
Abstract

SREENATH, RAGHURAM MASTI. A Community-Based Rating System for Selecting

Among Web Services. (Under the direction of Munindar P. Singh.)

The current infrastructure for Web services has a static approach to discover a service.

It is based on a common repository that has a simple search interface that lets the user query

and find a provider for the desired service. More often than not, the repository produces

a long list of service providers along with typical interfaces to talk to them. There is no

support to evaluate service providers. Such evaluations are important to make a selection

among competing service providers. This thesis develops a community-based approach for

evaluating service providers. In this approach, agents cooperate with each other to evaluate

different providers. Importantly, the agents rate each other, to decide how to weigh each

other’s recommendations. The reasoning of each agent is enabled by a concept lattice,

which supports a mechanism to rate the agents.
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Chapter 1

Introduction

Computer applications executing on distributed systems have become popular over the past

decade. Distributed system continue to grow in popularity due to the increasing need to

develop reusable components that can coordinate with each other . There is a definite trend

among software vendors to expose these reusable components as independent modules,

referred to as services. The public interface that these services expose is usually published

in a registry for the world to discover them. The more challenging aspects of choosing

among competing services is either left as a problem for the user to solve or is handled in

artificial ways such as issuing of certificates by trusted third parties, and advertising service

attributes on popular portals.

1.1 Applying Web Services

Web services are usually defined as self-contained, self-describing, modular applications

that can be published, located, and invoked across the Web. Web services perform func-

tions, which can be anything from simple requests to complicated business processes. For

example, a Web service may provide stock quotes or process credit card transactions. Once
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a Web service is deployed, applications (and other Web services) can discover and invoke

the deployed service.

UDDI UDDI

SERVICE 1

SERVICE 2

SERVICE N

APPLICATION WSDL interface of the service
exposed via UDDI

INTERNET

UDDI

Figure 1.1: Current web services architecture

1.1.1 Description of Services

The Web Service Description Language is an industry standard used to describe services

[WSDL, 2002]. It includes such information as:

1. Interface description, i.e., the methods exposed.

2. Port description, i.e., its url.

3. Fault types, i.e., the messages returned when the request is not understood or when

an illegal request is made.
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1.1.2 Discovery of Services

Universal Description, Discovery and Integration is an industry standard for discovering

services [UDDI, 2002]. A database, called Business Registry, contains information about

services that are registered with it. There are many such registries, which are distributed

globally and synchronized periodically for consistency of data. These registries expose a

search interface for the world to discover the registered services. The working of UDDI

can be summarized as follows:

1. Software companies, standards bodies, and programmers volunteer to populate a

business registry with descriptions of different types of services.

2. Businesses populate the registry with descriptions of the services they support.

3. Business registries assign unique ids to each service and business registration.

4. Marketplaces, search engines, and business applications query a registry to discover

services at other companies.

5. Businesses use these data to facilitate easier integration with each other over the Web.

1.2 Challenges

The current Web Services architecture, described in the Section 1.1, has an implicit as-

sumption that the choice of a service provider is already made. Further, this architecture

assumes that an appropriate service provider can easily be chosen. Choosing a particular

service provider among a list of competing service providers is a task in which the amounts

of trust the user places in various service providers becomes an important factor.
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1.2.1 Current Approaches

A few definitions are in order before we discuss popular approaches.

Definition 1 A set of people who have similar interests in services form a community.

Note that it is not necessary that everyone in the community know each other a-priori, as

long as there is a mechanism for them to discover each other.

Definition 2 The set of all possible communities forms a society.

Definition 3 Consumer is a role taken on by a member of a community when he requests

a service.

Definition 4 Service Provider is a role taken on by a member of a community when he

provides or is willing to provide a service requested by a consumer

We now discuss some of the popular approaches that have been used to find service

providers:

Reputation

Online communities such as Epinions.com [2002] include a setup where the users rate each

other and the services they use. An accumulation of such ratings given by many users to

an individual of the community results in his reputation in the community. This reputation

could be used by other members to decide the extent to which they would like to mimic

his actions and select the same service as he does. Given the reputations of the users and

their ratings of various services, the process of finding a good service could be automated.

Reputation systems, e.g., Sporas [Zacharia et al., 1999], come up with one rating for a

service provider for everybody in the community to use. This rating may not be optimal
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Queries

Replies

Peers

Figure 1.2: Propagation of queries in Gnutella

with respect to every user in the system. The extent to which an individual’s interest is

represented in these ratings is proportional to the reputation of the rater himself. Although

reputation systems are better in locating service providers when compared to systems with

no reputation such as Kasbah [Chavez and Maes, 1996], their drawback is that they assume

that one rating of a service provider fits all. This may not always be justified, especially

when the service providers have multiple attributes, each of which is preferred differently

by different users.

P2P

The problem of a centralized database is overcome by Peer-to-Peer (P2P) systems. P2P

systems are distributed systems with no central authority or management. Searching for a

service provider reduces to querying peers for the kind of service required. Gnutella is one
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of the most successful implementation of a P2P system [2001]. It is used to share files over

the Internet. The system assigns a set of neighbors to each user. When the user requests a

file, a query is sent out to all of his neighbors, who in turn may forward the query to their

neighbors, and so on until the requested file is found. The search process is depicted in

Figure 1.2.1. The drawback of this approach is that there is no trust associated with the

suggestions given by the peers. That is, there are no guarantees made on the quality of the

file that was found.

Referral

A referral system is a form of P2P system. Referral systems address the problem of trust

by associating a permanent identity with the peers. The peers in this case not only provide

services directly, but may also refer to other peers. In this manner, they can find the right

peer to provide the required service. Every peer is represented by a software agent in the

referral system. These agents maintain a changing list of trusted peers of the system, which

are referred to as neighbors. Whenever a service is requested, the agent asks its neighbors

to help it locate the right service provider. The agent changes the ratings of its peers based

on the quality of answers (replies or referrals) that they give.

1.2.2 Our Approach

Competing service providers potentially have an infinite number of attributes to advertise.

