
In-Young Ko
and Robert Neches
Information Sciences Institute,
University of Southern California

52 SEPTEMBER • OCTOBER 2003    Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Th
e 

Ze
n 

of
 t

he
 W

eb

Composing 
Web Services for
Large-Scale Tasks

By making it easy to explore combinations of multiple Web

services, Eurasia helps users tackle large-scale information-

management tasks and adapt and reuse the steps involved. 

Web services give users access
to various information-man-
agement services that help

them gather, organize, and manage Web-
based information. However, it’s cur-
rently impractical for users to properly
manage and execute the many steps
required to retrieve, analyze, and visu-
alize information for large-scale tasks,
such as performing a multisource intel-
ligence gathering and analysis task or
building an automatically updated Web
portal. Assuming users do achieve suc-
cess in such large-scale information,
management tasks, it’s unlikely that
they’d be able to quickly adapt and
reuse the many steps involved for other
tasks and environments.

Currently, Web services research focus-
es on developing mechanisms to describe
individual services, locate them in a net-
work environment, and access them
based on functionalities and constraints.
However, to fully realize Web services’
potential flexibility and adaptability, we

must combine various services to enable
large-scale task management. To this end,
we propose Eurasia (Exploring, Under-
standing, and Recording Analysis Steps
in Information-Management Applica-
tions), a high-level system that helps
users quickly explore and test various
Web services so that they can compose
large-scale applications.

Eurasia evolved from our development
of GeoWorlds (www.isi.edu/geoworlds), a
Web-based system that makes various
network information-management ser-
vices easily accessible to users.1 We began
the GeoWorlds project in 1998; our work
on it provided insight into several key
aspects of user behavior in Web-based
environments, which in turn inspired our
work on Eurasia. 

• Incremental development. Users’ task
goals are initially abstract, and they
don’t know which information-man-
agement steps to pursue. By explor-
ing and testing candidate sources and



services, users gradually discover which steps
are required to accomplish their goals.

• Recurrent execution. Users often rerun steps to
update their analysis results with the latest Web
information. 

• Evolving requirements. User requirements are
continuously changing, and users modify steps
based on insights they gain from incoming
results. 

• Patterns of collaboration and reuse. Users
exchange similar information-management
patterns when they collaborate, and they fre-
quently reuse a similar set of analysis steps for
multiple tasks. 

• Use of document collections. After retrieving
various Web documents, users typically reor-
ganize them into different structures and dis-
play the collection in different formats. 

• Dynamic information management. Because
the availability of Web sources and services
changes over time, users must adjust their
information-management steps accordingly.

• Choice of services. Users need help sorting
through the many available information
retrieval, analysis, and visualization services
that come in various forms, including software
components, Internet agents, and Web services. 

Eurasia is currently in experimental use in sev-
eral public and military domains. Application
developers have used Eurasia to build more than
45 different applications, the oldest of which has
been running continuously since 2001 and has
spawned four variants. Here we describe the

Eurasia system and how it meets the challenge
of using Web Services for large-scale informa-
tion management.

Large-Scale 
Information Management 
To increase the probability of high-quality infor-
mation analysis, users must collect a sufficient
number and variety of documents on a given
topic. This requires access to diverse Web sources.
In addition, users must structure, extract, convert,
and visualize the information to meet their spe-
cific needs. 

Management Challenges
To analyze a particular news topic, for example,
several tasks are involved: retrieve news articles
from multiple online sources, filter out noise links,
classify and rank articles based on predefined top-
ics and place names, compute the cross-product
between the two categories, and produce Web por-
tal pages that present the analysis results. In all,
users must invoke 21 services to complete this
basic analysis task. More advanced applications
require more services. As the “Eurasia Applica-
tions” sidebar describes and Figure 1 shows, for
example, our publicly available GeoTopics news
analysis application uses 92 component services
(www.isi.edu/geoworlds/geotopics). In all cases,
users must ensure that each service they invoke
can handle other services’ document structure and
semantics. When they detect a mismatch, users
must convert or preprocess the data so the service
can accept it.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2003 53

Eurasia and Web Services

News compilation resultsDocument analysesNews sources Extracted articles

Document filtering

Topic ranking and sorting

Topic and place name
extractions

Cross-product between
topics and places

Geographical articles
mapping

Topic and place-based
document classifications

Figure 1. The GeoTopics news analysis application. GeoTopics uses 92 component services to extract
daily news from numerous sources, analyze the documents, and present results.



