the basic and the substitute scenarios.
�State transition graph
Some methods have a state transition approach. It is the case for OMT [Rumbaugh91], OOSE [Jacobson93] and OOAD [Shlaer88,92]. However, other ones are using the state transition graphs also, O* [Brunet93] and OOA&D [Martin92] for example.
Goals
A state transition diagram is helpful to:
find operations.
validate the behavior specification.
determine the state class resulting of an operation on an object.
specify the behavior.
help the abstract documentation (describes dynamic constraints locally to one object, provides a simple and abstract view of the possible behavior of an object).
What is a State Transition Diagram ?
A common technique to describe systems behavior is state transition diagrams.
In these graphs, nodes symbolize states classes, partition on the possible states of the objects of a class (represented as circles containing optional names), and directed arcs visualize possible states transitions (initial state, operation, final state). If several arcs leave a node, only one of these transitions can be executed, depending on their labels (therefore, modeling of selections is possible). Transitions are labeled with the corresponding actions. Because the data schema cannot be represented, it is necessary to complement this technique with a suitable data model.

� INCORPORER Word.Picture.6 ���
 Figure � SEQ Figure * ARABE �15�: Example of a state transition graph for the Command object of the Reservation Case study
A system represented by a state transition diagram can only be in one of a given number of states at any specific time point. However, the change of time does not necessarily imply a change of state. The state of an object is defined as the concatenation of all properties and reference values at a given time. A state change of an object is due to the triggering of an operation by an event. The changes results from the operation execution. An object at time t belongs to a state characterized by a name. The state of an object can be derived from the value of its attributes. It can result of an operation execution.
The state transition diagram can represent the state changes of only one object. It describes the set of its significant states classes and allowed transitions. A state class is the sub-set of possible states for an object class where objects have a specific behavior.
A state transition is a triplet (initial state class, operation, final state class) where:	�- the initial state class is a possible state class of the object before the execution of the operation.	�- the final state class is a possible state class of the object after the execution of the operation.	�- the initial and final state classes are exclusives or identical. Two states classes are exclusives if it doesn't exist a possible state belonging to the two of them. They must be exclusive or identical; because the third possibility - two distinct and no exclusive states classes - presents some methodological difficulties.
The concept of state transition is defined on the concept of operation rather than on the concept of event, because it provides some advantages linked to the localization. The term of state transition is justified by the fact that the operation execution changes the object state, the possible state class change is just a consequence.
Whereas a state transition only provides a view of the possibilities of an operation execution and on the state class changes, a states transitions graph provides much more information. It contains all the possible transitions , so it emphasizes the transitions that are not possible. It is useful to interpret a state transitions diagram in terms of preconditions and of post conditions linked to each operation. A precondition (res. post condition) is a condition that has to be checked before (res. after) the execution of an operation.
Process
The definition of a state transition graph consists in defining the state transition it is composed of.
�
 Figure � SEQ Figure * ARABE �16�: The hierarchy associated to the definition of the state transition graph for an object class
The construction of a state transitions graph needs two steps.
First, identify a set of states classes (partition on the set of possible states of the object). The identification of states classes begin by the search of the object states for which the object has a particular behavior. The states corresponding to the same behavior are classified in a states class.
Then identify all the possible states transitions between these state classes. There are two ways of identifying them:	
