
Semantic Web Enabled Composition of
Web Services

Brahim Medjahed

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Dr. Athman Bouguettaya, Chair,

Dr. Reza Barkhi

Dr. Ing-Ray Chen

Dr. Mohamed Eltoweissy

Dr. Naren Ramakrishnan

January 19th, 2004

Falls Church, Virginia, USA

Keywords: Semantic Web - Web Service - Ontology - Service Composition.

Copyright 2004, Brahim Medjahed

Semantic Web Enabled Composition of
Web Services

Brahim Medjahed

(ABSTRACT)

In this dissertation, we present a novel approach for the automatic composition

of Web services on the envisioned Semantic Web. Automatic service composition

requires dealing with three major research thrusts: semantic description of Web

services, composability of participant services, and generation of composite service

descriptions. We first propose an ontology-based framework for organizing and de-

scribing semantic Web services. We introduce the concept of community to cluster

Web services based on their domain of interest. Each community is defined as an

instance of an ontology called community ontology. We then propose a composabil-

ity model to check whether semantic Web services can be combined together, hence

avoiding unexpected failures at run time. The model defines formal safeguards for

meaningful composition through the use of composability rules. We also introduce

the notions of composability degree and τ -composability to cater for partial and to-

tal composability. Based on the composability model, we propose a set of algorithms

that automatically generate detailed descriptions of composite services from high-

level specifications of composition requests. We introduce a Quality of Composition

(QoC) model to assess the quality of the generated composite services. The tech-

niques presented in this dissertation are implemented in WebDG, a prototype for

accessing e-government Web services. Finally, we conduct an extensive performance

study (analytical and experimental) of the proposed composition algorithms.

This work is supported by the NSF Digital Government Program under grant 9983249-EIA.

To my Mother and Father,

Wife and Daughter,

Sisters and Brothers.

Acknowledgments

I would like to thank my advisor Athman Bouguettaya for his full support during

my studies. I am very fortunate to have had the opportunity to work under his

supervision. Athman instilled a thirst for excellence in me, taught me how to do

scholarly research, and helped me think creatively and independently. His guidance

and patience during my Ph.D. research are greatly appreciated. I will never forget

my enjoyable experience working with Athman. I would like also to express my

gratitude to Reza Barkhi, Ing-Ray Chen, Mohamed Eltoweissy, and Naren Ramakr-

ishnan for serving on my Thesis committee and for their helpful comments.

I thank my co-authors: Salman Akram, James Beard, Boualem Benatallah, Ath-

man Bouguettaya, Jerry Cameron, Ahmed Elmagarmid, Weiping He, Lily Hendra,

Hao Long, Yao Meng, Anne Ngu, Mourad Ouzzani, Abdelmounaam Rezgui, and Xu

Yang for their productive and enjoyable collaborations. I would like also to thank

the anonymous reviewers for their comments on earlier drafts of my papers.

If I were to name two persons who deserve the most thanks, it would be my

mother and father. I would like to thank them for their constant love and support.

I am indebted to my wife for her tireless encouragement. Her presence, at happy

and hard times, and invaluable moral help were instrumental to the conduct of my

research. I thank her for all her patience and support. For continuous encourage-

ment, my sister receives my everlasting thanks. She always pushed me to pursue a

Ph.D. and did not hesitate to provide me with the necessary help when I decided

to do so. I also offer my thanks to my daughter Lina, my sisters, and brothers for

their love and support.

I owe special thanks to my friend, brother, officemate, and ex-roommate Mourad

Ouzzani. He is the one who helped me start my Ph.D. study. I would like to

thank him and my dear friend Abdelmounaam Rezgui for the countless hours we

spent together discussing research issues and other matters of life. I also enjoyed

the time with my officemates and friends Salman Akram, Weiping He, Zaki Malik,

Mourad Ouzzani, Abdelmounaam Rezgui, and Xu Yang. Last but not least, I would

v

like to thank Charmaine Carter, Program Support Technician at the Department

of Computer Science within Virginia Tech, for making all administrative business

transparent to me.

Contents

List of Figures x

List of Tables xiv

1 Introduction 1

1.1 Semantic Web Services . 2

1.2 Web Service Composition: Motivation 3

1.3 Case Study: E-Government Web Services 4

1.4 Thesis Statement . 7

1.5 Automatic Composition of Semantic Web Services 8

1.5.1 Different Types of Composition 10

1.5.2 Research Issues . 11

1.6 Major Contributions . 14

1.7 Dissertation Organization . 16

2 Interactions on the Web: A Taxonomic Perspective 18

2.1 Architecture of a Web-based Interaction Framework 20

2.2 A Taxonomy for Semantic Web Interactions 22

2.2.1 Interaction Layers . 22

2.2.2 Dimensions for Semantic Web Interactions 24

2.3 Interactions in the Pre Semantic Web Era 27

2.3.1 Electronic Data Interchange (EDI) 28

vi

vii

2.3.2 Software Components . 33

2.3.3 Workflows . 39

2.4 Trends in Supporting Semantic Web Interactions 43

2.4.1 Ontologies . 43

2.4.2 Web Services . 48

2.4.3 Software Agents . 54

2.4.4 XML-based Interaction Standards 57

2.5 Summary and Discussion . 62

2.5.1 Comparison of Semantic Web Interaction Technologies 63

2.5.2 Web Services and Related Technologies 65

2.5.3 The Role of Web Services in the Semantic Web Landscape . . 67

3 An Ontological Framework for Web Services 71

3.1 The Proposed Model for Semantic Web Services 72

3.1.1 Ontological Support for Web Services 72

3.1.2 Structure of a Community . 74

3.1.3 Generic Operations . 78

3.1.4 Community Members . 80

3.2 Operational Description of Communities 81

3.2.1 Syntactic Attributes . 81

3.2.2 Static Semantic Attributes . 83

3.2.3 Dynamic Semantics . 86

3.2.4 Qualitative Properties . 92

3.3 Registering Web Services With Communities 95

3.3.1 The Web Service Registration Process 95

3.3.2 Importing Generic Operations 98

3.4 A Peer-to-Peer Approach for Managing Communities 101

3.4.1 Propagating Changes Initiated by Community Providers . . . 101

3.4.2 Propagating Changes Initiated by Service Providers 104

viii

4 A Composability Model for Semantic Web Services 111

4.1 The Proposed Model for Composability 112

4.1.1 Horizontal, Vertical, and Hybrid Composition 114

4.1.2 Properties of a Composability Rule 116

4.1.3 Composability Degree . 118

4.1.4 τ -Composability . 121

4.2 Syntactic Composability Rules . 122

4.2.1 Composability at the Operation Granularity 122

4.2.2 Composability at the Message Granularity 124

4.3 Static Semantic Composability Rules 125

4.3.1 Composability at the Operation Granularity 125

4.3.2 Composability at the Message Granularity 127

4.4 Dynamic Semantic Composability . 131

4.5 Qualitative Composability . 135

4.6 Business Process Composability . 137

4.6.1 Composition and Stored Templates 138

4.6.2 Composition Soundness . 139

5 Automatic Composition of Semantic Web Services 141

5.1 Specification of Composition Requests 143

5.1.1 Orchestration Model . 143

5.1.2 Describing Composition Sub-Requests 145

5.1.3 Customization via Composer Profiles 147

5.2 Outsourcing Web Services in the Matchmaking Phase 148

5.2.1 One-to-One Vertical Composition 149

5.2.2 One-to-Many Vertical Composition 162

5.3 Generating Composite Service Descriptions 167

5.3.1 Replacing Sub-requests by Composition Plans 168

5.3.2 Inserting Pre and Post-Operations 168

5.3.3 Quality of Composition . 170

ix

6 Implementation and Performance Study 173

6.1 WebDG Prototype . 174

6.1.1 WebDG Services . 174

6.1.2 Architecture . 176

6.1.3 WebDG Scenario . 178

6.2 Web Service Benchmarking Framework 180

6.2.1 Statistical Distribution Models in WSBF 181

6.2.2 Generation Flow . 183

6.2.3 Architecture . 185

6.3 Performance Study . 188

6.3.1 Analytical Model . 189

6.3.2 Experiments . 200

6.3.3 Summary . 208

7 Related Work 210

7.1 Automatic Composition of Web Services 210

7.2 Research Prototypes . 214

7.3 Standardization Efforts . 218

7.4 Deployment Platforms . 222

8 Conclusions 230

8.1 Summary . 230

8.2 Directions for Future Research . 232

Bibliography 236

A Vita 251

List of Figures

1.1 Web Services Market Growth . 2

1.2 Case Study - Government Social and Welfare Services 5

1.3 Composing E-Government Web Services 6

1.4 Automatic Composition of Web Services 9

2.1 Architecture of a Web-based Interaction Framework 20

2.2 Semantic Web Interactions: A Running Example 21

2.3 EDI-based Interactions . 28

2.4 Component-based Interactions . 34

2.5 Workflow System Characteristics . 40

2.6 The Web Service Reference Model . 50

2.7 XML-based Interaction Standards . 58

2.8 Technologies in a Semantic Web Interaction Framework 68

3.1 The Proposed Web Service Model . 73

3.2 Subset of the DAML+OIL Specification for the Community Ontology 75

3.3 The General Structure of a Community 77

3.4 Operation Execution States . 87

3.5 An Example of OPD Diagram . 90

3.6 The Web Service Registration Process 96

3.7 Service Registration: Member Agent Algorithm 97

3.8 Service Registration: Community Agent Algorithm 98

x

xi

3.9 Propagating Changes Initiated by a Community Provider to its Mem-

bers . 102

3.10 Propagating Changes Initiated by Community Providers to their Peers103

3.11 Generic Operation Modification: Community Agent Algorithm 105

3.12 Propagating Changes Initiated by Service Providers 106

3.13 Changes Issued by Service Providers: Member Agent Algorithm . . . 107

3.14 Changes Issued by Service Providers: Community Agent Algorithm . 109

3.15 Reaction to Changes Issued by Community Providers: Member Agent

Algorithm . 110

4.1 Composability Stack . 113

4.2 Horizontal Composition . 115

4.3 Vertical Composition . 116

4.4 Hybrid Composition . 117

4.5 B-Composability Rules . 132

4.6 Relationships Between B-Composability Rules 136

4.7 Example of Composition Template 138

4.8 Example of Stored Template . 139

5.1 Overview of the Proposed Approach for Service Composition 142

5.2 Modeling Composition Request through Activity Diagrams 144

5.3 Composition Request with one Single Sub-request 145

5.4 Description of a Composition Request in CSL 146

5.5 Main Matchmaking Algorithm . 148

5.6 Operation-Centric Algorithm for 1:1 Vertical Composition 150

5.7 Syntactic and Operation Semantic Composability 151

5.8 Message Composability . 152

5.9 Behavioral Composability . 153

5.10 Community-Centric Algorithm for 1:1 Vertical Composition 157

5.11 Automaton States and Transitions Definition 159

5.12 Updating Input Automata . 160

xii

5.13 Message-Centric Algorithm for 1:1 Vertical Composition 161

5.14 The Flow Graph . 163

5.15 Updating the Flow Graph . 164

5.16 Flow Graph for the Driving Directions Example 165

5.17 Flow Graph for the Language Translation Example 165

5.18 One-to-many Vertical Composition 167

5.19 Replacing a Sub-request by its Composition Plan 169

5.20 Replacing a Sub-request by its Composition Plan 169

5.21 Inserting Pre and Post Operations . 170

5.22 Algorithm for Composition Soundness 171

6.1 WebDG Architecture . 177

6.2 Discovering E-Government Services 179

6.3 Mappings of the Composite Service Operations 180

6.4 UML Class Diagram for Statistical Models 182

6.5 UML Activity Diagram for Web Service Generation 184

6.6 WSBF Architecture . 186

6.7 WSBF Generation Interface . 187

6.8 WSBF Analyzer Interface . 188

6.9 WSBF Publisher Interface . 189

6.10 Composition Time for the Operation Centric Algorithm 194

6.11 Composition Time for the Community Centric Algorithm 195

6.12 Community-centric Algorithm for Different Numbers of Communities 196

6.13 Composition Time for the Message Centric Algorithm 198

6.14 Composition Time for Operation, Community, and Message Centric

Algorithms . 199

6.15 Static Semantic Composition for Operation, Community, and Mes-

sage Centric Algorithms . 201

6.16 Experiments - Syntactic and Semantic Composability for the Opera-

tion Centric Algorithm . 203

xiii

6.17 Experiments - Syntactic and Semantic Composability for the Com-

munity Centric Algorithm . 204

6.18 Experiments - Syntactic and Semantic Composability for the Message

Centric Algorithm . 205

6.19 Experiments - Community Centric Algorithm for Various Numbers

of Communities . 206

6.20 Experiments - Total Composition Times for the Different Algorithms 207

6.21 Experiments - Static Semantic Composition Times for the Different

Algorithms . 208

List of Tables

1.1 Different Types of Composition . 11

2.1 Interaction Layers . 23

2.2 Interaction Dimensions . 24

2.3 Agent Properties . 54

2.4 Pre Semantic Web Technologies vs. Interaction Layers 64

2.5 Semantic Technologies vs. Interaction Layers 64

2.6 Pre Semantic Web Technologies vs. Interaction Dimensions 69

2.7 Semantic Web Technologies vs. Interaction Dimensions 70

3.1 Assigning Values to Generic Operation Attributes 79

3.2 Quality of Operation Model . 93

4.1 Composability Rules Properties . 118

4.2 Instantiations of Generic B-Composability 135

5.1 Inference Rules for the “>” Operator 154

5.2 Inference Rules for the “≥” Operator 154

5.3 Inference Rules for the “<” Operator 155

5.4 Inference Rules for the “≤” Operator 155

5.5 Inference Rules for the “ 6=” Operator 155

5.6 Inference Rules for the “=” Operator 156

6.1 Enabling Technologies . 175

xiv

xv

6.2 Symbols and Parameters . 190

6.3 Simulation settings . 200

6.4 Experiments - Syntactic and Semantic Composability for the Opera-

tion Centric Algorithm . 202

6.5 Experiments - Syntactic and Semantic Composability for the Com-

munity Centric Algorithm . 203

6.6 Experiments - Syntactic and Semantic Composability for the Message

Centric Algorithm . 204

6.7 Experiments - Community Centric Algorithm for Various Numbers

of Communities . 205

6.8 Experiments - Total Composition Times for the Different Algorithms 206

6.9 Experiments - Static Semantic Composition Times for the Different

Algorithms . 207

7.1 Prototypes vs. Interaction Layers . 218

7.2 Prototypes vs. Interaction Dimensions 219

7.3 Deployment Platforms . 229

Chapter 1

Introduction

The Web has been an excellent tool to elicit connectivity to a wealth of information

sources that had been previously inaccessible. While initially aimed to enable the

sharing of information among scientists, the Web has since then evolved to cater

for governments, businesses, and individuals to make their data and applications

Web accessible. The original design of the Web served its purpose and went beyond

anticipated predictions. However, as the number of data and applications available

on the Web increased tremendously, it has become apparent that the Web could no

longer sustain its growth in its present form. Indeed, a large proportion of data on

the “current” Web is mostly “understandable” by humans or custom developed ap-

plications. The main impediment has been the lack of semantics to enable machines

to “understand” and automatically process the data that they now merely display.

The Semantic Web is an emerging paradigm shift to fulfill this goal. It is defined

as an extension of the existing Web, in which information is given a well-defined

meaning [13]. The ultimate goal of the envisioned Semantic Web is to transform

the Web into a medium through which data and applications can be automatically

understood and processed.

B. Medjahed Chapter 1. Introduction 2

1.1 Semantic Web Services

The development of technologies for supporting the envisioned Semantic Web has

been the priority of various research communities (e.g., database, artificial intel-

ligence). A major player in enabling the Semantic Web is the concept of Web

service [5, 74, 77]. A Web service is a set of related functionalities that can be

programmatically accessed through the Web. Examples of Web services span sev-

eral application domains including e-government (e.g., e-tax preparation) and B2B

E-commerce (e.g., stock trading). Web services are gradually taking root because

of the convergence of business and government efforts to making the Web the place

of choice for all types of activities. The maturity of XML-based Web service tech-

nologies such as SOAP, UDDI, and WSDL is a prominent factor contributing to the

large adoption of Web services in the near future [37]. Figure 1.1 summarizes the

growth of the Web services market as predicted in [122]. The prediction conforms

to Cringely’s law: “short-term adoption of new technologies never occurs as quickly

as we expect, but the long-term impact is far greater than we realize”.

���������
��	�
�

��

	�
�

��	���
��	�
�

��

	�
�

���� ���� ���� �����

Figure 1.1: Web Services Market Growth

Another key player that is taking the spotlight in the envisioned Semantic Web

is the concept of ontology. An ontology is defined as a formal and explicit speci-

fication of a shared conceptualization [13, 133]. Ontologies were first developed in

the artificial intelligence community to facilitate knowledge sharing and reuse [48].

B. Medjahed Chapter 1. Introduction 3

Nowadays, they are increasingly seen as key to enabling semantics-driven data access

and processing. Ontologies are expected to play a central role to empower Web ser-

vices with semantics. The combination of these powerful concepts (i.e., Web services

and ontologies) has resulted in the emergence of a new generation of Web services

called Semantic Web services. Semantic Web services are poised to be the building

blocks of tomorrow’s Web, i.e., the Semantic Web [74]. Applications “exposed” as

Web services would be understood, shared, and invoked by automated tools.

Semantic Web services have spurred an intense activity in industry and academia

to address challenging research issues such as the automatic selection, monitoring,

and composition of Web services. The diversity of these issues calls for the design

and development of a comprehensive Web Service Management System (WSMS),

where Web services would be treated as first-class objects that can be manipulated

as if they were pieces of data. A WSMS includes the architectural components neces-

sary to tackle Web service research issues. This would introduce more convenience,

flexibility, and effectiveness in managing Web services. In our PhD dissertation, we

focus on the automatic composition of semantic Web services.

1.2 Web Service Composition: Motivation

Web service composition refers to the process of combining several Web services to

provide a value-added service [24, 124]. It is emerging as the technology of choice

for building cross-organizational applications on the Web [5, 77]. This is mainly

motivated by three factors. First, the adoption of XML-based messaging over well-

established and ubiquitous protocols (e.g., HTTP) enables communication among

disparate systems. Indeed, major existing environments are able to communicate

via HTTP and parse XML documents. Second, the use of a document-based mes-

saging model in Web services caters for loosely coupled relationships among orga-

nizations’ applications. This is in contrast with other technologies (e.g., software

components [121]) which generally use object-based communication, thereby yield-

ing systems where the coupling between applications is tight. Third, tomorrow’s

B. Medjahed Chapter 1. Introduction 4

Web is expected to be highly populated by Web services [28]. Almost every “asset”

would be turned into a Web service to drive new revenue streams and create new

efficiencies.

We identify two types of Web services: simple and composite. Simple services

are Internet-based applications that do not rely on other Web services to fulfill con-

sumers’ requests. A composite service is defined as a conglomeration of outsourced

Web services (called participant services) working in tandem to offer a value-added

service. Tax Preparator is an example of composite service used by citizens to file

their taxes. It combines simple Web services such as financial services at citizens’

companies to get W2 information, banks’ and investment companies’ services to

retrieve investment information, and electronic tax filing services provided by state

and federal revenue agencies.

From a business perspective, Web service composition offers several advantages

[122]. First, composite services allow organizations to minimize the amount of work

required to develop applications, ensuring a rapid time-to-market. Second, applica-

tion development based on Web services reduces business risks since reusing existing

services avoids the introduction of new errors. Third, composing Web services en-

ables the reduction of skills and effort requirements for developing applications.

Finally, the possibility of outsourcing the “best-in-their-class” services allows com-

panies to increase their revenue.

1.3 Case Study: E-Government Web Services

While the outcomes of our research are generic enough to be applicable to a wide

range of applications, we use the area of e-government as a case study. One of the

major concerns of e-government is to improve government-citizen interactions using

information and communication technologies [83, 16, 18, 102]. In the WebDG (Web

Digital Government) project, we have teamed up with Indiana’s Family and Social

Services Administration (FSSA) and Virginia Department for the Aging (VDA). The

FSSA provides welfare programs to assist low income citizens, strengthen families

B. Medjahed Chapter 1. Introduction 5

and children, and help elderly and disabled people. VDA offers a large spectrum of

programs and services to assist senior citizens. However, collecting social benefits is

currently a frustrating and cumbersome task in both FSSA and VDA. Citizens must

often visit different offices located within and outside their home town. Additionally,

case officers must delve into a wealth of proprietary applications to access welfare

programs that best meet citizens’ needs.

�������� ������

	
��
� ��������
�
��
�

��������

�
���
����
��
����

�
��� ���

�
���
��
���
��
��� �

!"

��

#$$%$$%&%'(

)����*
�����
�

����

+,-'(./'0$ ###

1
"�

2.$%
3,45%4

6������
7
�

89:

8;: 8<:

8=:

8>:

8?:

8@:

89A:

899:

B�CCD� ������

E.FF%G0$ ###
HIJK

����

����

8L:

	
��
� M���
�N�
���O
� 6����� �
�

��
����

����
89;:

2.$%
3,45%4PQ% RQ,F% S4,T%$$

'%%U$ (, V% 4%S%.(%U

���

W
���
�����
W
*���

8X:

����N�
7
�

Figure 1.2: Case Study - Government Social and Welfare Services

Let us consider the following scenario typical to VDA application domain (Fig-

ure 1.2). Assume that citizen Mary, a handicapped and indigent retiree, wants to

receive services from an Area Agency on Aging (AAA). Typically, she would have

to travel to Mountain County’s AAA for an interview. In this case, John, a case

worker at the agency, would assess the kind of services Mary would need. He would

B. Medjahed Chapter 1. Introduction 6

delve into a large number of social services and match the features of those services

with Mary’s particular needs. John determines that Mary may qualify for the fol-

lowing services: FastTran (transportation for the elderly and handicapped), Meals

on Wheels, Meals Providers, Senior Activity Center, Residential Repair, Nursing

Home, Senior Market Nutrition Program, Insurance Counseling Program, and Legal

Aid. Mary’s information is transmitted using different means of communication,

including email, snail mail, fax, and phone. Mary may also have to visit some of

the agencies such as the insurance counseling agency. Delay in processing is usually

the rule and not the exception in these cases. To further illustrate the inadequacy

of the current system, assume that Mary decides to move to Valley county because

she developed high altitude sickness. The case worker at Valley’s AAA would then

initiate the same highly manual and error-prone process.

��� ��� ���� ��
	���
��� �
�������

��� � �����
��� �������
����
����� ������ 	���
������ ����������� � ���

������ �
������ 	�����

��� !"#�"$% �!& ��� !"#�"$% �!' ��� !"#�"$% �!(��� !"#�"$% �!)

Figure 1.3: Composing E-Government Web Services

This difficulty in collecting social benefits prevents senior citizens from becom-

ing self-dependent with a consequent harmful impact on their welfare and health.

To facilitate the use of VDA applications and hence expeditiously satisfy citizens’

needs, we organize these applications into Web services. Those services may be used

“individually” or combined together to provide value-added services. Assume that

John is planning to organize a visit to a Senior Activity Center (SAC). John’s re-

quest includes several sub-requests. Each sub-request would typically be performed

by executing one or more Web services (Figure 1.3). John first retrieves the list of

citizens interested in visiting an SAC (SR1). We assume that John gets the names

and zip codes of those citizens instead of their full addresses. John then sets an

appointment to visit a senior activity center (SR2). Once a visit is scheduled, John

gets the driving directions from each citizen’s location to the SAC (SR3). He finally

B. Medjahed Chapter 1. Introduction 7

notifies each citizen about the date and time of the visit and the driving directions

to the SAC (SR4).

1.4 Thesis Statement

Web service composition has recently taken a central stage as an emerging research

area. Several techniques have been proposed [10, 25, 70, 90, 113]. Standardization

efforts are under way for supporting Web service composition (e.g., BPEL4WS [9]).

However, these techniques and standards provide little or no support for the se-

mantics of participant services, their messages, and interactions. Additionally, they

generally require dealing with low level programming details which may lead to

unexpected failures at run-time.

To illustrate the challenges raised by Web service composition, let us consider

the composition request depicted in Figure 1.3. Assume that sub-requests SR2 and

SR3 are executed by invoking the Web services Lookup-SAC and Schedule-Visit,

respectively. In this case, social worker (composer) should understand the exact

format, content, and semantics of messages exchanged between Lookup-SAC and

Schedule-Visit. He must also check that Lookup-SAC and Schedule-Visit “can”

actually be combined and “manually” specify the way their messages are mapped

to each other. Additionally, he needs to identify the way to invoke Lookup-SAC and

Schedule-Visit (e.g., protocols supported by Lookup-SAC and Schedule-Visit).

He should finally determine the way Lookup-SAC and Schedule-Visit can together

define an overall business process (e.g., order of messages, semantics of interactions).

A promising approach to dealing with the aforementioned issues is the automa-

tion of the composition process [74]. This tedious process would then be conducted

without human intervention. The less efforts are required from users, the easier

and faster Web services are composed. We propose a framework for the automatic

composition of Semantic Web services. Composers would specify the what part

of the desired composition (i.e., the tasks to be performed), but will not concern

themselves with the how part (e.g., which services will be outsourced). They would

B. Medjahed Chapter 1. Introduction 8

provide “abstract” definitions of the actions they would like to perform. The process

of composing Web services (selecting Web services, plugging their operations, and

so forth) would be transparent to users. Detailed descriptions of composite services

would be automatically generated from composers’ specifications.

Several characteristics of Web service environments entangle the automatic com-

position process. First, the number of services available on the Web is growing at a

very fast pace [28]. Service composers must delve into the potentially vast amount of

available services, find services of interest, check whether they can interact with each

other, and then compose them. Second, the Web service space is highly dynamic.

New services are expected to avail themselves on the Web. This requires the ability

to select the “best” and “relevant” available participants in a composite service at

any given time [25]. Third, participant services are generally deployed in hetero-

geneous environments. Heterogeneity occurs at different levels including syntactic

(e.g., communication) and semantic (e.g., content, business logic) levels. Composite

services need to “understand” and deal with the peculiarities of each participant

service. Finally, the execution of a composite service typically spans organizational

boundaries and requires the capability of interacting with Web services that are

autonomous. Participant services cannot be considered to be “subservient” to other

services [117]. They should instead be perceived as interacting independently with

each other.

1.5 Automatic Composition of Semantic Web

Services

To illustrate the major research issues for developing a Semantic Web enabled service

composition approach, let us consider our e-government scenario (Figure 1.3). The

composition engine would delve into the service space to determine participants

that “best” serve each sub-request (Figure 1.4). The following simple services are

found relevant to sub-requests SR1, SR2, SR4, respectively: Get-Citizens-List,

B. Medjahed Chapter 1. Introduction 9

Schedule-Visit, and Notify-Citizens.

������
������

�	
 	���

���

���������
�����������

������

�� !�"# 	$�
!��$�

%&'(&)*+

,"-��	�� � # 	.	

� � !��	�"
/$
	# 	
0 ���
�" 1!/�2

�����.	
� !�"# 	$�
!��$	3	$�
	��

!��"$4 	�
4� ��
!�"# 	$� !��$�

!� 56�7��.
 !68

9 	� ��:�

�	
	���
/::"�..

;"	# 	�-
/::"�..

!/�
/::"�..

;	"�$
	��

!� 56�7��.
 !6<

!� 56�7��.
 !6=

!� 56�7��.
 !6>

������
!/�

�
	30
�	
 	���

!$4�:���
?	.	

@�

�	
	���.

�	.

�"�$�:�.

Figure 1.4: Automatic Composition of Web Services

The “Get Driving Directions” sub-request (SR3) returns the driving directions,

given a citizen’s name, zip code, and the address of the SAC. Since there is no sim-

ple service that offers such functionality, one solution would be to compose existing

Web services in a way that would transparently fulfill the desired objective (i.e., sub-

request SR3). The composition engine finds the following two simple services as rele-

vant: People-Lookup and Direction-From-Address. People-Lookup returns citi-

zens’ addresses, given their names and zip codes. Direction-From-Address returns

the driving directions, given an initial and final address. The composition engine

would then automatically compose People-Lookup and Direction-From-Address

B. Medjahed Chapter 1. Introduction 10

to execute the SR3 (Figure 1.4).

To make our scenario even more challenging, let us consider relationships

that may exist between Web services. For example, the invocation of the

Schedule-Visit service requires the invocation of the Lookup-SAC service to get the

list of senior activity centers. Such pre-execution relationships are generally dictated

by the business logic of Web services (e.g., Lookup-SAC and Schedule-Visit). They

may also reflect government regulations. For example, applying for certain welfare

programs (e.g., unemployment benefits) may require access to the applicant record

with a taxation office. Note that Web services may also be linked by post-execution

relationships. The composition engine should be able to automatically include pre-

and post-execution relationships in the generated composite service.

1.5.1 Different Types of Composition

The example depicted in Figure 1.4 introduces the notions of composition cardinality

and mode. The composition cardinality refers to the number of participants selected

for each sub-request. We define two cardinalities: one-to-one and one-to-many. In

the one-to-one cardinality, a sub-request is mapped to one participant service. For

example sub-request SR1 is mapped to one service that is, Get-Citizens-List.