Even for highly trained users who understand a
system’s functionality and input data require-
ments, large-scale information management is
complex in itself. To improve task quality and per-
formance, however, users must also take advan-
tage of previous success with information-man-
agement tasks. To reuse information analysis steps,
users must adjust them to the system environment.
Some previously available services might become
unavailable, and some system resources (proces-
sors and memory) might be insufficient to run cer-
tain service types. Moreover, handling format
changes on information sources can require addi-
tional services, such as filters and converters.

Users must also adjust existing information-
management steps based on their changing
requirements. In some cases, although the overall
sequence and types of key information-manage-
ment steps are the same, users might require a dif-
ferent set of services to meet changing needs.
When users must repeat a set of analyses fre-
quently to capture time-sensitive information, for
example, they often must replace slow services
that produce sophisticated results with faster ser-
vices whose results are less refined. 

Addressing the Challenges
To meet these challenges and help users perform
large-scale information-management tasks, we need
mechanisms that help users find appropriate ser-
vices and assemble them coherently for their tasks.
These mechanisms should also make it easy to 

• resolve mismatches between services, 
• repeatedly run the assembled services, and 
• reconfigure services to cope with dynamic

aspects of Web resources, information-man-
agement services, and user requirements.

The proposed Web Services Description Language
(WSDL) uses XML to describe Web services as col-

lections of communication end points (ports)
capable of exchanging messages.2 Business Pro-
cess Execution Language for Web Services
(BPEL4WS)3 and the Defense Advanced Research
Projects Agency’s Agent Markup Language Ser-
vice (DAML-S)4 use WSDL as a framework for
providing an XML-based language for coordinat-
ing individual Web services to compose high-level
business processes.

Developers can use BPEL4WS or DAML-S as an
underlying language to describe information-man-
agement applications that utilize Web services.
However, without high-level tool support, adapt-
ing these languages to large-scale information-
management tasks is difficult for four reasons.

• It’s time-consuming to select services,
because the languages offer no support for
quickly exploring possible information-man-
agement options at each step. Without a
mechanism to explore such options based on
the target information type, it’s difficult for
users to recognize which services to incorpo-
rate into an application.

• The languages lack an abstraction mechanism,
which hinders application reuse and adaptabil-
ity. Many information-management tasks
require similar analysis steps. To reuse these
patterns for multiple tasks and adapt the appli-
cation for different system environments, users
must be able to express an information-man-
agement application at an abstract level and
instantiate and test it by assigning different
combinations of service instances. Although
BPEL4WS and DAML-S provide facilities to
represent abstract processes, we need a mecha-
nism that easily converts between abstract and
concrete application representations.

• Service and application transparency is hin-
dered by a lack of collection-based representa-
tions. BPEL4WS and DAML-S focus on repre-

54 SEPTEMBER • OCTOBER 2003     http://computer.org/internet/ IEEE INTERNET COMPUTING

The Zen of the Web

Eurasia Applications

Using Eurasia, we built — in one week
— a large-scale news-analysis applica-

tion, GeoTopics, composed of 92 compo-
nent services.Among GeoTopics’ 92 ser-
vices, 29 are input and converter services
that the service broker semiautomatically
selected and inserted into the application.
In addition, Eurasia’s application composi-
tion mechanism hid services’ interface de-

tails and semiautomatically bound services
based on I/O requirement descriptions.
Without these semiautomatic selection and
binding features, building such a large-scale,
complex application would have taken far
longer than seven days. Also,without Eura-
sia’s service-coordination mechanism, it
would be hard for users to manage the con-
currency and synchronization among the 92

services and execute the entire application
within a short time.