search the state changes that make the object change his state class to another. This states transition is linked to an operation which can be defined or created at this step.
search, for each operation already identified, the state classes (initials) that can be its origin, and the state classes (finals) resulting of its execution. States transitions will be created in each case, excepted if the operation is always applicable and if it doesn't make any state class change.
Draw the diagrams. In order to create states transitions for operations of creation and deletion , it is necessary to introduce a special states class, named So, symbolizing the non-existence of an object. Like that, a state transition on an operation of creation (resp. deletion) will have for initial (resp. final) state class So. It is compulsory to define it in each graph.
�Normal forms
Goals
The construction of a relational scheme using the normal forms allows to:
delete redundancies
delete storage anomalies
facilitate the updates of data representations.
What are the Normal Forms ?
It is preferable to first decompose the relational schemes into 3NF using functional dependencies and standard algorithms to give not a lossless decomposition but also preserve the functional dependencies. The reason for choosing the 3NF is that it simplifies the translation by working with relations which describe one entity each rather than relations which describe more than one. In fact, this is the implicit motivation behind normalization.
These forms are obtained by transformation of the relations script. At the beginning Codd has defined three normal forms, later on other forms have been proposed in order to improve the representation in certain particular cases. Their definition uses the two notions of key and functional dependency.
A relation key is sub-set of the attributes of the relation R(A1,A2,...,An) like:	�-ÊX -->-- A1A2...An	�-ÊIt doesn't exist a sub-set Y Ì X like Y -->-- A1A2...An	�It is the minimal attributes sub-set that determines all the other attributes.
Definition of the Codd first normal form (1NF):
A relation is in 1NF if all of its attributes not belonging to a key are in functional dependency with the key. In this normal form, attributes cannot be relations and must have an atomic value.
The relation Indexation (Book number, keywords set) is not in 1NF because the set of keywords representing a book is not an atomic attribute. 	�The relation Command (Com number, Prod number, Quantity, Price, Client number) is in 1NF.
 Figure � SEQ Figure * ARABE �17�: Example of a 1NF relation
Definition of the Codd second normal form (2NF):
A relation is in 2FN if it is in 1FN and if all its attributes not belonging to a key are in elementary functional dependency with the key.
The relation Command (Com number, Client-number, Quantity, Date-command, Client-name) is not in 2NF because of the functional dependency Client-number -->-- Client-name (Client-number is only a part of the key so Client-name isn't in elementary functional dependency with the key).
The relation Product (Prod number, Price) is in 2NF.
 Figure � SEQ Figure * ARABE �18�: Example of a 2NF relation
Definition of the Codd third normal form (3NF):
A relation is in 3FN if it is in 2FN and if all its attributes not belonging to a key are in elementary and direct functional dependency with the key.
The relation Command (Com number, Client number, Client name) is in 2NF but not in 3NF because the functional dependency ComÊnumber -->-- ClientÊname is not direct: it exists the following functional dependencies:	�Com number --> Client number 	�Client number -->-- Client name.
The relations Command (Com number, Client number) and ClientÊ(Client number, Client name) are in 3NF.
 Figure � SEQ Figure * ARABE �19�: Example of 3NF relations
Process
� INCORPORER Word.Picture.6 ���
 Figure � SEQ Figure * ARABE �20�: The tree of the Normal forms Utilization
Decompose the relational scheme into 3NF.
First, elaborate the relational scheme of the application.
Find all the functional dependencies existing in the application.
Then transform the relations into 1NF relations.
Find and change the relations where an attribute (not belonging of the key) isn't in functional dependency with the key.
Find and change the relations where attributes are relations.
Find and change the relations where attributes are not atomic.
Then transform the 1NF relations into 2NF relations.
Find and change the relations where an attribute (not belonging of the key) isn't in elementary functional dependency with the key.
Finally transform the 2NF relations into 3NF relations.
Find and change the relations where an attribute (not belonging of the key) isn't in elementary and direct functional dependency with the key.