Another example is that of sub-request SR4. This sub-request is mapped to the

service Notify Citizen. In the one-to-many cardinality, a sub-request is mapped

to a set of participants executed in a specific order. For example, sub-request SR3

is mapped to two services namely, People-Lookup and Direction-From-Address.

The composition mode refers to the way participants are combined. We de-

fine three composition types: horizontal, vertical, and hybrid. Horizontal compo-

sition refers to a “supply chain”-like combination of Web services. For example,

People-Lookup and Direction-From-Address are horizontally combined in the or-

der People-Lookup → Direction-From-Address. Vertical composition refers to

the “outsourcing” of a Web service by a sub-request or another Web service. For

example, SR2 is vertically composed with Lookup-SAC. Hybrid composition combines

B. Medjahed Chapter 1. Introduction 11

horizontal and vertical composition. For example, SR3 is vertically composed with

two services, People-Lookup and Direction-From-Address, that are horizontally

composed.

One-to-One One-to-Many

Horizontal NA Yes

Vertical Yes NA

Hybrid Yes Yes

Table 1.1: Different Types of Composition

Based on the notions of composition mode and cardinality, several types of com-

position are possible. We summarize in Table 1.1, the different types of compositions.

“NA” (Not Applicable) means that the corresponding combination of composition

mode and cardinality is not feasible. Horizontal composition implies the combina-

tion of several Web services. It is hence used with one-to-many cardinality. Vertical

composition refers to the outsourcing of one Web service. It is hence combined

with one-to-one cardinality. Hybrid composition refers to the most general mode.

It may be used with both horizontal and vertical compositions. For example, the

composition depicted in Figure 1.4 is hybrid. It combines horizontal (e.g., SR3) and

vertical (e.g., SR4) compositions. In this dissertation, we consider the four types of

composition mentioned in Table 1.1.

1.5.2 Research Issues

As illustrated in the aforementioned example, the automatic composition of Seman-

tic Web services raises the following challenging issues:

• Specification of Composers’ Requests: Composers should specify their requests

for composition (e.g., “organize a visit to a senior activity center”) in an un-

ambiguous way. A composer’s request may include several sub-requests (e.g.,

lookup for a senior activity center). The issues that need to be addressed are

as follows: (i) whether composers specify all, some, or no participant services;

B. Medjahed Chapter 1. Introduction 12

(ii) how should the composition engine “interpret” each composer’s request;

and (iii) how would the different sub-requests be orchestrated. Orchestration

refers to the execution order (sequential, parallel, etc.) of the different sub-

requests and the condition under which a certain sub-request may or may not

be executed.

• Understanding the Semantics of Web Services: Once the composition engine

has received and “interpreted” a request for composition, it should delve into

the Web service space to locate “potential” participants. Because of the large

size of this space and sheer heterogeneity of Web services, there is a need

to define a “meaningful” organization of that space to filter interactions and

accelerate service searches. Web services should be described in a way that

captures their semantics. In our e-government scenario, Web services may be

located in the same county (local agencies), different counties within a state

(state agencies), or different states (federal agencies). Additionally, those ser-

vices may be offered by heterogeneous providers such as state and federal

government agencies (e.g., Department of Health and Human Services), busi-

nesses (e.g., restaurants participating in a subsidized government program),

volunteer centers (e.g., meal deliverers), and non-profit organizations (e.g.,

American Red Cross). The composition engine should be able to limit its

search to Web services that are relevant to the composition request. It should

also “understand” that Direction-From-Address provides “driving direction

from one location to another”.

• Checking the Composability of Participant Services: Let us now assume that

the composition engine is able to understand the capabilities of Web services.

The next step would be to select participant services. The selection process

should be done while making sure that participants “can” actually interact

with each other. We refer to such a task as composability. In our e-government

scenario, the composition engine must verify that People-Lookup is compos-

able with Direction-From-Address as depicted in Figure 1.4. The issue is to

B. Medjahed Chapter 1. Introduction 13

develop a model that clearly defines the Web service features that need to be

compared for composability. For example, there is a need to make sure that

the message parameter returned by People-Lookup is “similar” (e.g., in terms

of their semantics) to the parameter required by Direction-From-Address.

The composability process should compare Web service features at different

“granules” (e.g., messages, operations, services) and levels (e.g., syntactic, se-

mantic, and qualitative). Because of the heterogeneity of Web services, it

would be unrealistic to assume that participants are “fully” composable. For

example, People-Lookup and Direction-From-Address may agree on the se-

mantics of their message parameters but use different communication protocol

such as SOAP/HTTP and SOAP/MIME. The composition engine should not

return a boolean type of answers regarding the composability of Web services.

It should be flexible enough to cater for partial and total composability.

• Generating Composite Service Descriptions: The composition engine finally

generates a description of the composite service. This description should in-

clude details such as the list of participants services, their orchestration (i.e.,

execution order), the way they are interconnected, and the mappings between

their messages. The generation process should consider the four types of com-

position mentioned in Table 1.1. The orchestration of participant services is

an important issue that needs to be addressed during the generation process.

We define two types of orchestration: composer-defined and system-generated.

The composer-defined orchestration is specified by users in their composition

requests. For example, Figure 1.3 states the execution order of sub-requests

SR1, SR2, SR3, and SR4. The system-generated orchestration is automat-

ically derived during the composition process. It includes services that are

horizontally composed (e.g., sub-request SR3), vertically composed (e.g., sub-

request SR1), and pre/post-execution relationships (e.g., sub-request SR2).

Several composite service descriptions may be generated for a given composi-

tion request. The composition engine should, in this case, be able to assess

B. Medjahed Chapter 1. Introduction 14

the “quality” of the generated composite services.

1.6 Major Contributions

We propose a generic approach for the automatic composition of Web services on

the Semantic Web. We provide an implementation of our approach in the WebDG

prototype. More precisely, our research contribution focuses on the following:

• Semantics-aware Description and Organization of the Web Service Space [76,

78, 81, 11, 4]: We propose an ontology-based framework for organizing and

describing Web services on the Semantic Web. This framework provides the

architectural foundation for the automatic composition of Web services. We

introduce the concept of community to cater for an ontological organization

of Web services. Web Services are clustered into communities based on their

domain of interest. Service providers identify a community of interest and

register their service with it. Each community is defined as an instance of an

ontology called community ontology. The community ontology includes a set

of generic operations that can be used “as is” or customized by underlying

services. A generic operation is identified by a set of attributes including

syntactic (e.g., message parameters), semantic (e.g., purpose), behavioral (e.g.,

business logic), and qualitative (e.g., cost, time) properties.

• Multilevel Composability Model for Semantic Web Services [83, 79]: We pro-

pose a composability model to check whether Web services can be combined

together, hence avoiding unexpected failures at run time. Composability is

checked through a set of rules organized into five levels: syntactic, static se-

mantic, dynamic semantic, qualitative, and business process levels. The first

four levels check composability of service messages and operations. Each rule

in a given level compares a specific pair of attributes of interacting Web services.

The business process level checks composability at the composite service “gran-

ule”. The corresponding rules verify the “meaningfulness” of a given compo-

B. Medjahed Chapter 1. Introduction 15

sition of Web services, that is, whether a composition provides a value-added

service. Each composability rule specifies the constraints and requirements

for checking horizontal, vertical, and hybrid composability. We also define the

notions of composability degree and τ -composability to cater for partial and

total composability.

• Automatic Composition of Semantic Web Services [80, 82]: We propose an

approach for the automatic composition of semantic Web services. The pro-

posed approach consists of three conceptually separate phases: specification,

matchmaking, and generation. The specification phase enables high level and

customized descriptions of the desired compositions. Composers’ specifications

include constructs for the orchestration and semantic description of composi-

tion sub-requests. The matchmaking phase uses the composability model to

generate composition plans that conform to composers’ specifications. By com-

position plan, we refer to the list of participant services and the way those ser-

vices interact with each other (plugging operations, mapping messages, etc.)

to “realize” the corresponding sub-request. We develop a set of algorithms

for checking composability and generating composition plans. The algorithms

consider both one-to-one and one-to-many composition cardinalities. The gen-

eration phase returns detailed composite service descriptions. Such descrip-

tions include the orchestration (composer-defined and system-generated) of

participant services. We also define a Quality of Composition (QoC) model to

assess the quality of the generated composite service.

• Implementation and Performance Study [83, 17]: We provide an implementa-

tion of the proposed techniques in the WebDG prototype. We adopt emerging

Web service standards including WSDL, UDDI, and SOAP. We define an ana-

lytical model for studying the performance of the proposed algorithms for com-

position. We also conduct a set of experiments to evaluate the performance

and scalability of these algorithms. For that purpose, we define a testbed

for Web services called Web Services Benchmarking Framework (WSBF). The

B. Medjahed Chapter 1. Introduction 16

testbed mimics characteristics of real Web service environments such as dy-

namics, size, and heterogeneity (i.e., different service capabilities). The main

features of WSBF include customized generation (i.e., user-controlled gener-

ation), use of statistical distribution models (e.g., Poisson for service arrival

rate) and extensibility (e.g., adding new service attributes). Finally, we com-

pare the results obtained through the analytical model with those returned by

the experimental study.

1.7 Dissertation Organization

The remainder of this dissertation is organized as follows.

In Chapter 2, we present an in-depth study of interaction technologies on the

pre Semantic Web and Semantic Web eras. We propose a framework for comparing

Semantic Web interaction technologies. The framework identifies the interaction

layers and proposes a set of dimensions to study interaction solutions. We com-

pare major interaction technologies (e.g., workflows, software components, software

agents, Web services), and illustrate the role of Web services in enabling interactions

on the Semantic Web.

In Chapter 3, we propose an ontological framework for organizing and describ-

ing Web services on the Semantic Web. We introduce the concept of community to

cater for an ontological organization and description of Web services. We develop an

ontology, called community ontology, that serves as a “template” for describing com-

munities and semantic Web services. We also propose a peer-to-peer approach for

managing communities in highly dynamic environments. In particular, we present

techniques for registering Web services with communities and coping with changes

that occur in the Web service space.

In Chapter 4, we propose a composability model for Semantic Web services. We

provide formal safeguards for meaningful composition through the use of compos-

ability rules. Composability rules are organized into five levels: syntactic, static

semantic, dynamic semantic, qualitative, and business process levels. We introduce

B. Medjahed Chapter 1. Introduction 17

the notions of composability degree, and τ -composability to cater for partial and total

composability.

In Chapter 5, we present a generic approach for the automatic composition of Se-

mantic Web services. The composition process is conducted in three separate phases:

specification, matchmaking, and generation. We define constructs for the high-level

specification of composition requests. We then propose a set of algorithms for check-

ing composability and matching composers’ requests with “relevant” compositions

of Web services. We define a technique for automatically generating detailed de-

scriptions of a composite service. We finally introduce a Quality of Composition

(QoC) model for assessing the generated descriptions.

In Chapter 6, we describe the implementation of our approach for service com-

position in the WebDG prototype. We also present a framework for benchmarking

Web services called Web Services Benchmarking Framework (WSBF). We finally

conduct an extensive performance study using two approaches: analytical model

and simulation experiments. We use WSBF as a testbed for conducting our experi-

ments.

In Chapter 7 we describe the major techniques, standards, and platforms for

Web service composition that are most closely related to our research.

In Chapter 8, we provide concluding remarks and discuss directions for future

research.

Chapter 2

Interactions on the Web: A

Taxonomic Perspective

The growth of the Web is revolutionizing the way organizations interact with their

partners and customers. Businesses and government agencies are moving or have

already moved their main operations to the Web to take advantage of the potential

of more automation, efficient business processes, and global visibility [42, 43]. This

has elicited the formation of alliances in which different partners join their applica-

tions and systems to share costs, skills and resources in offering value-added services.

The ultimate goal is to have inter and intra-organization applications evolve inde-

pendently, yet allow them to effectively and conveniently interact with each other.

Interaction is defined as consisting of interoperation and integration with both in-

ternal and external enterprise applications.

Interactions among loosely coupled and tightly coupled systems has been, over

the past twenty years, an active research topic in areas such as databases, knowledge-

based systems, and digital libraries [15, 101]. However, the emerging Semantic Web

has opened new research avenues because of issues such as semantics, heterogeneity,

scalability, and automation. The Semantic Web requires the integration and inter-

operation of both applications and data. Disparate data representations between

partner’s systems must be dealt with. Interaction is also required at a higher level for

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 19

connecting (i) front-end with back-end systems, (ii) proprietary/legacy data sources,

applications, processes, and workflows to the Web, and (iii) partners’ systems.

In this chapter, we survey the main issues and concepts to interactions on the Se-

mantic Web [77]. We propose a framework for comparing Semantic Web interaction

technologies. The framework identifies the interaction layers, i.e., communication,

content, and business process. It also proposes a set of dimensions to study inter-

action solutions. We present an in-depth study of interaction technologies on the

pre Semantic Web and Semantic Web eras. We compare major Semantic Web in-

teraction technologies (e.g., EDI, workflows, software components, software agents)

using the proposed framework. Previous work dealing with interoperation in loosely

coupled systems mostly focused on databases and digital libraries [115, 103]. Recent

surveys addressing interactions on the Semantic Web (e.g., [2, 20, 41, 44, 69, 116])

were mostly fragmented and lacked a holistic view of the problem.

The Chapter’s organization reflects the historical evolution of interaction tech-

nologies in the pre-Semantic Web and Semantic Web eras. In Section 2.1, we present

a typical architecture for a Semantic Web Interaction framework. In Section 2.2,

we define the different interaction layers in B2B E-commerce. We then identify a

set of dimensions for comparing interaction solutions across these layers. In Sec-

tion 2.3, we study several popular interaction solutions for the pre-Semantic Web,

namely, EDI, components, and workflows. These solutions are evaluated against a

pre-defined set of dimensions. In Section 2.4, we survey and evaluate the trends in

supporting interactions in the Semantic Web. These include ontologies, Web ser-

vices, agents, and XML-based standards. Finally, Section 2.5 provides a tabular

comparison summary of the existing solutions for Semantic Web interactions.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 20

2.1 Architecture of a Web-based Interaction

Framework

Web-based applications generally involve several partners that interact via comput-

erized systems (e.g., Web servers, networking services, databases) for conducting

their daily business (e.g., exchanging documents, selling products, filing taxes) [19].

The building blocks for enabling such applications are provided through an interac-

tion framework (Figure 2.1). These include modules for (1) defining and managing

internal and external business processes, and (2) integrating those processes, and (3)

supporting interactions with back-end application systems such as ERPs (Enterprise

Resource Planning) [20]. A business process is defined as a multi-step activity that

supports an organization’s mission such as manufacturing a product and processing

insurance claims [20].

Network

Workflow

Business

Rules

Programs Security

Business
Process

Interfaces

Message
Definition

Content of
Document

PeopleSoft

Internal System

A
d

a
p

te
r

Applications

Legacy

Gateway
External Interactions

Workflow

Business

Rules

ProgramsSecurity

Business
Process

Interfaces

Message

Definition

Content of
Document

Database

External Interactions
Gateway Internal System

SAP/R3

A
d

a
p

te
r

Business
Partner 2
Business

Partner 1

Figure 2.1: Architecture of a Web-based Interaction Framework

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 21

We depict in Figure 2.1 the main components of an interaction framework. Trans-

lation facilities (e.g., application adapters) may be used to interconnect back-end

systems (e.g., databases, ERPs) and internal business processes (e.g., workflows,

applications). An external business process implements the business logic of an

organization with regard to its external partners such as processing messages sent

by trading partners’ systems. Interactions between partners’ external business pro-

cesses may be carried out based on a specific standard (e.g., EDI [92, 34], Ros-

settaNet [33]) or bilateral agreements. Interaction standards define the format and

semantics of messages (e.g., request for quote), bindings to communication protocols

(e.g., HTTP, FTP), business process conversations (e.g., joint business process), se-

curity mechanisms (e.g., encryption, non-repudiation), etc. Interaction frameworks

may have to support several standards and proprietary interaction protocols.

����

���� ���	
�
�	 ��
	�

������ ��������	�

�����
���
����
�������

��������
���
���

�����
���
���� ����� �
�
�
 �	�!� "
��

����	
 ��
�	
�����

�����
#���$
���	�

����� �	��

� �
����	
 ��
�	 %
������

&��

'�

(�

)*+,-./+01*2

3.4560*
)778*09.+01* :1-
;,*01- <0+ 09,*2

(�

&��

'�

����
�
���
=

Figure 2.2: Semantic Web Interactions: A Running Example

Figure 2.2 depicts an example of interaction between the AreaAgencyAging

and HealthDepartment (Section 1.3). Assume that John, AreaAgencyAging’s case

worker, wants to organize a walk-in immunization for a group of disabled senior citi-

zens. Such immunization is fee-based and provided by a separate agency, namely the

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 22

HealthDepartment. John first issues a request for purchase. Upon approval of this

request, a purchase order is issued and sent to HealthDepartment along with the list

of citizens interested by the immunization campaign. The purchase order is trans-

formed into an immunization order at HealthDepartment’s order processing system.

After satisfactory credit check, an order fulfillment is issued by HealthDepartment.

An invoice and immunization schedule is finally sent to AreaAgencyAging.

2.2 A Taxonomy for Semantic Web Interactions

In the first part of this section, we identify the different layers that make up an

interaction framework on the Semantic Web. We then define the dimensions for

assessing interactions across these layers. These dimensions are used as a benchmark

for evaluating Semantic Web interaction solutions.

2.2.1 Interaction Layers

Interactions on the Semantic Web occur in three layers: communication, con-

tent, and business process layers (Table 2.1). For example, AreaAgencyAging and

HealthDepartment need to agree on their joint business process: John expects to re-

ceive an invoice and immunization schedule from the HealthDepartment after send-

ing a purchase order. HealthDepartment needs also to “understand” the content

of the purchase order sent by AreaAgencyAging. Finally, there must be an agreed

upon communication protocol to exchange messages between AreaAgencyAging and

HealthDepartment.

The communication layer provides protocols for exchanging messages among

remotely located partners (e.g., HTTP, SOAP). It is possible that partners use

different proprietary communication protocols. In this case, gateways should

be used to translate messages between heterogeneous protocols. For example,

AreaAgencyAging and HealthDepartment may use Java RMI (Remote Method In-

vocation) [88] and IBM’s MQSeries [63] respectively for internal communications.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 23

Layer Definition Examples of Enabling Technologies
Communication Protocols for exchanging messages among re-

motely located partners
HTTP, SOAP, CORBA ORB, etc.

Content Languages and models to describe and orga-
nize information in such a way that it can be
understood and used

Ontologies, XML-based standards
(e.g., eCO, cXML), etc.

Business Process Enable autonomous and heterogeneous part-
ners to engage in peer-to-peer interactions
with each other

Web services (e.g., BPEL4WS), XML-
based standards (e.g., RosettaNet),
Inter-enterprise Workflows

Table 2.1: Interaction Layers

The objective of integration at this layer is to achieve a seamless integration of the

communication protocols.

The content layer provides languages and models to describe and organize in-

formation in such a way that it can be understood and used. Content interactions

require that the involved systems understand the semantics of content and types

of business documents. For instance, if HealthDepartment receives a message that

contains a document, it must determine whether the document represents a pur-

chase order or request for quotation. Information translation, transformation, and

integration capabilities are needed to provide for reconciliation among disparate rep-

resentations, vocabularies, and semantics. The objective of interactions at this layer

is to achieve a seamless integration of data formats, data models, and languages. For

example, if AreaAgencyAging uses xCBL (XML Common Business Library) [32] to

represent business documents and HealthDepartment expects documents in cXML

(Commerce XML) [38], there is a need for a conversion between these two formats.

The business process layer is concerned with the conversational interactions

(i.e, joint business process) among services. Before engaging in a transaction,

AreaAgencyAging and HealthDepartment need to agree on the procedures of their

joint business process. The semantics of interactions among AreaAgencyAging and

HealthDepartment must be well defined, such that there is no ambiguity as to what

a message may mean, what actions are allowed, what responses are expected, etc.

The objective of interactions at this layer is to allow autonomous and heterogeneous

partners to come online, advertise their terms and capabilities, and engage in peer-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 24

to-peer interactions with any other partners. Interoperability at this higher level is

a challenging issue because it requires the understanding of the semantics of partner

business processes.

2.2.2 Dimensions for Semantic Web Interactions

The Semantic Web covers a wide spectrum of interactions among different part-

ners. The type of interactions depend on the usage scenarios, involved parties, and

business requirements. Each framework makes specific tradeoffs with regard to the

requirements of Semantic Web interactions. It is therefore important to determine

the relevant requirements and understand the related tradeoffs when evaluating

models of interactions. In this section, we identify the following set of dimensions

to study interaction issues the Semantic Web (Table 2.2):

Dimension Definition
Coupling among Partners Degree of tightness and duration of coupling among business partners
Heterogeneity Degree of dissimilarity among business partners
Autonomy Degree of compliance of a partner to the global control rules
External Manageability Degree of external visibility and manageability of partners’ applications.
Adaptability Degree to which an application is able to quickly adapt to changes
Security Measures must be in place to boost partners’ confidence that their transactions

are safely handled
Scalability Ability of a system to grow in one or more dimensions such the number of

relationships that can be supported

Table 2.2: Interaction Dimensions

• Coupling among partners: this dimension refers to the degree of tightness and

duration of coupling among business partners. Two partners are tightly coupled

if they are strongly dependent on each other. For example, one partner may

control the other, or they may control one another. Loosely coupled partners

exchange business information on demand. The duration of a relationship may

be transient (also called dynamic) or long term. In transient relationships,

businesses may need to form a fast and short term partnership (e.g., for one

transaction), and then disband when it is no longer profitable to stay together.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 25

Partners need to dynamically discover partners to team up with to deliver the

required service. In long term relationships, businesses assume an a priori

defined partnership.

• Heterogeneity: heterogeneity refers to the degree of dissimilarity among busi-

ness partners. The need to access data across multiple types of systems has

arisen due to the increased level of connectivity and increased complexity of

the data types. Applications use different data structures (e.g., XML, rela-

tional databases), standard or propriety semantics (e.g., standardized ontolo-

gies). There may also be structural heterogeneity at the business process layer

(e.g., use of APIs, document exchange protocols, inter-enterprise workflows).

In addition, organizations may, from a semantic point of view, use different

strategies for conducting business that depend on business laws and practices

[23].

• Autonomy: autonomy refers to the degree of compliance of a partner to the

global control rules. Partner systems may be autonomous in their design,

communication, and execution. This means that individual partners select

the process and content description models, programming models, interaction

models with the outside world, etc. In a fully autonomous collaboration, each

partner is viewed as a black box that is able to exchange information (i.e., send

and receive messages). Partners interact via well-defined interfaces allowing

them to have more local control over implementation and operation of services,

and flexibility to change their processes without affecting each other. Usually,

a completely autonomous collaboration may be difficult to achieve because it

may require sophisticated translation facilities.

• External Manageability: this dimension refers to the degree of external vis-

ibility and manageability of partners’ applications. In order to be effec-

tively monitored by external partners, an application must be defined in a

way that facilitates the supervision and control of its execution, measure-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 26

ment of its performance, and prediction of its status and availability. For

example, AreaAgencyAging may need to get the status (e.g., pending, ap-

proved) of the purchase order sent to HealthDepartment. This requires that

HealthDepartment exposes sufficient information pertaining to measurements

and control points to be used by AreaAgencyAging. While desirable in princi-

ple, high visibility may require complex descriptions of partners’ applications.

However, the overhead to provide such descriptions may be well justified if it

provides other advantages such as Quality of Service (QoS).

• Adaptability: adaptability refers to the degree to which an application is able

to quickly adapt to changes. Semantic Web applications operate in a highly

dynamic environment where new services could come on-line, existing services

might be removed, and the content and capabilities of services may be up-

dated. Businesses must be able to respond rapidly to changes whereby both

operational (e.g., server load) and market (e.g., changes of availability status,

changes of user’s requirements) environment are not predictable. For exam-

ple, if HealthDepartment decides to stop its walk-in immunization activities,

AreaAgencyAging would then need to adapt to such change. Changes may

be initiated to adapt applications to actual business climate (e.g., economic,

policy, or organizational changes). They may also be initiated to take advan-

tage of new business opportunities. Since applications interact with both local

back-end systems and partner applications, it is important to consider the

impact of changes in both local and external applications to ensure local and

global consistency. In general, the impact of changes depends on the degree

of tightness among applications.

• Security: security is a major concern for inter-enterprise applications. Before

Semantic Web applications reach their real potential, sophisticated security

measures must be in place to boost partners’ confidence that their transactions

are safely handled [136]. For instance, HealthDepartment may need to check

the authenticity of the purchase order before processing it. Semantic Web

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 27

applications must support mutual authentication, fine grain authentication,

communication integrity, confidentiality, non-repudiation, and authorization.

Interactions may be based on limited mutual trust, little or no prior knowledge

of partners, and transient collaborative agreements. Shared information may

include limited capabilities of services.

• Scalability: scalability refers to the ability of a system to grow in one or more

dimensions such as the volume of accessible data, the number of transactions

that can be supported in a given unit of time, and the number of relationships

that can be supported. More importantly, changes in business climate are

forcing organizations to merge to be effective in the global market. Thus,

the cost and effort to support new relationships is an important criterion to

consider when evaluating interaction solutions in the Semantic Web. Clearly,

a low cost establishment of new relationships is desirable. However, in case

of long-term relationships, the cost of establishing a new relationship is not of

great significance.

2.3 Interactions in the Pre Semantic Web Era

Technologies for interactions on the pre-Web era have been around for almost three

decades providing businesses, such as the banking industry, with a secure frame-

work for sharing and exchanging data electronically. The most widely used and

earliest framework is the Electronic Data Interchange (EDI) standard that runs on

dedicated computer networks. Later, advances in software technology gave rise to

a new breed of affordable software for distributed messaging and computing that

can securely run on public computer networks: component-based frameworks. With

corporate takeovers and consolidations coupled with the need of agile, just-in-time

inter-enterprise cooperation on the Web, pressure mounted to provide solutions for

enabling inter-enterprise workflows. Tomorrow’s silver bullet applications such as

Virtual Enterprises [11, 52, 53], will heavily draw on these solutions. In this section,

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 28

we describe major interaction frameworks developed in the pre Semantic Web era:

EDI, components, and workflows.

2.3.1 Electronic Data Interchange (EDI)

EDI [92, 34] is commonly defined as the inter-organizational application-to-

application transfer of business documents (e.g., purchase orders, invoices, shipping

notices) between computers in a compact form. Its primary aim is to minimize the

cost, effort, and time incurred by the paper-based transfer of business documents

[1]. EDI documents are structured according to a standard (e.g., ANSI X12 [34] and

UN/EDIFACT [92]) and machine-processable format.

document messaging
EDI envelope for

Translator

Mapper

Business Application

document messaging
EDI envelope for

Translator

Mapper

Business Application

Health Department

Value Added
Network (VAN)

Purchase Order Purchase Order

Area Agency on Aging

Figure 2.3: EDI-based Interactions

Figure 2.3 depicts two trading partners AreaAgencyAging and

HealthDepartment exchanging business documents via a Value-Added Net-

work (VAN). The document (e.g., purchase order) must be created in the business

application of the sender (i.e., AreaAgencyAging). The mapper software is used

to describe the relationship between the information elements in the application

and the EDI standard. The EDI translator software converts the document

into an EDI message according to the standard used. The translator wraps the

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 29

EDI message in an electronic envelope that has an identifier for the receiver

(i.e., HealthDepartment). The actual transmission of the electronic envelope is

performed by the communication software. This software maintains the trading

partners’ phone numbers to dial-up and exchange operations. The communication

software can be a separate application or part of the translator. The VAN reads

the identifier on the envelope and places it in the mailbox of HealthDepartment.

At the HealthDepartment side, the reverse process takes place.

2.3.1.1 Interactions in EDI-based Solutions

EDI focuses mostly on interoperability at the communication and content layers.

VANs are used to handle message delivery and routing among business partners.

EDI standards provide a single homogeneous solution for content interoperability.

They define a set of types for describing business documents. However, there is a

limited (albeit large) number of predetermined documents supported by EDI stan-

dards. While these documents represent a large number of business transactions

(e.g., shipping invoices, health care claim status reports), companies are limited to

that set of EDI documents for which standards already exist [1]. It would be difficult

for trading partners to conduct transactions whose parameters are not included in

an EDI document. In that regard, EDI is hardly flexible in its ability to expand

the set of supported document types. The introduction of a new type or changing

an existing type of business transaction is complex and time consuming [1]. This

kind of changes requires modification to the configuration of the translation soft-

ware and must be validated in the related standard or EDI guideline committee

which usually takes a long time [1]. For example the EDI Guideline Consistency

Subcommittee (EGCS) is responsible for the content and maintenance of all TCIF

(Telecommunications Industry Forum) EDI-maintained code lists [6]. Any modi-

fication to these code lists has to be reviewed by the EGCS. The EGCS is also

responsible for notifying the TCIF Secretariat of any changes in the electronic doc-

umentation. Interoperability at the business process layers is supported through

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 30

pre-defined business processes. For example, if AreaAgencyAging’s purchase order

is accepted then the AreaAgencyAging expects a purchase order acknowledgment,

an invoice, and the immunization schedule.