In addition to the GeoTopics application,
we have used Eurasia at a US military site,
working with intelligence analysts to devel-
op, adapt, and reuse various Web-based
information-management applications, in-
cluding natural disaster,drug-trafficking, and
regional terrorism analyses.



senting programming details (data bindings
and control structures) rather than high-level
processing steps for analyzing and presenting
document collections. This makes it difficult
for users to understand information-manage-
ment applications.

• Application reuse and execution are unreliable
because the languages lack mechanisms to
handle Web resources’ dynamic aspects. To
reliably reuse and run an application, users
should be able to select and coordinate an
application’s service instances dynamically,
based on the availability of information
sources and services. Although BPEL4WS and
DAML-S offer fault handling and conditional
branching mechanisms, they should be incor-
porated with a high-level tool that lets users
monitor services’ status and adjust them based
on available alternative services and other
resources during runtime.

Conventional Web-based information-man-
agement systems consist of a client subsystem,
which lets users uniformly access information-
management services, and a service access infra-
structure, which lets higher-level system entities
locate and access those services. The service access
infrastructure typically uses WSDL and DAML-S,
coupled with service registries — such as Universal
Description, Discovery, and Integration (www.
uddi.org) — to find Web services based on particu-
lar constraints and connect to them using the ser-
vice groundings that the description languages
provide. 

To solve the four problems described above, we
introduced Eurasia as a layer between the client
subsystem and the service access infrastructure. 

The Eurasia Architecture
Figure 2 shows the Eurasia architecture, which
consists of three main components:

• The component-description framework provides
a taxonomy of services’ functionality and I/O
requirements (stored in a service metadata
repository) that lets users explore different ser-
vice options and interoperations.

• The template composer uses the stored meta-
data to measure services’ interoperability and
compatibility, and helps users combine inter-
operable services to build or refine their appli-
cations. 

• The dataflow-based service coordinator runs
the current version of a user’s application by

controlling the synchronization and parallelism
among services based on their data dependen-
cy. It also lets users reconfigure the application
during runtime.

As Figure 2 shows, users can select and run an
application via the client subsystem’s user inter-
faces. The service coordinator then interacts with
the service access infrastructure to invoke and
control the individual service instances distributed
in the network.

We divide Eurasia users into two groups: end
users and application developers. The end users are
information workers (such as intelligence analysts)
who select one of the predefined information-man-
agement applications from the application reposi-
tory for their task, perform some minor adaptation
steps (such as substituting services and adding
more viewers for results), enter input data, and run
the application. They also monitor application exe-
cution and, when needed, reconfigure the applica-
tion during runtime by replacing faulty services.
The application developers are more sophisticated
users who use the template composer to build task-

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2003 55

Eurasia and Web Services

End users

Application
developers

Service developers

Application
repository

Information
retrieval
services

Information
analysis
services

Information
visualization

services
. . .

Individual services

Service access infrastructure

Client subsystem

Component-
description

tool

Information
spaces

Service
broker

Service
repository

Application template
composer

Eurasia

Service coordinator

Figure 2. The Eurasia architecture. Using Eurasia, users can explore
service options, describe the target document collection, and
combine compatible services in a test application.



oriented information-management applications.
They also use the component-description tool to
register component services by classifying their
functionality and I/O document collections. 

As the “Related Work in Large-Scale Software
Composition” sidebar describes, the Eurasia
architecture provides the core assets of a soft-
ware product line, which lets users build appli-
cation families and reuse them for multiple tasks.
The architecture also facilitates megaprogram-
ming’s programming-in-the-large paradigm,
which further leverages component-based pro-
gramming benefits.

Component-Description Framework
Using the component-description framework,
users can find appropriate services by browsing a
functional taxonomy and evaluating interoper-
ability with other application services. The
framework also semiautomatically identifies and
suggests any missing components required to
resolve I/O requirement mismatches between ser-
vices. The framework consists of two basic com-
ponents: the metadata description model and the
service broker. 

The metadata description model characterizes
and represents the types of document collections
and services. One of our goals in designing the
metadata model was that it be capable of repre-
senting data types at the collection level, rather
than at an individual document level. Because
document collections are the information pro-
cessing units in information-management tasks,
users tend to compare and select services based on
existing document collection types and target col-
lection requirements. Eurasia collects service
metadata descriptions in a persistent service
repository; these descriptions are currently in our
own XML format, but we’ll likely convert them to
WSDL or DAML-S.

The metadata model enables a simple and light-
weight semantic representation. It characterizes
services’ functionality and I/O data semantics
using domain-specific taxonomies; specifically, it
represents a document collection’s semantics in
terms of content and structure types. Let’s take,
for example, a document collection that charac-
terizes news articles based on references to place
names. We would describe the collection’s content
as a “place-name-based document classification”

56 SEPTEMBER • OCTOBER 2003     http://computer.org/internet/ IEEE INTERNET COMPUTING

The Zen of the Web

Related Work in Large-Scale Software Composition

Software product-line engineering uses a
domain-specific architecture and frame-

work to facilitate the rapid production and
strategic reuse of software components. In
this approach,developers identify and reuse
common assets — such as software com-
ponents, architecture, requirement state-
ments, and specifications — to rapidly cre-
ate a reliable software products family.1

Eurasia’s application-development paradigm
applies this product-line engineering
approach to the Web-based information-
management domain.

Eurasia’s component-description frame-
work and template composer provide the
software product line’s core assets, pro-
ducing an application family based on tar-
get missions and user groups.The compo-
nent-description framework lets domain
engineers characterize and identify com-
mon services for a product family using
taxonomies of functionality and I/O docu-
ment-collection content and structure.
Eurasia’s service broker lets application
engineers explore various options and opti-

mize service selection to build an informa-
tion-management application for a product
family, while the templates define how to
assemble those component services.

To leverage the benefits of component-
based programming and improve service
reusability, Eurasia uses the megaprogram-
ming’s programming-in-the-large paradigm
for large-scale, heterogeneous, and distrib-
uted software components.2 Megapro-
gramming uses domain-specific ontologies
to abstract and describe the data struc-
tures and operations of large software
components (megamodules). It builds appli-
cations using megamodule interconnec-
tions,which it represents using a megapro-
gramming language.Megaprogramming also
uses a megamodule repository and dictio-
nary, which lets developers reuse meg-
amodules for multiple applications.

We added a few features to the
megaprogramming paradigm for use in
Web-based information-management sys-
tems. First,we added a flexible and scalable
way of resolving mismatches between ser-

vices by explicitly inserting intermediate
services (converters) instead of making
megamodules (services) conform to gen-
eral schemas defined in an application. Sec-
ond, we used domain-specific models that
describe components and applications;
these models are key to Eurasia’s collec-
tion-based data representation, dataflow-
based application composition, and service
coordination mechanisms. Finally, we used
a template-based application-development
mechanism that lets users dynamically
instantiate applications based on service
availability and reparameterize applications
for different tasks.This makes applications
reusable for multiple tasks and different
system environments.

References
1. D.M. Weiss and C.T.R. Lai, Software Product-Line

Engineering: A Family-Based Software Development

Process, Addison-Wesley, 1999.

2. G.Wiederhold, P.Wegner, and S. Ceri,“Towards

Megaprogramming,” Comm. ACM, vol. 35, no. 11,

1992, pp. 89–99.



and its structure as an “acyclic category struc-
ture.” This dual-taxonomy representation makes
the taxonomy hierarchies simpler, makes the rea-
soning mechanism more efficient, and lets users
rapidly narrow the candidate set of services for
their tasks.5 In our experience, the taxonomy
specifics do not greatly matter; as long as the sys-
tem applies them with reasonable consistency,
taxonomies help users sort through alternatives,
just as a balanced binary tree speeds search with-
out requiring the tree’s content.

The framework’s context-sensitive service bro-
ker matches interoperable and compatible services
against a document collection or another service
by comparing their functional and I/O data seman-
tics. Given a set of document collections, the ser-
vice broker compares the collection semantics with
available services’ input data semantics to identi-
fy appropriate services to process the document
collections. The broker can also compare a ser-
vice’s output data semantics with another service’s
input data semantics to identify their semantic
interoperability.

Because Eurasia represents metadata at the col-
lection level, we designed the reasoning mecha-
nism to be collection-based and defined a metric
to determine the semantic relationship between
document collections. The metric measures sub-
sumption relations and semantic distance between
I/O document collection sets. This semantic rea-
soning mechanism lets the service broker return
all services that are semantically interoperable or
compatible with a document collection or target
service.6 Our news document collection, for exam-
ple, classifies news based on geographical entities;
Eurasia recognizes that the collection could be
visualized using both a category viewer and a geo-
graphical mapping service. However, Eurasia
would rank the geographical mapping service
higher because its input semantics is closer to the
document collection semantics.

Template Composer
The template composer lets users build informa-
tion-management applications by describing doc-
ument collection requirements and transforma-
tions. The composer represents transformations of
document collections in a dataflow graph, and
semiautomatically binds services together based
on their I/O relationships. The composer automat-
ically establishes a precedence relationship
between two services if one service’s output docu-
ment collection is bound to another service’s input
document collection. This dataflow-style compo-

sition provides a high-level glue-code for com-
bining distributed component services for infor-
mation-management tasks.

Using the service broker, the composer suggests
appropriate transformations for a document col-
lection set and semiautomatically inserts the next
set of services in an application. It also automati-
cally identifies and inserts missing components
(such as converters and input services) that are
required to resolve services’ semantic and syntac-
tic mismatches. Once a template is composed,
users can easily modify it to perform information-
management steps for other similar tasks.

The template composer also lets users exchange
their information-management applications with
other users. They can exchange a template by
sending an XML description and instantiate it by
selecting and assigning available service instances
in the local system environment. (Our XML-based

template description language predates BPEL4WS
and DAML-S, but the mechanism it uses to repre-
sent data bindings and service coordination struc-
tures is similar to that in DAML-S. We are cur-
rently investigating how to adapt BPEL4WS or
DAML-S to represent application templates.) Once
a template is instantiated, the composer creates a
local proxy for each component service. This
proxy stores interface-level information to access
its service instance and hides this information
from the high-level application. These system-
dependent proxies let users reuse templates in dif-
ferent system environments.6

To help users compose an application dataflow
graph, we developed a visual template-composi-
tion tool (see Figure 3, next page). The tool shows
a taxonomy of interoperable services (on the
screen’s lower left side) and lets users easily select
and add them to a dataflow graph at the top of the
screen. The screen’s lower right section shows
detailed descriptions of a service’s functionality
and I/O data semantics. When the user adds a new
service to an application, the tool automatically
establishes detailed data bindings between services
internally, and shows only the high-level infor-
mation flows among services.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2003 57

Eurasia and Web Services

Eurasia’s features lower the time and skill

required for users to perform complex

information-management tasks.



Figure 3 shows a part the GeoTopics application
template. The initial document collection (which
the user entered using a collection editor) contains
news media homepages (HTML documents).
Fanout, a document extraction service, collects
articles from each homepage. Fanout’s output
passes through an index filter that removes static
documents, such as weather and stock information
pages. Next, the Noun Phraser service runs on each
subcollection of news articles within the filtered
collection, reorganizing inputs according to a
noun-phrase classification. Other services classify
documents in parallel on the basis of place names,
as the figure shows. 