Find 3NF relations by the minimal cover.
Find the not redundant (or minimal) cover of F: IRR (F).
First, we have to define the concept of transitive closure. It is the set of all the functional dependencies, even the ones found by transitivity or augmentation. However, this set is sometime complex and it is easier to work only with the elementary functional dependencies.
The minimal cover is a functional dependency set F linked to an attributes set like there is no redundant dependency and that every functional dependencies is in the transitive closure of F, F+.
Let F be a set of functional dependencies.	�¥ Find the elementary functional dependencies.	�	If it exists a functional dependency like A1A2...Ap -->-- B	�		if, for all the i from 1 to p, A1A2..Ai-1Ai+1...Ap -->-- B is in F+. �			erase Ai (for all the dependencies having their left part 	�				composed of more than one attribute).	�		end if	�	end if	�¥ Delete the redundancies.	�	X0 = F	�	While Xi+1 == Xi do	�		if it exists a FD (X --> Y) where fr can be deducted from F-fr�			Xi+1 = Xi-fr	�	End while	�¥ IRR(F) = Xi
For each group Fi like X -->-- Am (m = 1,..,p) construct Ri, relation where the attributes will be X È A1 È A2 È....È Ap and the FD the ones of Fi. Iterate this step until the elimination of the Fi.	�a.ÊSuppress the A1,A2,...,Ap of U, suppress the Fi of IRR (F).	�b.ÊIf there are still some attributes Z in U and that these attributes are not belonging to a relation already existing, construct the relation with these attributes.
Verify that the decomposition is without information loss [Ulmann 80]
Let R (A1,...,An) be a relation with the functional dependencies set F and a decomposition R1... Rk.
Construct a table T with n columns and k rows (the j column corresponds to the attribute Aj and the i row corresponds to the relation Ri of the decomposition).	�	Ti,j will contains "X" if it is an attribute of Ri, else it will contains "?".
Iterate the following step until it exists a functional dependency Z -->-- Y not still studied.	�	While we can change a row do	�		if it exists a row containing all the attributes of Z and at least one	�		symbol Ai of Y, then	�			Put "X" in the column i in all the rows containing all the	�			attributes of Z.	�		end if	�	end while
If a row contains all the values A1, A2,.., An, the decomposition has no information loss.
�Permanent functional dependency
Goals
The permanent functional dependencies are useful to:
obtain a good study of the temporal problems (evolution of variable attributes in the course of time).
obtain a good representation of phenomena (not redundant, minimal, reliable).
What is a Permanent Functional Dependency ?
First, we need to define the concept of functional dependency.
Let R(A1, A2,..., A3) be a relational scheme, X and Y two sub sets of A1,..., An. X-->-- Y (X determines Y or Y is functionally depending of X) if for a given value of X, it corresponds a unique value of Y.
Functional dependencies have the following properties:
Reflexivity (if Y Ì X, X -->-- Y).
	For example, (client-name, address) -->-- client-name.
Augmentation (if X -->-- Y, XZ -->-- YZ).
	For example, (command-number -->-- client-number
	=> (command-number, client-name) -->-- (client-number, client-name).
Transitivity (if X -->-- Y and Y -->-- Z so X-->-- Z).
	For example, (command-number -->-- client-number) and
	(client-number -->-- name) => command-number -->-- name.
Union (if X-->--Y and X -->-- Z so X -->-- YZ).
	For example, (Cli-num-->-- Cli-name) and (Cli-num -->-- Cli-address)
Cli-num -->-- (Cli-name, Cli-address).
Pseudo-transitivity (if X -->-- Y and WY -->-- Z so WX -->-- Z).
	For example, (Command-number -->-- Client-address) and
	(Client-name , Client-address -->-- Client-forename)
	=> (Client-name, Command-number -->-- Client-forename).
Decomposition (if X-->-- Y and Z Ì Y so X -->-- Z).
	For example, Cli-number -->-- Cli-name, Cli-address
	=> (Cli-number -->-- Cli-name) and (Cli-number -->-- Cli-address)
In order to define the concept of permanent functional dependency, it is necessary to add the time in the concept of relation with the help of the following notions:
time dependent relation,
permanent relation.
Let S (A,D,F) be a relational scheme (A: attributes set, B: domains set D1,ÊD2Ê...ÊDn, F: integrity constraints set). Let T be a set with an order relation (its components are representing dates).	�A time dependent relation is a function R of T in the partitions set of D1ÊXÊD2Ê...ÊDn, if " t Î T, R (t) (noted Rt) Î S. Rt is the extension of R at the instant t.
Product (Prod number, Price)
This relation is time dependent because there's no way to know if two extensions (at different times) of Product are the same. They only have the same relational scheme.
 Figure � SEQ Figure * ARABE �21�: Example of a time dependent relation
A permanent relation is a dependent time relation, if " t and t' Î T : t' < t we have Rt' Ì Rt.	�In a permanent relation, the only possible modification between two successive extensions is an addition of nuplets.
Product (Prod number, Date, Price)
This relation is permanent because it cannot change. If the price change at any time, a new extension will be created for this ProdÊnumber with a new Date and a new Price.
 Figure � SEQ Figure * ARABE �22�: Example of a permanent relation
Functional dependency in a time dependent relation:	�Let R(a) be a time dependent relation, X and Y two sub-set of A, t ÎT already defined, Rt the extension of R to t.	�$ a functional dependency X-->--Y in R if and only if " t Î T, X-->--Y exists in Rt.
Product (Prod number, Price)
It exists the functional dependency ProdÊnumberÊ-->--ÊPrice. Indeed, at a given time, one product has only one price, even if the values of Price can evolve in the course of time.
 Figure � SEQ Figure * ARABE �23�: Example of a functional dependency in a time dependent relation
Permanent functional dependency in a time dependent relation:	�Note
RT = UtÎTRt[X,Y]: {<x,y>: $ t: <x,y> Î Rt[x,y]} with Rt[X,Y] = { <x,y> : <x,y> Î Rt
The functional dependency X-->--Y in R is a permanent functional dependency in R if and only if the functional dependency X-->--Y exists in RT.
The existence of a permanent functional dependency between two attributes sets X and Y in a relation dependent of time means that, in the course of time, the values couples <xi,yi> linked by the functional dependency are always the same.
In a relation dependent of time, the functional dependencies can be classed in permanent functional dependencies and in not permanent functional dependencies. When a relation represents a real complex object, this classification allows to share the properties represented by the attributes in constant and variable properties. In a permanent relation every functional dependency is a permanent functional dependency.
Command (Com number, Prod number, Quantity, Price, ClientÊnumber)
Com number, Prod number -->-- Quantity (PFD)	�Prod number -->-- Price (not PFD)	�Com number -->-- Client number (PFD)
Command is a time dependent relation, however, it is not permanent.
 Figure � SEQ Figure * ARABE �24�: Example of permanent functional dependencies in a time dependent relation
Process
� INCORPORER Word.Picture.6 ���
Construct the relations in third normal form.
Work on the permanent dependencies.
If an attribute evolves in the course of time, and if it is necessary to represent that evolution, this attribute need to be correctly stamped. This conduct to add some temporal attributes.