The EDI approach is particularly strong along the criteria of security and hetero-

geneity. EDI is based on document exchange over private or value-added networks.

Business partners do not concern themselves with those security issues encountered

in public networks. Moreover, business partners do not need to directly reference

each other systems. Therefore, critical security issues are bypassed. All partners

are required to comply with the EDI standard. As a result, heterogeneity is not a

problem. However, understanding all information in an EDI document is not a sim-

ple task. For example, there are data elements (UNH and UNT) in EDI document

whose sole purpose is to indicate the start and end of a message. The impact of

local changes is limited as partners do not directly reference each others’ systems.

Although several EDI implementations have shown impressive results as set in

the example of SEWP [91], the cost of establishing a new relationship usually re-

quires a significant overhead. Because EDI is based on proprietary and expensive

networks, organizations, predominantly small and medium, could not afford EDI.

They were, de facto, excluded from being partners with larger organizations that

mandate the use of EDI [1, 68]. Typically, VAN services entail three types of costs:

account start-up costs, usage of variable costs, and VAN-to-VAN interconnect costs

for the number of characters in each document [68]. The final cost of an EDI solution

depends on several factors such as the expected volume of documents, economics of

the EDI translation software, and implementation time. Maintenance fees and VAN

charges can vary considerably and as such affect the cost of EDI systems. Some

VAN providers do their billing on a per document basis. Others charge based on

the number of characters in each documents [68]. It has been reported that 90% of

the Fortune 500 companies in the United States uses EDI; only 6% of the other 10

million companies can make that claim [1]. Efforts to reduce the cost of using VAN

networks include Internet-based EDI solutions such as EDIINT [66] and OBI [97].

Each EDI deployment involves negotiation and agreement on a set of implemen-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 31

tation conventions describing the extensions to the standard documents and actual

formats that would be exchanged. This negotiation and agreement process repre-

sents a significant cost in EDI deployment. To address this issue, EDIFACT and

ANSI X.12 have undertaken an effort to standardize sets of documents for various

industries. For example, ANSI X.12 has recently released a set of standard EDI

document definitions for the health care industry. Using these industry standard

document definitions, the customizations required per relationship can be reduced,

although per-relationship work is generally still required. Additionally, once im-

plementation conventions are decided upon, custom integration work must be per-

formed at both partner organizations for the existing enterprise systems to process

the EDI documents. This typically involves purchasing a commercial EDI system,

integrating it with the enterprise systems, and writing custom code to translate the

EDI system document definitions to the corresponding enterprise system records.

2.3.1.2 Internet-based EDI Initiatives

EDI has been extended in many directions. For instance, business documents in

EDI standards have been mapped to XML documents (e.g., XML/EDI [35]). More

specifically, the combination of EDI and Internet technologies seems to overcome

several shortcomings of the traditional EDI (e.g., VAN charges). Indeed, several

organizations are already using EDI for transacting over the Internet. For example,

EDI purchase orders and invoices are now routinely exchanged via the Internet

by NASA, Sun Microsystems, and Cisco systems. Major Internet-based EDI

initiatives include EDIINT (EDI over the Internet) [66] and OBI (Open Buying on

the Internet) [97].

EDIINT [66] – EDIINT is essentially the same as traditional EDI, but uses the

Internet as a communication medium instead of VANs. The aim is mainly to re-

duce EDI communication charges due to the use of VANs. EDIINT was initiated

by the Uniform Code Council (UCC) to standardize the method to exchange EDI

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 32

documents over the Internet. EDIINT is similar to EDI in terms of interoperability

at the content and business process layers. At the communication layer, the first

EDIINT standard (emerged in 2000) was EDIINT AS1 (Applicability Statement 1).

EDIINT AS1 set the rules to exchange EDI documents using SMTP protocol. The

second standard (completed in 2001) was EDIINT AS2 standard. It supported

communication of EDI documents using the HTTP protocol.

Initially, there was reluctance to use the Internet for exchanging critical business

information due to concerns about security. To deal with this problem, EDIINT

AS2 specifies standard mechanisms for securing documents using PGP (Pretty

Good Privacy) encryption and digital signatures [67]. The standards referenced by

EDIINT AS2 include RFC1847 and MIME Security with PGP [67]. EDIINT offers

lower entry cost than EDI since it is Internet-based. However, the quality of service

(e.g., automatic error detection and correction) associated with VANs is lost.

EDIINT offers similar characteristics as EDI with respect to the other dimensions

(i.e, coupling, heterogeneity, autonomy, external manageability, and adaptability).

OBI [97] – OBI is a standard that leverages EDI to define an Internet-based procure-

ment framework. It is clearly stated that OBI aims to complement EDI standards,

not replace them. OBI is intended for high-volume, low-dollar amount transactions,

which account for 80% of the purchasing activities in most organizations. At the

communication level, OBI uses HTTP protocol for exchanging messages. OBI re-

lies on the ANSI X12 EDI standard to describe the content of order documents.

Order documents are encapsulated in OBI objects. OBI objects also encapsulate

other non-EDI messages such as buyers’ and sellers’ digital signatures. OBI does

not introduce a specific model for describing locally maintained information (e.g.,

product and price information). This information may be described in the partner’s

database. At the business process level, OBI defines a simple and pre-defined opera-

tional protocol for Internet-based purchasing. This protocol consists of a number of

commonly agreed upon activities (e.g., select a supplier, create order) for purchas-

ing non-strategic material (e.g., office supplies, laboratory supplies). In fact, this

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 33

protocol only specifies the way partner OBI systems interact. It is the responsibility

of each partner to integrate its internal applications (catalogs, inventory and order

management systems, etc) with OBI servers.

OBI makes a strong attempt to provide a robust security infrastructure. It uses

the SSL (Secure Sockets Layer) [93] over HTTP for securing communications. It

also uses digital signatures and digital certificates for ensuring messages authentic-

ity and integrity. OBI rates higher than EDI with regard to the scalability and

adaptability dimensions. First, the extensibility of order documents is not an im-

portant requirement. OBI targets simple and pre-defined purchasing transactions.

Second, it offers lower entry cost as it is an Internet-based framework. OBI offers

similar properties as EDI and EDIINT with regard to the other dimensions (i.e.,

coupling, heterogeneity, autonomy, and external manageability).

2.3.2 Software Components

Software components (simply, components) are program modules that can be in-

dependently developed and delivered [14, 121]. They may be newly developed or

wrap existing functionalities provided by databases, legacy systems or packages. Al-

though most of the fundamental ideas that define object technology are applicable

to components, components are not necessarily created using object-oriented tools

and languages [84, 58]. For example, components may be realized using a functional

language, an assembly language, or any other programming language [121].

The development of component-based applications generally requires the inter-

connection of geographically distributed components. The availability of a middle-

ware that provides more effective ways of programming is important to the develop-

ment of distributed component-based applications. A component middleware is an

infrastructure that supports the creation, deployment, and interactions among com-

ponents [125]. Figure 2.4 depicts AreaAgencyAging’s and HealthDepartment’s ap-

plications assembled from components. Each component represents an independent

unit of a business functionality such as payment, purchasing, privacy, and security.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 34

��������� ��		
���
�
������ ������ ����� ����

������

�!��"�#�$%

�� &'$(

)*$+*�&,*

-.//0123452.1674184352.1894/21: ;<30725=

>?@ABCD@EF?G

H��
�I ����
������
�� ����JK �� �����

)*$+*�&,*

)�'L�(
)"'�M

N�OO�$%

P'�!��(

������

P'�!��(

Figure 2.4: Component-based Interactions

The different components work together to serve the needs of AreaAgencyAging’s

and HealthDepartment’s business processes. They are built on top of a set of basic

services. Functions provided by these services include distributed communication,

security, transactions, and naming schema.

Three major component middleware frameworks have been developed during the

past decade:

• CORBA (Common Object Request Broker Architecture) [99]: CORBA is the

standard promoted by the OMG (Object Management Group), an international

industry consortium. It is part of a general architecture called the Object

Management Architecture (OMA). The backbone of CORBA is the Object

Request Broker (ORB) which allows communication between client and server

components.

• DCOM (Distributed Component Object Model) [85]: DCOM is Microsoft’s

technology for distributed components. It is an extension of COM, the Mi-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 35

crosoft’s component software architecture. COM and its DCOM extension are

merged into a single runtime which provides both local and remote access.

• EJB (Enterprise Java Beans) [109]: EJB is one of several technologies which

make up Sun’s J2EE (Java 2 Platform, Enterprise Edition) specification. It

provides a component model for the Java programming language. In EJB,

pieces of business logic or functions can be written in Java and encapsulated

to become components known as beans. The container is the core of EJB

component model. It provides a runtime environment that hosts and controls

the beans.

The component-based approach is more appropriate for a small number of part-

ners within an enterprise [30]. However, with companies being merged and acquired

at the current rate, there is a need to address interactions within an enterprise. Com-

ponents mainly cover interactions at the communication layer. They exhibit limited

capabilities dealing with interactions at the content layer. They focus on the syn-

tactic integration to wrap heterogeneous applications. At the business process layer,

applications (e.g., scheduling an immunization campaign for AreaAgencyAging) may

be assembled from independently developed components (e.g., payment, purchasing,

privacy, security) [119, 51]. However, businesses generally would need to develop ad

hoc solutions for defining intra and inter-enterprise business processes.

2.3.2.1 CORBA-based Interactions

At the communication layer, the use of ORBs in CORBA hides the underlying com-

plexity of network communications from application developers. When a client issues

a method invocation on a server component, the ORB intercepts the invocation and

routes it across the network to the appropriate server. It is also possible that com-

ponents distributed on different ORBs communicate over the Internet through the

Internet Inter-ORB Protocol (IIOP).

CORBA provides a trader service through which businesses can find each other

by assigning a set of properties to each component. However, these properties are

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 36

simply defined as (name,value) pairs. They do not provide support for semantic de-

scription of components. Recent efforts have been made to add semantic features to

CORBA through the ECDTF (Electronic Commerce Domain Task Force) reference

model which includes a semantic data facility [99]. However, the model is still at

its very early stage. Additionally, very little work has been done so far to define a

specification for the semantic data facility.

CORBA enable tightly coupled and long term business relationships between

components. Once interfaces are expressed in IDL (Interface Definition Language),

they are compiled by an IDL compiler into stubs and skeletons. The stub, used on the

client side, invokes remote operations via the ORB to the corresponding skeleton on

the server side. The skeleton gets the call parameters, invokes the actual operation

implementation, collects results, and returns values back to the client through the

ORB. Efforts are being made to add messaging capabilities to CORBA [30]. The

new messaging specification defines a number of asynchronous and time-independent

invocation modes for CORBA. It allows both static and dynamic invocations to use

all modes. The use of message driven interactions among components allows the

support of loosely coupled relationships. CORBA components are mostly based

on static operation invocation. Although the Dynamic Invocation Interface (DII)

in CORBA allows components to learn about other components’ operations at run

time, the utility of DII is yet to be exploited due to its complexity.

Components shield application developers from implementation details. Inter-

faces are the only considerations businesses must make when interacting with each

other. Business partners have the latitude to implement their interfaces in ways that

best fit their internal needs and requirements. Each CORBA component has an IDL

that includes the name of the operations to be called by clients together with the

name and types of all parameters and return values. However, all participants in a

certain market need to agree on a predefined interface. This means that businesses

are bound to interfaces published by their trading partners. In terms of heterogene-

ity, CORBA was designed to be independent of implementation languages, operating

systems, and other factors that normally affect interactions. Components can be

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 37

implemented using diverse programming language such Java, C++, and Smalltalk.

External manageability is partially addressed in CORBA through the event ser-

vice. The CORBA event service allows components to inform each other of the

occurrence of specific events. It divides components into suppliers and consumers.

Suppliers generate notifications of events while consumers register to be notified

about the occurrence of events so that they can perform specific actions in response

of those events.

CORBA provides little or no support for adaptability. As mentioned before,

businesses are tightly bound to interfaces published by their trading partners. Hence,

any change to a partner’s interface may need the corresponding interface to be re-

compiled. To date, CORBA does not provide mechanism to respond rapidly to

changes in component interfaces.

Security is addressed in CORBA through the CORBA security service. This

service provides a number of mechanisms such as authentication, authorization, and

encryption of messages to build secure Web-based applications. Major CORBA

vendors provide implementations of the security service.

The complexity of CORBA development increases the cost of entry in CORBA-

based solutions. For example, developers in CORBA must generate binary code

packages and deploy them on client sides when building new applications or when

modifying the interfaces of existing applications. Although the dynamic invocation

interface in CORBA alleviates this problem, programming calls with such interface

is fairly complicated.

2.3.2.2 DCOM-based Interactions

Similarly to CORBA, DCOM-based solutions mainly deal with interactions at the

communication layer. They present little or no support for interactions at the con-

tent and business process layers. For a DCOM client to access an operation of

another component at the communication layer, it must use virtual lookup tables to

obtain a pointer to that operation. The DCOM runtime environment ensures that

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 38

the pointer is local to the invoking process by using proxies [71].

DCOM components enable tightly coupled and long term business relationships.

Proxies need to be created at the client side to communicate with stubs on the serving

end [71]. The operation invocation process is static in DCOM which prevents estab-

lishing dynamic relationships among components. In terms of heterogeneity, current

DCOM implementations are mostly based on Windows platforms although some ex-

perimentation have been done to port DCOM to other platforms (e.g., UNIX). Also,

the languages that are mostly used to write DCOM components are Microsoft J++

(Microsoft’s implementation of Java), C, C++, and Visual Basic. Additionally,

DCOM’s IDL is neither CORBA nor DCE (Distributed Computing Environment)

compliant [71]. Security in DCOM relies on the Windows NT security model. Al-

though this allows developers to build secure applications on Windows platforms, it

is not clear how security will be provided when DCOM is used on other platforms.

DCOM has similar characteristics as CORBA with respect to autonomy, external

manageability, adaptability, and scalability.

2.3.2.3 EJB-based Interactions

At the communication layer, EJB uses the Java RMI [88] to enable interactions

among beans. The use of RMI makes the location of the server transparent to

the client. Similarly to CORBA and DCOM, EJB is fairly limited in terms of

interactions at the content and business process layers.

Similarly to CORBA and DCOM, EJB caters for tightly coupled and long term

business relationships. Developers must define an RMI remote interface for each

bean. The RMI compiler generates a stub for each remote interface. The stub is

installed on the client system and provides a local proxy for the client. The stub

implements all the remote interfaces and transparently delegates all method calls

across the network to the remote bean. A new specification of EJB (EJB Version

2) has recently been made available. It uses JMS (Java Messaging Service) to add

support for message driven beans, extending the EJB component model to support

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 39

both tightly and loosely coupled applications [30]. Static operation invocation is

found in most EJB implementations. However, some implementations such as JBoss

integrate more dynamic features.

In EJB, each bean has a remote interface which defines the methods that carry

out the business logic of the bean. The EJB remote interface provides functions that

are similar to those provided by CORBA and DCOM IDL. Hence, EJB is similar

to CORBA and DCOM in terms of autonomy. EJB does not support heteroge-

neous platforms although it is fully based on Java. Indeed, most of the current EJB

implementations do not offer direct interoperability with non-Java platforms. In

addition, communicating between components deployed on heterogeneous applica-

tion servers, such as invoking a BEA WebLogic component from an IBM WebSphere

server, requires operations in degraded mode.

Several implementations of an event service have also been provided for EJB to

support external manageability. An example of EJB’s event service is the Drala

Event Broker [46]. EJB provides some support for adaptability by associating a

deployment descriptor to each bean. The descriptor describes the way in which

a bean interacts with its environment. Application developers declaratively define

contracts in their descriptors. This contract describes the type of services (such as

the form of transaction management to be used) required by the bean. It can be

changed independently of the business logic.

The EJB container provides security features to EJB components. Each deploy-

ment descriptor contains declarations about the access control for the corresponding

enterprise bean. When a client calls an operation of that bean, the container is re-

sponsible for checking that the requester has the right to invoke that operation by

accessing an access control list. Finally, EJB offers similar properties as CORBA

and DCOM with respect to scalability.

2.3.3 Workflows

Workflow management is concerned with the declarative definition, enactment, ad-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 40

ministration and monitoring of business processes. A business process (or workflow

process) consists of a collection of activities related by data and control flow rela-

tionships (Figure 2.5). An activity is typically performed by executing a program,

enacting a human/machine action, or invoking another process (called sub-process).

Programs, persons, machines, and data used to perform workflow processes are called

workflow resources. For example, AreaAgencyAging’s business process includes sev-

eral activities such as issuing a purchase request, approving it, and issuing a pur-

chase order. The information sent from AreaAgencyAging’s Issue Purchase Request

activity to the Approval Process activity includes the number of citizens eligible

for immunization service. The scripting of activities and resource policies through

business process analysis, modeling, and definition tools defines a business process

definition (workflow schema) [39]. The workflow enactment service enables differ-

ent parts of the business process to be enacted by providing interfaces to users,

applications, and databases distributed across the workflow domain (Figure 2.5).

�������� ���	���

���
���� �������� �

������� ��� �����

��������
���	���

��������
���	�����
�����	�

����	������

� !"

#$%$&$!

'�����	����� � ��(
��������)�����	��

���(��
��������
���	���

	�����

����*+������
,���

-./0122
3456712�������� ���	���

����������

Figure 2.5: Workflow System Characteristics

Workflow is a key technology for automating business processes that involve ac-

cess to several applications. However, traditional workflow systems are ineffective

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 41

when we consider the needs of Web-based applications, with their complex partner-

ships, possibly among a large number of highly evolving processes. Current efforts

(e.g., the Business Process Initiative - BPMI.org) promise to deliver a next genera-

tion workflow systems (Inter-Enterprise Workflow Systems - IEWSs) that have the

ability to thread together cross-organizational business processes, supporting the

integration of diverse users, applications, and systems [136]. IEWSs focus mainly

on interactions at the business process layer. Their purpose is to automate business

processes that interconnect and manage communication among disparate systems.

2.3.3.1 Distributed Workflow Systems

The emphasis in Distributed Workflow Systems (DWSs) is on partitioning the over-

all workflow specification into several sub-workflows, each encompassing all the

activities that are to be executed by a given entity within an organization [90].

DWSs impose that each organization participating in a distributed workflow de-

ploy a full-fledged execution engine, capable of interpreting the workflow defini-

tion. The same workflow model must be adopted by each participant in the global

workflow. This approach assumes that global and sub-business processes use the

same process definition and data exchange model. This is a quite restrictive as-

sumption in the context of Web-based applications where: (i) partners may use dis-

parate data and process representation models (e.g., AreaAgencyAging uses EDI and

HealthDepartment uses RosettaNet), and (ii) private business processes may require

access to proprietary/legacy data sources and applications (e.g., Oracle database

for AreaAgencyAging and SAP application for HealthDepartment). In addition,

DWSs assume a tight coupling model among the distributed sub-workflows. Thus,

modifications to back-end applications, sub-workflows, and global workflow need

to be coordinated. The cost of establishing a new relationship may be significant

as business processes must be modeled and deployed in concert across all partici-

pants. DWSs are appropriate for the development of a business process of a single

organization that needs to integrate multiple distributed sub-workflows.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 42

2.3.3.2 Collaborative Process Management

Inter-enterprise business processes management features the separation between pub-

lic and private processes [20, 39]. A public process defines an external message

exchange of an organization with its partners according to a message exchange pro-

tocol such as EDI and RosettaNet. A private process describes internal executable

activities that support the activities of public processes. Public and private pro-

cesses interact through process wrappers. Process wrappers consist of pre-defined

activities that can be used in a private business process to send/receive messages

to/from public business processes. For example, if a public process uses xCBL [32] to

represent business documents, and the private business process expects documents

in cXML [38], the conversion between these two formats is handled by a wrapper.

Private processes may also interact with back-end applications through application

adapters. In this approach there is no requirement that local process management

engines (e.g., engines which are responsible for managing private business processes)

be identical. It is possible for example, that one engine is based on IBM’s MQSeries

[63] and another based on HP’s Process Manager [60].

The separation between back-end applications, public, and private processes has

the advantage that local changes (i.e, those that concern only private processes) have

no impact on public processes and back-end applications. However, changes related

to interactions (e.g., changing the formats of incoming and outgoing messages) be-

tween a public process (or a back-end application) and a private business process

may require the modification of some wrappers. The separation between components

of a Web-based application (public processes, private processes, business rules, and

back-end systems) contributes to the scalability of this approach. The support of

a new interaction protocol (e.g., EDI) requires only the creation of a new public

process and process wrappers. The support of new a back-end application requires

the creation of new application adapters. The creation of a new relationship with

a new partner may require a few adjustments. If the new partner does not comply

to an already supported interaction protocol, a new public process must be created

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 43

to support the protocol used by the new partner. The support of a new back-end

application requires only the creation of a new application adapter. The above dis-

cussion shows that the addition of interaction protocols, back-end applications, or

partners does not require the modification of private business processes.

The separation between public and private business process provides for a

greater degree of autonomy and bridging of heterogeneity. With regard to security,

IEWs may leverage techniques used in other frameworks (i.e, document-based or

component-based frameworks). External manageability can be provided by adding

specific activities in public processes.

2.4 Trends in Supporting Semantic Web Interac-

tions

The traditional approaches for Web-based interactions were not devised for Semantic

Web. They provide little or no support for capturing the semantics of messages ex-

changed among partners or partners’ business processes. Therefore, recent research

has focused on developing concepts and techniques for enabling interactions on the

Semantic Web. In this section, we overview major Semantic Web technologies,

namely, ontologies, Web services, agents, and XML-based interaction standards.

2.4.1 Ontologies

The Web is evolving from a set of single isolated application systems into a World

wide network of disparate systems interacting with each other via information ex-

change. This requires means to represent the semantics of the exchanged informa-

tion so that it could be automatically understood. This is where ontologies would

play a crucial role, providing a machine processable semantics of the information

communicated between heterogeneous systems.

Ontologies were initially developed in Artificial Intelligence to facilitate knowl-

edge sharing and reuse. They have since then been recognized as a popular research

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 44

topic in various research communities such as knowledge engineering, e-commerce,

natural language processing, cooperative information systems, and information inte-

gration. In this section, we define the concept of ontology and give the motivations

behind it. We then overview major languages and standards for describing ontologies

on the Web. Finally, we evaluate ontology-based systems using interaction layers

and dimensions.

2.4.1.1 Modeling Semantics Through Ontologies

An ontology is a formal and explicit specification of a shared conceptualization

[40, 100]. “Conceptualization” refers to an abstraction of a domain that identi-

fies the relevant concepts in that domain. “Shared” means that an ontology cap-

tures consensual knowledge. The development of ontologies is often a cooperative

process involving different entities possibly at different locations (e.g., businesses,

government agencies). All entities that agree on using a given ontology commit

themselves to the concepts and definitions within that ontology. “Explicit” means

that the concepts used in an ontology and the constraints on their use are explicitly

defined. “Formal” intends that the ontology should be machine understandable and

described using a well-defined model or language called ontology language.

An ontology typically consists of a hierarchical description of important concepts

in a domain, along with descriptions of the properties of each concepts. Formally,

an ontology Ω contains a set of concepts (also called classes) {c1,...,cn} which consti-

tutes the core of the ontology. The notion of concept in ontologies is similar to the

notion of class in object-oriented programming. Each concept ci has a set of proper-

ties P i = {pi1,...pim} associated to it. This set describes the different features of the

class. Each property pik has a range Rik (also called type) indicating a restriction

on the values pik can take. An ontology relates classes to each other through on-

tology relationships. Examples of relationships include “subclassof”, “superclassof”.

Properties are also related through similar relationships such as “subpropertyof”

and “suprepropertyof”.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 45

We identify three different types of ontologies depending on their generality level:

vertical, horizontal, and metadata ontologies. Other types of ontologies such as rep-

resentational, method and task ontologies also exist but are out of the scope of our

research [48]. Vertical ontologies capture the knowledge valid for a particular do-

main such as medical, mechanic, chemistry, and electronic. Horizontal ontologies

describe general knowledge that is valid across several domains. They define ba-

sic notions and concepts (e.g., time, space) applicable in many technical domains.

Metadata ontologies provide concepts that allow the description of other concepts.

For example, Dublin Core is an ontology for describing the content of on-line infor-

mation source.

2.4.1.2 Web Ontology Languages

Several ontology-based approaches have been developed for Web applications

during the past few years. A common claim for all these approaches is the need for

models and languages to specify ontologies. An obvious solution would be to use

XML for describing ontologies. However, XML provides a syntax to encode data. It

does not specify the data’s use and semantics. The parties that use XML for their

data exchange must agree beforehand on the vocabulary, its use, and meaning. As

consequence, many Web ontology languages have been developed. In this section,

we overview a representative set of these languages: RDF, RDF Schema, and

DAML+OIL. An exhaustive list of ontology languages for the Semantic Web is

presented in [54].

RDF and RDF Schema: RDF (Resource Description Framework) provides a domain-

neutral framework to model metadata about resources on the Web. It is recom-

mended by World Wide Web Consortium (W3C) working groups. A resource is

any “thing” on the Web that has a Uniform Resource Identifiers (URI) such as

Web pages and files. Besides resources, RDF’s basic model includes properties and

statements. A property is a characteristic, attribute, or relation that describes a re-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 46

source. A statement consists of a specific resource with a named property plus that

property’s value for that resource. This value can be another resource or a literal

value (free text). An RDF description is a list of triples: (resource, property, value).

It is syntactically represented in XML. Below is an example of triple represented in

XML. It states that a specific Web page (resource) was created (property) by “John”

(values). We use XML namespaces “rdf” and “dc” to identify elements. Simply put,

XML namespaces provide a method for qualifying element and attribute names used

in XML documents by associating them with URI references:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/DC/">

<rdf:Description about="http://www.w3.org/">

<dc:Creator> John </dc:Creator>

</rdf:Description>

</rdf:RDF>

RDF does not provide mechanisms for defining relationships between properties

and resources. This is the role of RDF Schema. RDF Schema is a type system for

RDF. It provides a mechanism to define domain-specific properties and classes of

resources to which we can apply those properties. Basic primitives of RDF include

class and subclass which together allow the definition of class hierarchy, property

and subproperty to build property hierarchies, and domain and range to restrict the

possible combinations of properties and classes.

DAML+OIL: DAML+OIL is the result of a merger between DAML-ONT, a lan-

guage developed as part of the US DARPA Agent Markup Language (DAML) and

OIL (the Ontology Inference Layer), developed by a group of (mostly) European

researchers. It builds on earlier Web ontology standards such as RDF and RDF

Schema and extends those languages with richer modeling primitives (e.g., cardi-

nality). DAML+OIL adopts an object oriented approach, describing ontologies in

terms of classes, properties, and axioms (e.g., subsumption relationships between

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 47

classes or properties) [59]. When a resource R is an instance of a class C, we say

that R has type C.

From a formal point of view, DAML+OIL can be seen to be equivalent to descrip-

tion logic (DL), with a DAML+OIL ontology corresponding to a DL terminology

(Tbox). As in a DL, DAML+OIL classes can be names (URIs) or expressions, and

a variety of constructors are provided for building class expressions. Example of

DAML+OIL constructors include intersectionOf, unionOf, complementOf, oneOf,

minCardinalityQ, maxCardinalityQ. The meaning of the first three constructors (in-

tersectionOf, unionOf and complementOf) is relatively self-explanatory: they are

the standard boolean operators that allow classes to be formed from the intersec-

tion, union and negation of other classes. The oneOf constructor allows classes

to be defined existentially, i.e., by enumerating their members. The minCardinal-

ityQ, maxCardinalityQ, cardinalityQ constructors are known in DLs as qualified

number restrictions. The minCardinalityQ (maxCardinalityQ, cardinalityQ) con-

structor gives the class whose instances are related via a given property to at least

(at most, exactly) n different resources of type C. The number n and class C are

specified in the constructor. The following DAML+OIL example defines two classes

“HomePage” and “Person”. These classes are related by the property “belongsTo”

with a cardinality 1. This means that each home page belongs to one person:

<daml:Class rdf:ID="HomePage"> </daml:Class>

<daml:Class rdf:ID="Person"> </daml:Class>

<daml:ObjectProperty rdf:ID="belongsTo">

<daml:domain rdf:resource="#HomePage"/>

<daml:range rdf:resource="#Person"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#HomePage">

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#belongsTo"/>

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 48

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

2.4.1.3 Interactions in Ontology-based Systems

Ontologies are mostly developed to support interactions at the content layer. At

the communication layer, they may rely on existing communication protocol (e.g.,

HTTP). Ontologies may be used, at the business process layer, to provide a set of

pre-defined business documents to be exchanged among partners. Each document

would contain the actions that should take place during message exchange.

Participants in an ontology-based system are bound to the concepts and proper-

ties defined within the ontology. This may impact their autonomy and heterogeneity.