It is highly likely that different users would be interested in different subsets of the possible

attributes. Also, the weights that different users attach to each of the attributes would

most likely be different. Let
���������	�
�
������������

be the true representation of scores given to

individual attributes of a service provider � and let
��������������
���������������

be the weight attached

by user � to the respective attributes. The local rating (  �"!
) of the service provider by the
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user can be given as:

 �"!�� �� � ����� ���
�
	

��!
���

(1.1)

Equation 1.1 suggests that the rating of a service provider must be personalized for

individual users. Consider Example 1.

Example 1 Suppose there are three travel agents: A, B, and C. Also, suppose that the

complete list of attributes that any travel agent can advertise is: cost, reliability, speed,

customer-relationship, and efficiency. Now, let there be two users, U1 and U2, that are

seeking a travel agent. It is highly likely that the preference of these two users are different

for the different attributes listed. User U1 might feel cost is the most important factor and

not bother about customer-relationship, while user U2 might value efficiency more and not

bother about cost. If there were only one rating given for any travel agent, or if a rating of

only a sub-set of the complete list of attributes were available for all travel agents, it would

be difficult for the users to select among these travel agents.

Personalizing the rating of a service provider for individual users would require the

user to clearly indicate his preferences in terms of the weights he attaches to the attributes

defining a service provider. Coming up with weights (
���

’s) for individual attributes is not

possible for most users. This could be because they lack enough experience to give a

correct estimate. Moreover, it is the overall evaluation of the service provider that is more

important than the evaluation of individual attributes. A community based rating system

could be used to address this problem. We could attach weights (denoted by  in Equation

1.2) to the raters, so that a user can find his own true rating of the service provider, using

the ratings given by other known users. If there are N agents in the community, this rating

can be represented by the following equation:

 �"!�� �� � ��� � 
�
	

 
�
!
�

(1.2)
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We define a community in which the consumers do not offer any service but may have

(either at present or in the near future) a need for some service, and the providers do not

request any service but have services to offer presumably in exchange for some material

benefits which, however, are not directly modeled. Consumers query each other to find out

the Quality of Service (QoS) offered by a service provider. The query is in the form of a

list of service providers that a user needs to choose among, and the reply is the same list

with a rating attached to each of them. This rating could be null, indicating that the person

replying doesn’t know about the service provider. A consumer, when in need of a service,

sends out queries to other consumers in the community. Upon receiving replies, he makes a

local decision as to which service provider to select finally. In order to make this decision,

the consumer should have a local rating of other consumers in the community.

1.2.3 Implementation

As discussed in Section 1.2.1, agent-based P2P systems could be used to rate agents in

a community. Yolum and Singh show that by maintaining expertise (a vector) and socia-

bility (a scalar) for each agent and by having a set of changing neighbors, we can have a

schematic configuration of the society with desirable properties such as good consumer-

provider proximity [2002]. The system that they define is described next.

Architecture

When an agent wants to ask a question, it sends the question to its neighbors. These neigh-

bors are chosen from among its acquaintances based on a neighbor selection policy. At the

other end, when an agent receives a query, it does one of the three things:

1. Reply with an answer.

8



Figure 1.3: Agent based referral system

2. Not reply at all.

3. Reply with a referral (based on a local referral policy).

The agent which asks the query maintains a directed acyclic graph (DAG) capturing the

communication between itself, and all the agents that the query was sent to. This avoids

duplication of query messages and formation of referral loops.

Finally, when the agent receives a reply, it evaluates the reply and updates the expertise

and sociability of the agent giving the reply based on this evaluation.

Extending the architecture for service appraisal

We make a few modifications to the approach described above and apply it to our soci-

ety, where the peers are all consumers who use and rate service providers. The specific

modification made to the architecture are listed below:
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Agent X

Travel

Car−Rental Air−line

Figure 1.4: A sample hierarchy of categories

1. Represent expertise as a graph rather than a vector

Modeling expertise of an agent as a vector has the inherent danger of the number of

entries in this vector growing too long. Moreover, a particular query may not always

find a perfectly matching area of expertise. Conversely, an area of expertise might

in itself not be definable independently i.e., there could be a hierarchical relationship

between areas of expertise. For example, an expert in vehicles has to be an expert

in automobiles and bikes among others. In order to solve this problem, we use a

hierarchical structure (a graph) like the one shown in Figure 1.4 to maintain expertise

of an agent. An area of expertise, which translates to a node in this graph, will

henceforth be called category. Also, we refer to expertise as rating.

2. Use confidence to represent trust in rating

A scalar value, confidence, is associated with every rating, similar to the one dis-

cussed in [Chen and Singh, 2001]. This confidence changes with each question an-

swered by the agent. A new agent that has declared itself with an advertisement,

sends its agent model (its rating of itself) to the other agents in the community. Each

10



agent associates a confidence level with ratings in the model, which changes with

the number of questions answered by the agent. Thus, confidence acts a measure

of the level of trust an agent associates with the other agent. By taking confidence

into account in calculating an agent’s rating, we have addressed the issue of trust to

a certain extent.

3. Have a non-referral system

Since we are using the referral system only to appraise service provider rating and

not to find service providers themselves, having neighbors give referrals would not

be very meaningful. So, we modify the system so that the agents give only answers

and no referrals. We now have a non-referral system with the trust issue taken care of

(from the previous extension). So, we do not maintain sociability values for agents.

4. Use a concept-lattice representation to help rate raters

Correlation measurements adopted in collaborative filtering techniques help compare

two users based on the common set of items that they have rated. Collaborative

filtering does not allow indirect evaluations of raters. Such indirect evaluations are

important since a friend of a friend could also be a friend. In order to facilitate such

measurements, we have a concept-lattice representation of the users and the scores

they give to service providers. This approach will be described in detail in Chapter 3.

1.3 Organization

The rest of the thesis is organized as follows: Chapter 2 discusses the methodology we de-

velop for selecting service providers. Chapter 3 provides a detailed description of the most

important step in our approach – rating the raters. Chapter 4 describes the experimental

11



setup that we adopt to evaluate our approach. Chapter 5 explores relevant literature and

outlines future directions.

12



Chapter 2

Evaluation Model

In our experiments, we iterate through a list of tasks. Each task requires an agent to find

a service provider in a particular category. We refer to the agent that is trying to find a

service provider as the active-agent. We adopt a three-step approach to solve the problem

of selecting a service provider. The active-agent goes through these three steps in every

iteration. At the end of each iteration, the agent gets to evaluate a new service provider

and based on this experience, correct the weights that it associates with other agents in

the community. Unless otherwise specified, � represents the set of agents (users) in the

community, and � represents the set of service providers. The word user is sometimes

used to refer to an agent when the emphasis on the behavior of the human, which the agent

represents, becomes important. Similarly, the word rater is used when the act of rating of

the agent is to be emphasized. Also, the ratings given by the agents to individual service

providers are referred to as scores to distinguish them from the ratings the agents attach to

each other.
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Figure 2.1: Flow diagram

2.1 Evaluation Cycle

An agent goes through the following three steps every time it wishes to use a service offered

by competing service providers.

1. Select a service provider

(a) Get a list of providers for the kind of service desired.

(b) Contact raters to obtain appraisals of providers in the list.

(c) Obtain scores from raters.

(d) Evaluate scores (using the current ratings given to the raters) and choose a ser-

vice provider.

2. Score the selected service

(a) Use the selected service.

(b) Rate the service based on the experience.

14



3. Rate raters and adjust their ratings.

2.2 Selecting a Service

2.2.1 Getting a List of Competing Service Providers

Two approaches could be taken here:

1. A registry (such as UDDI) is queried for the kind of service desired and a list of com-

peting service providers is built. This list is then sent out to all the peers, in a query

message, for appraisal. The agent then collects replies and builds a representation as

discussed in Section 2.2.2.

2. The type of service required is sent out to the peers and requesting them to return a

list of service providers with scores attached to each of them. This approach would

be useful when the requester doesn’t care as to who provides the services, as in the

case of buying a book.

In our experiments we use the first approach.

2.2.2 Representation

a b c d
� �

0.3 0.5 0.1 �
� �

0.2 0.4 0.1 0.5
���

- 0.3 0.2 0.1

Table 2.1: Agents and the services they have rated
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The raters and their scores are stored in a two-dimensional matrix, with the columns

representing the different service providers, and the rows representing the raters. Let
� �

,
� �

, and
���

be three agents who have rated four services providers, a, b, c, and d. Not all

services are rated by all agents, i.e., each agent would rate only a subset of these services.

An example is shown in Table 2.1.

2.2.3 Choosing the Winner

One way of choosing the winner is by using a weighted average of the scores (weighted by

the local rating of the agents giving the scores). So, the final score of a service � , which

belongs to a category � , is given by

��� !����
�� � � �  � �

	
� � !
�

�
�� � �  � � (2.1)

Where  � � is the local rating of agent
���

in category � , � � ! is the score given by this agent

to service � , � is the number of agents evaluating the service and
��� �����	�
���� ��� �

are the agent

that have evaluated the service � .

The problem with Equation 2.1 is that different users have different score-ranges that

they prefer while scoring, although the possible range of scores they can give remains the

same. For example, a user could give a 4.0 out of 5.0 for the best service he has seen till

now, while another might give a score of 5.0. Thus, a more accurate measure of the value

that a user attaches to a service is the deviation of his score of the service from his average

score. Hence, Equation 2.2 was used in our simulations in preference over Equation 2.1.

��� !�� ����� � �
	�	 � �"!
�
� ��

	
 � ���

� �  � � (2.2)
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2.3 Rating the Service

After using the service, the user can give the true score to the service provider as follows:

1. Individual attributes of the service are scored. These are the attributes that are im-

portant to the user, e.g., speed, accuracy, cost, and reliability.

2. The service is then given a score calculated as a weighted average of the individual

attributes above. The score is then normalized to be in the interval [0,1] and repre-

sents the true score of the service for the user.

In our simulation, we fake the actual service evaluation, by maintaining a simple table of

services and their attributes. Any agent that wants to evaluate a service is returned the

record corresponding to the service. How each agent weighs each of the attributes, is up to

the agent (perhaps driven by a local policy).

We now move on to evaluate the agents based on our current experience.

2.4 Evaluating the Raters

The local rating (  in Equation 2.1) itself would be a function of the rating ( � ) and the

confidence ( � ) in the rating of the agent in a category � . The formula given in [Chen and

Singh, 2001] is:

 � � � ���
�
�
�
�

(2.3)

Equation 2.3 has the following desirable properties:

1. It increases with � and � when the other variable is fixed.

2. It is 0 when either � or � is 0.
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3. It is 1 only when both � and � are 1.

4. It is exactly same as � when � is equal to 1.

A hierarchy of categories is maintained like the one shown in Figure 1.4. Every agent

models its peers based on this hierarchy. This is similar to the hierarchy described in

[Chen and Singh, 2001]. Each node entry is a pair � � � ��� where � is the rating and � is the

confidence in this rating, in the corresponding category in the category hierarchy.

Our approach to calculate � (rating) and � (confidence) in Equation 2.3 is discussed in

detail in Chapter 3.
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Chapter 3

Rating the Raters

Before we go on to discuss our approach to evaluate the agents, a few definitions and

explanations are in order.

3.1 Formal Concept Analysis

Definition 5 A triple � � ��� �
�

�
is called a Formal Context if

�
and

�
are sets and ���

� �
	
�
�

is a binary relation between
�

and
�

. We call the element of
�

objects, those

of
�

attributes, and � the incidence of the context � � ��� �
�

�
.

Definition 6 For ��� � and �	� � , if we define:

��
� � ������� ���
�
�	����� � �

��
�� � ����� � ���
�
�	����� � �

then, � � � �
�

is a Formal Concept of � � ��� �
�

�
iff: ��� � � ��� � � � 
 � � and � 
 � �

Here, � is called the extent and � is called the intent of the concept.
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Example 2 Consider the context of “Living Beings” where
� � ����� � ��� ��� �	� � ��
 � � � ,

� � ��� ��� � � � and � is as represented in Table 3.1.

a b c

Leach x x
Frog x x x
Dog x x

Table 3.1: Context of “Living Beings”. The attributes are a: needs water to live, b: lives in
water, c: lives on land.

The concepts for this context are:

1. � ����� � ��� ��� �	� � ��
 � � � �������
�

2. � ����� � ��� ��� �	� � � ����� ���
�
�

3. � ��� �� � � � ��� ��� � � �
�

4. � ��� �� � ��
 � � � ����� � � �
�

These concepts, when represented as a lattice, with “subset of objects” as the ordering

relation, like in Figure 3.1, is called the “Concept Lattice” of the context.

We could visualize the agents and the services they have rated as a context, and apply

the principles of concept lattice to it. The agents would represent the objects and the service

providers, the attributes. Such a context would represent a has rated relationship between

the agents and the service providers. The concept lattice constructed by treating Table 2.1

as the context is shown in Figure 3.2. In this figure, the nodes are labeled with only the

agents (extent). The service providers (intent) they have rated are dropped, since, in any

concept, the intent and the extent can be derived from each other, given the context.
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�

Figure 3.1: Concept lattice constructed from the context in Table 3.1
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� � � � �
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5
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�

Figure 3.2: Concept lattice constructed from the context in Table 2.1
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The following could be said about the scores given to a service provider in a concept:

1. The greater the height of the concept from which the score for a service provider

was got, more the number of agents rating it, so more the confidence in the absolute

score.

2. The lower the concept from which the score for a service provider is obtained, more

the number of service providers being compared together (since the lattice formed by

treating services as objects and agents as attributes would form a Galois connection

with the lattice in Figure 3.2) and hence better the relative standing of the score.

3. The score from concepts whose height and depth are both low, i.e., concepts formed

out of very few agents and very few service providers are undesirable, as nothing

significant can be inferred from them. For example, if there were a service provider,
�
, which was evaluated by just one agent, say

� �
, It would form a concept in itself

and appear in the concept lattice of Figure 3.2 between concepts 1 and 3. Hence it

would have a low depth and height (both equal to 1). In such a scenario, it would be

difficult to rely on such a score. Hence such concepts could be considered for being

pruned from the final evaluation lattice.

3.2 Motivation

Our motivation to do a concept-wise evaluation of the raters are as follows:

1. People seeing similar facets of the world should be evaluated together. For example,

there is no point in comparing two agents, � and � , where � has evaluated services
��� ���
�

and � has evaluated services
� � ����� .
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2. Assume all agents are “learners”. If they have seen only a small number of services,

they should not be penalized or rewarded unduly.

3. What we are evaluating is the agents learning capability, so evaluate agents treating

their answer space (services evaluated), as the sample space their learners are exposed

to.

3.3 Considerations While Evaluating

1. Direction of traversal through the concept lattice.

2. Is the evaluated service present in the concept? If so, the distance of each agents

evaluation from the “correct” evaluation.

3. Are previously evaluated agents present in the extent of the concept being currently

examined?

4. What should be done if the evaluated service is not present in the intent of the concept

and no previously evaluated agents are present in the extent.

The remaining of this chapter deals with the issues raised here.

3.4 Traversing the Concept Lattice for Agent Evaluation

Since concepts are ordered such that a parent is always the super set of a child, we could

quickly increase the number of raters that have been evaluated, by starting from a concept

with the lowest depth, which contains the winning service (service that was rated). Next,
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we could handle the non-trivial (having a non-empty intent set) root concept of the sub-

tree containing this concept. If, after this, all the raters have not been evaluated, we could

consider all the children of the trivial root node, one at a time, till all the raters have been

evaluated. The method is illustrated in Algorithm 1.

Algorithm 1 Re-Evaluate()

1: Do a breadth first search (BFS) to find a concept, say � , that contains the winning
service.

2: Handle concept � (i.e., re-evaluate all the agents in concept � ).
3: Handle the non-trivial root concept of a sub-tree containing concept � .
4: If all the raters have not yet been re-evaluated, handle the children of the trivial root

node, one at a time, till every agent has been re-evaluated.

Since all the agents would have been re-evaluated when the above algorithm executes,

considering any other concept, that has not been handled, would be unnecessary and is

ignored in our simulations.

Example 3 Consider the concept lattice of Figure 3.2. Suppose that the winning service

was found only in concept � ��� � . Note that this case is impossible considering the context

from which this concept is derived: Table 2.1. But, we still consider this case, just to

explain the algorithm above. If the above algorithm was run on the lattice:

Step 1: The concept � ��� � is found by doing a breadth first search to find a concept that

contains the winning service.

Step 2: The Agent N2 is evaluated during the course of handling concept � ��� � .
Step 3: Concept � � � ��� � is a non-trivial root node of a sub-tree containing � � � � , so it

is handled next. This would result in agent N1 being included in the set of agents that have

been evaluated.

Step 4: Since all the agents have not yet been evaluated (Agent N3 is still left out), the

children of the trivial root concept ( � � � ��� ��� � ) will be considered one at a time. This
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would result in concept � ��� � � � being handled, or agent N3 being evaluated.

At this time, all the agents have been evaluated and hence the algorithm stops.

3.5 Handling Concepts

The important step during evaluating raters (agents) is the way in which concepts are han-

dled. The end-result is that the rating ( � ) and confidence ( � ) of the agents that are present

in the concept (as its extent) are somehow altered to better represent the real world.

1 2 3 � ���
�
� ���

�
� � � �

� � � � ��� � �
�
�

�
�

? ?
� � � � � � �
�

�
�

�
�

? ?

Table 3.2: Handling Concepts

The scenario, for a concept with two raters (
� ��� � �

) and three rated services (
� � �

, and
�
), is depicted in Table 3.2. Furthermore, in order to facilitate the calculation of � � and � � ,

we could divide this into three sub scenarios as follows:

3.5.1 Scenario 1: Early Stages

During the first few iterations, the active user would not have rated enough service providers

to have a row wise comparison with other users. The scenario is depicted below:

1 2 3 � ���
�
� ���

�
� � � �

� � � � � � � �
�
�

�
�

? ?
� � � � � � �
�

�
�

�
�

? ?

active-user
� �

- - - - - -

25



In this scenario, we have a concept, which contains a service provider (
�
) that has been

evaluated by the active user (this e
¯
valuated s

¯
ervice p

¯
rovider will be called e.s.p henceforth).

Updating the Ratings

The new rating ( � � ) depends on following:

1. The current rating ( � ���
�
).

2. The absolute difference between the scores given to the e.s.p by the rater and the

active user.
� ��������� !

�
� � ! �

(3.1)

We use the following equation to rate agents in this scenario:

� �
�
� ���

����� �
� � �
	 (3.2)

The decision whether to increase or decrease the rating (
�

or � ) in Equation 3.2 is

made by agreeing on a threshold value for the difference in rating (
�
).

Normalizing

The difference
�

in Equation 3.2 is normalized to be in the interval ��� � �
�
. In order to prevent

agent ratings from growing very large, we also normalize the rating such that � � ��� � �
� � � . This also serves as a minor incentive for the agents to reply to queries, since the

only way they can increase their rating is by competing with others (they can’t just wait for

other’s ratings to go down).
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Damping

We introduce the damping factor, � , in Equation 3.2 in order to damp the increase and

decrease of the rating. This damping factor should reduce the incremental value (
��� � � � �

�
in Equation 3.2) at the extremities, i.e., the reduction of an already low rating, and the

increase of an already high rating should be low. We use Equation 3.3, in which � is a

positive constant and � 
� is the minimum of � � and � � � � � � �
�
.

� � � ��
� (3.3)

3.5.2 Scenario 2: Later Stages

This scenario is same as in Section 3.5.1 except that the active user has now rated enough

service providers to be able to make a row-wise comparison with other agents. The consid-

erations for this scenario is same as for the previous one, except that the vector similarity

between the active user and the other user replaces the additive factor in Equation 3.2.

There are many algorithms that calculate the correlation between vectors, the simplest

among them being the mean square difference between the vectors: � � �
�

� �
� �

. Breese

et al. compare many such algorithms [1998]. The Pearson’s r-correlation with a few exten-

sions seems to have performed best. Accordingly, user � ’s rating of another user � 
 is given

by:

�
� ��� � � ! � ���"! � ��� � � ��� � ! � ��� � �

�
� ! � ���"! � ��� � � � ! � �
� � ! � �
� � � � (3.4)

Where
� � � �

�
is the set of all service providers,

���"!
refers to the score that user � has

given to the provider � , and
� �

refers to the average rating of user � . Note that we don’t have

to make a decision whether to add or subtract the correlation factor, since �
� � �

is positive

or negative depending on the degree of correlation. So, this value (positive or negative)
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is added or subtracted from the old rating depending on the sign of �
��� �

. The ratings are

normalized as in Scenario 1.

3.5.3 Scenario 3: Propagation of Evaluation Through Concept Chains

An agent (rater) that is considered for evaluation satisfies at least one of the following

conditions:

1. Agent is in a concept that contains the winning service in its � ��� � ��� .
2. Agent is in a concept that has agents that have been evaluated by virtue of satisfying

condition 1.

3. Agent is in a concept that has agents that have been evaluated by virtue of satisfying

conditions 1 or 2 above. (Note that this is the generic case of condition 2.)

4. Agent is in a lonely concept that cannot be reached through any of the above ways.

Such concepts are not handled (i.e., the agents belonging to such concepts are not

evaluated).

0

1 2 3

[N2,N3][N1,N2] [N3,N4]

[N1,N2,N3,N4]

1 N2 N32 3

Figure 3.3: Propagation of rating through concepts
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In order to facilitate indirect evaluation of raters (to find friends of friends), we have to

find a way of propagating rating and confidence through concepts. Consider the concept

lattice in Figure 3.3. In this lattice, if concept 1 contained the active agent (letting a direct

evaluation of the agents in this concept), then the ratings (and confidence) would have to

propagate to concept 2 through N2, and to concept 3 through N3, via concept 2. The

propagation graph is shown in the same figure.

1 2 3 � ���
�
� ���

�
� � � �

� � � � ��� � �
�
�

�
�

? ?
� � � � � � �
�

�
�

�
�

? ?
� � � � � � �
�

�
�

�
�
�
�
�
�
�
�

In this scenario, we have a concept in which one of the raters has already been evaluated,

perhaps in a previously handled concept. We have to somehow find a way of propagating

this new rating and confidence to the other agents in this concept. One such scenario, with

the propagating agent being
���

, is shown in the table above.

Updating the Ratings

The new rating ( � � ) depends on the following:

1. The current rating ( � ���
�
).

2. The vector distance of the rater’s rating and the linking rater’s rating (
� �

).

3. The vector distance between the active agent and linking agent (
� �

).

4. The distance between the previous and current rating of the linking rater ( � ).

A graphical representation of the situation is shown in Figure 3.5.3.
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Figure 3.4: The problem of propagating ratings through concepts

The formula used to calculate the new rating is given in Equation 3.5. Here, � is a

constant.

� �
�
� ���

� � � � � � � � �
� � 	 � (3.5)

In Equation 3.5, � is the damping factor calculated as in Equation 3.3.

3.5.4 Updating the Confidence

We use a generic formula to update the confidence in rating ( � in Equation 2.3) in all the

scenarios discussed in Section 3.5. In general, we believe that the confidence in rating

must go up after every evaluation of the agent, irrespective of whether or not the rating of

the agent itself was increased. The case when confidence goes down (e.g., when an agent

behaves erratically) could be a possibility in a real life scenario. But, we do not explore

this research direction in our work.

The requirement for the value of confidence is summarized below:

1. The value of confidence is kept in the interval (0,1).
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2. Confidence is initialized to a low value and is incremented every time there is a

chance to evaluate the agent.

3. The amount by which the confidence is increased during every iteration depends on

the degree of indirection while evaluating the agent’s rating, i.e., the incremental

value decreases with the propagation length of the ratings. For example, in Fig-

ure 3.3, the amount by which the confidence in the rating of N4 is increased should

be less than the amount by which the confidence in the rating of N3 is increased,

which in turn should be less than the amount by which the confidence in the rating

of N2 is increased.

The equation used was:

� �
��� 	 �

� ���
� � �

� � � �
� 	 (3.6)

In Equation 3.6,
�

is the damping factor, which is set to be equal to the reciprocal of

the sum of the confidences associated with every category of the agent being evaluated —
��� ��� � � � . � is a positive constant.
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Chapter 4

Experiments

This chapter describes an experimental setup to test the key aspects of our proposal. Al-

though implementing the entire architecture described in this thesis is not the goal, we have

identified the key differentiators of our approach with respect to the literature. We describe

a methodology to see these key differentiators in action and define a set of metrics with

which to measure them.

4.1 Methodology

4.1.1 Data-sets Used

We evaluate our work with respect to two data-sets.

1. MovieLens database

In order to be able to compare our work with other similar works, we use the

well known MovieLens database [MovieLens, 2002]. This is a huge database with

100,000 ratings by 943 users. But the lack of a definition of user-preferences in

terms of the attributes of the providers (movies), makes it difficult to protect the
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evaluation process from ambiguities inherent in human perceptions. Although the

user’s ratings are not completely random, we require a better prediction of the truth

values (the actual value of the provider to a user) in order to evaluate our approach.

However, evaluating our approach (and comparing it with other approaches) against

this database, helps us visualize the performance of our approach under presumed

varying interests of the users.

2. Artificial database

Due to reasons cited above we also evaluate our work against an artificially created

database. In this database we have three categories of services: travel, car-rental,

and airline. The travel service forms the parent category for the other two services.

Each service has five service providers. Each service provider is assigned different

values for five arbitrarily chosen attributes: cost, speed, accuracy, public-relations,

and availability. We define ten user profiles, wherein each profile contains weights

associated with each of the five attributes.

4.1.2 Problem Formulation

Given

During every round of simulation, we maintain the following:

1. The truth matrix,
�

, which contains the real ratings of the Users vs. Items.

2. The prediction matrix,
��

, which is a matrix of predictions made by our algorithm.

3. The observation matrix,
�

. This matrix in general satisfies
� �"! � � �"!

for every pair

� � � �
�

that has been observed, and
� �"!�� ��� � � otherwise. Initially,

�
is partially filled

and used to bootstrap the agent.
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4. A list of tasks, � , that the active agent has to perform. Each entry in this list can be

thought of as a six tuple, � active-agent, requested-category, done, winning-provider,

predicted-score, actual-score � . The first two fields are filled in by the simulator and

the last three fields are filled in by the agent, depending on whether or not it is able to

complete the task (thus setting the done field to either true or false. The truth matrix,
�

, is used to help the agent fill the actual-score field.

During every iteration, a task is handed over to the agent. If the task is completed

successfully (the done field is true in this case), the predicted-score is entered into the

prediction matrix,
��

, and the actual-score is entered into the observation matrix,
�

. The

experiment terminates when all the tasks are completed or a predefined time-out is reached.

Observation

During the simulation, we observe the following:

1. Variation of errors with time

Error value of the prediction,
� � �"!

�
�� �"!��

� , at the end of or each iteration, � , is

noted for �
� �

to � . Where � is the number of tasks given to the system.

2. Variation of agent ratings with time

For every user, � , of the system, the active user’s rating of this user,
� �� �

, at the end of

each iteration, � , is noted for �
� �

to � . Where � is the number of tasks given to the

system.
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4.2 Comparison With Other Approaches

Our approach is compared with two other popular approaches. These approaches can pre-

dict a winning service provider and evaluate the raters, thus providing alternate means of

carrying out the functionality depicted by the first and the last block of the flow diagram

shown in Figure 2.1. These approaches are described briefly in the following sections:

4.2.1 Correlation-Based Approach

In this approach, a user’s rating of any other user of the system is based on the correlation

between the ratings of the two users. Pearson’s correlation factor is used to measure the

correlation between two users. The actual formula is given in Equation 3.4. The difference

between the correlation based approach and the way Pearson’s correlation is used in our

approach is that in the former approach, the time of recording of the score is immaterial,

i.e., a correlation is calculated based on all the scores given by the two users till now. In

our approach, we use the correlation factor only for the current iteration. It is only used to

find the similarity in scores given by any two users in the current iteration.

While making a prediction, a weighted average of the scores given by the agents

(weighted by their correlation with the active user) is computed for each competing ser-

vice provider. The provider with the highest score is declared as the winner.

4.2.2 Generalized-Learn-Relationship (G-Learn)-Based Approach

Nakamura and Abe have described the G-Learn approach in detail [Nakamura and Abe,

1998]. It is a generalized version of the weighted majority algorithm [Littlestone and War-

muth, 1994]. The basic idea here is that, instead of a binary vote (as in the case of the

weighted majority algorithm), the users vote for all values within a permitted tolerance
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from their true value. Let � denote the range of values in
�

(the truth matrix). Also

for any
� � � , let � � �

�
denote the set of prediction values that are permissible when the

correct value is
�
. A prediction is made as follows:

�� �"! � ���� �������
	���������� �
����� ��� � � ����� ��� ����� �

if � � � 
 � � ��� !! �#"��$ � �
�

� � (a constant) otherwise

(4.1)

After knowing the true value (the second step in the three step approach described in

Section 2.1), the weights are updated as follows:

����� � � �� � � � �&%
�
�������

if
� � � !�� � � � � !

)

% ��� � �
if
� � � ! �� � � � � !

)
(4.2)

4.3 Results

4.3.1 Change of Agent Ratings With Time

The three approaches compared - Correlation, GLearn, and Concept - adopt different strate-

gies to update agent ratings. We test each approach against the artificial database in order

see the way the ratings vary with time. The artificial database was preferred to the Movie-

Lens database, since we have an accurate representation of the true value of a service to

the user (programmatically computed from the user preferences) as opposed to the approx-

imate true value in the case of MovieLens (since the ratings are given by real users). The

active-agent field in all the tasks is kept the same, since we are only interested in one active

user’s rating of other raters in the community. The observation matrix for this user is set

to null indicating that the user begins with no idea of other users and the rating he has to

associate with them. Thus, he starts with a default rating of all users in the community

(which depends on the approach chosen). The way in which the ratings change in each of
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Figure 4.1: A comparison of the variation of agent ratings with time

the three approaches is compared in Figure 4.1. The figure compares the change in ratings

of three neighbors of the active user - best-neighbor, worst-neighbor, average-neighbor -

in each of the three approaches. The preferences of the best-neighbor was set exactly the

same as the active user. All the neighbors were arranged in an increasing order of the root-

mean square difference (
�
� � � � � ���

� � � �
) of their preferences with that of the active

user. The average-neighbor and the worst-neighbor were chosen to be the middle and the

last users respectively, in this list. One of the interesting observations from these graphs

is that the GLearn approach does not distinguish between an average and a bad neighbor

(both are treated as bad).
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4.3.2 Learning Curve
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Figure 4.2: Time taken to reach steady state - comparison

In order to compare the three approaches based on the time they take to reach the

steady state (after which their prediction accuracy remains almost constant), we initialize

the active user with a null observation matrix and let him predict the scores of service

providers in a chosen category. Thus the setup is similar to the previous one except that we

now have the category field fixed in all the tasks. From the graph in Figure 4.2 we see that

the concept based approach converges slightly faster than the other two approaches towards

the steady state. Also, the absolute error made in the concept based approach is lower than

the error in the other two approaches (for the artificial database).

4.3.3 Steady State Accuracy Test

We compare the accuracy of the three approaches in their steady state by recording the

errors (both positive and negative) made during predictions (Figure 4.3). The tasks for

this experiment is a long list of randomly chosen, but legal, tasks. Thus there are multiple

active-users making predictions for service providers in multiple categories. In order to
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Figure 4.3: Steady state accuracy test - MovieLens

represent the real-world, the MovieLens database was chosen in this case. All the active

agents were initialized with 70% of the Truth matrix (
�

).

4.3.4 Ordinal Error Test

In the steady state accuracy test, we record the error value of prediction irrespective of the

quality of prediction. That is, we measure the error value whether or not the winning service

provider was indeed the right choice. In order to measure the quality of the choice itself, we

define a value called the ordinal error. This value is simply the rank of the winning service

provider among the list of service providers considered in the current iteration, with respect

to the active user. Note that we can measure this value since we have access to the truth

matrix (
�

). The setup is exactly same as the one for the steady state accuracy test. Plots
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Figure 4.4: Ordinal error test - MovieLens

of the ordinal errors made in the three approaches is shown in Figure 4.4. The sum of

the number of predictions with ordinal errors one, two, and three was computed for each

approach. It was learnt that the performance of the GLearn predictor was better than the

Concept-based predictor, which in turn was better than the Correlation-based predictor.

However, the mean ordinal error in the Concept-based predictor was equal to 3.4, which

was better than that for GLearn predictor which was equal to 3.6, which in turn was better

than the mean ordinal error of 3.7 for the Correlation-based predictor.
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Chapter 5

Discussion

In this chapter, we describe literature that is related to our work. We also describe two

important concept lattice algorithms that we had to implement in our approach. We end the

chapter with a discussion of the extensions that could be made to our work.

5.1 Related Work

The main focus of this work is service selection. One of the ways of selecting services

is by defining Quality of Service (QoS) parameters, and specifying the value that the user

attaches to each of these parameters. Service level agreements are made once a service

willing to adhere to these demands is found. Our approach, on the other hand, is closer to

the field of information filtering, although extended to apply to service selection. Classi-

cal information filtering techniques fall under two main categories: (1) Content based or

cognitive filtering and (2) Social information filtering.
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5.1.1 Content-Based Filtering

The most well-known techniques of content-based filtering is keyword-based search such

as the one adopted by search engines like Google. Primitive QoS-based filtering could be

introduced for keyword searches, by identifying the right keywords for search and com-

bining them with boolean operations such as � � 

,
�  , and

� � � . Techniques such as

term frequency-inverse document frequency (TF-IDF) are based on the view that the least

frequently occurring words and the number of times such words appear in a document are

the most likely factors that decide the relevance of a document. Latent Semantic Indexing

(LSI) is a popular approach used to minimize the adverse effects of synonyms (many words

used to convey the same meaning) and polysems (one word having many meanings) in a

query based search [Dumais et al., 1988]. TF-IDF and LSI, along with techniques to mea-

sure correlation of the query with a document, such as the vector similarity measurements,

aid the content-based filtering approach.

5.1.2 Social Information Filtering

Social information filtering refers to the generic technique of selecting articles based on

relationships between people and on their subjective judgments. Such filtering, in general,

could be for an individual or for a group. Placing an author in the “preferred list” is a crude

example. Collaborative filtering [Goldberg et al., 1992] is a form of social information

filtering in which people collaborate to help one another to perform filtering by recording

their reactions to services they use (e.g., rating documents read).

The aspects in which the different collaborative filtering techniques differ is discussed in

the following subsections:
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Implicit vs. explicit voting

Implicit voting involves estimating the user’s preferences without the user having to explic-

itly express his rating, by observing patterns like: purchase history, browsing pattern, and

the amount of time spent reading an article. As opposed to this, in explicit voting systems,

such as GroupLens [Resnick et al., 1994] and Ringo [Shardanand and Maes, 1995], the

user rates the service he uses (in this case, the articles that he reads) on a scale of 1 to 5 and

1 to 7 respectively.

Memory-based vs. model-based approaches

One of the main classifications of collaborative filtering techniques is into memory-based

and model-based approaches. In the memory-based approach, a history of user preferences

(ratings) is stored in a database. The system makes a definite prediction of the articles

to be recommended based on this history using correlation between users as the deciding

criterion. Some algorithms that calculate similarity between users are compared in [Breese

et al., 1998]. The model-based approach is a probabilistic approach. It involves calculating

the probability of a user liking a particular service. The crux is to identify a set of features

that are most useful in making a prediction. Features are either present or absent in a

service. These features could also be memory dependent, e.g., “Alice likes service x”.

Once such features are identified, they are used to predict the probability of the user liking

a service based on his previous experiences. Feature selection, which is critical for the

success of this approach, is discussed in [Basu et al., 1998]. The more popular model-

based approaches are the Bayesian approaches. Breese et al. discuss a simple Bayesian

network approach [1998]. Billsus and Pazzani discuss a Bayesian classification approach

with emphasis on ways to reduce the number of features being considered [1998].
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Offline vs. online filtering

The methods described above are offline filtering methods. These methods make use of a

matrix representing a record of the history of the users of the system. This matrix is used

to make predictions for the users. As opposed to this approach, online filtering methods

treats the prediction process as one that is continuous and interactive. They make use of

a mistake-bound model that has a learner that corrects itself after each iteration. Thus

there is more personalizing of the recommender. The theoretical framework for one of

the popular approaches, called the Weighted Majority Algorithm is discussed in [Little-

stone and Warmuth, 1994]. The idea here is to attach weights to individual algorithms in

a pool of algorithms called expert predictors. These algorithms make binary predictions

(yes/no) given an instance of the problem. The master algorithm, calculates a weighted

majority of these predictions and comes up with its own binary prediction. If the predic-

tion is wrong, the master algorithm reduces the weights attached to all the algorithms that

predicted wrong. This generic WMA can be used to predict user preferences treating the

ratings of other users as the ratings by various algorithms, and the “learner” as the master

algorithm that learns how much weight to attach to each of the users. This approach for

a binary prediction is discussed in [Goldman and Warmuth]. Generalized versions of this

learning algorithm, for a range of ratings (not just binary), is discussed in [Nakamura and

Abe, 1998] and [Delgado and Naohiro, 1999].

5.2 Concept Lattice Algorithms

Section 3.1 gives a brief introduction to the theory of concept lattice [Ganter and Wille,

1999]. The following are the two main algorithms that were used in our simulations.
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Identifying Concepts

The algorithm given in [Ganter and Wille, 1999] was used to get a list of all concept extents

of a context � � ��� �
�

�
and is shown in Algorithm 2.

Algorithm 2 Get-Concepts()

1: The extent
�

is entered into the list. Then we carry out the following for each attribute�����
(the attributes are processed in an arbitrary order.

2: For each set A, entered into the list in an earlier step, we form the set � � � 
 and
include it into the list, provided it is not yet contained within it.

Building the Concept Lattice

Once the concepts are identified, a lattice has to be built from them (capturing the parent-

child relationship). A fast algorithm to build concept lattice described in [Nourine and

Raynaud, 1999] was considered, but was given up in preference to a “dog-work” algorithm,

for the sake of simplicity. The algorithm that was adopted is shown in Algorithm 3

Algorithm 3 Build-Lattice()

1: Place each concept in the list of concepts in a bucket representing the size of the extent.
2: For each concept in a bucket representing size � , add all the concepts in buckets repre-

senting size � � � or higher to its parent list.
3: For each concept, remove concepts that are found in the parent list of any other concept

that is a parent of the concept under consideration.

5.3 Directions

We have identified the following directions in which our work could be improved or ex-

tended.
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5.3.1 Bootstrapping Agents

One of the important problems in a real-life community is accomodating a new user. This

would translate to bootstrapping the agent that represents this user in the community. In

our experiments, we assume that an observation matrix is available for every agent in order

to bootstrap the agent. This matrix is not very useful unless there is a row representing the

active user, i.e., the observation matrix cannot be used to bootstrap the agent unless there

is standard of comparison (which in our approach is the active user’s row) is available to

evaluate the raters. We could measure the deviation of a user rating of a service provider

from the average rating. But, this would not be a personalized rating of the rater. A hybrid

system — a mix of reputation and referral systems — could be considered in this case.

5.3.2 Decreasing Confidence

The confidence we attach to our rating of a rater goes up after every evaluation of the

rater (agent), irrespective of whether or not the rating of the rater itself is going up. But,

in real life there could be ambiguities that arise after every evaluation of the rater, this

should translate to a loss in confidence (e.g., when an agent behaves erratically or changes

preferences). However, we have not explored this direction since we do not consider the

case of varying interests of raters. Barber and Kim discribe a probabilistic approach to

decide whether a knowledge gained from a source is true or false [2001]. The probability of

the source being reliable is also measured and taken into consideration while measuring the

confidence in the knowledge. A similar approach could be adopted to associate confidence

in ratings.
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5.3.3 Neighbor Selection

In our experiments, we maintain a list of ten neighbors and evaluate twenty raters during

every iteration, i.e., the score table contains ratings given by atmost twenty raters. At the

end of the iteration, we update the list of neighbors to contain the top ten raters. This list is

used to make sure that the scores given by any of the neighbors is retained while building

the score table during the next iteration. The number of neighbors maintained and the

number of raters chosen during every iteration could influence the quality of decision and

should be typically driven by a local policy described by the user.

5.3.4 Using the Hierarchical Classification Scheme

A hierarchical classification scheme for the service categories was described in Sec-

tion 1.2.3. We believe that this scheme would be very useful in classifying service cat-

egories in a world where all possible service categories are described. Such a classification

would help locate the right kind of service provider. However, in our experiments, the use-

fulness of this scheme was not obvious since the classification of the categories was either

very simple (as in the artificial database) or non-existent (as in the MovieLens database).
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