�
�Conclusion

�The handbook is a companion document of the reference manual. The reference manual describes the concepts promoted by the TOOM methodology whereas the handbook has described the guidelines useful during the appliance of the TOOM methodology.
The set of guidelines was composed of four subsets :

one subset dealing with the top level process, these guidelines are called « Top level guidelines »,
one subset dealing with the OOM concepts of the methodology, these guidelines are called « OOM guidelines »,
one subset dealing with the TOOM concepts of the methodology ; these guidelines are called « TOOM guidelines »,
one subset associated to external tools (not promoted by the TOOM methodology) ; these guidelines are called « Use of external tools guidelines ».

For sake of readability, we have limited the handbook to the « Top level guidelines » and the two last categories of guidelines : « TOOM guidelines » and « Use of external tools guidelines ». The « TOOM guidelines » explain how to introduce temporal aspects into an OO specification whereas the « Use of external tools guidelines » have shown how to integrate external tools into the methodology according to the objectives to reach. For example, The « Use Case Technique » could be used for finding external events, actors or understanding globally the application.

The OOM guidelines are developed into an « electronic guide book » based on a « access database » with a VB scripts and this guide is used via a browser (Internet Microsoft Explorer). Within the TOOBIS project, we have tried to improve the accessibility of these guidelines in order to improve the efficiency of this handbook. It is why we have decided to put the OOM handbook into an « electronic version » and the other guidelines into a classical deliverable form.

This set of guidelines is an initial version of the heuristical knowledge about the TOOM methodology but this set should be improved incrementally by the experience gained through projects. Therefore this initial set of guidelines is not an exhaustive one.

For documenting the guidelines, we have followed a process modeling approach coming from the « NATURE » esprit project (Novel Approaches to Theories Underlying Requirements Engineering) esprit project (n°6353). The main concept is one of guideline. This process metamodel permits to define a guideline with two parts « a header » and « a body ». A header is a couple <situation , decision> and the body of a guideline describes what the analyst should do to realize his decision from the situation he faces to.