Ontologies are often not stable definitions. Indeed, a shared conceptualization of

a domain has to be reached in a process of social communication. Changes in the

domain generally trigger the modification of the ontology. The evolution of on-

tologies causes operability problems, which hamper their effective reuse. Solutions

are still required to allow changes to ontologies without making current use invalid.

The cost of entry in an ontology-based system may be significant since participants

must describe their applications according to a given ontology. Finally, the issues of

external manageability and security are not addressed in ontology-based systems.

2.4.2 Web Services

The precise definition of Web services is still evolving as witnessed by the various

definitions in the literature. One such definition is that a Web service is a “business

function made available via the Internet by a service provider, and accessible by

clients that could be human users or software applications” [28]. It is also defined

as “loosely coupled applications using open, cross-platform standards and which

interoperate across organizational and trust boundaries” [124]. The W3C (World

Wide Web Consortium) defines a Web service as a “software application identified

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 49

by a URI (Uniform Resource Identifier), whose interfaces and binding are capable

of being defined, described and discovered by XML artifacts and supports direct in-

teractions with other software applications using XML based messages via Internet-

based protocols”. The aforementioned definitions can be seen as complementary.

Each definition emphasizes some part of the Web service characteristics (discovery,

invocation, etc). In this section, we define Web services as business functionalities

that are:

• Programmatically accessible: Web services are mainly designed to be invoked

by other Web services and applications. They are distributed over the Web

and accessible via widely deployed protocols such as HTTP and SMTP. Web

services must describe their capabilities to other services including their oper-

ations, input and output messages, and the way they can be invoked.

• Loosely coupled: Communication among Web services is document-based. Web

services generally communicate with each other by exchanging XML docu-

ments. The use of a document-based communication model caters for loosely

coupled relationships among Web services.

2.4.2.1 The Web Service Reference Model

Interactions among Web services involve three types of participants: service

providers, service registry, and service consumers (Figure 2.6). Service providers

are the parties that offer services. They define descriptions of their services and

publish them in the service registry, a searchable repository of service descriptions.

Each description contains details about the corresponding service such as its data

types, operations, and network location. Service consumers use a find operation

to locate services of interest. The registry returns the description of each rele-

vant service. The consumer uses this description (e.g., network location) to invoke

the corresponding Web service. For example, HealthDepartment may advertise a

Web service that includes a scheduleImmunization operation. AreaAgencyAging’s

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 50

provider would then access the registry, discover HealthDepartment’s service, and

invoke its operations.

������

�������
��	�
���

�������

��
����

�������
����������� �������

��� ���� ���

��� �������
� �����

������

 !"#$%&
'())* !"#$+,-$./01$/2

'())* */3!$450

67%%,87
79+&,/87
':;< 0

&,% 27=$/7%

:74>$+7
)7%+4$?-$./
'@:)A0

())*
B78$%-45

Figure 2.6: The Web Service Reference Model

Three major standardization initiatives have been submitted to the W3C con-

sortium to support interactions among Web services (Figure 2.6):

• WSDL (Web Services Description Language) [131]: WSDL is an XML-based

language for describing operational features of Web services. WSDL descrip-

tions are composed of interface and implementation definitions. The inter-

face is an abstract and reusable service definition that can be referenced by

multiple implementations. The implementation describes how the interface is

implemented by a given service provider.

• UDDI (Universal Description, Discovery and Integration) [130]: UDDI defines

a programmatic interface for publishing (publication API) and discovering (in-

quiry API) Web services [130]. The core component of UDDI is the business

registry, an XML repository where businesses advertise services so that other

businesses can find them. Conceptually, the information provided in a UDDI

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 51

business registration consists of white pages (contact information), yellow pages

(industrial categorization), and green pages (technical information about ser-

vices).

• SOAP (Simple Object Access Protocol) [129]: SOAP is a lightweight messaging

framework for exchanging XML formatted data among Web services. SOAP

can be used with a variety of transport protocols such as HTTP, SMTP, and

FTP. A SOAP message has a very simple structure: an XML element (called

envelope) with two child elements. The first element, the header includes fea-

tures such as security and transactions. The second element, the body includes

the actual exchanged data.

2.4.2.2 Interactions in Web Services

Web services allow interactions at the communication layer by using SOAP as a

messaging protocol. The adoption of an XML-based messaging over well-established

protocols (e.g., HTTP, SMTP, and FTP) enables communication among heteroge-

neous systems. For example, major existing environments are able to communicate

via HTTP and parse XML documents. However, SOAP protocol is still at its early

stage; current implementation do not yet meet the reliability and workload con-

straints needed in enterprises.

At the content layer, Web services use WSDL language. WSDL recommends the

use of XML Schema as a canonical type system (to associate data types to message

parameters). However, the current version of WSDL does not model semantic fea-

tures of Web services. For example, no constructs are defined to describe document

types (e.g., whether an operation is a request for quotation or a purchase order).

Recent efforts towards dealing with semantic interoperability include the develop-

ment of content markup languages such as DAML-S [74]. However, such efforts are

still in their infancy.

Web services are still at a maturing stage. Hence, they still lack the support

for interactions at the business process layer. To date, enabling interactions among

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 52

Web services has largely been an ad hoc process involving repetitive low level pro-

gramming. Standardization efforts such as BPEL4WS (Business Process Execution

Language for Web Services) [9] are underway for enabling the definition of business

processes through Web service composition.

The use of a document-based messaging model in Web services caters for loosely

coupled relationships. Additionally, Web services are not statically bound to each

other. New partners with relevant features can be discovered and invoked. How-

ever to date, dynamic discovery of Web services takes place mostly at development

time. Heterogeneous applications (e.g., Java, CORBA objects) may be wrapped

and exposed as Web services. For example, the Axis’s Java2WSDL utility in IBM’s

Web Services Toolkit enables the generation of WSDL descriptions from Java class

files. IONA’s Orbix E2A Web Services Integration Platform may be used to create

Web services from existing EJBs or CORBA objects. In terms of autonomy, Web

services are accessible through published interfaces. Partners interact with Web

services without having to be aware of what is happening behind the scene. They

are not required to know how the operations provided by the service are internally

implemented. Some operations can even be transparently outsourced from third

parties.

WSDL does not currently include operations for monitoring Web services such

as checking the availability of an operation or the status of a submitted request.

Additionally, neither UDDI nor WSDL currently define quality of service parameters

such as cost and time. In terms of adaptability, changes may occur in operation

signatures (e.g., name), messages (e.g., number of parameters, data types), service

access (e.g., port address), and service and operation availability. The process of

dealing with changes is currently ad hoc and manually performed. More efforts need

to be done to cater for automatic detection and handling of changes.

Security in Web services needs to be addressed at different levels including com-

munication, description, and firewall. At the communication level, enabling security

in XML and HTTP is an important factor towards securing Web services. Current

standardization efforts include securing XML-based messages through the creation

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 53

of an XML digital signature standard and S-HTTP, a protocol for transmitting data

securely over the Web. Other work is also being done to extend SOAP to include

a security specification at the receiving endpoints (e.g., specify which users are au-

thorized to receive and process messages). At the service description level, WSDL

does not include security-oriented information such as role-based access control and

other authorization information. Finally, since SOAP messages carried over HTTP

traverse firewalls, network administrators would need to configure their firewalls so

that malicious requests (e.g., code embedded in SOAP messages) are not tunneled

through SOAP messages. For example, application firewalls, sitting behind net-

works firewalls, have been developed (e.g., iSecureWeb). Application firewalls check

all HTTP traffic to validate and authorize messages based on security policies.

The emergence of tools to describe, advertise, and invoke Web services facilitates

the development of Web service-based solutions. However, the use of a tagged lan-

guage such as XML increases the volume of information to be exchanged among Web

services. This might overload the network in presence of a large number of services,

hence penalizing the scalability of the Web service approach. Additionally, SOAP

defines only simple data types. Using complex data types may require the XML

parser to get the corresponding XML Schema definitions from remote locations.

This might add an overhead for processing SOAP messages. The registry presents

another scalability issue. A centralized registry might result in a single point of

failure and bottleneck for accessing and publishing Web services. A distributed reg-

istry would cater for a more reliable and scalable solution. However, this incurs an

additional overhead of managing distributed repositories. An intermediary solution

is adopted in UDDI where the registry is physically replicated over multiple nodes.

This solution solves the problem of centralized registry. However, it still requires

the nodes to exchange data with each other to maintain registry consistency.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 54

2.4.3 Software Agents

The concept of software agent (or simply agent) emerged as an important paradigm

for organizing many classes of distributed applications such as e-commerce, digital

libraries, information retrieval, and data mining. It is defined as a piece of software

capable of acting exactingly to accomplish tasks on behalf of its consumers. Con-

sumers may be end-users, other agents, or applications using the agent. A more

comprehensive definition would be to view an agent as an umbrella term which

covers a range of properties. Agents typically possess several (or all) of the prop-

erties summarized in Table 2.3. Ideally, an agent should exhibit all the properties

equally well, but this is an aspiration rather than the reality [94]. Other properties

such as emotion and character (knowledge, belief, intention, etc.) have also been

defined [135]. They are mainly used in artificial intelligence applications and so, are

out of the scope of our research.

Property Synonyms Definition
Continuous Not Available An agent is a continuously running process
Autonomous Not Available Agents operate without the direct intervention of humans or oth-

ers and exercise control over their own actions
Co-operative Communicative

Socially able
Agents interact with each other via some kind of agent-
communication language

Reactive Sensing and acting Agents perceive their environment and respond in a timely fash-
ion to changes that occur in it

Adaptive Learning Agents change their behavior based on their previous experience
Pro-active Goal-oriented

Purposeful
Agents do not simply act in response to their environment, they
are able to take initiatives to achieve a certain goal

Mobile Not Available Agents are able to transport themselves from one site (in a net-
work) to another

Table 2.3: Agent Properties

2.4.3.1 Agent Communication Language

A multi-agent system is a collaborating set of agents in which the membership

may change over time. Individual agents in the community view each other as

peers and are responsible for providing specific services according to their role. The

processing of a request in such an environment is distributed among the different

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 55

agents. The success of a multi-agent system relies on how the agents interact and

interoperate. This involves the ability of agents to communicate with each other via

an Agent communication language (ACL). An ACL consists of three major parts:

a vocabulary, an inner language called KIF (Knowledge Interchange Format) and

an outer language called KQML (Knowledge Query and Manipulation Language).

An ACL message is a KQML expression in which the arguments are terms in KIF

formed from words in the ACL vocabulary.

Agents should share a common understanding of what is being communicated.

Ontologies facilitate agent communication by providing a common vocabulary. The

vocabulary is an open-ended dictionary or list of words appropriate to common

application areas. Each word has an English description for use by humans and

formal annotations (written in KIF) for use by programs. The dictionary allows for

the addition of new words within both existing and new application areas. KIF is a

prefix version of first order predicate calculus, with various extensions to enhance its

expressiveness. It provides for the encoding of simple data, constraints, negations,

and quantified expressions. A KQML message is a piece of dialogue between a

sender and a receiver. Each message is a list of participants enclosed in matching

parentheses. The first word in the list indicates the type of dialogue (ask, tell,

recommend, bid, etc.). The subsequent entries are the arguments, that is KIF

expressions appropriate to that dialogue.

Below is an example of KQML message where a sender (Mary) is asking the

receiver (Bookstore) to send information regarding all books related to “Agents”

which costs below $30.

(ask

:sender Mary

:receiver Bookstore

:content "select * from book where topic = ‘‘Agents’’ and price <30"

:language "Oracle SQL"

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 56

:ontology "online bookstore"

)

2.4.3.2 Interactions in Multi-Agent Systems

Multi-agent systems cater for interactions at the communication layer by having a

standard communication language, namely ACL. This assumes that the underly-

ing communication and transport protocols are already established. At the content

layer, ontologies are used to facilitate communication between agents and add se-

mantics to their messages. Multi-agent systems lack support for specifying complex

business processes. A process is generally spread through the implementation code

of every agent involved in the process. This ad hoc definition of business processes

does not scale because of the size of partners that may be involved in business pro-

cesses. One solution would be to have a separate control agent that handles the

business process. However, the control agent’s design is time consuming. Addition-

ally, the business logic is embedded in the control agent, making it hard to reuse for

different business processes [106].

Multi-agent systems assume that relationships between different partners have

to be pre-established. Additionally, data to be interchanged among agents generally

needs to be manually or semi-automatically mapped to a common ontology. This

makes agents suitable for long-term and tightly coupled relationships. Agents may

be added to existing applications to add new functions or customize the execution of

existing functions with little impact on the autonomy of those applications. However,

they must adhere to the concepts and properties of a common ontology which may

limit their autonomy.

Agents may wrap proprietary and heterogeneous applications. The adoption

of an ontology enables the abstraction from heterogeneous information representa-

tions. Event subscriptions and monitoring agents may be used to address the issue

of external manageability. However, adaptability is not adequately addressed in

multi-agent systems. Agents are typically pre-programmed with certain function-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 57

alities and can hardly be configured to switch roles or change interaction patterns.

Agents interact to carry out sophisticated tasks on behalf of users. In the course of

this interaction, they may exchange sensitive information about these users. More

research is needed to ensure that multi-agent systems support the security features

required in Semantic Web interactions. The cost of entry in an agent-based system is

significant. Agents must be able to exchange information via Agent Communication

Language. They also need to formulate queries or requests based on the common

ontology. They finally must have a way of matching queries/requests with their

known ontologies (i.e. reason over its repository of ontologies).

2.4.4 XML-based Interaction Standards

A large number of contemporary interaction standards are based on XML. The vision

behind this approach is to allow the use of services on the Web without dedicated

transformation and mediation facilities or custom integration of partners’ systems.

Business partners would form a trading community based on their capabilities to

produce and consume those XML documents. The business process of the trading

community is specified by the shared document definitions. The partners are inter-

connected in terms of largely agreed upon documents. The business logic implemen-

tation at a partner side is invisible to other trading partners. In general, a complete

XML-based integration requires standardized domain-specific ontologies (such as an

agreed upon DTD or XML Schema), mappings between different ontology descrip-

tions, and means for processing XML documents and invoking appropriate services

(e.g., workflows and legacy systems) to handle requests.

Most of the existing XML-based interaction standards were developed for B2B

interactions. However, they may be extended to deal with other types of appli-

cations such as e-government and digital library. In what follows, we describe a

representative set of those standards (Figure 2.7). The proposed standards gener-

ally deal with enabling interactions at the content (e.g., eCO, cXML) and business

process (e.g., RosettaNet) layers. However they sometimes overlap or even compete

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 58

with each other [20]. The issue of interoperability has thus shifted from the level of

applications to the level of standards. A trading partner has to deal with several

standards at the same time. In case one trading partner exchanges messages across

industries, the variety of standards is likely to increase even more [20].

�����������	
��
��
�����

��������������������
���� ��� !"#� $%&'�()*�++!,�+ � �-%&'� �+$.

�-%&'� ()*�++!,�+ � �+$. /
01234

5061738093�����������	

:;< =>=?@ :;< ABCDEF?@ DGBH

I701 IJ09KL M9
IJN9J

Figure 2.7: XML-based Interaction Standards

2.4.4.1 eCO

eCO [32] aims at providing means to businesses to discover and access services

regardless of the standards and protocols each potential partner adopts. At the

content level, eCO introduces xCBL (XML Common Business Library) to define

business documents. xCBL consists of a set of XML core documents that are used to

represent common interactions in business transactions. It does not target vertical

industry domains. It attempts to provide a generic framework for describing the

content of core business documents. The main motivation for establishing core

documents is that some concepts are common to all business domains and thus

can be expressed in a common format. Examples of such core documents are:

purchase orders, invoices, date, time, and currencies. Business partners may use and

extend these documents (e.g., adding new elements) to develop their own business

documents. For example, HealthDepartment can use xCBL to create an XML

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 59

document of its service catalog by customizing the generic xCBL catalog DTD with

specific information about the search method (e.g., immunization services by type).

Businesses are not limited to a specific set of pre-defined documents. However,

this may hamper interoperability since companies would need to be aware of newly

created documents.

At the business process level, eCO focuses more on providing a common build-

ing blocks for interactions among businesses. Businesses can advertise their online

services as Business Interface Definitions (BIDs). BIDs are XML descriptions that

specify business services in terms of documents they accept and produce. It does

not mandate a global business process definition. eCO uses xCBL as a basis to

define both the interfaces of processes and content of data elements. Since every

partner is forced to use the same tag to define the same type of information, the

structural heterogeneity is not a problem. As is any standard, there is however a

non-trivial issue: the meaning and types of services and their interfaces can vary

among businesses although a group of partners in a specific marketplace may select

to adopt common conventions. In generic frameworks such as eCO, it is difficult

to address semantic heterogeneity because of the wide range of E-commerce appli-

cations. One solution is to use several schemas (or ontologies) including horizontal

(i.e., across domains such as computer manufacturing and healthcare) and vertical

(i.e., within a specific domain) domains. This solution requires the support of data

normalization, mapping and conversion between schemas or ontologies.

Although, eCO requires that services be described using XML schemas, it does

address, albeit in a limited way, the issue of autonomy. eCO separates the description

of services and their implementations. Note that a marketplace may adopt some

common conventions for describing services. This may as a result, negatively impact

on the partners’ autonomy. For example, a change in the name of a tag, requires

all partners to make that specific change at the same time. In eCO, the use of

security mechanisms is optional. However, business partners do not need to directly

gain access to each other systems. The establishment of a new relationship with an

existing partner does not require any additional work. The creation of a new service

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 60

requires the provision of its description (types, interfaces, etc). It also requires the

integration of the interfaces of the service with internal applications. The integration

cost in an XML-based approach tends to be less significant than other approaches

because of widely available XML processing tools. The eCO framework rates high in

adaptability. The impact of local changes is limited as partner systems are loosely

coupled. In addition, eCO offers extensibility to accommodate changes.

2.4.4.2 cXML

cXML (Commerce XML) [38] consists of an XML-based schema language and a pro-

tocol for online purchasing transactions. It targets business transactions that involve

non-production Maintenance, Repair, and Operating (MRO) goods and services. In

a nutshell, cXML can be considered as a simplified XML and Internet-based version

of EDI. cXML assumes the existence of intermediaries (E-commerce hubs) that act

as trusted third parties between procurement systems and supplier systems. The

functions provided by an E-commerce hub (e.g., Ariba Network, Extricity Software)

are similar to those provided by the BizTalk repository. However, cXML does not

prescribe a specific intermediary architecture.

cXML supports two communication models: request-response and one-way. The

request-response provides for synchronous communication through HTTP. The one-

way provides for asynchronous communication through HTTP or other protocols.

Currently, the one-way model supports HTTP and URL Form Encoding.

At the content level, cXML defines a set of XML DTDs to describe procurement

documents in the same spirit as xCBL (e.g., order request, order response). It

provides the following elements for describing product catalogs: Supplier, Index, and

Contract. The supplier element describes general information about a supplier (e.g.,

address, ordering methods). The index element describes the supplier’s inventory

(e.g., product description, part numbers, classification codes). The contract element

describes the negotiation agreements between a buyer and a supplier on product

attributes (e.g., price, quantity). Catalogs can be static or dynamic. In the cXML

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 61

terminology a dynamic catalog is called a punchout.

At the business process level, the cXML approach is similar to OBI’s (see Section

2.3.1.2). cXML defines a generic procurement protocol. This protocol consists of a

number of commonly agreed upon online procurement activities (e.g., product selec-

tion, order request, order approval, order transmission, order routing). E-commerce

hubs provide means for catalog and purchase order management (e.g, catalog pub-

lishing and subscription, automated purchase order routing and tracking).

cXML offers similar properties to those in OBI, namely, heterogeneity, autonomy,

and adaptability. cXML appears to rate higher than OBI with regard to scalability

because the integration cost in an XML-based approach tends to be less significant

than other approaches. cXML addresses security by including authentication in-

formation message headers. One advantage of cXML approach is economy of scale

and ease of managing business relationships. Both suppliers and buyers only need

to manage relationships with the trusted intermediary rather than with all their

business partners.

2.4.4.3 RosettaNet

RosettaNet [33] aims at standardizing product descriptions and business processes

in information technology supply chain applications. RosettaNet’s supply chain in-

clude information technology products (e.g., boards, systems, peripherals, finished

systems) and electronic components (e.g., chips, connectors). RosettaNet focuses

on three key areas of standardization to automate Web-based interactions. First,

the vocabulary needs to be aligned. The RosettaNet Business Dictionary contains

vocabulary that can be used to describe business properties (e.g., business name, ad-

dress, tax identifier). The RosettaNet Technical Dictionary contains properties that

can be used to describe characteristics of products (e.g., computer parts) and services

(e.g., purchase order). Second, the way in which business messages are wrapped and

transported must be specified. The RosettaNet Implementation Framework specifies

content of messages, transport protocols (HTTP, CGI, email, SSL) for communica-

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 62

tion and common security mechanism (digital certificates, digital signatures). Third,

the business process governing the interchange of the business messages themselves

must be harmonized and specified. RosettaNet’s PIPs (Partner Interface Processes)

are pre-defined XML-based conversations. A conversation consists of a set of busi-

ness documents (e.g., purchase order, purchase order acknowledgment) and message

exchange logic (e.g., the sequencing of the actions that take place during a prod-

uct quote request). A PIP is defined using a combination of textual and graphical

(UML-based state machine) representations.

At the communication layer, common Internet transport protocols are supported.

At the content layer, RosettaNet uses an XML-based schema as document content

model. The use of a vertical ontology (i.e, common vocabulary with information

technology supply chain domain) contributes to solving the problem of semantic

heterogeneity. At the business process layer, RosettaNet focuses on providing a

common basis for public interactions via PIPs. The integration of PIPs with internal

business processes is performed by partners. RosettaNet does not provide means

to define arbitrary global business processes. RosettaNet offers similar properties

as OBI with regards to security. It offers similar properties as eCO with regard to

autonomy, adaptability, scalability, coupling, and external manageability.

2.5 Summary and Discussion

In this section, we compare the different approaches to interactions on the pre-

Semantic Web and Semantic Web eras. We discuss the commonalities and differences

between Web services and related technologies such as components, agents, and

workflows. Finally, we illustrate the role of Web services on the Semantic Web.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 63

2.5.1 Comparison of Semantic Web Interaction Technolo-

gies

We identify two sets of parameters that together exhaustively define how applica-

tions interact on the Web. The first set (applicable to enabling technologies and pro-

totypes) consists of the following parameters: communication layer, content layer,

and business process layer. The second set (applicable to enabling technologies and

prototypes) consists of the following parameters: coupling, autonomy, heterogeneity,

external manageability, adaptability, security, and scalability.

In Table 2.4, enabling technologies technologies for the pre Semantic Web era are

compared using the most important architectural layers. For example, communica-

tions in EDI are conducted through VANs. The content layer is supported through

ANSI X12 and EDIFACT formatted documents. Interactions at the business process

layer are limited to pre-defined business processes. In Table 2.5, key Semantic Web

technologies are compared using the most important architectural layers. For exam-

ple, Web Services’ communication layer is typically provided by SOAP. The content

layer is supported by using WSDL language. However, WSDL currently provides

little support for semantic description of business documents. One of the current

trends to support semantic interoperability is the use of ontologies (e.g., DAML-S).

WSFL, XLANG, and BPEL4WS languages provide support for interactions at the

business process layer. However, these languages are still at their early stage.

In Table 2.6, enabling technologies For the pre Semantic Web era are now com-

pared using salient interaction parameters (dimensions). For example, EJB-based

B2B’s coupling is tight and long term. Autonomy is provided by separating the inter-

face and the implementation using the EJB remote interface. Heterogeneity is sup-

ported at the platform levels (e.g., Unix and Windows) but only Java is supported.

The use of event services provides support for external manageability. Adaptabil-

ity is partially addressed through the separation between contracts and business

logic. Security is provided through the EJB container. Scalability is not much of

a concern for intra-enterprise applications. In Table 2.7, Semantic Web interaction

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 64

Communication Layer Content Layer Business Process Layer
EDI VANs ANSI X12 and EDIFACT format-

ted documents
Pre-defined business processes

EDIINT SMTP (for EDIINT
AS1) and HTTP (for
EDIINT AS2)

ANSI X12 and EDIFACT format-
ted documents

Pre-defined business processes

OBI HTTP ANSI X12 formatted documents Pre-defined protocol for Inter-
net procurement

CORBA ORBs and IIOP Not Addressed Ad hoc: hand-coded program-
ming of the integration logic

DCOM DCOM runtime environ-
ment

Not Addressed Ad hoc: hand-coded program-
ming of the integration logic

EJB RMI/JMS Not Addressed Ad hoc: hand-coded program-
ming of the integration logic

Workflows Not Addressed Not Addressed Inter-enterprise business pro-
cesses (public and private)

Table 2.4: Pre Semantic Web Technologies vs. Interaction Layers

Communication Layer Content Layer Business Process Layer
Ontologies Not Addressed Shared Conceptualization Not Addressed
Web
Services

SOAP WSDL but little support for se-
mantic description. Use of on-
tologies for semantic interoper-
ability

WSFL, XLANG, and
BPEL4WS

Agents Agent Communication
Language

Common Ontology Not Addressed

eCO HTTP xCBL Not Addressed
cXML HTTP and URL form

encoding
XML DTDs Pre-defined protocol for Inter-

net procurement
RosettaNet HTTP, E-mail, etc. RosettaNet Business Dictionary

and RosettaNet Technical Dictio-
nary

Partner Interface Processes
(PIPs). Pre-defined protocol
for Internet procurement

Table 2.5: Semantic Technologies vs. Interaction Layers

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 65

technologies are compared using the same parameters. For example, Web services

support both transient and long-term as well as loose relationships. The separation

between WSDL interface and implementation definition caters for the autonomy of

participants. WSDL descriptions allow the wrapping of heterogeneous applications.

The issues of external manageability and adaptability are currently not addressed.

Research efforts are still on-going to provide security mechanisms for Web services.

2.5.2 Web Services and Related Technologies

Web services share some features with the component, agent, and workflow-based

approaches. However, several characteristics differentiate Web services from com-

ponents, agents, and workflows.

Web Services and Components – Web services use document-based communication.

This in in contrast with component-based frameworks which use object-based

communication, thereby yielding systems where the coupling between components

is tight [127]. Additionally, by using HTTP as a communication protocol, Web

services enables much more firewall-friendly computing than component-based

systems. For example there is no standard port for IIOP, so it normally does not

traverse firewalls easily. Although a specification has been submitted to OMG to

dealing with IIOP firewall traversal, ORB implementations are still using their own

proprietary solutions such as VisiBroker’s GateKeeper and IONA’s WonderWall.

Web Services and Agents – As in Web services, agent-based systems provide

“directories” where an agent advertise their distinct functionalities and other agents

search to locate it [61]. However, agents are inherently communicative, whereas

Web services are passive until invoked. Web services use XML formatted message

over ubiquitous protocols such as HTTP to interact with each other. However,

agents use ACL language to format their messages. As discussed in Section 2.4,

agents are loosely coupled while agents are tightly coupled. All these reasons

make Web service suitable for enabling cross-organizational interactions. Agents

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 66

generally provide alerts and updates when new events become available.

Web Services and Workflows – Service composition shares some features with work-

flows. For example, to define a composite service, the provider needs to specify

the flow of service invocations (i.e., services to be invoked, their input and output

data, and their execution dependencies). Similarly, in a workflow, the designer must

specify the flow of work (i.e., work items to be invoked, their input and output data,

and their execution dependencies). However, several features distinguish between

composite services and workflows. We list below the main differences:

• Distributed workflow systems require that each participating enterprise de-

ploys a full-fledged execution engine, capable of interpreting the workflow def-

inition. The same workflow model must be adopted by all the participants

in the global workflow. They assume a tight coupling among the distributed

sub-workflows. Modifications to sub-workflows need to be coordinated. Hence,

distributed workflow systems are appropriate for the development of business

processes within a single enterprise.

• In workflows, input and output data are typically specified by a set of vari-

able names [27]. The values of the input variables are passed to a selected

resource at the time an activity is started. Activity execution results are

inserted into the output variables. Communications between the workflow

system and resources is done through adapters which deal with data map-

ping issues. However, the development of adaptors is a difficult and tedious

task [27]. In contrast, Web services interact by exchanging messages, thereby

avoiding the need for adapters.

• A number of XML-based interaction standards (e.g., RosettaNet, cXML) are

being defined to support B2B interactions. Many applications that support

such standards are being or have been developed. It is likely that composite

services will interact with services that follow one of these standards [27].

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 67

However, many workflow systems do not support such standards, although

some vendors are moving in this direction [27].

2.5.3 The Role of Web Services in the Semantic Web Land-

scape

The current technologies for Web-based interactions may be viewed as complemen-

tary. In Figure 2.8, we summarize these technologies and the way they co–exist in

a Semantic Web interactions framework. Component middleware, workflows, Web

services, and agents define the building blocks for developing Semantic Web appli-

cations. Ontologies, EDI, OBI, and XML-based standards (eCO, RosettaNet, etc.)

focus on defining the semantics of interactions among businesses. Component mid-

dleware (CORBA, DCOM, and EJB) are suitable for building robust and secure

applications within an enterprise. Intra-enterprise business processes are managed

using systems such as ERPs (e.g., SAP/R3) and workflows (e.g., IBM’s MQSeries).

Inter-enterprise workflows mostly focus on interactions at the business process layer.

Their aim is to automate business processes that span the boundaries of disparate

enterprises.

Web services take components a step further by enabling inter-enterprise inter-

actions. They define the entry points to enterprises’ internal systems. Web services

may wrap intra-enterprise components to provide connectivity between autonomous

and heterogeneous inter-enterprise applications. They may also wrap other applica-

tions developed, for example, in Java or Visual Basic. Agents may be used add new

functions to Web services (e.g., change monitoring) or customize existing functions

based on operating conditions or observations on users’ behavior. Web services

may use a workflow-based approach or service composition techniques and stan-

dards (e.g., BPEL4WS) to support inter-enterprise business processes. Web services

adopt ontologies and XML-based standards to capture the semantics of documents

and business processes. For example, Web services may use RosettaNet or cXML

to carry out interactions among businesses according to these frameworks. EDI

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 68

����������
��	
��
 ��	�
 ����

���������
�� ��
 �����
�� �������

�
 � �����

�� !
"�

#$% &$'()*$+, -'./)01'.2
01'/')+$.//3)*.1)40+

56789:7 ;

����������
��	
��
 ��	�
 ����

�
 � �� ���

�� !
"�

56789:7 <

=98:76>8?@9A

B4CCD0)*.1)40
E.F$'

B401$01
E.F$'

GD+)0$++
H'4*$++ E.F$'

�	�
 IJJ
 KJ

��J
 ��L�

	��� ������
 ���M
 ��	

LN�M

�����OP��
 ��L�

���� �Q���������� ���������
��KM
 NM�PR
 �SN�M

�����OP���� �

���������
����
 �����
�� �������

#$% &$'()*$+, -'./)01'.2
01'/')+$.//3)*.1)40+

������

������� �T

������

��������T

Figure 2.8: Technologies in a Semantic Web Interaction Framework

and OBI standards may also be used to enable interactions at the content layer.

However, they provide little support in terms of expanding the set of supported

document types.

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 69

Coupling Autonomy Heterogeneity Ext.
Manag.

Adaptability Security Scalability

EDI Loose
and long
term

New docu-
ments must
be approved
by EDI
guideline
committees

Support of
heterogeneous
applications
thanks to
translator
software

Not
Ad-
dressed

Impact of
local changes
limited. New
documents
must be
approved

Private
VANs

Expensive
networks.
Need to agree
on imple-
mentation
conventions

EDIINT Loose
and long
term

New docu-
ments must
be approved
by EDI
guideline
committees

Support of
heterogeneous
applications
thanks to
translator
software

Not
Ad-
dressed

Impact of
local changes
limited. New
documents
must be
approved

RFC
1847,
MIME
security
with
PGP, etc.

Lower
entry-cost
than EDI
(Internet-
based)

OBI Loose
and long
term

Higher than
EDI (docu-
ment exten-
sibility is not
an important
requirement)

Support of
heterogeneous
applications
thanks to
translator
software

Not
Ad-
dressed

Higher than
EDI (docu-
ment exten-
sibility is not
an important
requirement)

SSL/HTTP,
digital
signa-
tures,
and
digital
creden-
tials

Lower
entry-cost
than EDI
(Internet-
based)

CORBA Tight
and long
term

Separation
between
interface
and imple-
mentation
(IDL)

Different lan-
guages (e.g.,
Java, C++)
and platforms
(Unix, Win-
dows)

Event
ser-
vice

Not Addressed Supported
by
CORBA
security
service

Suitable
for intra-
enterprise
applications.
Participants
need to have
a stub for
each compo-
nent server

DCOM Tight
and long
term

Separation
between
interface
and imple-
mentation
(IDL)

Different lan-
guages (e.g.,
Microsoft
J++, C++)
but Windows
platform

Event
ser-
vice

Not Addressed Based
on Win-
dows NT
security
model

Suitable
for intra-
enterprise
applications.
Proxies
needed at
client side

EJB Tight
and long
term

Separation
between
interface
and imple-
mentation
(EJB remote
interface)

Java language
and differ-
ent platforms
(Unix, win-
dows)

Event
ser-
vice

Contracts can
be changed
independently
of the business
logic

Security
features
provided
in EJB
container

Suitable
for intra-
enterprise
applications.
Participants
must define
a remote
interface for
each bean

Workflows System-
specific

Separation
between pub-
lic and pri-
vate business
processes

Different work-
flow engines

Adding
appl-
specific
states

Process wrap-
pers and
adapters
help localize
changes

Not Ad-
dressed

May require
creation of
new process
wrappers and
adapters

Table 2.6: Pre Semantic Web Technologies vs. Interaction Dimensions

B. Medjahed Chapter 2. Interactions on the Web: A Taxonomic Perspective 70

Coupling Autonomy Heterogeneity Ext.
Manag.

Adaptability Security Scalability

Onto-
logies

Loose
and
long-
term

Participants
bound to
concepts de-
fined within
the ontology

Participants
bound to con-
cepts defined
within the
ontology

Not
Ad-
dressed

Not Addressed Not Ad-
dressed

Participants
need to de-
scribe their
applications
according
to a given
ontology

Web
Ser-
vices

Loose,
tran-
sient,
and
long-
term

Separation
between
WSDL inter-
face and im-
plementation
definitions

WSDL descrip-
tions to wrap
underlying ap-
plications

Not
Ad-
dressed

Not Addressed On-going
efforts
(e.g.,
XML
digital
signa-
tures,
S-HTTP)

Availability
of develop-
ment tools.
XML tags
increase the
volume of
information.
Replicated
registries
must ex-
change data
to maintain
coherence

Agents Tight
and
long-
term

Participants
must ad-
here to
concepts de-
fined within
a common
ontology

Agents may be
used to wrap
heterogeneous
applications

Events
and
mon-
itor-
ing
agents

Not Addressed Not Ad-
dressed

Agents need
to formu-
late requests
based on
the common
ontology.
They must
have a way
of matching
requests with
their known
ontologies

eCO Loose,
tran-
sient,
and long
term

Separation
between
description
and imple-
mentation.
Marketplaces
may hinder
autonomy

XML Schemas.
Marketplaces
may help
addressing
semantic het-
erogeneity.

Not
Ad-
dressed

Impact of local
changes lim-
ited. Support
of extensibility
documents

Optional Establishment
of a relation-
ship with a
partner does
not require
additional
work from
this partner

cXML Loose,
tran-
sient,
and long
term

Higher than
EDI because
document ex-
tensibility is
not an impor-
tant require-
ment

XML DTDs Not
Ad-
dressed

Impact of
local changes
limited. Ex-
tensibility of
documents is
not required

Authentica-
tion
infor-
mation.
Trusted
interme-
diaries

Cost of en-
try is lower
than in OBI
thanks to the
use of XML

Rosetta
Net

Loose
and long
term

Separation
between
description
and imple-
mentation.
Marketplaces
may hinder
autonomy

RosettaNet
business and
technical dic-
tionaries. Use
of vertical
technology

Not
Ad-
dressed

Impact of local
changes lim-
ited. Support
of extensibility
documents

SSL/HTTP.
Digital
certifi-
cates and
signa-
tures

Establishment
of a relation-
ship with a
partner does
not require
additional
work from
this partner

Table 2.7: Semantic Web Technologies vs. Interaction Dimensions

Chapter 3

An Ontological Framework for

Web Services

The semantic organization and description of Web services is an important require-

ment for enabling the automatic composition of Web services. The number of Web

services available on the Web is large and continuously changing. Additionally, ser-

vice providers may be located in different places over the world. Finally, the large

scale, dynamics, and heterogeneity of Web services may hinder any attempt for

“understanding” their semantics and hence outsourcing them. This calls for tech-

niques to organize Web services in a way they can be efficiently “understood” and

outsourced.

In this chapter, we propose a Semantic Web centered framework for organizing

and describing semantic Web services [76, 78, 81, 11, 4]. We introduce the concept of

community to cater for an ontological organization and description of Web services.

We develop an ontology, called community ontology, that serves as a “template” for

describing communities and semantic Web services. We also propose a peer-to-peer

approach for managing communities in highly dynamic environments. In particular,

we present techniques for registering Web services with communities and coping

with changes that occur in the Web service space.

This chapter is organized as follows. In Section 3.1, we give an overview of the

B. Medjahed Chapter 3. An Ontological Framework for Web Services 72

proposed model for semantic Web services. In Section 3.2, we describe operational

features of communities via generic operations. In Section 3.3, we present the tech-

nique used for registering Web services with a community. In Section 3.4, we propose

algorithms for managing communities. We focus on dealing with changes issued by

community and service providers.

3.1 The Proposed Model for Semantic Web Ser-

vices

Ontologies are poised to play a central role to empower Web services with semantics.

They are increasingly seen as key to enabling semantics-driven data access and

processing. In this section, we give an overview of the proposed model for organizing

and describing Web services on the Semantic Web.

3.1.1 Ontological Support for Web Services

Combining Web services and ontologies is at the core of the proposed model. Central

to our model is the concept of community. A community is a “container” that clumps

together Web services related to a specific area of interest (e.g., disability, adoption).

All Web services that belong to a given community share the same area of interest.

Communities provide descriptions of desired services (e.g., providing interfaces for

insurance services) without referring to any actual service.

Communities are defined using a metadata ontology, called community ontology,

as a template. As defined in Section 2.4.1, metadata ontologies provide concepts that

allow the description of other concepts (communities and Web services in our case).

We summarize in Figure 3.1 the process of creating a community and registering Web

services with it. Communities are defined by community providers as instances of

the community ontology. Community providers are generally groups of government

agencies, non-profit organizations, and businesses that share a common domain of

interest. For example, the Department for the Aging and other related agencies, such

B. Medjahed Chapter 3. An Ontological Framework for Web Services 73

as the Department of Health, would define a community that provides healthcare

benefits for senior citizens.

��������� ��

��������� �	

��

�	

��

�

��

�������
��������

���������
������ �

!"# $"%&�'"(

���������
)%�&�*"%

���������
)%�&�*"%

$"%&�'"
)%�&�*"%+,-./0123 /4

54067482 9:
;2<-2= 9:

;2<-2= 9:

;2<-2= 9:

;2<-2= 9:

>?@ ABCDEB ?
FGHHIEDJK

>L@ MNOBPJDQB
JRB FGHHIEDJK

>N@ SBTBFJ ?
FGHHIEDJK

>F@ UBVDQJBP WDJR
JRB FGHHIEDJK

>?@ ABCDEB ?
FGHHIEDJK

+,-./0123 /4 $"%&�'"
)%�&�*"%

$"%&�'"
)%�&�*"%

$"%&�'"
)%�&�*"%

$"%&�'"
)%�&�*"%

54067482 9:

Figure 3.1: The Proposed Web Service Model

A community is itself a service that is created, advertised, discovered, and in-

voked in the same way “regular” Web services are. The providers of a community

assign values to the concepts of the community ontology (Figure 3.1 - step a). Ex-

amples of concepts defined in the community include category and generic operation.

Each concept is defined by a set of attributes. For example, the category concept

contains four attributes: domain, synonyms, specialization, and overlapping. Com-

munities are published in a registry (e.g., UDDI) so that they can be discovered by

service providers (Figure 3.1 - step b). Service providers (e.g., medicare provider)

B. Medjahed Chapter 3. An Ontological Framework for Web Services 74

identify the community of interest (Figure 3.1 - step c) and register their services

with it (Figure 3.1 - step d). During the registration of a service WS with a com-

munity Ci, the service provider specifies the concepts of Ci that are “inherited” by

WS. For example, WS may “inherit” only some of the generic operations defined in

Ci. A Web service may belong to different communities. For example, a composite

service (WS4 in Figure 3.1) may outsource operations that have different domains

of interest (e.g., “healthcare” and “elderly”). Since these operations belong to two

different communities, the composite service is registered with the “healthcare” and

“elderly” communities (C1 and C2 in Figure 3.1). End-users (e.g., case officers) select

a community of interest and invoke its operations. Each invocation of a community

operation is translated into the invocation of a community member’s operation.

We use the emerging DAML+OIL language for describing the proposed ontology

[59]. It is noteworthy that the proposed model is not dependent on DAML+OIL.

Other Web ontology standards could be used to describe the community ontology.

We give in Figure 3.2 a subset of the community ontology specified in DAML+OIL.

The first four elements define the Community, Identifier, Category, and Generic-

Operation classes. The three following elements define relationships (or properties)

between Community and the other classes. The last element specifies cardinality

constraints on the different properties. For example, the first constraint indicates

that a community has one single identifier.

3.1.2 Structure of a Community

A community Ci is formally defined by a tuple (Identifieri, Categoryi, G-operationi,

Membersi). The identifieri clause contains a unique name and a text description that

summarizes Ci’s features (Figure 3.3). Categoryi describes the area of interest of the

community. All Web services that belong to Ci have the same category as Ci’s. Ci is

accessible via a set of operations called generic operations. Those are specified in the

G-operationi clause. Generic operations are “abstract” operations that summarize

the major functions needed by Ci’s members. Community providers define generic

B. Medjahed Chapter 3. An Ontological Framework for Web Services 75

<daml:Class rdf:ID="Community"> </daml:Class>

<daml:Class rdf:ID="Identifier"> </daml:Class>

<daml:Class rdf:ID="Category"> </daml:Class>

<daml:Class rdf:ID="GenericOperation"> </daml:Class>

<daml:ObjectProperty rdf:ID="isIdentifiedBy">

<daml:domain rdf:resource="#Community"/>

<daml:range rdf:resource="#Identifier"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="hasCategory">

<daml:domain rdf:resource="#Community"/>

<daml:range rdf:resource="#Category"/>

</daml:ObjectProperty>

<daml:ObjectProperty rdf:ID="hasGenericOperation">

<daml:domain rdf:resource="#Community"/>

<daml:range rdf:resource="#GenericOperation"/>

</daml:ObjectProperty>

<daml:Class rdf:about="#Community">

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#isIdentifiedBy"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:cardinality="1">

<daml:onProperty rdf:resource="#hasCategory"/>

</daml:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<daml:Restriction daml:mincardinality="1">

<daml:onProperty rdf:resource="#hasGenericOperation"/>

</daml:Restriction>

</rdfs:subClassOf>

</daml:Class>

Figure 3.2: Subset of the DAML+OIL Specification for the Community Ontology

operations based on their expertise on the corresponding area of interest that is, Ci’s

B. Medjahed Chapter 3. An Ontological Framework for Web Services 76

category. The term “abstract” means that no implementation is provided for generic

operations. Community providers only define an interface for each generic operation

opik. This interface could subsequently be used and implemented by community

members (i.e., actual Web services) interested in offering opik. We say that those

members support or import opik. The execution of opik hence refers to the execution

of an actual operation offered by a member that support opik. The Membersi clause

refers to the list of Ci’s members. By being members of Ci, Web service providers

“promise” that they will be supporting one or several of Ci’s generic operations. In

this section, we focus on describing the category clause and community ontology.

Details about generic operations and community members are given in Sections 3.2

and 3.3 respectively.

The category of a community Ci is formally defined by a tuple (Domaini,

Synonymsi, Specializationi, Overlappingi). Domaini gives the area of interest of

the community (e.g., “healthcare”). It takes its value from a taxonomy for do-

main names. For flexibility purposes, different communities may adopt different

taxonomies to specify their category. We use XML namespaces to prefix categories

with the taxonomy in which they are defined. Simply put, XML namespaces pro-

vide a method for qualifying element and attribute names used in XML documents

by associating them with URI references. Synonymsi contains a set of alternative

domain names for Ci. For example “medical” is a synonym of “healthcare”. Values

assigned to this attribute are taken from the same taxonomy as the one used for

domains. Specializationi is a set of characteristics of the Ci’s domain. For exam-

ple, “insurance” and “children” are specialization of “healthcare”. This means that

Ci provides health insurance services for children. Communities are generally not

independent. They are linked to each other via inter-ontology relationships. These

relationships are specified in the Overlappingi attribute. Overlappingi contains the

list of categories that overlap with Ci’s category. It is used to provide a peer-to-

peer topology for connecting communities with “related” categories. We say that

categoryi overlaps with categoryj if composing Ci’s operations with Cj’s is “mean-

ingful”. By meaningful, we mean that the composition provides a value-added (in

B. Medjahed Chapter 3. An Ontological Framework for Web Services 77

������
��������
�	
�����
�� �������������� �

�������� ��� �

��	���
�
�	
�������

�� !��"�#� �

�� !��"�#� $

�����%
���� ��

�
�������
�������
�
�������

&� '��(
�����
&�)%�
�����

*+�	+��

��	,� -
���.

/,�� ��
 0����1,�
�

'��2 ��
� 3�	

4���,�
� 3 �	

/
�	���
 3 ��

02����1������
�2 ��
�1�����

'�
+�	
��� ���� 5
67*+�	+��8 	�
+������ ���8

���������9�	� �����:;

&
<�2 ��� 5
6&,���
�� =�.�� /,�
�;

'���+�	
��� ���� 5
67*+�	+��8 	���+������ ���8

���������9�	������:;
��	,� ��� �,�	,�

'����
�
��

�
���� ���

4+�	+��
4+�	+��

>�+��

?��

?��
 -�		��.�

&� 0�(,���
��

�
����	� ���

-��

?��

�
����	� ���

*+�	+ ��

@ABBCDEFG

*+�	+ ��

��	,� ��� �,�	,�
'����
�
��

4+�	+��

*+�	+��

64+�	+��H	����
�
�
>�+��H	����
�
�;

',�	��

-
���.
� �	
�������

I���

&,���
�� /��

&�����.

J,������
��������
�	
�����
�����

K,����� �L
�	
������

/
���1�����

�
�,���� 0����1,�
�

0,�<
���������
?��+�
	,�������

)����	����

K,����� �L �	
������

&,���
�� 0����1,�
�
4���

/
.,������
/
	,��� ���

4��L��
��������
=��.,�.

�
����	����

MNOPQRSTUVPWOXY XPS ZP[\PS]
^PWPSX_

`aPSNO XRW]

�����%

�2
���		��.

�2
���		��.

�,�	,� -
���.

-
���.
 3�	

'����
�
��

���� 3�	

6	����
�
� ���
�;
?,�1
� �L 	����
�
��

6	����
�
� ���
�;
?,�1
� �L 	����
�
��

Figure 3.3: The General Structure of a Community

terms of categories). For example, an operation that belongs to a community whose

domain is family may be composed with another operation that belong to a com-

munity whose domain is insurance. This would enable providing health insurance

for needy families. It should be noted that it is the responsibility of the community

providers to identify related categories and assign them to the overlapping attribute.

B. Medjahed Chapter 3. An Ontological Framework for Web Services 78

3.1.3 Generic Operations

A generic operation is defined by a set of functional and non-functional attributes.

Functional attributes describe syntactic and semantic features of generic operations.

Syntactic attributes represent the structure of a generic operation. An example

of syntactic attribute is the list of input and output parameters that define the

operation’s messages. Semantic attributes refer to the meaning of the operation

or its messages. We consider two types of semantic attributes: static and dynamic

semantic attributes. Static semantic attributes (or simply static attributes) describe

non-computational features of generic operations. Those are semantic attributes

that are generally independent of the execution of the operation. An example of

static attribute is the operation’s category. Dynamic semantic attributes (or simply

dynamic attributes) describe computational features of generic operations. They

generally refer to the way and constraints under which the operation is executed.

An example of dynamic attribute is the business logic of the operation i.e., the

results returned by the operation given certain parameters and conditions.

Non-functional attributes, also called qualitative attributes, include a set of met-

rics that measure the quality of the operation. Examples of such attributes include

time, availability, security, and cost. Two service providers that support the same

generic operation may have different values for their qualitative attributes. Non-

functional attributes model in fact the competitive advantage that competitors (i.e.,

Web services that support the same generic operation) may have on each other.

While defining a community, community providers assign values to part of the

attributes of their generic operations. The rest of the attributes are assigned either

by service providers or third parties during the registration of Web services with

Ci. Table 3.1 summarizes the different attributes and mentions the parties that

are responsible of assigning their values (using the
√

symbol). For example, the

types of input and output messages (e.g., purchase order, registration confirmation)

are defined by community providers. The cost (dollar amount) of executing an

operation is service-specific and hence defined by the service provider. The other

B. Medjahed Chapter 3. An Ontological Framework for Web Services 79

Group Sub-Group Attribute Community
Provider

Service
Provider

Third
Party

Syntax Message Input
√ √

Output
√ √

Number of param.
√ √

Operation G-op-ID
√

Name
√

Description
√

Mode
√

Binding
√

Static Semantics Message Message Type
√

Business Role
√

Unit
√ √

Language
√ √

Operation Serviceability
√

Consumer Type
√

Provider Type
√

Purpose
√

Category
√

Dynamic Semantics Inter-operation Pre-operations
√ √

Post-operations
√ √

Intra-operation Behavior
√ √

Quality of Operation Run-time Response Time
√

Reliability
√

Availability
√

Business Cost
√

Reputation
√

Regulatory
√

Security/Privacy Encryption
√

Authentication
√

Non-repudiation
√

Confidentiality
√

Table 3.1: Assigning Values to Generic Operation Attributes

qualitative attributes (e.g., response time, availability) are assigned by third parties

(e.g., trusted parties, monitoring agencies). The way those parties determine the

values to be assigned (e.g., through monitoring) is out of the scope of our research.

It is worth noting that the values of some attributes may be assigned by both

community and service providers. For example, the content of an input and output

message is given by community providers. However, service providers may modify

this content by adding and/or removing parameters to input and output messages.

B. Medjahed Chapter 3. An Ontological Framework for Web Services 80

3.1.4 Community Members

Service providers can, at any time, select a community of interest (based on cate-

gories) and register their services with it. We say that those services are members

of that community. The registration process requires giving an identifier (WS-ID),

name, and description for the Web service. The identifier takes the form of a unique

UUID. The description summarizes the main features of the Web service. Service

providers specify the list of generic operations supported by their services through

the imported attribute. We define three constructs for importing generic operations:

projection, extension, and adjustment. The projection and extension constructs allow

the addition and deletion of message parameters respectively. Adjustment enables

the modification of the content of operation attributes. The invocation of an im-

ported operation is translated into the invocation of an “actual” service operation.

The correspondence between imported and “actual” operations is done through the

mapping attribute. For each imported operation, the provider gives the ID of the

corresponding “actual” operation. It also defines a one-to-one mapping between

the imported operation’s parameters and “actual” operation’s parameters. Defin-

ing mappings between parameters enables the support of “legacy” Web services.

Providers do not need to change the message parameters in their actual service

codes.

Assume that a service provider SP offers a given operation op. The follwowing

three cases are then possible: (i) If there is a community Ci that contains a generic

operation opik similar to op, SP would import opik “as is”; (ii) If there is a commu-

nity Ci that contains a generic operation opik “closely” similar to op (e.g., op has

less input parameters than defined in opik), SP would import opik using projection,

extension, and/or adjustment technique; (iii) If no community has an operation sim-

ilar or “closely” similar to op, SP would define a new community Cj that has op as

a generic operation and SP’s service as a member. The latter case is similar to the

“traditional” WSDL/UDDI/SOAP Web service model where service providers cre-

ate descriptions for their services. The difference is that, in our case, SP instantiates

B. Medjahed Chapter 3. An Ontological Framework for Web Services 81

the attributes and concepts of the community ontology while in the “traditional”

model, providers define their service descriptions from scratch.

3.2 Operational Description of Communities

As mentioned previously, a generic operation is described at four different levels:

syntactic, static semantic, dynamic semantic and qualitative levels. In this section,

we give a detailed description of generic operation attributes for each of those levels.

3.2.1 Syntactic Attributes

We define two levels for syntactically describing a generic operation: message and op-

eration levels. Attributes at the message level describe the structure of the messages

defined within the operation such as the number of parameters within a message.

Attributes at the operation level describe general-purpose features of the generic

operation such as the name and ID of the operation.

3.2.1.1 Message Syntax

Generic operations have input and output messages. Each input or output message

contains one or more parameters defined by their names. The name of a parameter

is unique within a given message. Let us for example consider a generic opera-

tion checkEligibilityWIC which checks citizen’s eligibility for a nutrition program

(WIC stands for Women Infant and Children). The input message of this operation

contains income, familySize, and zipCode as parameter names. The output message

of checkEligibilityWIC has approved and duration as parameter names. Although

message parameters are predefined by community providers, service providers have

the ability to add new parameters or remove pre-defined ones. Threfore the number

of parameters within a messages may be changed by service providers.

We define two sets In(opik) and Out(opik) for each generic operation opik.

In(opik) and Out(opik) contain the list of input parameters’ and output parameters’

B. Medjahed Chapter 3. An Ontological Framework for Web Services 82

names of opik respectively. We also define two attributes NIik and NOik that give

the number of input and output parameters in opik respectively. For example, in the

case where opik = checkEligibilityWIC, In(opik) = {income,familySize,zipCode},
NIik = 3, Out(opik) = {approved,duration}, and NOik = 2.

3.2.1.2 Operation Syntax

A generic operation has a unique identifier, called G-op-ID, that takes the form

of a Universally Unique ID (UUID). A UUID is an identifier that is unique across

both space and time [5]. The operation has also a name and a text description

that summarizes the operation’s features. The binding defines the message formats

and protocols used to interact with the operation. An operation may be accessible

using several bindings such as SOAP/HTTP and SOAP/MIME. The binding of an

operation is assigned by the service provider. This is in contrast to the rest of

syntactic attributes whose values are pre-defined by community providers. Indeed,

the binding attribute is dependent on the way the generic operation is implemented

at the service provider side. A provider may offer SOAP/HTTP access to a generic

operation supported by its Web service while another provider may prefer to use

SOAP/MIME for the same operation.

The mode of an operation refers to the order according to which its input and

output messages are sent and received. It states whether the operation initiates

interactions or simply replies to invocations from other services. We define two

operation modes: In/Out or Out/In. One of these values is assigned by community

providers to each operation. In/Out operation first receives an input message from

a client, process it (locally or forward it to another service), and then returns an

output message to the client. Out/In first sends an output message to a server

and receives an input message as a result. checkEligibilityWIC is an example of

In/Out operation. As specified in WSDL standard, some operations may be limited

to an input or an output message [5]. For example, expirationWIC is an operation

that automatically notifies citizens about the termination of their eligibility period

B. Medjahed Chapter 3. An Ontological Framework for Web Services 83

for WIC programs. This operation obviously does not require any input message.

However, such operations may be considered as In/Out or Out/In operations where

the input or output message is empty. Hence, without loss of generality, we focus

in the proposed framework on the aforementioned operation modes.

3.2.2 Static Semantic Attributes

The static semantics of a generic operation describe semantic properties that are

independent of the execution of the operation. It specifies the semantics of the

operation itself (e.g., what does the operation do) as well as the semantics of input

and output messages defined within the operation.

3.2.2.1 Message Semantics

Messages must be semantically described so that they can be “correctly” interpreted

by service providers and consumers. For that purpose, we associate a message type

MT to each message. MT gives the general semantics of the message. For example,

a message may represent a “purchase order” or an “invoice”. Vertical ontologies are

the ideal concept to describe the type of message. An example of such ontology is

RosettaNet’s PIPs (Partner Interface Processes).

The message type does not capture the semantics of message parameters. We

define the following attributes to model the semantics of message parameters: data

type, business role, unit, and language. The data type gives the range of values that

may be assigned to the parameter. We use XML Schema’s built-in data types as

the typing system. Built-in types are pre-defined in the XML schema specification.

They can be either primitive or derived. Unlike primitive types (e.g., string, decimal),

derived types are defined in terms of other types. For example, integer is derived

from the decimal primitive type.

The business role gives the type of information conveyed by the message pa-

rameter. For example, an address parameter may refer to the first (street address

and unit number) or second (city and zip code) line of an address. Another exam-

B. Medjahed Chapter 3. An Ontological Framework for Web Services 84

ple is that of a price parameter. It may represent a total price or price without

taxes. Business roles take their values from a pre-defined taxonomy. Every param-

eter would have a well-defined meaning according to that taxonomy. An example

of such taxonomy is RosettaNet’s business dictionary. It contains a common vocab-

ulary that can be used to describe business properties. For example, if the price

parameter has an “extendedPrice” role (defined in RosettaNet), then it represents

a “total price for a product quantity”. For flexibility purposes, different commu-

nity providers may adopt different taxonomies to specify their parameters’ business

roles. As for categories, we use XML namespaces to prefix business roles with the

taxonomy according to which they are defined.

The unit attribute refers to the measurement unit in which the parameter’s con-

tent is provided. For example, a weight parameter may be expressed in “Kilograms”

or “Pounds”. A price parameter may be in “US Dollars”, “Canadian Dollars”, or

“Euro”. An eligibility period parameter may be specified in days, weeks, or months.

We use standard measurement units (length, area, weight, money code, etc.) to as-

sign values to parameters’ units. If a parameter does not have a unit (e.g., address),

its unit is equal to “none”. The content of a message parameter may be specified

in different languages. For example, a profession parameter may be expressed

in English or Spanish. An English-Urdu-translation operation takes as input,

an English word (input parameter) and returns as output, its translation in Urdu

(output parameter). We adopt the standard taxonomy for languages to specify the

value of this attribute. We give below a formal definition of a message parameter.

Each message (input or output) is defined as a set of such parameters.

Definition 3.1 – Message Parameter. A message parameter P is defined as a tuple

(T ,R,U ,L) where T is the parameter’s data type (in XML Schema), R is its business

role taken from a taxonomy for business roles, U gives P’s unit of measurement, and

L is the language according to which P is expressed. ♦

The content of static semantic attributes is assigned by community providers.

The data type, unit, and language attributes may be changed by service providers.

B. Medjahed Chapter 3. An Ontological Framework for Web Services 85

This is in contrast to the message type and business role which model the core of the

message semantics and hence cannot be altered. Service providers have the flexibility

to support a data type, unit, or language different from those specified by commu-

nity providers. For example, a service provider may decide to support a weight

parameter in “Kilograms” although the community providers specified “Pounds” as

the measurement unit for this parameter.

3.2.2.2 Operation Semantics

The static semantic of an operation is defined by the following attributes: ser-

viceability, provider type, consumer type, purpose, and category. These attributes

model the core of the operation’s semantics. Hence, they are exclusively assigned

by community providers.

The serviceability attribute gives the type of assistance provided by the opera-

tion. Examples of values for this attribute are “cash”, “in-kind”, “informational”,

and “educational”. TANF (Temporary Assistance for Needy Families) is an example

of welfare program that provides financial support to needy families. A food stamp

is an example of in-kind support available to indigent citizens. Returning the list

of senior activity centers is an example of informational support. Enhancing com-

munication skills of visually impaired people is an example of educational support.

Other types of support may be mentioned by assigning the value “other” to this

attribute.

A generic operation may be supported via one or several provider types. A

provider may be governmental (“federal”, “state”, “local”, and “tribal”) or non-

governmental (“non-profit” and “business”) agencies. For example, nursingHome

may be provided by the Department for the Aging (government agency) and Red

Cross (non-profit). The consumer type property specifies the group of citizens (e.g.,

children, pregnant women) that are eligible to the operation’s welfare program.

Different groups may be eligible for the same benefit. For example, WIC (Women,

Infant, and Children) is a program for pregnant women, lactating mothers, and

B. Medjahed Chapter 3. An Ontological Framework for Web Services 86

children.

Each generic operation performs a certain functionality for a specific area of in-

terest. This is specified through the purpose and category attributes respectively.

An operation inherits the category of the community in which it is defined. Hence,

all operations that belong to the same community share the same category. The

purpose attribute describes the goal of the operation. It is defined by four attributes:

function, synonyms, specialization, and overlapping. The function describes the busi-

ness functionality offered by the operation. Examples of functions are “eligibility”,

“registration”, and “mentoring”. Synonyms and specialization attributes work as

they do for categories. Overlapping contains the list of purposes that overlap with

the purpose of the current operation. Let opik and opjl be two generic operations.

We say that purposeik overlaps with purposejl if composing opik with opjl is “mean-

ingfull”. By meaningfull, we mean that the composition provides a value-added (in

terms of purposes). For example, two operations that have “eligibility” and “regis-

tration” as respective purposes may be combined to first check whether citizens are

eligible for a given social a program and then register them for that program. As

for categories, it is the responsibility of the community providers to identify related

purposes and assign them to the overlapping attribute.

3.2.3 Dynamic Semantics

Dynamic semantics allows the description of attributes related to the execution of

generic operations. Those attributes may relate the execution of an operation opik

to the execution of other operations (inter-operation attributes) or describe features

inherent to the execution of opik (intra-operation attributes). Inter-operation at-

tributes define the execution order of opik with respect to other operations. We

identify two inter-operation attributes: pre-operation and post-operation which give

the list of operation whose execution precedes and follows opik’s execution respec-

tively. Intra-operation attribute, also called behavior defines the internal business

logic of opik. The definition of the aforementioned attributes is based on the notion

B. Medjahed Chapter 3. An Ontological Framework for Web Services 87

of execution state described below.

3.2.3.1 Operation Execution States

The execution of an operation opik generally goes through four major observable

states (Figure 3.4): Ready, Start, Active, and end. The execution of opik is in the

Ready state if the request for executing opik has not been made yet. The Start

state means that opik execution has been initiated. It refers to one of the following

events: (i) an input message is sent to opik if opik’s mode is In/Out; or (ii) an output

message has been sent from opik if opik’s mode is Out/In. We say that opik is in the

Active state if opik has already been initiated and the corresponding request is being

processed. After processing the request, the operation reaches the End state during

which results are returned. It refers to one of the following events: (i) an output

message is sent to the client if opik’s mode is In/Out; or (ii) an input message is

received from the server if opik’s mode is Out/In.

����� ����� �	
��
	����� ���� ���
���������

������� ���
���������

����������
��� ���� ��

!	�

Figure 3.4: Operation Execution States

We define a precedence relationship between states, noted −→t, as follows:

S1 −→t S2 if S1 occurs before S2. The execution states are totally ordered according

to −→t as follows: Ready −→t Start −→t Active −→t End

3.2.3.2 Pre-Operations

Executing a Web service operation may require going through a pre-defined process

that involves the execution of several operations called pre-operations. This pre-

defined process is dictated by government regulations or the internal business process

of the Web service. For example, senior citizens must first register with an Area

Agency on Aging (AAA) via checkRegistration operation before applying for

B. Medjahed Chapter 3. An Ontological Framework for Web Services 88

any welfare program. They may also reflect the business logic of the Web service.

For example, senior citizens must order a meal from a participating restaurant via

the orderMeal operation before requesting its delivery through the mealsOnWheels

operation.

Let us consider two generic operations opik and opjl that belong to the same or

different communities. We say that opik is a pre-operation of opjl if the invocation

of opjl is preceded by the execution of opik. We call opik and opjl source and target

operations respectively. An operation may have several pre-operations. It may also

be the source (i.e., pre-operation) of several operations. We give below a formal

definition of the pre-operation relationship.

Definition 3.2 – Pre-operation. Let opik and opjl be two generic operations. opik

is a pre-operation of opjl if End(opik) −→t Ready(opjl). ♦

The definition of a pre-operation relationship includes a source operation opik,

target operation opjl, and the condition and mandatory attributes. The condition

is a predicate over opik’s input and output parameters. opjl can be invoked only

if all its pre-operations reached their End state and their conditions are true. If

no condition is specified for a given pre-operation then the default value is “true”.

For example, mealsOnWheels is executed only if the orderMeal operation has been

approved. The mandatory attribute takes boolean values and specifies whether ex-

ecuting the source operation is mandatory or optional. If this attribute is true then

the relationship between opik and opjl is obligatory. Otherwise, it is recommended.

For example, senior citizens must have ordered meals from a restaurant before re-

questing home delivery from a volunteer center. However, it is recommended to get

the list of participating (participatingRestaurants) restaurants before ordering

a meal. Indeed, users can directly order a meal from a restaurant if they already

know that restaurant’s name.

B. Medjahed Chapter 3. An Ontological Framework for Web Services 89

3.2.3.3 Post-Operations

The execution of a given operation may trigger the invocation of other operations

called post-operations. For example, a senior citizen that registers successfully for

a food check program (registerFoodCheck) is required to register for a nutritional

counseling course (registerNutritionCourse). We say that opik is a post-operation

of opjl if the termination of opjl precedes the invocation of opik. We call opjl and

opik source and target operations respectively. An operation may have several post-

operations. It may also be the target (i.e., post-operation) of several operations.

Note that if opik is a pre-operation of opjl then opjl is not necessarily a post-operation

of opik. For example, checkRegistration is pre-operation of orderMeal. However,

orderMeal is not a post-operation of checkRegistration. Indeed, users do not

need to order meals whenever their registration with the Department on the Aging

is checked. We give below a formal definition of the post-operation relationship.

Definition 3.3 – Post-operation. Let opik and opjl be two generic operations. opik

is a post-operation of opjl if End(opjl) −→t Ready(opik). ♦

As for pre-operations, we associate a condition and mandatory attribute to

each post-operation relationship. A target operation enters the initiation state

if at least one of its source operations has reached its End state and the corre-

sponding condition is true. A post-operation may also be mandatory or optional.

For example, a pregnant women that registers for a food check program women

(registerFoodCheck) must also register for nutritional counseling course by invok-

ing registerNutritionCourse (mandatory = true). The post-operation register

is optional (mandatory = false). Indeed, citizens do not necessarily have to register

with the Department for the Aging if they are not willing to do so.

3.2.3.4 Operation Dependency Diagram

Pre and post-operations provide means to specify pre-defined business processes

within a community. In the case of e-government, those business processes are

B. Medjahed Chapter 3. An Ontological Framework for Web Services 90

mostly driven by government regulations and laws. We use UML activity diagrams

to model pre-operation and post-operation relationships [56]. We refer to such dia-

grams as a operation dependency diagrams (OPD). Activity diagrams show the flow

of activities in a business process. In an OPD diagram, each activity represents

a generic operation. Generic operation within a diagram may belong to different

communities. In this case, the community name prefaces the G-op-IDs. We refer to

such pre/post operations as remote pre/post operations. OPD diagrams are defined

by community providers. Service providers may also add pre/post-operations while

importing a generic operation to model business processes inherent to their Web

services.

���������

�����	
������

������
 � �
��

�������� �
����

����

����

�� !�

"��"#$�%&�����&�
'''

()*+
,

-./ 0.12*3 4 1*5+6

()*+
,

-./ 0.12*3 4 1*5+6

�������� �
����

����

()271,
-./ 0.12*3 4 1*5+6

��%&����8���&�&�
9�����

��%&����:���9��"#

������
 �
;<=��

()271,
-./ 0.12*3 4 >.?7+6

��%&����'''

����
�� !�

�� !�

�� !�

���� &"&���&
%$�������
��

�
��

()*+
,

-./ 0.12*3 4 >.?7+6

�� !�

����

Figure 3.5: An Example of OPD Diagram

We depict in Figure 3.5 part of the diagram for the elderly community. The

filled circle is a starting point of the diagram. The filled circle with a bor-

B. Medjahed Chapter 3. An Ontological Framework for Web Services 91

der is an ending point. Each edge in the diagram is labeled with a relation-

ship attribute. This attribute takes one of the values “Pre” or “Post” to spec-

ify whether the edge models a pre or post-operation. For example, the edge

checkRegistration → orderMeal models a pre-operation relationship. It speci-

fies that users should execute checkRegistration before initiating the execution

of orderMeal. Edges are also labeled with the mandatory attribute. For example,

orderMeal is a mandatory pre-operation of mealsOnWheels. However, orderMeal

may be invoked even if participantRestaurants has not previously been executed.

OPD diagrams may also indicate that one operation conditionally fol-

lows another. For example, the diamond between the checkRegistration

and orderMeal operations states that the the value returned by the

register parameter should be “true” before invoking orderMeal. The edge

registerFoodCheck → registerNutritionCourse models a post-operation rela-

tionship. It mentions that all citizens applying for a food check program should

register for a nutrition course. Conditional constructs (i.e., diamonds) are la-

beled with a mandatory attribute. For example, orderMeal is a mandatory

pre-operation of mealsOnWheels. However, orderMeal may be invoked even if

participantRestaurants has not previously been executed.

3.2.3.5 Behavior

The behavior of a generic operation opik refers to the outcome expected after

executing opik given a specific condition. It is defined by a set of business logic

rules where each rule Rm
ik has the following format:

Rm
ik =

(PreParametersm
ik, P reConditionm

ik)

(PostParametersm
ik, PostConditionm

ik)

PreParametersm
ik and PostParametersm

ik are sets of parameters. Each parame-

ter is defined by name, data type, business role, unit, and language as stated in

Definition 3.1. The elements of PreParametersm
ik and PostParametersm

ik generally

B. Medjahed Chapter 3. An Ontological Framework for Web Services 92

refer to opik’s input and output parameters. However, they may in some cases re-

fer to parameters that are neither input nor output of opik. For example, assume

that the address of every citizen registered with the Department on the Aging is

stored in the department’s database. In this case, this parameter should not be re-

quired as input for the orderMeal operation since its value could be retrieved from

the database. PreConditionm
ik and PostConditionm

ik are predicates over the param-

eters in PreParametersm
ik and PostParametersm

ik respectively. The rule Rm
ik specifies

that if PreConditionm
ik holds when the operation opik starts, then PostConditionm

ik

holds after opik reaches its End state. If PreConditionm
ik does not hold, there are

no guarantees about the behavior of the operation. Preconditions generally specify

relationships between input values. Similarly, post-conditions generally specify rela-

tionships between the returned values. The following is an example of the pre- and

post-condition of a rule associated with the operation registerFoodCheck:

(income < 22, 090 ∧ familySize ≥ 2 ∧ zipCode = 22044)

(approved = true ∧ duration = 6)

The rule uses the parameters income (unit = {year, US dollar}), familySize,

and zipcode in the pre-condition (income < 2,090) ∧ (familySize ≥ 2) ∧ (zip-

Code = 22044). The attributes approved and duration (unit = {month}) are used

in the post-condition (approved = true) ∧ (duration = 6). The rule specifies that

citizens with a yearly income less than 22,090 US dollars and a minimum household

size 2 are eligible for food checks for a 6-month period. Business logic rules are

pre-defined by community providers. However, service providers may add new rules

to reflect a behavior specific to their Web services.

3.2.4 Qualitative Properties

Multiple Web services that belong to the same community may import the same

generic operation. It is hence important to define a set attributes that help select

the “best” Web service supporting a given functionality. For this purpose, we define

a Quality of Operation (QoP) model based on a set of qualitative attributes that are

B. Medjahed Chapter 3. An Ontological Framework for Web Services 93

transversal to all operations such as the cost and response time.

QoP Group QoP Attribute Definition
Run-time Response Time Timeprocess(opik) + Timeresults(opik) where Timeprocess is the time to

process opik and Timeresults is the time to transmit/receive the results
Reliability Nsuccess(opik)/Ninvoked(opik) where Nsuccess is the number of times

that opik has been successfully executed and Ninvoked is the total number
of invocations

Availability UpTime(opik)/TotalTime(opik) where UpTime is the time opik was ac-
cessible during the total measurement time TotalTime

Business Cost Dollar amount to execute the operation
Reputation

∑n

u=1
Rankingu(opik)/n, 1 ≤ Reputation ≤ 10 where Rankingu is the

ranking by user u and n is the number of the times opik has been ranked
Regulatory Compliance with government regulations, 1 ≤ Regulatory ≤ 10

Security Encryption A boolean equal to true iff messages are encrypted
Authentication A boolean equal to true iff consumers are authenticated
Non-repudiation A boolean equal to true iff participants cannot deny requesting or deliv-

ering the service
Confidentiality List of parameters that are not divulged to external parties

Table 3.2: Quality of Operation Model

The international quality standard ISO 8402 describes quality as “the totality

of features and characteristics of a product or service that bear on its ability to

satisfy stated or implied needs” [138, 108]. We define QoP as a set of non-functional

attributes that may impact the quality of the operations imported by a Web service.

There are many QoP attributes important to Web services operations. We organize

them into three groups of quantifiable attributes based on type of measurement

performed by each attribute: run-time, business, and security (Table 3.2).

Run-time Attributes – These attributes enable the measurement of proper-

ties that are related to the execution of an operation opik. We identify three

run-time attributes: response time, reliability, and availability. The response

time measures the expected delay in seconds between the moment when opik

enters the Start state (i.e., opik is initiated) and reaches the End state (i.e.,

opik gets or sends the results). Time(opik) is computed using the expression

Timeprocess(opik) + Timeresults(opik). This means that the response time includes

the time to process the operation (Timeprocess) and the time to transmit or receive

the results (Timeresults). The reliability of opik is the ability of the operation to be

B. Medjahed Chapter 3. An Ontological Framework for Web Services 94

executed within the maximum expected time frame. Reliability(opik) is computed

based on historical data about previous invocations of the operation using the

expression Nsuccess(opik)/Ninvoked(opik) where Nsuccess(opik) is the number of times

that the operation has been successfully executed within maximum expected time

frame and Ninvoked(opik) is the total number of invocations. The availability is

the probability that the operation is accessible. Availability(opik) is measured by

the expression UpTime(opik)/TotalTime(opik) where UpTime is the time opik was

accessible during the total measurement time TotalTime.

Business Attributes – These attributes allow the assessment of an operation

opik from a business perspective. We identify three business attributes: cost,

reputation, and regulatory. The cost gives the dollar amount required to execute

opik. The reputation of opik is a measure of the operation’s trustworthiness. It

mainly depends on users’ experiences on invoking opik. Users are given a range to

rank Web service operations (e.g., between 1 and 10). The lowest value refer to the

best ranking. Different users may have different opinions on the same operation.

The reputation of opik is defined by the average ranking given by users to the

operation. Reputation(opik) is computed by the expression
∑n

u=1 Rankingu(opik)/n,

where Rankingu is the ranking by user u and n is the number of the times the

operation has been ranked. The regulatory property is a measure of how well opik is

aligned with government regulations. Regulatory(opik) is value within a range (e.g.,

between 1 and 10). The lowest value refer to an operation that is highly compliant

with government regulations.

Security Attributes – These attributes describe whether the operation opik is com-

pliant with security requirements. Indeed, service providers collect, store, process,

and share information about millions of users who have different preferences regard-

ing security of their information. We identify four properties related to security and

privacy: encryption, authentication, non-repudiation, and confidentiality. Encryp-

tion is a boolean that indicates whether opik’s message are securely exchanged (us-

B. Medjahed Chapter 3. An Ontological Framework for Web Services 95

ing encryption techniques) between servers and clients. Authentication is a boolean

that states whether opik’s consumers (users and other services) are authenticated

(e.g., through passwords). Non-repudiation is a boolean that specifies whether par-

ticipants (consumers and providers) can deny requesting or delivering the service

after the fact. The confidentiality attribute indicates which parties are authorized

to access the operation’s input and output parameters. Confidentiality(opik) con-

tains opik’s input and output parameters that should not be divulged to external

entities (i.e., other than the service provider). If a parameter does not belong to

Confidentiality(opik), then no confidentiality constraint is specified on that param-

eter. Assume that confidentiality(opik) = {SSN, salary} where SSN and salary are

two opik’s input parameters. The content of this attribute states that those two

parameters are kept private by opik’s provider.

3.3 Registering Web Services With Communities

Registering a Web service with a community refers to the process of importing

generic operations. The invocation of an imported operation is translated into the

invocation of an “actual” service operation. The correspondence between imported

and “actual” operations is done through the mapping attribute. For each imported

operation, the provider gives the ID of the corresponding “actual” operation. It also

defines a one-to-one mapping between the imported operation’s parameters and

“actual” operation’s parameters. Defining mappings between parameters enables

the support of “legacy” Web services. Providers do not need to modify the message

parameters in their actual service codes.

3.3.1 The Web Service Registration Process

The registration process is handled by a network of software agents associated to

service and community providers. Member and community agents (MAj and CAi)

are attached to each service and community provider (SPj and CPi) respectively

B. Medjahed Chapter 3. An Ontological Framework for Web Services 96

(Figure 3.6). MAj handles the registration of SPj’s Web services with the community

Ci. SPj registers its service WS-ID using the following registration statement:

Register Service WS-ID With Community Ci

Name service-name

Description service-description

[Imported Generic G-op-ID

<importing statements>

Mappings With Actual Op-ID

[G-op-ID.<parameter> Maps To Op–ID.<parameter>]+]+

The clauses in the aforementioned statement correspond to the different at-

tributes defined for service members within the community ontology. The

<importing statements> is a sequence of statements for importing generic oper-

ation. A Web service may import several generic operations as stated by the “+”

iteration symbol.

������
����� ��	

�����
�������
��

�����
��

�������
�
��

��� �

���

��

���� ���
����
���

� ! "��
���� ���
����
��� #
�$

�����
��
�

����
��
%���
&�� �%	

�'()*+','-*./(0

�&! ������
��
��� ����
��� ��! 12& ��
�3�

&����
2�
��

��4

�����
�
��

�
����! 12& ��
��
,56'
78.'

Figure 3.6: The Web Service Registration Process

B. Medjahed Chapter 3. An Ontological Framework for Web Services 97

MAj parses the registration statement and sends a registration message

SP Register(WS-ID,name,desc,imported) to CAi (Figure 3.6, step (a)). The mes-

sage includes the service ID (WS-ID), name, description, and the list of imported

operations. The imported set is equal to {(G-op-ID,mappings,AttSet,NotImpSet)}.
It includes the mappings of G-op-ID (ID of the imported operation) with actual

service operation. AttSet is the set of G-op-ID’s attributes with their values as as-

signed by SPj. It is defined by the set {(attribute,value)}. NotImpSet is the list of

non-imported attributes. MAj maintains a Communities List CLj and Rule Base

RBj. CLj is the list of communities with which SPj’s Web services are registered.

Each entry in this list contains the G-op-ID of an imported operation, the WS-ID

of the service that imported it, and the ID (CA-ID) of the community agent CAi.

To enable fast access to CLj, we sort it on the G-op-ID column using Counting Sort

algorithm [36]. RBj contains a set of rules that enable MAj to react to changes

issued by community providers.

Upon reception of the registration message, CAi updates the content of Ci’s

members list MLi (Figure 3.6, steps (c) and (d)). Each entry in MLi contains the

ID of the imported operation (op-ID), the ID of the importing service (WS-ID),

the ID of WS-ID’s agent (MA-ID), WS-ID’s status (“available ”, “unavailable”,

or “unsubscribed”), and the list NotImp of G-op-ID’s attributes not imported by

WS-ID. The NotImp column is assigned with the content of NotImpSet included in

the registration message. We sort MLi on the op-ID column using Counting Sort

algorithm to enable fast access to MLi [36].

(00) Member Agent MA Algorithm {
(01) Upon Reception of

(02) Register (WS-ID,name,desc,imported,Ci) statement From SP

(03) Parse the registration statement;

(04) Send SP Register (WS-ID,name,desc,imported) To CAi;

(05) }

Figure 3.7: Service Registration: Member Agent Algorithm

B. Medjahed Chapter 3. An Ontological Framework for Web Services 98

Figures 3.7 and 3.8 give the algorithm executed by a community agent CAi and

member agent MA during registration. SP Register(WS-ID,name,desc,imported)

describes the actions executed by CAi as a reaction to a registration message sent

by MA. The Insert Member() function allows the insertion of a new member in Ci’s

description. Insert ML() function allows the insertion of a new entry in the MLi list

for members.

(00) Community Agent CAi Algorithm {
(01) Upon Reception of

(02) SP Register (WS-ID,name,desc,imported) message From MA-ID

(03) Insert Member (Ci,WS-ID,name,desc,imported);

(04) for each G-op-ID ∈ imported

(05) do Insert ML (G-op-ID,WS-ID,MA-ID,‘‘available’’,NotImpSet);

(06) }

Figure 3.8: Service Registration: Community Agent Algorithm

3.3.2 Importing Generic Operations

Service providers use generic operations as “templates” to define their operations.

A Web service may offer all or some of the generic operations defined within a

community. The provider specifies the G-op-IDs of the operations imported by its

service. By adopting a generic operation, the service provider “promise” to abide by

all attributes (syntactic, semantic, and behavioral) of that operation except those

changed explicitly during importation. Providers may customize generic operations

to best fit their capabilities via importing statements. Customization has the impor-

tant advantage of enabling flexible and personalized Web service descriptions. It is

important to note that the customization process does not affect the description of

generic operations. Two service providers may import the same generic operation

in different ways.

We define three importing statements: projection, extension, adjustment.

Importing statements are defined within member agents. Projection, extension,

B. Medjahed Chapter 3. An Ontological Framework for Web Services 99

and adjustment may be combined to define imported operations. For example, a

service provider may use projection and extension to remove existing parameters

from a generic operation and add new ones.

Projection – A generic operation G-op-ID imported by projection uses a subset of

the input/output parameters defined in G-op-ID. The rest of the message parameters

are not imported by the service and hence, are included in the NotImpSet sent by

the member agent to the community agent. Assume that a checkRegistrationAAA

operation includes register (boolean) and registrationDate (date) as output

parameters. A service provider may customize this operation by keeping only the

register parameter if it is not interested in returning citizen’s registration date.

In what follows, we give the general form of a Project statement. The input and

output clauses give the subset of G-op-ID’s parameters supported by the imported

operation:

Project G-op-ID

Input <list-of-parameter-names>

Output <list-of-parameter-names>

The AttSet submitted with the registration message takes the form {(att,value)}
where att is a projected parameter and the content of value is “null” since no new

value is assigned to the input or output parameter. We refer to AttSet.Attributes

as the list of projected parameters. The list of not imported attributes NotImpSet

is defined by the expression (In(opik) ∩ Out(opik)) – AttSet.Attributes.

Extension – An imported operation defined by extension adds input and/or output

parameters to the corresponding generic operation. The new parameters and their

values are included in the registration messages sent by the member agent to the

community agent. For example, a service provider (e.g., a volunteer center) may

extend the mealsOnWheels operation by adding the deliverer’s cell phone number

as an output parameter. Service providers must assign values to the attributes of

B. Medjahed Chapter 3. An Ontological Framework for Web Services 100

each new message parameters, namely data type, unit, business role, and language.

Below is the general form of an extension statement:

Extend G-op-ID

Input [(<name>, <data-type>, <unit>, <business-role>, <language>)]∗

Output [(<name>, <data-type>, <unit>, <business-role>, <language>)]∗

The AttSet submitted with the registration message takes the form {(att,value)}
where att is a new attribute added by the extension statement and value =

(<name>, <data-type>, <unit>, <business-role>, <language>). The list of not

imported attributes NotImpSet is empty since all message parameters are imported.

Adjustment – The aim of an adjustment statement is to modify the content of

a generic operation’s attributes. Service providers may assign values to attributes

whose content is undefined (e.g., qualitative attributes) or change the content of

previously assigned attributes (e.g., language attribute). Adjustment is done by

adding a value to an attribute (Add clause) or deleting an existing value from it

(Delete clause). For example, service providers may modify the language attribute

if their operation supports a language different from the one specified by commu-

nity providers. The Add and Delete clauses may be combined to remove and add

values to an attribute. The new and deleted values are included in the registration

messages sent by the member agent to the community agent. The general form of

an adjustment statement is given below:

Adjust G-op-ID

Add [<value> To <attribute>]∗

Delete [<value> From <attribute>]∗

The AttSet submitted with the registration message takes the form {(att,[“+”/“-

”],value)} where att is an attribute modified by the adjustment statement. The value

is preceded by a “+” or “-” symbol depending on whether that value is added or

deleted from att respectively. The list of not imported attributes NotImpSet is empty

since all message parameters are imported.

B. Medjahed Chapter 3. An Ontological Framework for Web Services 101

3.4 A Peer-to-Peer Approach for Managing Com-

munities

Communities and their members operate in a highly dynamic environment where

changes can be launched to adapt to actual business climate (e.g., economic, politic,

organizational). Changes are initiated by community or service providers. At the

community providers side, generic operations may be dynamically added, deleted,

and modified. If a generic operation G-op-ID is deleted or modified, then all mem-

bers that are supporting G-op-ID should be notified to ensure global consistency.

At the service provider side, a Web service may cancel its membership with a com-

munity, make its operations temporarily unavailable, or modify the definition of its

imported operations. The community provider should in this case be notified to

avoid references to inexistent or obsolete imported operations.

In our approach, all changes are introduced through member and community

agents. Agents automatically interact with their peers to manage changes. We

consider two types of changes based on the party that launched them: community

or service providers.

3.4.1 Propagating Changes Initiated by Community

Providers

Community providers (CPs) may modify the definition of their generic operations

(Figure 3.9). For example, they may change the pre-operation attributes to re-

flect new government regulations. For this purpose, each CPi executes a Modify

statement defined in its CAi agent (Figure 3.9, step 1). The statement includes

the G-op-ID of the operation to be modified by CPi and a ModifySet that contains

the list of attributes to be modified along with their new content. ModifySet is

defined by the set {(<attribute>,[“+”/“-”],<value>)}. We use the notation Modi-

fySet.Att to refer to the set of modified attributes. CAi will then access the service

registry and update Ci’s description by changing the content of ModifySet.Att’s at-

B. Medjahed Chapter 3. An Ontological Framework for Web Services 102

tributes (Figure 3.9, step 2). In the third step, CAi accesses MLi list to determine

the list L of members subscribed with CPi’s changes. A member WS-ID is sub-

scribed with CPi’s changes if WS-ID imports G-op-ID and at least one attribute

in ModifySet.Att is imported by WS-ID. CAi assigns the value “unavailable” to

the status of each subscribed member. This prevents references to members that

imported “obsolete” generic operations (Figure 3.9, step 3). Finally, CAi sends a

CP-Modify(G-op-ID,WSj,ModifySet) notification to each subscribed member’s MAj

(Figure 3.9, step 4). We give below a formal definition of a subscription.

Definition 3.4 – Subscription. Let Ci be a community and WSj be a mem-

ber that imported an operation opik. WSj is subscribed with changes specified

in CP-Modify(G-op-ID,ModifySet) if (i) G-op-ID = opik and (ii) ModifySet.Att –

MLi[k].NotImp 6= ∅ where k is the entry corresponding to G-op-ID and WSj. ♦
������

����� ��	

�����
��
�����
��

������� �
��

������
����� ���

���

�����
��
����
���

��� ������
�� ��� �
�� ��
������� ���� �
��� !
��

 �"���� "�� �#�"�� ���
� ��"���

�$� ���
�� ��� "���
�����
�� "� �#��"�
��

�%� &���
�'���
����
�� &��� �
����

()*+,-)
.)/,01*2

�3� 4#�"��
�5�
��� �
#�
��

6�7

6�
8

.9:)
;<0)

.9:)
;<0)

Figure 3.9: Propagating Changes Initiated by a Community Provider to its Members

Because pre and post-operations for a given operation opik may belong to differ-

ent communities, we associate two “dual” subscription lists PPCSi and PPMSi to

each community agent CAi. These lists are used to notify relevant parties (communi-

ties and members) about changes that are related to remote pre and post-operations.

PPCSi (Pre and Post-operation Community Subscription) contains the list of com-

B. Medjahed Chapter 3. An Ontological Framework for Web Services 103

munities Cj that use an operation opik of Ci as a remote pre or post-operation.

Each entry in PPCSi contains the ID (op-ID) of opik and the ID of Cj’s agent

(CA-ID). Such entry is created at Cj’s definition time; at that time, CAj sends a

CP-PP-subscribe-CP(op-ID) to CAi (CP stands for Community Provider and PP

for Pre/Post operation). PPCSi is used to notify Cj about changes that occur in

opik. Each time CPi executes a Modify statement on opik, CAi accesses PPCSi list

and sends a notification CP-PP-Alert-CP(opik) to each community agent CAj that

uses opik as a remote pre or post-operation (Figure 3.10). We sort PPCSi on the op-

ID column using Counting Sort algorithm to enable fast access to the list [36]. Once

the CP-PP-Alert-CP(opik) message is received by CAj, CAj notifies Cj’s members

using the PPMSj list.

���������
�	
�� ���

��
��

���������
������
�

��� �
�
����
 ��
 ���� ��
���������
� ���� ���
 ��

�� � �
���
 ��
����� ��
������

� � !����� ��
 ��� ��"��
�
�� �� ��
������ ��

�#� $
�� ���%����	
��
�� $�"����"
��

!
�"
�
�	
�� !�

&

&

'()*
+,-*

'()*
+,-*

!
�"
�
�	
�� !�

&

&

'()*
+,-*

'()*
+,-*

��.�/

���������
�	
�� ��0 �1� $
��

��!%����	
��
�� $�"����"
��

�2� �
�
����
 ��
 ���� ��
�
�"
�� ���� ��
 ��

�� � �
���
 ��
����� ��
��� ���

��.�/
�2� �
�
����
 ��
 ���� ��
�
�"
�� ���� ��
 ��

�� � �
���
 ��
����� ��
��� ���

�1� $
��
��!%����	
��
�� $�"����"
��

Figure 3.10: Propagating Changes Initiated by Community Providers to their Peers

PPMSj (Pre and Post-operation Member Subscription) contains the list of Cj’s

members that use the operations opik of other communities Ci as remote pre or

B. Medjahed Chapter 3. An Ontological Framework for Web Services 104

post-operations. This list is created at Cj’s definition time. It is used to notify

members about changes that occur in their pre and post-operations. Each entry in

PPMSj contains the ID (CA-ID) of the community agent CAi, the ID (PP-ID) of

the remote pre or post-operation opik, and the ID (MA-ID) of the agent of a Cj’s

member that uses opik as a remote pre or post-operation. CAj accesses the PPMSj

list and sends a notification message CP-PP-Alert-SP(opik) (SP stands for Service

Provider) to each member agent MA-ID that uses opik as a remote pre-operation

(Figure 3.10). We sort PPMSi on the CA-ID column using Counting Sort algorithm

to enable fast access to the list [36]. To prevent references to members that imported

“obsolete” generic operations, CAj assigns the value “unavailable” to the status of

MA-ID entries in MLj list. We only consider entries in which MA-ID imported

operations that have opik as a remote pre or post-operation.

Cj’s provider may remove the remote pre/post operation opik from its generic

operation definitions. To propagate this change, CAj removes from PPMSj the en-

try that corresponds to CAi and opik. CAj also sends a CP-PP-Remove-CP(opik)

to CAi. Upon reception of this message, CAi removes from PPCSi the entry corre-

sponding to CAj and opik. CAi will hence send no CP-PP-Alert-CP(opik) messages

to CAj since Cj does not use opik as a remote pre- or post-operation. Figure 3.11

summarizes the algorithm executed by CAi for managing the modification of generic

operations. The Update Member() function allows the update of the description of

a community description within the service registry.

3.4.2 Propagating Changes Initiated by Service Providers

The provider of a Web service WS-ID may initiate changes that should be sent

to their communities (Figure 3.12). A community Ci is notified about a change

if the change is made on an operation imported from Ci. All changes are intro-

duced through member agents and automatically forwarded to community agents

which reflect those changes at the community level. We define the following service

providers changes:

B. Medjahed Chapter 3. An Ontological Framework for Web Services 105

(00) Community Agent CAi Algorithm {
(01) Upon Reception of

(02) Modify (G-op-ID,ModifySet) statement From CP i

(03) Update Member (Ci,G-op-ID,ModifySet);

(04) for each MLi[k].op-ID |
(05) (MLi[k].op-ID=G-op-ID)∧(ModifySet-MLi[k].NotImp 6=∅)
(06) do MLi[k].status = “unavailable”;

(07) Send CP Modify (G-op-ID,MLi[k].WS-ID,ModifySet) To MLi[k].MA-ID;

(08) if ModifySet contains pre or post-operation attributes

(09) then For each PPCSi[k].op-ID | PPCSi[k].op-ID==G-op-ID

(10) do Send CP-PP-Alert-CP(G-op-ID) To PPCSi[k].CA-ID;

(11) CP PP Alert CP (G-op-ID) message From CAj

(12) for each PPMSi[k] | PPCSi[k].op-ID==G-op-ID

(13) do Let p be the entry in MLi | MLi[p] has G-op-ID as pre/post-operation

(14) MLi[p].status = “unavailable”;

(15) Send CP-PP-Alert-SP(G-op-ID) To MLi[p].MA-ID;

(16) CP PP Remove CP (G-op-ID) message From CAj

(17) Let k be | PPCSi[k].op-ID==G-op-ID ∧ PPCSi[k].CA-ID==CAj;

(18) remove entry k from PPCSi;

(19) }

Figure 3.11: Generic Operation Modification: Community Agent Algorithm

• Modifying operations – WS-ID’s provider may modify attributes (e.g., remove

a message parameter) of a previously imported operation through modification

statements defined in WS-ID’s agent MA (Figure 3.12, step 1). A modifica-

tion statement includes the G-op-ID of the operation to be modified, WS-ID

of the service that imported it, and the importing statement I-statement used

to do the modification. Once MA gets a modification statement, it sends an

SP-Modify(G-op-ID,WS-ID,IType,ModifySet) message to Ci’s agent CAi (Fig-

ure 3.12, step 2). ModifySet is defined as in CP-Modify() messages. IType

gives the type of I-statement (“projection”, “extension”, “adjust add”, and

B. Medjahed Chapter 3. An Ontological Framework for Web Services 106

�������
����

	
�
�
� ������ � �

�� �� ���
�������� ��� ������ � !�

���"���� �#$

�#��%$��&
'(�$� �'

)��* �"�
+�#* ����

�,�)%����) +-�#��.& �� #�
�$�%�� "������ �����(�

�/� �#��.& #�
%$� %��"����
�$ #����� �#$

�������
����

	
�
�"� ������ ��

�#��%$��&
'(�$� �'

)��* �"�
+�#* ����

���)%���� 0���1��� #�
2�� %���� �����(�

��� 0���1� #�
2��%�� �$

#����� �#$
������

'(�$�
������

'(�$�
3

�45�
67��

3

�45�
67��

���� ���
������ ��

Figure 3.12: Propagating Changes Initiated by Service Providers

“adjust delete”). Upon reception of the SP-Modify() message, CAi updates

Ci’s description (Figure 3.12, step 3). If the message concerns a projection

statement, CAi updates the NotImp column in the MLi ’s entry that corre-

spond to G-op-ID and WS-ID (Figure 3.12, step 4). It assigns the content

of ModifySet.Att to this column. If the message concerns an “adjust delete”

statement on a remote pre or post operation opjl, then CAi removes the entry

in PPMSi corresponding to CAj, opjl, and WS-ID’s agent. If the message

concerns an “adjust add” statement on a remote pre or post operation opjl,

then CAi adds a new entry in PPMSi with the values CAj, opjl, and WS-ID’s

agent MA-ID.

• Freezing operations – An imported operation may be “available”, “unavailable”

(e.g., due to network problem), or “unsubscribed”. WS-ID’s provider may

temporarily make an imported operation G-op-ID by executing the Freeze

statement (Figure 3.12, step a) defined in MA. The statement includes the G-

op-ID of the operation to be frozen and the WS-ID of the service that imported

it. As a consequence, MA sends an SP-Freeze(G-op-ID,WS-ID) message to

CAi (Figure 3.12, step b). CAi then assigns the “unavailable” value to the

B. Medjahed Chapter 3. An Ontological Framework for Web Services 107

(00) Member Agent MA Algorithm {
(01) Upon Reception of

(02) Modify (G-op-ID,WS-ID,I-Statement) statement From SP

(03) Parse the importing statement I-Statement;

(04) Get ModifySet From I-Statement;

(05) IType = type of the I-Statement;

(06) CAi = Lookup community(CL,G-op-ID);

(07) Send SP Modify (G-op-ID,WS-ID,IsProjection,ModifySet) To CAi;

(08) Freeze (G-op-ID,WS-ID) statement From SP

(09) CAi = Lookup community(CL,G-op-ID);

(10) Send SP Freeze (G-op-ID,WS-ID) To CAi;

(11) Resume (G-op-ID,WS-ID) statement From SP

(12) CAi = Lookup community(CL,G-op-ID);

(13) Send SP Resume (G-op-ID,WS-ID) To CAi;

(14) Unsubscribe (G-op-ID,WS-ID) statement From SP

(15) CAi = Lookup community(CL,G-op-ID);

(16) Send SP Unsubscribe (G-op-ID,WS-ID) To CAi;

(17) }

Figure 3.13: Changes Issued by Service Providers: Member Agent Algorithm

status column of the MLi ’s entry that correspond to G-op-ID and WS-ID

(Figure 3.12, step c).

• Resuming operations – WS-ID’s provider may re-activate an operation G-op-

ID that has previously been frozen through the Resume statement defined in

MA. The statement includes a reference to WS-ID and G-op-ID. As a con-

sequence, MA sends an SP-Freeze(G-op-ID,WS-ID) to G-op-ID’s community

agent CAi (Figure 3.12, step b). CAi then assigns the “available” value to

the status column of the MLi ’s entry that correspond to G-op-ID and WS-ID

(Figure 3.12, step c).

B. Medjahed Chapter 3. An Ontological Framework for Web Services 108

• Unsubscribing operations – WS-ID’s provider may decide not to support an

imported operation any more. For that purpose, it executes MA’s Unsub-

scribe statement (Figure 3.12, step 1). MA informs CAi about this change

(Figure 3.12, step 2) by sending an Unsubscribe(G-op-ID,WS-ID) message to

it. CAi then updates Ci’s description (Figure 3.12, step 3). It also assigns

the “unsubscribed” value to the status of the MLi ’s entry that correspond to

G-op-ID and WS-ID (Figure 3.12, step 4). CAi periodically checks the status

column in MLi and remove all entries associated with unsubscribed operations.

Figures 3.13 and 3.14 depict the algorithm executed by community and

member agents for managing changes initiated by service providers. The

Lookup Community() function (lines 14) is executed on the communities list CL.

It returns the CAi’s ID of the community Ci to which the operation G-op-ID be-

longs.

Each member’s agent MAj also needs to react to change notifications sent

by a community agent via CP-Modify(G-op-ID,WSj,ModifySet) or CP-PP-Alert-

SP(opik) messages. The actions to be performed by MAj as a result of change

notification are captured using ECA (Event Condition Action) rules [31]. Briefly,

the basic semantics of an ECA rule is as follows: when an event occurs, an action is

executed if the corresponding condition is true. Event-driven systems are becoming

the paradigm of choice for organizing many classes of loosely coupled and dynamic

applications. Members react to changes using their own change control policies via

local rule specified in their agent. Hence, the reaction to changes can be customized

to the peculiarities of each member. Below is an example of ECA rule specified

within a member agent:

Rule R1

Event CP-Modify(G-op-ID,WSj,ModifySet)

Condition Source = C1 ∧ pre-operations ∈ Modify.Att

Action <notify the service provider to change its internal business logic>;

send Resume(G-op-ID,WSj) message to source

B. Medjahed Chapter 3. An Ontological Framework for Web Services 109

(00) Community Agent CAi Algorithm {
(01) Upon Reception of

(02) SP Modify (G-op-ID,WS-ID,IType,ModifySet) message From MA-ID

(03) Update (Ci,G-op-ID,ModifySet);

(04) Let k be the entry in MLi |
(05) MLi[k].op-ID==G-op-ID ∧ MLi[k].WS-ID==WS-ID;

(06) Case IType

(07) “Projection”: MLi[k].NotImp = Parameters(G-op-ID) - ModifySet.Att;

(08) “Adjust Delete”: if ModifySet contains pre or post-operations

(09) then remove from PPMSi the entry related to G-op-ID and MA-ID;

(10) “Adjust Add”: if ModifySet contains pre or post-operations

(11) then add to PPMSi an entry for G-op-ID and MA-ID

(12) SP Freeze (G-op-ID,WS-ID) message From MA-ID

(13) Let k be the entry in MLi |
(14) MLi[k].op-ID==G-op-ID ∧ MLi[k].WS-ID==WS-ID;

(15) MLi[k].status = “unavailable”;

(16) SP Resume (G-op-ID,WS-ID) message From MA-ID

(17) Let k be the entry in MLi |
(18) MLi[k].op-ID==G-op-ID ∧ MLi[k].WS-ID==WS-ID;

(19) MLi[k].status = “available”;

(20) SP Unsubscribe (G-op-ID,WS-ID) message From MA-ID

(21) Let k be the entry in MLi |
(22) MLi[k].op-ID==G-op-ID ∧ MLi[k].WS-ID==WS-ID;

(23) MLi[k].status = “unsubscribed’;

(24) }

Figure 3.14: Changes Issued by Service Providers: Community Agent Algorithm

R1 states that whenever the member receives a change notification issued by

C1’s provider and if the change concerns the pre-operations attribute, the service

provider should reflect the change by modifying its internal business logic. The

member agent then sends a Resume(G-op-ID,WSj) message to C1’s agent. The

B. Medjahed Chapter 3. An Ontological Framework for Web Services 110

message is a confirmation that the member has locally reflected the changes done

by CP 1. Figure 3.15 summarizes the change reaction algorithm executed by member

agents.

(00) Member Agent MA Algorithm {
(01) Upon Reception of

(02) CP Modify (G-op-ID,WS-ID,ModifySet)

(03) for each rule=(event,condition,actions) in the rule base RB

(04) | event==CP Modify(G-op-ID,WS-ID,ModifySet) ∧ condition==.T

(05) do Execute actions;

(06) CP PP Alert SP(G-op-ID) From CAi

(07) for each rule=(event,condition,actions) in the rule base RB

(08) | event== CP PP Alert SP(G-op-ID) ∧ condition==.T

(09) do Execute actions; (10) }

Figure 3.15: Reaction to Changes Issued by Community Providers: Member Agent

Algorithm

Chapter 4

A Composability Model for

Semantic Web Services

Existing techniques for Web service composition generally require dealing with low

level programming details, thus making the process of composing services demanding

for composers [10, 25, 70, 90, 113]. Composers need to identify the way operations

are interconnected, services are invoked, and messages are mapped to one another.

To deal with this issue, we propose a model, called composability model, to check

whether operations can be combined together, hence avoiding unexpected failures at

run time. Composability refers to the process of checking if Web service operations

to be composed can actually interact with each other [12].

The proposed model is defined by a set of rules called composability rules. Each

rule compares a specific feature of interacting Web services. Since those features are

relevant to different aspects of Web services (syntactic, semantic, behavioral, and

qualitative), we organize composability rules into several levels. Each rule specifies

the constraints and requirements for checking horizontal, vertical, and hybrid com-

posability. We also define rules, called business process composability rules, to check

whether a given composition of Web service operations provides a value-added.

Due to the sheer heterogeneity of Web services, it is not always possible to find

services that are “fully” composable. Composers may, in this case, select services

111

Ioannis Baltopoulos
Highlight

Ioannis Baltopoulos
Highlight

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 112

that are “partially” composable and then “adapt” their requests based on the results

returned by the composability process. For that purpose, we introduce the notions of

composability degree and τ -composability to cater for partial and total composability.

In this chapter, we give a detailed description of the proposed composability

model [83, 79]. In Section 4.1, we define the basic concepts of our model namely,

composability rule, level, degree, and τ -composability. In Section 4.2, we describe

syntactic composability rules. In Section 4.3 and 4.4, we define composability rules

for comparing static and dynamic semantic features of Web services. Section 4.5

is devoted to composability rules related to quality of operation features. In Sec-

tion 4.6, we describe business process composability.

4.1 The Proposed Model for Composability

The proposed model for composability contains a set of rules organized into four

levels (Figure 4.1). Each rule CRpq at a level CLp (p=0,4) compares interacting

operations with respect to a specific attribute within CLp. The first level CL0 com-

pares syntactic attributes such as the number of parameters (CR00) and bindings

(CR01). The second level CL1 compares static semantic attributes. We define two

groups of rules at this level. The first group (CR10,...,CR14) compares the static

semantics of messages. The second group (CR15,...,CR18) compares the static se-

mantics of operations. The third level CL2 compares dynamic semantic attributes

(CR20,...,CR24).

The fourth composability level CL3 focuses on quality of operation attributes.

It contains three groups of rules. The first group (CR30,...,CR33) compares secu-

rity attributes. The second group (CR34,...,CR36) checks business attributes. The

third group (CR37,...,CR39) of qualitative composability rules deals with runtime

attributes. The fourth level CL3 deals with business process composability. It con-

tains rules (CR40,CR41,CR42) that checks the soundness of a composite service, that

is, whether that service provides a value-added.

There are two main differences between business process composability rules

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 113

������

����	
�

����

�����

����	
�

������
���������

����	����

������� ����

�������

�	��
���

���� ! ���� "���

#����$�	%�����

&������
���������
�'	� ���

���(����� �	����
)��*������	����

+�$�������
,��'����$	� ���

��
��	����
�����	����

����
,�	��	%�����
����	%�����

�������� "�-�

#�$�����
,�� ��%����

�������
,����%����

���� �-�
,����%����

./�0��� 12
34�5���1�

67879 :;
<=>9?@>@?87

ABCDBE>F?9?@G

67879 H;
IGJ>C?K L7C>J@?K

ABCDBE>F?9?@G

67879 M;
L@>@?K L7C>J@?K
ABCDBE>F?9?@G

67879 N ;
LGJ@>K@?K

ABCDBE>F?9?@G
OPP

OPQ
OPR

OQP
OQQ
OQR
OQS

OQT

OQU

OQV

OQW

OSP
OSQ
OSR
OSS

OST

OSU

OSV

OSW

OSX

OSY

OS

OR

OQ

OP

Z���

+[$�

���
��

\]^_]`abcdcef
ghdi`

ORR

ORS

j	�
�	
�

����	����

+[$� ����-	�$'
���
�� ���-	�$'
���
�� ����-	�$' ORP

ORQ

ORT

67879 k;
l=E?J7EE mnBK7EE

ABCDBE>F?9?@G

o1�41����1�
�1/�p����

OTP
OT

qicrse` t``cruiv e]
waxs \]^_]`abcdcef

ghdi auv yizid
\]^_]`abcdcef

yizid`

+[$�

j����
#����

OTQ
OTR

����	
� "���

��-������
#��� �$�

)�-%�� �(
�	�	-�����

{	�	 "���

OQX

Figure 4.1: Composability Stack

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 114

and the rules at lower levels. First, business process composability deals with fea-

tures that are related to composite services while the other levels’ rules compare

operation and message attributes of participant services. Second, business process

composability checks composability a posteriori, i.e., after a given composition was

performed. Rules at lower levels check composability a priori, i.e., while composing

Web services.

4.1.1 Horizontal, Vertical, and Hybrid Composition

We define three ways of combining Web service operations: horizontal, vertical,

and hybrid. Horizontal composition models a “supply chain”-like combination of

operations. Let opik and opjl be two operations that are horizontally composed.

We call opik and opjl source and target operations respectively. Figure 4.2 depicts

horizontal composition in the case where opik’s mode is In/Out (case (a)) and Out/In

(case (b)). The operation opik is first executed, followed by opjl’s execution. opik’s

messages are used to feed opjl’s input message. Let M be a set of messages and

Inputjl the input message of opjl. We say that M feeds Inputjl if parameters in M’s

messages are used as Inputjl’s parameters. As depicted in Figure 4.2, Inik and Outik

messages feed Injl.

As example of the horizontal composition, assume that opik provides translation

from English to French and opjl provides translation from French to Chinese. The

operations opik and opjl may be horizontally composed to provide translation from

English to Chinese. In this case, the result of opik (French word) is used as input by

opjl. The precedence relationships between opik’s and opjl’s states are given below:

Startik −→t Activeik −→t Endik −→t Startjl −→t Activejl −→t Endjl

Vertical Composition models the “subcontracting” of an operation opjl by an-

other operation opik. Figure 4.3 depicts vertical composition in the case where opik’s

mode is In/Out (case (a)) and Out/In (case (b)). Let us consider the first case where

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 115

����
� �� ��	
��� �
� ����� ��� �

��� ��	
�� � ��� ���� �
��� � ������ �

��� ���� ! �" #$%&'(��)*�+ �"

�,� ���� ! �" &'(% #$ ��)*�+ �"

��� �����
�
� �����

� �� ��	
���

�-� ��������

��� ��	
�� �

��� � ������ �

��� ���� �

�-� ��������

#"�.+ /)!!�0)
&.+�.+ /)!!�0)
1 2))3! 41 4

5)0)"3

Figure 4.2: Horizontal Composition

opik’s mode is In/Out. Whenever opik is invoked, it transparently sends an input

message to opjl. opjl then performs the requested function on behalf of opik and

returns an output message to opik. opik will finally send the results to its invoker.

Assume now that opik’s mode is Out/In. opik starts its execution by invoking opjl.

After opjl terminates its execution, it sends results to opik which receives them as

an input message.

An example of vertical composition is that of a personal computers (PC)

reseller offering an operation requestQuotes. This operation allows customers to

request quotes. The execution of requestQuotes requires the invocation of another

operation provided by a PC manufacturer to get the latest prices and delivery

schedule. We summarize below the precedence relationships between opik’s and

opjl’s states:

Startik −→t Startjl −→t Activejl −→t Endjl −→t Endik

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 116

����
� �� ��	
��� �
� �����

� �������

������� ��	
�� � ��� ���� �
������� �

����

����

��� ���� � !" #$%& '(��)*!+��"�!� ���� � !" '(&#$% ��)*!+��"

��������

� �� ��	
���

��� ��	
�� �
������� �

��� ���� �

�
� �����

'"�,+ -) !.) / 0))1 2/ 23).)"1 #,+�,+ -) !.)

Figure 4.3: Vertical Composition

and Startik −→t Activeik −→t Endik

A composite service CS may include operations that are horizontally composed

and others that are vertically composed. We refer to this type of composition as

hybrid composition. The first example in Figure 4.4 depicts a hybrid composition

of three operations op1, op2, and op3. In this case, op1 is vertically composed with

op2. This means that op1 “subcontracts” from op2. Additionally, op1 is horizontally

composed with op3, meaning that op1’s input and output messages feed op3’s input.

The second example of Figure 4.4 depicts another hybrid composition of op1, op2,

op3, and op4. op1 subcontracts from two horizontally composed operations op2 and

op3. Furthermore, op1 is horizontally composed with op4.

4.1.2 Properties of a Composability Rule

Composability rules check whether two operations opik and opjl are composable from

different perspectives. We identify five properties that characterize composability

rules: level, granularity, attribute, symmetry, and composition type.

Table 4.1 summarizes the different composability rules and their properties. We

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 117

���
��� ���	�� �
� ��
�

�������

���
��� ���	�� ��� ��
�

��� ��� ����

������ ���	�� ��� ��
�

�������

���
��� ���	� � �
� ��
�

�������

���
��� ���	�� ��� ��
�

��� �������

������ ���	�� ��� ��
��������

������ ���	��

��� ��
�

�������

��� ������� �

��� ������� �

��� � !�""�#�
$ �� � !�""�#�
� %��
" &� &

'�#��

Figure 4.4: Hybrid Composition

organize these rules into four levels: syntactic, static semantic, dynamic semantic,

and qualitative. These levels check composability at the message and operation

granularity. Each rule in a given level compares a specific pair of attributes of opik

and opjl (e.g., mode, binding, purpose, and cost). A rule is either symmetric or

asymmetric. It is symmetric if the order in which it is checked (from opik to opjl

or opjl to opik) is not important. This is in contrast with asymmetric rules; if an

asymmetric rule is satisfied from opik to opjl then it is not necessarily satisfied from

opjl to opik. Finally, a rule may be applicable for horizontal composition (e.g.,

Plugin Prematch), vertical composition (e.g., Exact Postmach), both (e.g., purpose

and category), or hybrid (e.g., composition soundness).

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 118

Level Granularity Attribute Symmetry Horizontal Vertical Hybrid
Syntactic Message Number of Parameters

√ √ √
Operation Binding

√ √ √
Mode

√ √

Static Semantics Message Data type
√ √ √

Unit
√ √ √

Language
√ √ √

Business Role
√ √ √

Message Type
√ √

Operation Purpose
√ √

Category
√ √

Prov. & Cons. Type
√ √

Serviceability
√ √

Dynamic Semantics Operation Plugin Postmatch
√

Plugin Prematch
√

Exact Postmatch
√ √

Plugin
√

Exact
√ √

Qualitative Operation Confidentiality
√

Non-repudiation
√ √

Authentication
√ √

Encryption
√ √

Regulatory
√

Reputation
√

Cost
√

Availability
√

Reliability
√

Response Time
√

Business Process Composite Exact
√

Loose
√

Strong
√

√
: The rule has the corresponding property.

Table 4.1: Composability Rules Properties

4.1.3 Composability Degree

Composers may have different views on composability rules. One may, for example,

give higher importance to syntactic composability while another may focus more on

semantic rules. To capture this aspect, we associate a weight Wp to each level CLp.

We also define a weight Wpq for each rule CRpq in that level. A weight is an estimate

of the significance of the corresponding level or rule from the composer’s point of

view. Composers assign a weight to each level and rule. This gives composers more

control over the composability process. The higher is a weight, the more important

is the corresponding level or rule. Wp (≥ 0 and ≤ 1) compares CLp to the other levels

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 119

in terms of their importance. The total of weights assigned to the different levels

equals 1. Similarly, Wpq (≥ 0 and ≤ 1) compares CRpq to the other rules at level

CLp. The total of weights assigned to rules within a level equals 1. Formally, the

different weights must respect the following constraints, where |CLp| is the number

of rules at level p:

1. ∀ p,q: (0 ≤ Wp ≤ 1) ∧ (0 ≤ Wpq ≤ 1); and

2. (
∑4

p=0 W p = 1) ∧ (∀ p:
∑|CLp|−1

q=0 W pq = 1).

Due to the heterogeneity of Web services, it is not always possible to find op-

erations that are “fully” composable with source operations. Composers may, in

this case, select operations that are “partially” composable with their operation and

then, “adapt” their operations based on the results returned by the composability

process. For example, the composer may modify the data type of an operation

parameter if it is not compatible with the data type of the corresponding target

operation’s parameter. For that purpose, we introduce the notion of composability

degree between source and target operations.

