
Boualem Benatallah
and Quan Z. Sheng
University of New South Wales

Marlon Dumas
Queensland University of
Technology

The Self-Serv
Environment for Web
Services Composition

The Self-Serv project uses a P2P-based orchestration model

to support the composition of multienterprise Web services.

The composition of Web services to
handle complex transactions such
as finance, billing, and traffic

information services is gaining consider-
able momentum as a way to enable busi-
ness-to-business (B2B) collaborations.1

Web services allow organizations to share
costs, skills, and resources by joining their
applications and systems.2

Although current technologies pro-
vide the foundation for building com-
posite services, several issues still need
to be addressed:

• The development of composite Web
services still largely requires time-
consuming hand coding, which entails
a considerable amount of low-level
programming. Because a composite
service’s components can be heteroge-
neous, distributed, and autonomous,
service composition requires a high-
level approach.

• The number of services to be composed
can be large and continuously chang-

ing. Consequently, approaches that
require the service composer to identify,
understand, and establish interactions
among component services at service-
definition time are inappropriate.

• Although the components that con-
tribute to a composite service can be
distributed, existing techniques usual-
ly employ a central control point.
Given the highly distributed nature of
services and the large number of net-
work nodes capable of service execu-
tion, we believe that novel mechanisms
involving scalable and completely
decentralized execution of services will
become increasingly important.

With the Composing Web Accessible Infor-
mation and Business Services research pro-
ject — Self-Serv for short — we are working
to develop a middleware infrastructure for
the composition of Web services. Our goal
is to enhance the potential of Web services
by focusing on the dynamic and scalable
aspects of their composition.

40 JANUARY • FEBRUARY 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

M
id

dl
ew

ar
e

fo
r

W
eb

 S
er

vi
ce

s

Self-Serv
Web Service Composition
Self-Serv aims to enable the declarative composi-
tion of new services from existing ones, the multi-
attribute dynamic selection of services within a
composition, and peer-to-peer orchestration of
composite service executions.

Self-Serv adopts the principle that every service,
whether elementary or composite, should provide
a programmatic interface based on SOAP and the
Web Service Definition Language (see the sidebar
“Web Service Composition Background on p. 47).
This does not exclude the possibility of integrat-
ing legacy applications, such as those written in
Corba, into the service’s business logic. To inte-
grate such applications, however, first requires the
development of appropriate adapters.

The mechanism for composing services in Self-
Serv is based on two major concepts: the compos-
ite service and the service container.

Composite Services
In Self-Serv, a composite service is an umbrella
structure that brings together other composite and
elementary services that collaborate to implement
a set of operations. Elementary services provide
access to Internet-based applications that do not
rely on other Web services to fulfill external
requests — for example, a site that provides weath-
er information via SOAP exchanges. In contrast,
composite services aggregate multiple component
services, such as a travel assistant service that inte-
grates services for booking flights and hotel rooms.

Our system expresses the business logic of a
composite service operation as a state chart3 that
encodes a flow of invocations to component ser-
vice operations. Encoding the flow of operation
invocations as state charts has several advantages:

• State charts possess a formal semantics, which
is important for unambiguously interpreting
and analyzing composite service specifications.

• They have become a well-known and well-
supported modeling notation following their
integration into the Unified Modeling Lan-
guage (UML).

• Finally, state charts offer most of the con-
structs found in contemporary process-mod-
eling languages. Developers can thus adapt
service composition mechanisms and orches-
tration techniques developed in the context of
state charts to other process-modeling lan-
guages for Web services, such as Business
Process Execution Language for Web Services

(BPEL4WS) and Web Service Choreography
Interface (WSCI).

A state chart is made up of states, which can be
either basic or compound, and transitions, which
are labeled according to event condition action
(ECA) rules.

A basic state corresponds to the execution of a
service, whether elementary or composite. Com-
pound states can be either OR (containing a single
state chart within it) or AND (containing several
state charts, separated by dashed lines, that are
intended to be executed concurrently).

Figure 1 (next page) shows the state charts for
four composite services. The state chart of the Com-
plete Travel Planning Service (CTPS) consists of an
AND state, in which the travel service performs a
search for attractions in parallel with the flight and
hotel bookings. This AND state is followed by an
invocation to either a car or a bike rental service,
followed by event-planning and payment services.
Although we do not discuss it here for space rea-
sons, Self-Serv expresses data-flow dependencies
through mappings between data items.4

Service Containers
Web services often operate in a highly dynamic
environment as providers remove, modify, or relo-
cate their services frequently. In addition, services
can form short-term partnerships, disbanding
when a partnership is no longer profitable. This
form of partnership does not assume any a priori
defined relationships between services.

The concept of a service container facilitates the
composition of a potentially large and changing
set of services. A container is a service that aggre-
gates several other substitutable services — those
that provide a common capability (the same set of
operations) either directly or through an interme-
diary mapping.

Containers are services in themselves: they are
created, advertised, discovered, and invoked just
as elementary and composite services are, and
they exist independently of the services they
aggregate. In particular, in our approach, a basic
state in a composite service operation’s state
chart can invoke a service container operation
instead of an elementary or composite service
operation. This enables dynamic provider selec-
tion: Self-Serv postpones the decision of which
specific service handles a given invocation until
the moment of invocation. When a requester
invokes a service container’s operation, the con-
tainer is responsible for selecting the actual ser-

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 41

Self-Serv Environment

vice that will execute the operation. To conduct
this dynamic selection, a service container uses a
membership mode and a scoring service to main-
tain its list of members and conduct multi-
attribute dynamic service selection.

Membership mode. A Web service can be a mem-
ber of a container in explicit, query, or registra-
tion mode. In explicit mode, the container’s
provider sets the collection of services the con-
tainer can access (its members) at container-
definition time. For example, when the contain-
er’s provider creates a service container Flight
bookings using the explicit mode, the services
it identifies as members of the container will be
members for the container’s entire life. In query
mode, the container’s provider specifies the col-
lection of members in the form of a query to ser-
vice registries, such as a UDDI registry. At
container-invocation time, the container’s
provider constructs the collection of services that
match the query. In registration mode, services
need to register with the container to become
members. Services can also leave and reenter the
container at any time during its lifetime. For a ser-
vice to register with a container, the service
provider must define the mappings between oper-
ations defined in the container and those defined

in the service, as in the following example.

source service Qantas Airway QAS
target container Flight bookings FBS
operation mappings operation
FBS.search_flight() is
QAS.search_ticket();

operation
FBS.book_flight() is QAS.book_ticket();

This code maps the operation search_flight
of the container Flight bookings to the oper-
ation search_ticket of the service Qantas
Airways, and maps the operation book_flight
of the container Flight bookings to the same
service’s operation book_ticket. A Web ser-
vice can register with one or more containers, and
a container can register with other containers. For
example, the Web services Qantas Airways and
Cathay Pacific are registered with the container
Flight bookings, which is, in turn, registered
with the container Intl Travel Arrange-
ments.

Scoring service. A scoring service lets a container
choose a member to execute an operation at con-
tainer-invocation time by interpreting a selection
policy. A selection policy sets a container’s service

42 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

[domestic
(destination)]

Bicycle
rental (BR)

Car
rental (CR)

Event
planning

(EP)

Credit card
charging

(CC)

International
flight

booking (IFB)

Travel
insurance (TI)

Visa
request (VR)

Public
transportation
search (PTS)

Taxi
booking
 (TB)

Event
search
(ES)

Event
booking

(EB)

Event
selection

(ESL)

Complete Travel Planning Service (CTPS)

Intl. Travel Arrangement Service (ITAS) Event Planning Service (EPS)

ToAirport Arrangement Service (TAS)

[not domestic
(destination)] [near(major_ attraction,

accommodation)]

[not near(major_ attraction,
accommodation)]

[not available(airport,
publicTransportation)]

[available(airport,
, publicTransportation)]

[needBooking(event)]

[not needBooking(event)]

Attraction
search (AS)

Attraction
selection

(ASL)

Domestic flight
booking (DFB)

International travel
arrangement (ITA)

Accommodation
booking

(AB)

ToAirport
arrangement

(TA)

Figure 1. State charts for four composite services. The Complete Travel Planning Service invokes a number of other ser-
vices, including the three services shown, to facilitate many aspects of travel preparation.

preferences. It consists of a multiattribute utility
selection function of the form:

where:

• U(s) stands for the value of utility function U
for service s,

• Scorei(s) is an attribute scoring function Score
that, given the value of an attribute i of the ser-
vice s, returns a positive integer. SA is the set
of selection attributes (for example, price,
execution_time, or reliability), and

• wi is the weight w assigned to the attribute i.

The scoring service computes the weighted
attribute score and selects the service that yields
the highest overall score according to the multi-
attribute utility function.

The service definition can provide an attribute’s
value directly, or the scoring service can derive it
from information such as the execution logs. The
service definition provides the value for the attribute
monetary price, for example, whereas the
attribute expected execution time is derived
such that, given an operation op of a service s, the
scoring service estimates the time for executing this
operation T(s, op) based on past executions.

Each selection attribute has a scoring function.
For instance, the scoring function associated with
the attribute execution_time (et for short) is
Scoreet(s,op) = 1/T(s,op) — that is, the higher the exe-
cution time, the lower the score. A container might
offer several utility functions that correspond to dif-
ferent selection policies. Requesters choose policies
based on their preferences, customizing them by
providing weights for the selection attributes.

Containers also support functionalities related
to change management. Specifically, a service can
associate a container with change control policies.
This includes operations for monitoring services,
subscribing to and notifying services of changes,
and rules that specify how to react to change-
related events (such as when a member service
removes an operation from its interface). Although
change management is an important issue, further
discussion about this aspect is outside the scope of
this article.5

Peer-to-Peer Orchestration
Self-Serv takes the view that in order to support
scalable execution of composite services over the

Internet, services should be self-orchestrating: they
should be capable of executing composite services
without relying on a central scheduler. Accord-
ingly, Self-Serv adopts an orchestration model
based on peer-to-peer interactions between soft-
ware components hosted by the providers partici-
pating in the composition. Our preliminary exper-
iments (see the “Performance Evaluation” section
on p. 46) have shown that this approach provides
greater scalability than those based on a central
scheduler because it distributes the runtime
message-processing workload across several
servers. The two basic elements of this model are
the state coordinator and routing table.

State Coordinators
For each state ST in the state chart of a composite
service, Self-Serv generates a state coordinator,
which the provider of the service associated with
the state ST hosts. At runtime, the coordinator of
ST is responsible for

• receiving notifications of completion from
other state coordinators and determining from
these notifications when to enter state ST;

• invoking the service labeling ST, once all pre-
conditions for entering ST are met, by sending
a message to the service and waiting for a
reply; and

• notifying the coordinators of the states that
might need to be entered next that the service
execution is complete.

A coordinator extracts the knowledge it needs to
conduct these tasks statically from its routing
tables. Self-Serv statically generates these routing
tables by analyzing the state chart of the compos-
ite service operation.

In addition to generating one coordinator per
state for a given composite service description,
Self-Serv generates an initial coordinator. The ini-
tial coordinator is responsible for processing invo-
cations to the composite service, initiating the ser-
vice, collecting the outputs, and returning them to
the application that initiated the invocation.

The orchestration of a composite service exe-
cution involves two types of messages: those be-
tween the state coordinators and those between
the coordinators and the component services.
The messages exchanged between the coordina-
tors are called control-flow notifications. When
a coordinator C1 sends a control-flow notifica-
tion to a coordinator C2, it signals that the state
C1 represents has been executed and that C1

U s w Score si

i SA
i() = • ()

∈
∑

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 43

Self-Serv Environment

believes the state C2 represents needs to be
entered. The notification message contains the
composite service execution’s input parameters,
as well as the current values of the service oper-
ation’s internal variables. The messages that the
coordinator of a state and the service labeling
this state exchange are called service invocations
or service completions, depending on the action
taken. A service invocation message contains the
name of the service operation being invoked and
the values of the input parameters. A service
completion message contains the values of the
return parameters.

When the initial coordinator of a composite ser-
vice processes a request for executing that service,
it sends a control-flow notification to the coordi-
nator of the first state of the composite service’s
state chart. The coordinator of the first state per-
forms the service invocation labeling its state.
Once the execution this invocation induces is com-
pleted, the coordinator of the first state sends a
control-flow notification to each of the coordina-
tors of the states that might need to be entered
next. This process continues until the coordinators
of the last states of the composite service state
chart send control-flow notifications back to the
initial coordinator.

In addition to initiating and completing the
execution of a composite service, the initial coor-
dinator is also responsible for detecting and han-
dling failures. For this purpose, it interacts with
its peer state coordinators when a timeout occurs,
and it processes failure notifications. A state coor-
dinator issues failure notifications when a con-
trol-flow notification has not been delivered after
several retries.

Routing Tables
The knowledge a coordinator requires is repre-
sented in the form of two routing tables: a table
of preconditions that must be met before the
state is entered, and a table of postprocessing
actions indicating which coordinators need to be
notified when a state is exited. These tables are
defined in a way that requires minimal commu-
nication. When a state is exited, the coordinator
notifies only those states that might need to be
entered next.

The preconditions table of a state ST is a set of
rules of the form E[C] such that:

• E is a conjunction of events of the form
ready(ST’), meaning that the coordinator of
ST has received a notification of completion

from the coordinator of ST’.
• C is a conjunction of conditions appearing in

the state chart’s transitions.

If an element of the preconditions table is triggered
and its condition evaluates to true, the state is
entered, resulting in an invocation to the service
associated with it. The conjunction Ε of two events
e1 and e2 is written e1 · e2. If an occurrence of e1
and an occurrence of e2 are registered in any
order, this generates an occurrence of e1 · e2.

In Figure 1, Preconditions(TA) =
{ready(ITA)[true], ready(DFB)[true]},
which means the state TA is entered when its coor-
dinator receives a control-flow notification from
either the coordinator of the state ITA or of DFB. Sim-
ilarly, Preconditions(CR) = {ready(AB) ·
ready(ASL)[not near(major_attraction,
accommodation)] }. The postprocessing table of
a state ST is a set of rules of the form [C]/A such that:

• C is a conjunction of conditions appearing in
the labels of the state chart’s transitions, and

• A is a term of the form notify(ST’), mean-
ing that the coordinator associated with the
state ST needs to send a notification of com-
pletion to the coordinator of ST’.

When a service labeling a state completes its exe-
cution, the coordinator of that state evaluates the
entries appearing in its postprocessing table. For
each entry whose condition evaluates to true, the
coordinator executes the corresponding notifica-
tion action.

In Figure 1, Postprocessing(ASL) =
{[true]/notify(CR), [true/notify(BR)
}. The coordinator of ASL cannot evaluate the con-
dition near(major_attraction , accommo-
dation) because it involves information that is
only known once the accommodation has been
selected, which happens in a different thread than
the one in which ASL is located.

The algorithms that derive the routing tables of
a state by analyzing its incoming and outgoing
transitions are described elsewhere.4

Self-Serv Architecture
and Implementation
Self-Serv adopts a layered architecture to provide
support for discovering, creating, composing, and
deploying Web services. Figure 2 shows the ele-
ments of this architecture, which are grouped in
five layers.

44 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

Service Layer
The service layer consists of a collection of com-
posite services and containers. It features a class
ContainerWrapper that defines methods for
invoking operations provided by containers and
collecting the outputs of an invocation. When a
user, an application program, or a state coordinator
invokes an operation of a container, the
ContainerWrapper object corresponding to this
container invokes the corresponding scoring ser-
vice. The scoring service takes as input the con-
tainer’s selection policy and the list of members
registered with the container, returning the identi-
fier of one of the members.

The service layer also provides two classes,
StateCoordinator and InitialCoordina-
tor, that constitute the runtime environment re-

quired to perform peer-to-peer orchestration; ser-
vice providers must install the classes before par-
ticipating in a composite service. The StateCo-
ordinator class implements methods for receiv-
ing, processing, generating, and dispatching con-
trol-flow notifications according to a given rout-
ing table. In addition to these functionalities, the
InitialCoordinator class implements meth-
ods for invoking an operation of a composite ser-
vice and collecting the results of the invocation.

Conversation Layer
The conversation layer provides support for stan-
dardized interactions among services. For exam-
ple, it allows business partners to share their exter-
nal business processes according to a specific B2B
standard, such as Electronic Data Interchange

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 45

Self-Serv Environment

Self-Serv system

Pool of services
and containers

Service editor

Service deployer

Service discovery engine

User layer

Communication
layer

is registered withElementary
services

Containers

Composite
services

is composed of

Initial coordinator

Legend

Workflow Database Applications
Web-accessible

programs

C1 C2 C3

CS1 CS2

ES1 ES2 ES3 ES4

Routing tables

Directory layer

Conversation
layer

Service layer

Internet

SOAP messages

Service registries

Service templates

CoordinatorCoordinatorCoordinator

Figure 2. Self-Serv components. The five layers bring together development tools and middleware
addressing various aspects of Web services composition.

(EDI), RosettaNet, or cXML,6 which defines com-
mon formats and semantics for messages (such as
request for quote or purchase order) and business
process conversations (such as chronology of mes-
sage exchanges). The conversation layer consists
of a set of predefined service templates for various
B2B standards.

Directory Layer
The directory layer consists of a set of directories
that store metadata about services and containers.
Metadata directories contain information that
describes the meaning, categories, properties,
capabilities, location, and access information of
the available services. The user layer of Self-Serv
uses the metadata to locate, browse, and query ser-
vices and containers. Service providers can adver-
tise metadata in service directories such as UDDI
or ebXML registries. The current implementation
of Self-Serv uses a centralized UDDI registry to
store metadata about services and containers.

User Layer
The user layer provides access to the service com-
position environment through three main compo-

nents: the service discovery engine, the service
builder, and the service deployer.

The service discovery engine facilitates the adver-
tisement and location of services and their opera-
tions, which the service builder can then import into
service containers or composite services. The dis-
covery engine relies on private UDDI registries.

The service builder allows the developer to cre-
ate and configure composite services and service
containers. It provides an editor for describing reg-
istration modes and selection policies for service
containers, as well as one for drawing and anno-
tating state chart diagrams for composite service
operations. The service builder translates annotat-
ed state charts into XML documents for subse-
quent processing by the service deployer.

The service deployer generates and deploys
routing tables for every state in the composite ser-
vice state charts. It uploads routing tables in XML
format to the hosts of the corresponding compo-
nent services.

Performance Evaluation
We conducted experiments to compare the perfor-
mance of Self-Serv’s P2P orchestration model a-
gainst a centralized model, as measured by the num-
ber of exchanged messages. For each model, the test-
ing executed the CTPS composite service (shown in
Figure 1) for every possible combination of truth
values for the branching conditions. The results,
summarized in Figure 3, showed that the P2P model
requires fewer message exchanges for every combi-
nation. The average number of physical message
exchanges under the P2P model is 15.625, versus
22.125 for the centralized model. Other composite
service examples produced similar results.

We also measured the workload allocation of
the participating hosts — that is, the host of CTPS
and those of its components — by counting the
number of messages each node received. The cen-
tralized model did not distribute messages evenly
as the machine hosting the central scheduler
received many messages (13 messages in the
example), while the other machines received only
one message each. In contrast, the P2P orchestra-
tion distributed the workload gracefully among the
machines, such that the host of CTPS received only
one message. We conducted similar experiments
for several composite services and varying mes-
sage sizes. The P2P orchestration outperformed the
centralized orchestration in most cases, regardless
of message size.

During the experiments, we also found that
having multiple state coordinators orchestrate a

46 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Middleware for Web Services

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

CTPSDFB IFB TI VR PTS TB AB AS AS1 BR CR ES ES1 EB CC

N
um

be
r

of
 r

ec
ei

ve
d

m
es

sa
ge

s

P2P
Centralized

0
200

400
600

800
1,000

1,200
1,400

1,600
1,800

1 2 4 8 16 32 64 128 256 512 1,024

C
om

po
sit

e
se

rv
ic

e
ex

ec
ut

io
n

tim
e

(s
ec

on
ds

)

P2P
Centralized

Composite and component services

Message size (Kbytes)

(a)

(b)

Figure 3. Selected results of the performance evaluation. (a) Work-
load allocation in the execution of CTPS. (b) Execution time of the
composition service CTPS.

composite service execution created little over-
head. Indeed, coordinators are lightweight com-
ponents that do not require heavy computations
because they only need to manipulate small data
structures (the routing tables).

Future Directions
Self-Serv leverages emerging Web services stan-
dards and an established modeling notation (state
charts) to provide high-level support for defining
composite Web services involving a variable num-

ber of participants. Self-Serv enacts the resulting
composite services in a P2P way within a dynam-
ic environment. In addition, the system allows for
monitoring and tracing the execution of compos-
ite services.7

Ongoing research around Self-Serv aims to
integrate transaction support for composite Web
services, which is hindered by the fact that the
components of a composite service can be hetero-
geneous and autonomous. We plan to extend the
descriptions of services by explicitly capturing the

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 47

Self-Serv Environment

Web Service Composition Background

At present, the technological infrastruc-
ture for Web services is structured

around three major standards: SOAP, Web
Service Definition Language (WSDL), and
Universal Description, Discovery, and Inte-
gration (UDDI).1 Other proposed stan-
dards, such as the Business Process Execu-
tion Language for Web Services (BPEL4WS),
Web Service Choreography Interface
(WSCI),WS-Coordination, and WS-Trans-
action (http://dev2dev.bea.com/techtrack/
standards.jsp), layer functionality related to
composition and transactions on top of the
three basic standards.

Standards-Based
SOAP (www.soapclient.com) breaks mes-
sages into two parts: header and body.The
header includes information such as intend-
ed purpose (service invocation or invoca-
tion results, for example), and the body con-
tains an XML representation of a service
invocation request or response. WSDL
(www.w3.org/TR/wsdl) supports the defi-
nition of entry points and message types
provided by Web services. It also features
the concept of implementation binding as a
means of mapping abstract operations to
concrete implementations accessible
through protocols such as SOAP. UDDI
(www.uddi.org) is a registry framework that
allows businesses to advertise their services
to prospective consumers, who can then
select services based on multiple attributes.
However, UDDI does not directly support
the selection process itself.

BPEL4WS and WSCI describe the con-
trol and data flow of composite Web ser-
vices through process-based Web service

composition,which uses process definitions
to specify possible interactions and opera-
tion invocations between Web services.
Orchestration engines such as BPWS4J
(www.alphaworks.ibm.com/tech/bpws4j)
and Collaxa (www.collaxa.com) assume
that knowledge about the control and data-
flow dependencies of a composite service
is concentrated in a single node that acts as
a central scheduler.This approach leads to
many unnecessary round-trip messages
between the components of a composite
service and the central scheduler, increas-
ing the orchestration overhead and creat-
ing a bottleneck. Other drawbacks to the
centralized execution model include scala-
bility and availability issues.A peer-to-peer
orchestration approach like Self-Serv’s
avoids such problems.

Component-Based
Component-based middleware like Cross-
Worlds and IBM’s SanFrancisco typically
relies on distributed object frameworks such
as Corba,DCOM,and Enterprise JavaBeans,2

which are suitable for building robust and
secure distributed intraenterprise applica-
tions.However, these frameworks require a
dedicated software infrastructure whose
introduction and maintenance is usually
expensive and time-consuming. Among
other drawbacks, this hinders the composi-
tion of services in these frameworks because
not every participant involved in a collabo-
ration will possess the required infrastruc-
ture—especially in an interorganizational
environment. In contrast,Web services lever-
age established Internet standards such as
HTTP and XML, whose underlying infra-

structure is already in place for other pur-
poses. Fortunately, an application developed
using component-based middleware can be
exported as a Web service, then be com-
posed with other Web services using Web
service composition technology. For exam-
ple, an application developed in Java can be
wrapped into a Web service by generating
WSDL descriptions from a Java class.

Other projects, including Collaboration
Management Infrastructure (CMI),3 Cross-
Flow, and eFlow, have explored the idea of
declaratively specifying composite services.
However, they do not consider the issue
of multiattribute dynamic selection of ser-
vices or peer-to-peer orchestration.
Another project related to Self-Serv is
DAML-S,4 which aims to define an ontol-
ogy for service description, but does not
tackle the deployment and execution of
composite services.

References
1. F.Curbera et al.,“Unraveling the Web Services Web:

An Introduction to SOAP, WSDL,and UDDI,” IEEE

Internet Computing, vol. 6,no.2,Mar.2002,pp.86-93.

2. E. Cobb,“The Evolution of Distributed Compo-

nent Architectures,” Proc. 9th Int’l Conf. Cooperative

Information Systems (CoopIS), Springer Verlag, New

York, pp. 7-21.

3. H. Schuster et al.,“Modeling and Composing Ser-

vice-Based and Reference Process-Based Multi-

Enterprise Processes,” Proc. Int’l Conf. Advanced

Information Systems Eng. (CAiSE), Springer Verlag,

New York, 2000, pp. 247-263.

4. A. Ankolenkar et al., “DAML-S: Web Service

Description for the Semantic Web,” Proc. 1st Int’l

Semantic Web Conf. (ISWC), Springer Verlag, New

York, 2002, pp. 348-363.

transactional semantics of Web service operations,
along the lines of WS-Coordination and WS-
Transaction (see the sidebar on p. 47).

In order to handle the case when one or more
component services fails or is unavailable, we are
also considering extending the composition model
to integrate transactional semantics for a group of
states in a state chart.

Another planned extension to Self-Serv is a
visual environment for testing and debugging
composite services. This environment will
include a module for conducting test deploy-
ments, an automated test generator, and a con-
sole for interactively displaying the active states
of a composite service execution, pausing an
execution, and inspecting execution variables
and messages.

Acknowledgments
This research has been partly supported by Australian Research

Council (ARC) Discovery grant number DP0211207. We would

like to thank Eileen Oi-Yan Mak, Nathan Wong, and Alex Yue-

Fai Tang for implementing part of this work. We also thank the

anonymous reviewers of IEEE Internet Computing for the valu-

able feedback.

References

1. Distributed and Parallel Databases: An Int’l J., special issue

on Web services, B. Benatallah and F. Casati, eds, vol. 12,

nos. 2-3, Sept. 2002.

2. VLDB J., special issue on e-services, F. Casati, D. Geor-

gakopoulos, and M. Shan, eds., vol. 24, no. 1, Mar. 2001.

3. D. Harel and A. Naamad, “The STATEMATE Semantics of

Statecharts,” ACM Trans. on Software Eng. and Methodol-

ogy, vol. 5, no. 4, Oct. 1996, pp. 293-333.

4. B. Benatallah et al., “Declarative Composition and Peer-to-

Peer Provisioning of Dynamic Web Services,” Proc. Int’l

Conf. Data Eng. (ICDE), IEEE Press, 2002, pp. 297-308.

5. L. Zeng, B. Benatallah, and A. Ngu, “On-Demand Business-

to-Business Integration,” Proc. Int’l Conf. Cooperative

Information Systems (CoopIS), Springer-Verlag, New York,

2001, pp. 403-417.

6. “Infrastructure for Advanced E-Services,” IEEE Bull. of

Technical Committee on Data Eng., G. Weikum, ed., vol. 24,

no. 1, Mar. 2001.

7. M.C. Fauvet, M. Dumas, and B. Benatallah, “Collecting and

Querying Distributed Traces of Composite Service Executions,”

Proc. 10th Int’l Conf. Cooperative Information Systems (Coop-

IS), Springer-Verlag, New York, 2002, pp. 373-390.

Boualem Benatallah is a senior lecturer at the University of

New South Wales in Sydney, Australia. He received MSc

and PhD degrees in computer science from the University

of Grenoble, France. Bentallah’s latest work focuses on Web

services, Web databases, and workflows. He has several

publications and funded projects in these areas. He is a

member of the IEEE and the ACM. Contact him at

boualem@cse.unsw.edu.au.

Quan Z. Sheng is a PhD candidate at the University of New

South Wales. He received the BE degree from Beijing Uni-

versity of Aeronautics and Astronautics. Sheng’s research

interests include Web service composition and mobile Web

services. He is a student member of the IEEE Computer

Society. Contact him at qsheng@cse.unsw.edu.au.

Marlon Dumas is a lecturer at the Centre for IT Innovation of

the Queensland University of Technology in Brisbane, Aus-

tralia. He obtained a PhD in computer science from the

University of Grenoble, France. His research interests are

in the areas of Web services, workflow, and e-commerce

technologies, with a particular emphasis on Web service

composition. Dumas is a member of the IEEE Computer

Society. Contact him at m.dumas@qut.edu.au.

48

Middleware for Web Services

IEEE Security & Privacy
Ensure that your networks operate safely
and provide critical services even in the face
of attacks. Develop lasting security solutions
with this new peer-reviewed publication.
Top security professionals in the field share
information you can rely on:

Don’t run the risk!
Be secure.

Order your charter
subscription today.

Wireless Security • Securing the Enterprise
Designing for Security • Infrastructure Security

Privacy Issues • Legal Issues • Cybercrime
Digital Rights Management

Intellectual Property Protection and Piracy
The Security Profession • Education

®

http:/ /computer.org/security

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