The handbook document was structured as follows :
section 2 has introduced the modeling process approach we have followed to define and document the guidelines,
section 3 has provided a quick understanding of the TOOBIS concepts and as a road map gave a link to their detailed description existing in the different TOOBIS deliverables (TOOM, TODL, TOOM),
section 4 has dedicated to the « top level guidelines »,
section 5 has described the « extend guidelines »,
section 6 has focused on the « map guidleines »,
and finally section 7 has briefly shown the « use of external tools guidelines ».

��References
[TOOM-97a]�Souveyet C., Deneckere R, Rolland C., « State of art : a comparison of six object-oriented analysis methods », TOOBIS project, Deliverable T23D1.1, Chapter 2, February 1997��[TOOM-97b]�Souveyet C., Deneckere R, Rolland C., « The object oriented methodology (OOM) », TOOBIS project, Deliverable T23D1.1, Chapter 3, February 1997��[TOOM-97c]�Souveyet C., Deneckere R, Rolland C., « The temporal extension (TOOM) », TOOBIS project, Deliverable T23D1.1, Chapter 4, February 1997��[TODM-97]�« Specification of temporal support », TOOBIS project, Deliverable T31TR.1, Chapter 6, February 1997��[TODL-97]�« Specifications », TOOBIS project, Deliverable T32TR.1, Chapter 1, February 1997��[Rumbaugh91]�J. Rumbaugh, M. Blaha, W. Premerlani, F.Eddy, W. Lorensen, « Object-Oriented Modeling and Design », P.-H. I. Editions, Eds., 1991.��[Shlaer92]�S. Shlaer, S. J. Mellor, « Object lifecycles Modeling the world in states » , Y. Press, Eds., 1992.��[Shlaer88]�M. S. J. Shlaer S., Eds., « Object Oriented Systems Analysis » ,Yourdon Press, 1988.��[Jacobson93]�I. Jacobson, M. Christerson, P. Jonsson, G. Övergaard, « Le genie logiciel orienté-objet, une approche fondée sur les cas d'utilisation », A.-W. France, Eds., (Bordas, 1993.��[Brunet93]�J. Brunet, « Analyse Conceptuelle orientée-objet », PhD Thesis, University of Paris 6, 1993.��[Martin92]�J. Martin, J. J. Odell, « Object-Oriented Analysis and Design » , P.-H. I. Editions, Eds., 1992.��[Rolland95]�S. C. Rolland C., Moreno M., « An approach for defining Ways of Working », Information Systems Journal, 1995.��[Rolland96]�P. V. Rolland C., « Using Generic Method Chunks to Generate Process Models Fragments », 3rd Int. Conf. on Requirements Engineering (ICRE'96), 1996.��
TOOBIS

Deliverable T23D2	Page N°� PAGE �2�

Deliverable T23D2 (Introduction)	Page N°� PAGE �4�

Deliverable T23D2 (� RENV _Ref393694523 * FUSIONFORMAT �The modeling process approach�)	Page N°� PAGE �6�

Deliverable T23D2 (� RENV _Ref393695093 * FUSIONFORMAT �The Road Map of TOOBIS concepts�)	Page N°� PAGE �19�

Deliverable T23D2 (� RENV _Ref393695368 * FUSIONFORMAT �Top level guidelines�)	Page N°� PAGE �49�

Deliverable T23D2 (� RENV _Ref393695617 * FUSIONFORMAT �Extend Guidelines�)	Page N°� PAGE �50�

Deliverable T23D2 (� RENV _Ref393696060 * FUSIONFORMAT �Map guidelines�)	Page N°� PAGE �322�

Deliverable T23D2 (� RENV _Ref393696139 * FUSIONFORMAT �Use of external tools�)	Page N°� PAGE �333�

Deliverable T23D2 (� RENV _Ref394113845 * FUSIONFORMAT �Conclusion�)	Page N°� PAGE �335�

Deliverable T23D2 (� RENV _Ref394113990 * FUSIONFORMAT �References�)	Page N°� PAGE �336�

