
Hyper/J™: Multi-Dimensional Separation of Concerns for
Java™

Harold Ossher and Peri Tarr
IBM Thomas J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598 USA

+1 914 784 7975
{ossher, tarr}@watson.ibm.com

ABSTRACT
Hyper/J™ supports flexible, multi-dimensional separation
of concerns for Java™ software. This demonstration shows
how to use Hyper/J in some important development and
evolution scenarios, empahsizing the software engineering
benefits it provides.

Keywords
Separation of concerns; multi-dimensional separation of
concerns; decomposition; composition; Hyper/J™.

1 INTRODUCTION
Separation of concerns is at the core of software engineer-
ing. Done well, it can provide a host of crucial benefits:
additive, rather than invasive, change and low impact of
change; improved comprehension and reduction of com-
plexity; adaptability, customizability, and reuse, particu-
larly of off-the-shelf components; simplified component
integration; and the ultimate goal of “faster, safer, cheaper,
better” software.

To benefit from separation of concerns, one must have the
right software modularization at the right time: the con-
cerns that are separated must match the concerns one needs
to deal with. Unfortunately, different development activi-
ties often involve concerns of dramatically different kinds.
For example, changing a data representation in an object-
oriented system might involve a single class, or a few
closely-related classes, and might be done non-invasively
using subclassing or suitable design patterns. Here the
hallmark of object orientation—modularization by class (or
object)—is a major asset. On the other hand, adding a new
feature to a system typically involves invasive changes to
many classes, because the feature code is scattered across
multiple classes, and tangled with other code within those

classes. Sometimes one needs modularization by class,
sometimes by feature, sometimes by other criteria (e.g.,
“aspect” [5], “role” [1], “variant,” etc.), and sometimes by
many at the same time.

These considerations led us to identify the need for multi-
dimensional separation of concerns [9]: the ability to sup-
port clean separation of multiple different kinds of poten-
tially overlapping concerns simultaneously, with on-
demand remodularization. A developer can choose the best
modularization, based on any or all of the concerns, for the
development task at hand. In addition to reducing impact of
change substantially, this opens the door to non-invasive
system refactoring and reengineering. Support for on-
demand remodularization is a major advance over earlier
mechanisms, such as subject-oriented programming [3] and
aspect-oriented programming [5], which support more
flexible modularization than the object-oriented paradigm
they extend, but in only one way at a time.

Our approach to achieving the goals of multi-dimensional
separation of concerns is called hyperspaces [6, 4], because
it involves organizing software in a multi-dimensional
space. The dimensions are the kinds of concerns of interest,
the points on each dimension are specific concerns, and the
location of software units within the space make the con-
cerns they address explicit. Sets of units can be selected,
based on the concern structure, to form modules, called
hyperslices, which encapsulate concerns. Relationships
among hyperslices can be specified, and can be used to
control flexible composition of hyperslices into hypermo d-
ules. Sets of hyperslices thus represent different decomp o-
sitions of the software, and composition allows systems and
components to be built using whatever decomp ositions are
desired. Hyperspace technology is language-independent,
and can be applied to any programming paradigm, includ-
ing object-oriented. It augments existing paradigms, which
traditionally support a single, dominant means of decom-
posing systems (by class or object in the object-oriented
paradigm; by function in functional languages; etc.).

This demonstration will present Hyper/J™, a tool that sup-
ports hyperspaces for Java™. It works with standard Java
software, which need not have been developed using Hy-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee.
ICSE 2000, Limerick, Ireland
© ACM 23000 1-58113-206-9/00/06 �$5.00

734

per/J or multiple concerns. It requires only standard “class”
files as inputs, and produces class files as outputs, so it can
operate on binary Java components. It can be used
throughout the software lifecycle, such as for initial devel-
opment, evolution, extension, or integration.

We will demo nstrate the use of Hyper/J in several software
development and evolution activities, and thereby indicate
how multi-dimensional separation of concerns using hyper-
spaces promotes flexible separation and modularization of
concerns, system composition and integration (resulting in
desirable properties like mix-and-match), non-invasive
evolution and adaptation, and non-invasive, on-demand
remodularization. In so doing, it achieves some key soft-
ware engineering goals, including improved comprehensi-
bility, simplified evolution, and traceability across the
software lifecycle; it also greatly simplifies and helps to
promote reuse.

2 HYPER/J
Hyper/J supports multi-dimensional separation of concerns
for Java using the hyperspace approach. It permits the
identification, encapsulation and integration (though com-
position) of multiple dimensions of concern. It includes a
visual compositor tool, which provides the ability to iden-
tify concerns, including ones that were not identified during
initial system development, specify hyperslices in terms of
those concerns, and synthesize systems and components by
integrating these hyperslices. Hyper/J provides visual,
WYSIWYG support for building and editing composition
relationships, which describe the interrelationships and
interactions among concerns in different contexts, and indi-
cate how to build new concerns out of existing ones. Hy-
per/J can be used at all stages of the software lifecycle, for
initial development as well as for extension or evolution of
software initially developed with it or without it.

Hyper/J supports the following activities, all illustrated
during the demonstration:

• Specification of the set of Java files to consider.

• Specification a concern mapping that identifies all the
concerns that each class and member affects.

• Selection of concerns to be encapsulated in hyper-
slices.

• Specification of composition relationships that control
the composition of hyperslices into hypermodules.

• Generating composed Java classes.
Hyper/J allows trial-and-error specification of the composi-
tion relationships. The user starts this activity by choosing
an overall default composition relationship, which is ap-
plied to the selected hyperslices to produce a composed
hypermodule. Users can then tailor the composition using a
variety of commands provided through the GUI. All
changes are recorded as composition relationships, which
can be viewed, manipulated, and saved. If the input con-

cerns change, the relationships can be reapplied, to yield a
result that, in many cases, will be either correct or close to
what is desired. Any relationships that are no longer valid
will deactivate themselves. The user can interact further,
improving the result in the light of the new inputs.

The development of Hyper/J was influenced by some im-
portant design goals, intended to foster easy, incremental
adoption. First, we did not want to require developers to
adopt new programming languages, or to use special-
purpose compilers or virtual machines. We therefore im-
plemented Hyper/J to work on and generate standard Java
class files. All the support for multi-dimensional separation
of concerns occurs outside the artifact language, Java.
Second, we wanted Hyper/J to provide useful benefits
when applied to standard Java programs, and additional
benefits when applied to programs written with Hyper/J in
mind. It is therefore able to identify, encapsulate and inte-
grate concerns from standard Java programs, without re-
quiring special coding conventions or packaging.

A batch version of Hyper/J is available for download, free,
from http://www.alphaworks.ibm.com/tech/hyperj.

3 THE DEMONSTRATION
To convey a sense of the different ways in which develop-
ers can leverage Hyper/J’s capabilities throughout the soft-
ware development lifecycle, we outline here the scenario
we will demonstrate: the development and evolution of a
software engineering environment (SEE) that facilitates the
development of programs consisting of expressions. The
source code and a detailed description of the scenario are
part of the Hyper/J release. The (informal) requirements
specification for this environment (introduced originally in
[9]), are as follows:

The SEE supports the creation and manipulation of ex-
pression programs. It contains a set of tools that share a
common representation of expressions. The set of tools
should include the following: an evaluation tool, which
determines the result of evaluating an expression and
displays it; a display tool, which depicts an expression
program textually to a default display device; and a
check tool, which checks an expression program for
syntactic and semantic correctness.

Stage 1: Initial Development, without Hyper/J
To illustrate incremental adoption of Hyper/J, we assume
that the initial SEE was developed using standard object-
oriented design and implementation techniques, without
Hyper/J. Accordingly, a class was designed and imple-
mented to represent each kind of expression. Each class
contains constructor, accessor and modifier methods, plus
methods eval(), display(), and check(), which realize the
required tools in a standard, object-oriented manner. This
has the advantage that polymorphism is used effectively:
each object knows how to evaluate, display and check it-
self. However, feature concerns are not identified or encap-

735

sulated within this code, despite being a key focus of the
requirements specification; instead, the code for each fea-
ture (tool) is scattered across all the expression classes.

Stage 2: Mix-and-Match in Retrospect
After using the SEE for a while, the clients indicate that
they would like the ability to run different variants of the
SEE, in which only a subset of the capabilities are present.
This is essentially a request to be able to “mix and match”
tools in the SEE. Thus, we can think of the SEE as repre-
senting a family of software [8], where each member of the
family contains some combination of tools.

Mix-and-match was not a planned extension. Making the
changes to satisfy this rather simple requirement change is
no simple matter with standard technology: allowing selec-
tion of features requires substantial reengineering, probably
to introduce design patterns, like Visitor [2].

We will demonstrate how Hyper/J supports on-demand
remodularization, in which the feature concerns are identi-
fied and encapsulated, in retrospect, and are then composed
selectively to form variants of the SEE. This involves:

• Specifying all the Java files that make up the SEE,
using a file browser within Hyper/J.

• Specifying a concern mapping that introduces the Fea-
ture dimension and the feature concerns within it, and
indicates which classes, methods and instance vari-
ables pertain to which features.

• Selecting desired features and performing composition.

• Generating and executing composed Java classes.
All this will be accomplished without changing, or even
recompiling, any of the SEE source code.

This part of the scenario will thus demonstrate the utility of
Hyper/J’s on-demand remodularization and integration
capabilities on existing, off-the-shelf Java code. Notice that
the feature concerns did not have to be identified or sepa-
rated during initial development to permit them to be en-
capsulated “in retrospect.” Also, each of the newly-
identified feature concerns will itself be a reusable comp o-
nent that can be integrated in different contexts with differ-
ent other concerns—none of them is coupled with any
other. These properties imply powerful support for devel-
opment and configuration of variations within product lines
or families.

Stage 3: Adding a Style Checker
At a later point, SEE clients request an enhancement that
permits optional style checking of expression programs, in
addition to, or instead of, the existing check tool. We will
demonstrate how Hyper/J allows the new feature to be de-
veloped separately from the existing features, and incorpo-
rated non-invasively. This involves:

• Writing the code for the new feature as a new, separate
Java package (or packages), and telling Hyper/J to in-

clude its Java files in the SEE. We call such a package
a concern package, or, in this specific case, a feature
package, because it is deliberately written to encapsu-
late a feature.

• Specifying a trivial concern mapping that indicates that
the whole feature package belongs to a new Style-
Checker feature.

• Selecting desired features, possibly but not necessarily
including style checking, and performing composition.

• Generating and executing composed Java classes.
This ability to write code as concern packages adds tre-
mendous flexibility to the code architectures that develop-
ers can select, and to the range of software development
processes they can use.

As we will show, the only code in the feature package is
that specifically needed to implement the style checking.
Its class structure is similar to that of the original system,
but not identical, because style checking only affects some
of the Expression classes. This is an important feature of
hyperspaces: that different concerns can have different per-
spectives on, or views of, the domain model under devel-
opment. These different views can later be reconciled by
specifying appropriate relationships between the concerns.

The addition of style checking will thus demonstrate an
important feature of Hyper/J: developers need not use Hy-
per/J during initial development, but if they choose to use it
during initial development of some part of the system, they
can achieve separation of concerns, and code architectures,
that would be difficult or impossible to achieve using stan-
dard object-oriented techniques. The extra flexibility does
not require the use of new languages or paradigms —the
style checker, for example, was written as a standard pack-
age in Java—but, instead, is provided by the integration
(composition) features of Hyper/J.

Stage 4: Bugging the Code
In the final part of the demonstration scenario, the SEE
clients request the ability to log, selectively and optionally,
the execution of the SEE. This modification entails making
some or all methods in various classes or features print log
messages upon method entry and exit. Notice that logging
is not the same kind of “feature” as the other SEE tools —it
is not a coherent tool itself, and it may (optionally) affect
some or all of the features during any execution of the SEE.

Adding support for optional logging, using standard object-
oriented mechanisms, would require invasive changes to
every method to be logged, such as to perform the logging
directly or to participate in Observer design patterns [2].

Clearly, the logging capability is not specific to the expres-
sion SEE—it makes no reference to any expression classes
or methods, and the same logging capability could be used
in multiple contexts. Thus, our demonstration assumes that
we already have a library of reusable components that con-

736

tains an implementation of the Observer design pattern,
along with a particular instantiation of that pattern to im-
plement logging. In this case, we demonstrate how to use
Hyper/J to retrofit these components, by integrating them
into the SEE. This involves:

• Telling Hyper/J to include the Java files for the desired
library components in the SEE.

• Specifying a trivial concern mapping that specifies that
these components belong to a new Logging feature.

• Selecting desired features and performing composition.

• Tailoring the composition by interacting with Hyper/J
to specify composition relationships: to which classes
and methods should logging be applied?

• Generating and executing composed Java classes.
Hyper/J thus permits us to adapt the library components to
this particular use additively, without changing either them
or the original SEE.

This part of the scenario will thus demonstrate the ability to
use Hyper/J to (a) customize and integrate reusable comp o-
nents into a new context, and (b) non-invasively retrofit and
integrate design patterns into existing code.

4 CONCLUSIONS
This demonstration will highlight the use of Hyper/J in
several common software development and evolution ac-
tivities, and will show how Hyper/J promotes a number of
key activities, including:

• Flexible separation and modularization of concerns,
and non-invasive, on-demand remodularization:
Java software can be written with or without multi-
dimensional separation of concerns, and with or with-
out Hyper/J. Hyper/J permits the identification, encap-
sulation, and manipulation of concerns in standard
Java software, either during initial system development
or in retrospect, as the need arises during the course of
evolution. The tool set works with any Java class files.
The scenario demonstrates on-demand remodulariza-
tion by non-invasively identifying and encapsulating
the new feature dimension, and shows how software
that was originally written with all features tangled to-
gether (not modularized) can have those features
teased apart and encapsulated as first-class hyperslices
without modifying the original software.

• Composition: Given a set of hyperslices encapsulating
different kinds of concerns, Hyper/J provides the abil-
ity to synthesize and integrate some or all of these con-
cerns into systems and system components. It also fa-
cilitates mix-and-match and plug-and-play non-
invasively, and can aid in the development of product
families and product lines.

• Evolution: Hyper/J facilitates additive, rather than
invasive, changes for many common evolutionary ac-

tivities.

• Adaptation and use of reusable components: A
common problem in software development and evolu-
tion is the need or desire to reuse existing components
in new contexts—ones for which they will require
some degree of specialization or context -specific adap-
tation. Standard object-oriented (and other) mecha-
nisms are inadequate to permit readily such adaptation
and integration without some degree of invasive
changes, unless significant pre-planning occurred. Hy-
per/J can facilitate many forms of non-invasive adapta-
tion and integration of reusable components.

REFERENCES
1. E. P. Andersen and T. Reenskaug. “System Design by

Composing Structures of Interacting Objects.” Pro-
ceedings of the European Conference on Object-
Oriented Programming (ECOOP), 1992.

2. Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. “Design Patterns: Elements of Reus-
able Object-Oriented Software.” Addison-Wesley,
1994.

3. W. Harrison and H. Ossher. Subject-oriented pro-
gramming (a critique of pure objects). In Proceedings
of the Conference on Object-Oriented Programming:
Systems, Languages, and Applications, pages 411–428,
September 1993. ACM.

4. Hyperspace web site, http://www.research.ibm.com/ -
hyperspace.

5. Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Videira Lopes, Jean-Marc Lo-
ingtier, John Irwin. “Aspect-Oriented Programming.”
In proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-
Verlag LNCS 1241. June 1997.

6. Harold Ossher and Peri Tarr. “Multi-Dimensional
Separation of Concerns and the Hyperspace Ap-
proach.” Proceedings of the Symposium on Software
Architectures and Component Technology: The State
of the Art in Software Development. Kluwer, 2000. (To
appear.)

7. David L. Parnas. “On the Criteria To Be Used in De-
composing Systems into Modules.” Communications
of the ACM, vol. 15, no. 12, December 1972.

8. D. L. Parnas, On the Design and Development of Pro-
gram Families. In IEEE Transactions on Software En-
gineering, 2(1), March 1976.

9. Peri Tarr, Harold Ossher, William Harrison, and Stan-
ley M. Sutton, Jr. “N Degrees of Separation: Multi-
Dimensional Separation of Concerns.” In Proceedings
of the 21st International Conference on Software Engi-
neering, pages 107–119, May 1999.

737