Service Coordinator
Our service coordinator invokes and coordinates
distributed service instances, automatically syn-
chronizing them and controlling parallelism. The
coordinator also supports a parallelism-control
mechanism that can spawn and dynamically merge
concurrent service branches based on a document
collection’s structure.7 In addition, it can switch
service instances during runtime to overcome ser-
vice faults and other dynamic Web situations. 

We incorporated this mechanism with the tem-
plate composer; this lets users specify coordina-
tion actions such as synchronization and concur-
rent executions among services in an application
template. Using the dataflow-style coordination
model, the system uses data dependencies to auto-
matically determine an application’s synchro-
nization and concurrent execution points. Users

can thus focus on describing the transformations
among document collections rather than describ-
ing detailed control structures among services. In
addition, because the dataflow system identifies
all possible parallelism and automatically coordi-
nates the distributed services, we can maximize
the runtime performance of information-manage-
ment tasks.

In addition to the implicit parallelism deter-
mined by the dataflow system, application devel-
opers can explicitly specify parallel service
branches. Eurasia’s service coordination model
supports a service-based control mechanism that
lets application developers use explicit control ser-
vices to specify context-sensitive branching and
joining controls. The model itself does not differ-
entiate regular services from control services. The
branching and joining services fork and join an
input document collection’s multiple service
branches based on the collection’s structure.

This service-based control mechanism lets users
describe abstract parallelism among services by
considering only the high-level structure of the
document collections that services exchange, and
makes the application representation simple and
easy for users to understand. In Figure 3, for
example, the branching service recognizes an
input document collection’s structure and dynam-
ically creates an independent noun-phrase extrac-
tion service branch for each article set from the
same news source. The multiple branches that this
service spawns run concurrently and are joined by
the joining service, which merges results from each
noun-phrase extraction. 

During runtime, users can reconfigure an appli-
cation’s data flow, which is necessary when they
need to switch to a different service or service
instance. Replacing a service does not affect the
rest of the data flow; the replaced service recovers
previous job status and continues its process. This
runtime reconfiguration feature makes informa-
tion-management tasks more reliable.

Discussion and Future Work
Eurasia’s features lower the time and skill
required for users to perform complex informa-
tion-management tasks. The exploration and test-
ing features increase application developers’ pro-
ductivity in developing information-management
steps, while the capturing and reuse features
extend end users’ application adaptation and exe-
cution capabilities. Eurasia also increases the reli-
ability and efficiency of user-developed Web-
based information-management tasks. Because

58 SEPTEMBER • OCTOBER 2003     http://computer.org/internet/ IEEE INTERNET COMPUTING

The Zen of the Web

Figure 3. Template composer. As this example from the GeoTopics
application shows, users can select services from the taxonomy
(lower left) based on detailed descriptions (lower right) and add
them to the graph (top of screen).



our approach focuses on document collections,
it’s easier for users to express and understand
complex information-management steps, which
increases application abstraction level. This task
abstraction lets users dynamically instantiate
recorded steps in a Web-based system environ-
ment. Finally, the dataflow-based service coordi-
nator lets users maximize and dynamically con-
trol service parallelism, and reconfigure steps
based on resource availability.

Applying Eurasia to practical information-man-
agement tasks has helped us identify the need for
several additional capabilities: 

• Service exploration based on usage history. As
the number of available services increases,
users have an increasingly difficult time deter-
mining which services might apply to a docu-
ment collection type for a specific task. Seeing
how other users have applied different services
would simplify and accelerate this service-
exploration process and make applications
more reliable and robust.

• Immediate feedback in assembling services. As
users develop applications that are complex
and handle numerous Web documents, they
need immediate feedback — such as sample
analysis results — when they add a new service
to an application. Such a feedback mechanism
would speed the testing of a complex applica-
tion’s services.

• Collaborative application development and
sharing. As users develop analysis steps for
large-scale information-management tasks,
being able to collaboratively develop and share
applications will reduce redundant efforts.

We are also investigating how to extend Eurasia’s
models and mechanisms to compose and coordi-
nate applications in other domains, including e-
commerce, real-time data management, and
hybrid simulations.

Acknowledgments
We thank Barry Boehm, Gio Wiederhold, Pedro Szekely,

Nenad Medvidovic, and Ramnath Chellappa for their guid-

ance and comments on this article. We also thank Peter Will,

Robert MacGregor, Ke-Thia Yao, and Geoffrey Pike for their

careful review. Much of this work was sponsored by DARPA

and the US Air Force Research Laboratory, Air Force Materiel

Command, under agreements F30602-00-2-0610 and

F30602-00-2-0576. The views and conclusions contained

herein are those of the authors and do not necessarily repre-

sent the official policies or endorsements, either expressed

or implied, of DARPA, the Air Force Research Laboratory, or

the US Government.

References

1. R. Neches et al., “GeoWorlds: Integrating GIS and Digital

Libraries for Situation Understanding and Management,”

The New Rev. Hypermedia and Multimedia (NRHM), vol.

7, 2001, pp.127–152.

2 E. Christensen et al., “Web Services Description Language

(WSDL) 1.1,” World Wide Web Consortium note, Mar. 2001,

www.w3.org/TR/2001/NOTE-wsdl-20010315.

3. T. Andrews et al., “Business Process Execution Language

for Web Services version 1.1,” BEA Systems, IBM,

Microsoft, SAP AG, and Siebel Systems, May 2003, www-

106.ibm.com/developerworks/library/ws-bpel/.

4. A. Ankolekar et al., “DAML-S: Semantic Markup for Web

Services,” Proc. Int’l Semantic Web Working Symp.

(SWWS), Semantic Web Organization, 2001, pp. 411–430;

www.semanticweb.org/SWWS/program/index.html.

5. K.-T. Yao et al., “Asynchronous Information Space Analy-

sis Architecture Using Content and Structure Based Ser-

vice Brokering,” Proc. 5th ACM Conf. Digital Libraries (DL

2000), ACM Press, 2000, pp. 133–142.

6. I.-Y. Ko, R. Neches, and K.-T. Yao, “Semantically-Based

Active Document Collection Templates for Web Informa-

tion Management Systems,” Proc. Int’l Workshop on the

Semantic Web, 2000, pp. 63–72; www.ics.forth.gr/isl/

SemWeb/program.html.

7. I.-Y. Ko, K.-T. Yao, and R. Neches, “Dynamic Coordination

of Information Management Services for Processing

Dynamic Web Content,” Proc. 11th Int’l World Wide Web

Conf., ACM Press, May 2002, pp. 355–365.

In-Young Ko is a postdoctoral research associate in the Dis-

tributed Scalable Systems Division of the University of

Southern California’s Information Sciences Institute. His

research interests are in software component management

and coordination mechanisms for large-scale, distributed

system environments, focusing on Web-based information

management. He received a BS and an MS in computer sci-

ence from Sogang University, Seoul, Korea, and a PhD in

computer science from the University of Southern Califor-

nia. Contact him at iko@isi.edu.

Robert Neches is director of the Distributed Scalable Systems

Division of USC’s Information Sciences Institute and

research associate professor in the USC Computer Science

Department. His research interests are in distributed soft-

ware systems engineering, information management, intel-

ligent human–computer interaction, and computer-sup-

ported cooperative work, planning, scheduling, decision

making, and decision support. He received his PhD in psy-

chology from Carnegie Mellon University. Contact him at

rneches@isi.edu.

IEEE INTERNET COMPUTING http://computer.org/internet/ SEPTEMBER • OCTOBER 2003 59

Eurasia and Web Services


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