The degree of opik and opjl gives the ratio of composability rules that are satisfied

between opik and opjl. It takes its values from 0 to 1 (≥ 0 and ≤ 1). We define a

boolean function satisfiedpq(opik,opjl) that returns true iff the rule CRpq is satisfied

between opik and opjl. To reflect the composer’s view on each rule CRpq, we adjust

the value returned by the function satisfiedpq(opik,opjl) with the weight Wpq. The

degree at a given level CLp is obtained by adding the adjusted values returned by the

function satisfied applied on each CLp’s rule. Once the degree at CLp is computed,

we adjust it with the weight Wp assigned to CLk. As specified below, the degree

of opik and opjl is obtained by summing composability degrees at all levels CLp

(p=0,4):

Degree (opik,opjl) =
∑4

p=0(W p × (
∑|CLp|−1

q=0 (Wpq × satisfiedpq(opik,opjl)))

During a composition process, the composer assigns weights to each level and

rule by providing a vector called level weight (LW) and matrix called rule weight

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 120

(RW). The element LWp (p=0,3) gives the weight assigned to level CLp. The

element CWpq gives the weight assigned to rule CRpq. If a rule CRpq is undefined,

then CWpq is automatically assigned the value 0. For example, since the rules

CR03, ...,CR09 are not defined, the entries RW03, ...,RW09 are equal to 0. As an

illustration, assume that case officer John provides the weights given below to his

source operation scheduleTransportation:

LW =
(

0.2 0.3 0.2 0.3 0.2
)

RW =




0.25 0.25 0.3 0 0 0 0 0 0 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15

0.1 0.1 0.1 0.1 0.6 0 0 0 0 0

0.1 0.1 0.1 0.1 0 0 0 0 0 0

0 0.5 0.5 0 0 0 0 0 0 0




This example shows that the composer gives more importance to static semantic

composability since the corresponding weight is greater than the other levels’

weights. Among dynamic semantic properties, the composer gives higher priority to

the exact behavioral rule. Assume now that scheduleTransportation is compared

to fasTransportation using the composability model and that all composability

rules are satisfied, except the ones that correspond to the following rules: CR00,

CR01, CR02, CR10, CR15, CR16, CR20, CR21, CR22, CR23, CR24, CR33, CR35, CR36.

The composability degree is computed as follows:

Degree (scheduleTransportation,fasTransportation)

= 0.2 × (0.25 + 0.25 + 0.3) + 0.3 × (0.1 + 0.1 + 0.1)

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 121

+ 0.2 × (0.1 + 0.1 + 0.1 + 0.1 + 0.6) + 0.1 × (0.1 + 0.2 + 0.2) = 0.57 = 57%.

Based on the degree of opik and opjl, we can decide about the composability

of those operations. If degree = 0 then no rule is satisfied and the operations are

non composable. If degree = 1 then all composability rules are satisfied and the

operations are fully composable. Otherwise, only a subset of rules are satisfied. In

this case, opik and opjl are partially composable:

If degree (opik,opjl) = 0

Then opik and opjl are non composable

Else If degree (opik,opjl) = 1

Then opik and opjl are fully composable

Else opik and opjl are partially composable

4.1.4 τ-Composability

Service composers may have different expectations about the composability de-

gree of their operations. For that purpose, composers provide a composability

threshold τ (0<τ≤1). The threshold gives the minimum allowed value of a com-

posability degree. All operations opjl so that degree(opik,opjl) ≥ τ are poten-

tial candidates to be composed with opik. If the threshold is greater than de-

gree (opik,opjl) then opik will not be composed with opjl. Assume that the com-

poser assigns the value 0.75 to the threshold (τ=0.75). Since the composabil-

ity degree of scheduleTransportation and fasTransportation equals 0.57, then

scheduleTransportation and fasTransportation are not τ -composable. We in-

troduce below the definition of τ -composability. This definition compares the com-

posability degree and threshold to decide whether an operation is composable with

another:

Definition 4.1 – An operation opik is τ -composable with opjl if degree(opik,opjl)≥ τ .

♦

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 122

We summarize below (Lemma 1) the relationship between τ -Composability

and composability degree. If opik and opjl are fully composable then

degree(opik,opjl) = 1 ≥ τ . Hence, they are τ -composable for all values of τ . If

opik and opjl are non composable then degree(opik,opjl) = 0 < τ . Hence, they are

non composable for all values of τ . If the two operations are partially composable,

then opik and opjl may be τ -composable or not depending on the value of τ .

Lemma 4.1 – Let opik and opjl be source and target operations respectively:

• If opik and opjl are fully composable then ∀ τ , opik and opjl are τ -composable.

• If opik and opjl are non composable then ∀ τ , opik and opjl are not τ -

composable.

• If opik and opjl are partially composable then opik and opjl τ -composability

depends on the value of τ . ♦

4.2 Syntactic Composability Rules

We define two group of syntactic composability rules. The first group contains rules

that compare attributes at the operation granularity. Such rules include binding

and mode composability. The second group includes rules that check attributes at

the message granularity. Such rules include PN-Composability which compares the

number of parameters of operation messages.

4.2.1 Composability at the Operation Granularity

The first syntactic attribute that needs to be checked is binding. Two opera-

tions opik and opjl may support different binding protocols (e.g., SOAP/HTTP or

SOAP/MIME). It is hence important to insure that they “understand” each other

at the message format and protocol level. At least one of the protocols expected by

an operation must be supported by the other. For example, it would be difficult for

an operation that expects to receive messages in SOAP/MIME protocol to interact

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 123

with another service that format its messages in SOAP/HTTP. The following rule,

called binding composability, checks that operations support at least one common

binding protocol.

Definition 4.2 – Let opik and opjl be two operations. We say that opik and opjl

are binding composable if Bindingik ∩ Bindingjl 6= ∅. ♦

Assume now that opik and opjl are binding composable. For these operations to

be “plugged” together, they must have “composable” modes. Mode composability

depends on two criteria: the composition type (vertical or horizontal) and the source

operation’s mode Modeik. We consider the following possible cases:

1. The composition is vertical and Modeik = “In/Out” (Figure 4.3-(a)): the input

of opik feeds opjl’s input and the output of opjl feeds opik’s output. Hence

opjl is an In/Out operation.

2. The composition is vertical and Modeik = “Out/In” (Figure 4.3-(b)): opik

starts by sending an output message which should be received by opjl. After

processing the message, opjl replies to opik through an output message. Hence

opjl is an In/Out operation.

3. The composition is horizontal and Modeik = “In/Out” (Figure 4.2-(a)): opik’s

output message is the result returned by the execution of opik. It is used in

part or whole to invoke opjl by sending an input message to it. Hence opjl is

an In/Out operation.

4. The composition is horizontal and Modeik = ‘Out/In” (Figure 4.2-(b)): opik’s

input message is the result of a subcontracting performed by opik (via vertical

composition). It is used to invoke opjl by sending an input message to it.

Hence opjl is an In/Out operation.

As illustrated in our discussion above, the target operation’s mode Modejl should

be In/Out, independently of the composition type and the model of the source

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 124

operation. We give below a formal definition of mode composability:

Definition 4.3 - Let opik and opjl be two operations. We say that opik is mode

composable with opjl if Modejl = “In/Out”. ♦

4.2.2 Composability at the Message Granularity

Syntactic composability also requires comparing opik and opjl at the message level.

There is a need to compare the input and output messages of both operations. For

this purpose, we define a composability rule, called Parameters Number Composabil-

ity (PN-Composability). PN-Composability compares the number of parameters in

every pair of “plugged” messages. The definition of PN-Composability depends on

the composition type and operations’ modes. We identify the following four cases:

1. The composition is vertical Composition and Modeik = “In/Out”: Inik is

“plugged” with Injl and Outjl is “plugged” with Outik (Figure 4.3-(a)). Inik

(Outjl) must provide at least as much information as expected by Injl (Outik).

Hence, the number of parameters in Inik (Outjl) is at least equal to the number

of parameters in Injl (Outik).

2. The composition is vertical and Modeik = “Out/In”: Outik is “plugged” with

Injl and Outjl is “plugged” with Inik (Figure 4.3-(b)). The number of param-

eters in Outik (Outjl) is at least equal to the number of parameters in Injl

(Inik).

3. The composition is horizontal and Modeik = “In/Out”: in this case, Inik and

Outik are “plugged” with Injl (Figure 4.2-(a)). Consequently, the total number

of parameters in Inik and Outik should be at least equal to Injl’s.

4. Horizontal Composition and Modeik = ‘Out/In”: As illustrated in Figure 4.2-

(b)), this case is similar to case (3).

Based on the discussion above, it is clear that PN-Composability is not symmet-

ric. We give below the formal definitions of this rule:

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 125

Definition 4.4 – Let opik and opjl be two operations. We say that opik is PN-

composable with opjl if one of the following three conditions is true:

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) |Injl| ≤ |Inik|, and

(iv) |Outik| ≤ |Outjl|.
2. (i) the composition is vertical, (i) Modeik = “Out/In”, (i) |Injl| ≤ |Outik|, and

(iv) |Inik| ≤ |Outjl|.
3. (i) the composition is horizontal and (ii) |Injl| ≤ |Inik| + |Outik|. ♦

4.3 Static Semantic Composability Rules

For two operations opik and opjl to be “plugged” together, they must be semantically

“compliant”. For example, it would be semantically “incorrect” to interconnect an

operation that provides “counseling” with another that checks “eligibility” since

these operations have different purposes. Additionally, two message parameters

cannot be mapped together if they have diffrent business roles. In the following,

we present static semantic rules that deal with composability at the operation and

message granularity.

4.3.1 Composability at the Operation Granularity

Operations are described at the static semantics level via serviceability, provider type,

consumer type, category, and purpose attributes (Chapter 3). The first composability

rule compares opik’s and opjl’s serviceability. The content of both attributes must be

similar if opik and opjl are vertically composed. For example, an operation providing

cash support cannot “subcontract” in-kind operations. Horizontal composition does

not require comparing serviceability since no operation will “service” the other.

Definition 4.5 - Let opik and opjl be two vertically composed oper-

ations. We say that opik’s and opjl’s serviceability are composable if

serviceabilityik = serviceabilityjl.♦

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 126

The second rule compares opik’s and opjl’s provider and consumer types. The

way this comparison is done depends on the type of composition between opik and

opjl. If the composition is horizontal, opik and opjl must have at least one common

provider type and one common consumer type. For example, if opik expects to

outsource from a federal agency’s operation then opjl’s agency should include the

type “federal”. Additionally, if opik provides benefits for children and pregnant

women then opjl should provide benefits for at least those two groups. If opik is

horizontally composed with opjl, then it should be viewed as a consumer of opjl.

Hence, opjl’s consumer type should include at least one value from opik’s provider

types. In the following, we give a formal definition of provider and consumer type

composability, called PC-Composability:

Definition 4.6 - Let opik and opjl be two operations. We say that opik is PC-

Composabile with opjl if one of the following conditions is true:

1. (i) the composition is vertical, (ii) providerik ∩ providerjl 6= ∅, and (iii)

consumerik ∩ consumerjl 6= ∅.
2. (i) the composition is horizontal and (ii) providerik ∩ consumerjl 6= ∅. ♦

Operations’ categories are compared in the third composability rule. Assume

that opik and opjl are vertically composed. Since opik is meant to “replace” opjl,

the following two conditions should be true: (i) opik’s and opjl’s domains of interest

are similar or synonyms, and (ii) all characteristics (i.e., elements of the specializa-

tion attribute) of opik’s category are provided by opjl’s. For example, assume that

opik’s category provides health insurance for children (i.e., Nameik=“healthcare”

and Specializationik={“children”, “insurance”}). The operation opjl should not

only deal with healthcare but also at least provide insurance for children as well.

Assume now that opik and opjl are horizontally composed. Categoryik and

categoryjl should be defined so that opik and opjl “can” be combined. This is

captured by the overlapping attribute of a category. Hence, categoryik is compos-

able with categoryjl if overlappingik contains categoryjl. This leads us to defining

the category composability rule. We say that opik is category composable with opjl

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 127

if categoryik is compatible with categoryjl. We give below the definition of category

composability:

Definition 4.7 – We say that categoryik is composable with categoryjl if one of the

following two conditions is true:

1. (i) the composition is vertical, (ii) specializationik ⊆ specializationjl, and

(iii) (domainik = domainjl) or (domainik ∈ synonymsjl) or (domainjl ∈
synonymsik) or (synonymsik ∩ synonymsjl 6= ∅).

2. (i) the composition is horizontal and (ii) categoryjl ∈ overlappingik. ♦

The last rule compares operations’ purposes. The purpose composability rule is

defined in the same way as category composability where domainik and domainjl are

replaced by functionik and functionjl respectively:

Definition 4.8 – We say that purposeik is composable with purposejl if one of the

following two conditions is true:

1. (i) the composition is vertical, (ii) specializationik ⊆ specializationjl, and

(iii) (functionik = functionjl) or (functionik ∈ synonymsjl) or (functionjl ∈
synonymsik) or (synonymsik ∩ synonymsjl 6= ∅).

2. (i) the composition is horizontal and (ii) categoryjl ∈ overlappingik. ♦

4.3.2 Composability at the Message Granularity

Composability requires checking the semantics of opik’s and opjl’s messages. The

first message composability rule compares message types. This rule is applicable

only for vertical composition since horizontal composition does not involve replacing

opik’s messages with opjl’s or vice versa. Given a vertical composition of opik and

opjl, we identify two cases based on the mode of opik. If opik is In/Out, then Inik’s

(resp. Outik’s) and Injl’s (Outjl’s) types should be similar. Otherwise, Outik’s (resp.

Inik’s) and Injl’s (Outjl’s) types should be similar.

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 128

Definition 4.9 - Let opik and opjl be two vertically composed operations. The

message type of opik is composable with opjl’s if one of the following conditions is

true:

1. (i) modeik = In/Out, (ii) MT (Inik) = MT (Injl), and (iii) MT (Outik) =

MT (Outjl).

2. (i) modeik = Out/In, (ii) MT (Outik) = MT (Injl), and (iii) MT (Outjl) =

MT (Inik). ♦

The second rule, called Data Type Composability (DT-Composabilty), checks pa-

rameters’ data types. DT-Composabilty is based on the notion of compatibility be-

tween data types (XML Schema). We define two data type compatibility techniques:

name and derivation compatibility. Name compatibility means that both parame-

ters have the same type. A parameter p1 is compatible by derivation with p2 if p1’s

data type (e.g., long) is a super-type of p2’s (e.g., integer).

The definition of DT-Composabilty depends on the composition type and oper-

ations’ modes. We distinguish the following four cases:

1. The composition is vertical and Modeik = “In/Out”: Inik is “plugged” with

Injl and Outjl is “plugged” with Outik (Figure 4.3-(a)). The data type of

each parameter in Injl (Outik) should be compatible with the data type of a

corresponding parameter in Inik (Outjl).

2. The composition is vertical and Modeik = “Out/In”: Outik is “plugged” with

Injl and Outjl is “plugged” with Inik (Figure 4.3-(b)). The data type of each

parameter in Injl (resp. Inik) should be compatible with the data type of a

corresponding parameter in Outik (Outjl).

3. The composition is horizontal and Modeik = “In/Out”: in this case, Inik and

Outik are “plugged” with Injl (Figure 4.2-(a)). The data type of each pa-

rameter in Injl should be compatible with the data type of a corresponding

parameter in Inik or Outik.

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 129

4. The composition is horizontal and Modeik = ‘Out/In”: As illustrated in Fig-

ure 4.2-(b)), this case is similar to case (3).

Based on the discussion above, it is clear that DT-Composability is not symmet-

ric. We give below the formal definition of this rule:

Definition 4.10 – An operation opik is DT-composable with opjl if one of the

following three conditions is true:

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Inik | p’ is data type compatible with p, and (iv) ∀ p ∈ Outik ∃ p’ ∈ Outjl | p’
is data type compatible with p.

2. (i) the composition is vertical, (ii) Modeik = “Out/In”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Outik | p’ is data type compatible with p, and (iv) ∀ p ∈ Inik ∃ p’ ∈ Outjl | p’
is data type compatible with p.

3. (i) the composition is horizontal and (ii) ∀ p ∈ Injl ∃ p’ ∈ Inik ∪ Outik | p’ is

data type compatible with p. ♦

The remaining three rules compare parameters’ business role, language, and unit

respectively. These rules as defined similarly to DT-composability, except that the

data type is replaced by business role, language, or unit, respectively. We give below

the rules definitions:

Definition 4.11 – The business role of opik is composable with opjl’s if one of the

following three conditions is true:

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Inik | role(p’) = role(p), and (iv) ∀ p ∈ Outik ∃ p’ ∈ Outjl | role(p’) = role(p).

2. (i) the composition is vertical, (ii) Modeik = “Out/In”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Outik | role(p’) = role(p), and (iv) ∀ p ∈ Inik ∃ p’ ∈ Outjl | role(p’) = role(p).

3. (i) the composition is horizontal and (ii) ∀ p ∈ Injl ∃ p’ ∈ Inik ∪ Outik |
role(p’) = role(p). ♦

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 130

Definition 4.12 – The language of opik is composable with opjl’s if one of the

following three conditions is true:

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) ∀ p ∈ Injl ∃ p’

∈ Inik | language(p’) = language(p), and (iv) ∀ p ∈ Outik ∃ p’ ∈ Outjl |
language(p’) = language(p).

2. (i) the composition is vertical, (ii) Modeik = “Out/In”, (iii) ∀ p ∈ Injl ∃ p’

∈ Outik | language(p’) = language(p), and (iv) ∀ p ∈ Inik ∃ p’ ∈ Outjl |
language(p’) = language(p).

3. (i) the composition is horizontal and (ii) ∀ p ∈ Injl ∃ p’ ∈ Inik ∪ Outik |
language(p’) = language(p). ♦

Definition 4.13 – The unit of opik is composable with opjl’s if one of the following

three conditions is true:

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Inik | unit(p’) = unit(p), and (iv) ∀ p ∈ Outik ∃ p’ ∈ Outjl | unit(p’) = unit(p).

2. (i) the composition is vertical, (ii) Modeik = “Out/In”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Outik | unit(p’) = unit(p), and (iv) ∀ p ∈ Inik ∃ p’ ∈ Outjl | unit(p’) = unit(p).

3. (i) the composition is horizontal and (ii) ∀ p ∈ Injl ∃ p’ ∈ Inik ∪ Outik |
unit(p’) = unit(p). ♦

Based on the previous definitions for static semantic composability at the mes-

sage granularity, we define the notion of composability between message parameters.

Let p1 and p2 be two message parameters. We say that p1 is composable with p2

if (i) p1 is DT-composable with p2, (ii) p1’s and p2’s roles, languages, and units are

composable. We also define a rule, called message composability, that compares the

static semantic attributes of source and target operations’ messages.

Definition 4.14 – An operation opik is message composable with opjl if one of the

following three conditions is true:

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 131

1. (i) the composition is vertical, (ii) Modeik = “In/Out”, (iii) ∀ p ∈ Injl ∃ p’ ∈
Inik | p’ is data type compatible with p, role(p’) = role(p), language(p’) = lan-

guage(p), unit(p’) = unit(p), and (iv) ∀ p ∈ Outik ∃ p’ ∈ Outjl | p’ is

data type compatible with p, role(p’) = role(p), language(p’) = language(p),

unit(p’) = unit(p).

2. (i) the composition is vertical, (ii) Modeik = “Out/In”, (iii) ∀ p ∈ Injl

∃ p’ ∈ Outik | p’ is data type compatible with p, role(p’) = role(p), lan-

guage(p’) = language(p), unit(p’) = unit(p), and (iv) ∀ p ∈ Inik ∃ p’ ∈ Outjl | p’
is data type compatible with p, role(p’) = role(p), language(p’) = language(p),

unit(p’) = unit(p).

3. (i) the composition is horizontal and (ii) ∀ p ∈ Injl ∃ p’ ∈ Inik ∪ Outik | p’

is data type compatible with p, role(p’) = role(p), language(p’) = language(p),

unit(p’) = unit(p). ♦

4.4 Dynamic Semantic Composability

Behavioral composability (B-Composability) compares the business logic rules of

source and target operations. Let us consider two rules Rn
ik =(PreCn

ik,PostCn
ik) and

Rm
jl =(PreCm

jl ,PostCm
jl) that belong to opi and opj respectively. B-composability

relates PreCn
ik to PreCm

jl and PostCn
ik to PostCm

jl . We define several forms of

B-composability depending on the relationships between post- and pre-conditions.

Each form is an instantiation of the general form of B-composability, called generic

B-composability, given below. The relations R1 and R2 relate preconditions and

postconditions, respectively, but need not be the same. They are either equivalence

(⇔), implication (⇒), or nil (meaning that the corresponding term is dropped). In

some cases, we may want to include some information about the postcondition in

the precondition clause. To allow this flexibility, we let ˜PreCikn be either PreCn
ik

or PreCn
ik ∧ PostCn

ik in the generic B-composability rule.

Definition 4.15 – We say that opik is Generically B-composable with opjl if:

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 132

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) |
(˜PreC ikn R1 PreCm

jl) ∧ (PostCm
jl R2 PostCn

ik)

where: R1, R2 ∈ {⇔, ⇒, nil} and

(˜PreCikn = PreCn
ik) or (˜PreC ikn = PreCn

ik ∧ PostCn
ik) ♦

�������

���	����

����
��

���	�
 ��

�
�� �

 �

��� ����	 �����
�������	� ��� ������ �����
�������	�

��� ������ ���	��	��
�����
�������	�

��� ����	 ���	��	��
�����
�������	�

�������

���	����

����
 ��

���	�
 ��

�
�� �

 �

�������

���	����

����
 ��

���	�
 ��

�
�� �

 �

 �� �������

���	����

����
 ��

���	�
��

�
�� �

 �

 ��

��� ������ �����	��
�����
�������	�

�������

���	����

����
 ��

���	�
 ��

�
��
�

 �

 ��

Figure 4.5: B-Composability Rules

Figure 4.5 depicts the different forms of B-Composability rules, beginning with

the strongest rule and weakening the rule by relaxing the relations R1 and R2

from ⇔ to ⇒, and nil. We also vary ˜PreCikn from PreCn
ik to PreCn

ik ∧ PostCn
ik.

Relaxing the B-composability rule allows making comparison between less closely

related operations, but weakens the guarantees about the relationship between the

two operations.

Exact B-Composability – Exact B-composability instantiates both R1 and R2 to

⇔ and ˜PreCikn to PreCn
ik. If exact B-composability holds for two operations, then

they are behaviorally equivalent and thus completely interchangeable. Whenever one

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 133

operation is used, it could be replaced by the other with no change in observable

behavior. As depicted in Figure 4.5.a, this rule is suitable for vertical composition

since opik and opjl are in their active state simultaneously. The condition for exact

B-composability can be expressed as follows:

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) |
(PreCn

ik ⇔ PreCm
jl) ∧ (PostCm

jl ⇔ PostCn
ik)

Plugin B-Composability – Plugin B-composability relaxes both R1 and R2 from

⇔ to ⇒. It also instantiates ˜PreCikn to PreCn
ik. The rule Rn

ik is matched by any

rule Rm
jl whose precondition is weaker to allow at least all of the conditions that

Rn
ik allows. The post-condition of Rm

jl is stronger than Rn
ik’s to provide a guarantee

at least as strong as Rn
ik’s. As depicted in Figure 4.5.b, this rule is suitable for

vertical composition since opik and opjl are in their active state simultaneously. The

condition for Plugin B-composability is given below:

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) |
(PreCn

ik ⇒ PreCm
jl) ∧ (PostCm

jl ⇒ PostCn
ik)

Let us now show that if opjl is “plugged in” opi, then the business logic of opj

according to Rn
ik is preserved. If PreCn

ik holds then PreCm
jl holds because of the

first conjunct of Plugin B-composability. Since PreCm
jl ⇒ PostCm

jl by definition, we

can assume that PostCm
jl will hold after executing the “plugged-in” opjl. Finally,

since PostCm
jl ⇒ PostCn

ik from the second conjunct of B-composability, PostCn
ik

must hold. We say that opi is behaviorally equivalent to opj, since we can plug in

opj for opi and have the same observable behavior. Note, however, that this is not

a true equivalence because it is not symmetric; we cannot necessarily plugin opi for

opj and get the same guarantees.

Exact Postmatch B-Composability – In some cases, composers are concerned

only with the effects of operations. For example, a composer may be interested

in an operation that provides a social benefit independently of any precondition

of that operation. Thus, a useful relaxation of the exact B-composability is to

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 134

consider only the postcondition part of the conjunction. Exact postmatch is also an

instance of the generic B-composability, with R2 instantiated to ⇔ and dropping

both ˜PreC ikn and PreCm
jl (Figure 4.5, case (c)). Since only equivalence relationship

is used, the exact Postmatch is symmetric. Because opikand opjl are in their active

state simultaneously (Figure 4.5.c), this rule is suitable for vertical composition.

The condition for exact Postmatch B-composability is defined as follows:

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) | PostCm
jl ⇔ PostCn

ik

Plugin Postmatch B-Composability – Plugin Postmatch is a relaxation of ex-

act Postmatch where the relationship between postconditions is equal to ⇒. Thus,

Plugin Postmatch is an instance of the generic B-composability, with R1 and R2

instantiated to nil and ⇒ respectively (Figure 4.5, case (d)). In contrast to exact

Postmatch, Plugin Postmatch is asymmetric because of the use of implication be-

tween postconditions. As stated in Figure 4.5.d, this rule is suitable for vertical

composition since opik and opjl are in their active state simultaneously. We give

below the condition for Plugin Postmatch B-composability:

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) | PostCm
jl ⇒ PostCn

ik

Plugin Prematch B-Composability – Plugin Prematch includes information

about opi’s postcondition in the precondition and drops the relationship between

postconditions. This is particularly useful to check horizontal composability that

is, whether the execution of opi can be followed by the execution of opj. Since

opi is executed (according to Rn
ik) before opj, PreCn

ik and PostCkl are by defi-

nition true. In order for opj to be executable according to Rm
jl , its precondition

PreCm
jl should be true. One way to ensure this is to check that the implication

PreCn
ik ∧ PostCn

ik) ⇒ PreCm
jl is true. Note that Plugin Prematch is asymmetric

because of the implication relationship. Figure 4.5.e shows that opik and opjl enter

their active states sequentially (Activeik −→t Activejl). Hence, this rule is used for

horizontal composition. As defined below, plugin prematch is an instantiation of

generic B-composability where R1 is instantiated to ⇒, R2 to nil, and ˜PreC ikn to

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 135

PreCn
ik ∧ PostCn

ik:

∀ Rn
ik ∈ Rules(opik) ∃ Rm

jl ∈ Rules(opjl) | (PreCn
ik ∧ PostCn

ik) ⇒ PreCm
jl

Table 4.2 summarizes the way R1, R2, and ˜PreCikn are instantiated for each of

the B-composability rule. For example, for Plugin B-composability, R1 and R2 are

both ⇒ and ˜PreCikn is PreCn
ik. The last column shows that Plugin Prematch is

suitable for horizontal composition while the other rules are applicable for vertical

composition.

Rule R1 R2 P̃ reCikn
Symmetry Composition

Exact ⇔ ⇔ PreCn
ik Yes Vertical

Plugin ⇒ ⇒ PreCn
ik No Vertical

Exact Postmatch Nil ⇔ PreCn
ik Yes Vertical

Plugin Postmatch Nil ⇒ PreCn
ik No Vertical

Plugin Prematch ⇒ Nil PreCn
ik ∧ PostCn

ik No Horizontal

Table 4.2: Instantiations of Generic B-Composability

B-composability rules are related according to the graph depicted in Figure 4.6.

An arrow from a B-composability rule BR1 to BR2 indicates that BR1 is stronger

than BR2, that is, if opik is composable with opjl according to BR1, then it is it is

also composable with opjl according to BR2. For example, Exact⇒ Plugin⇒ Plugin

Prematch.

4.5 Qualitative Composability

Composers have generally preferences regarding the quality of operations they would

like to compose. For that purpose, we define a set of composability rules, called qual-

itative rules, to compare qualitative features of interacting operations. Assume that

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 136

�����
��������	

�
��
�
��������	

�
��
�
�������	

�
��
�

�����

Figure 4.6: Relationships Between B-Composability Rules

opik and opjl are vertically composed. Since opik “subcontracts” opjl, it is important

to make sure that opjl’s quality is at least “similar” to opik’s quality. However, if

opik and opjl are horizontally composed, then their quality are independent. Hence,

qualitative rules are applicable for vertical composition.

Each rule compares the content of a given qualitative attribute (noted Q-

attribute) in opik and opjl. Each rule has the general form R(Q-attributeik,Q-

attributejl) where R is a relationship between Q-attributeik to Q-attributejl (e.g.,

=, ⊆, ≤, ≥). The definition of R differs from one rule to another. The first qual-

itative rule compares the encryption attribute. It guarantees that either both opik

and opjl encrypt their messages or none of them does. Authentication and Non-

repudiation attributes are compared in the same way. The last security-related rule

compares the confidentiality attribute. The privacy preferences of opik should be

preserved by the privacy features exposed by opjl. If opik’s provider does not want

a parameter p to be divulged (i.e., p ∈ confidentialityik) then p should also belong to

confidentialityjl. We summarize below the subset of qualitative rules dealing with

security attributes:

Definition 4.16 – We say that the security attributes of opik are composable with

opjl’s security attributes if (i) Encryptionik = Encryptionjl; and (ii) Authenticationik

= Authenticationjl; and (iii) Non-repudiationik = Non-repudiationjl; and (iv)

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 137

Privacyik ⊆ Privacyjl. ♦

The second subset of qualitative rules compare opik’s and opjl’s business at-

tributes (cost, reputation, and regulatory). Since opik subcontracts from opjl, then

the cost of executing opjl should at most be equal to opik. Similarly, the ranking of

opjl in terms of its reputation and regulatory features should be at least as good as

opik’s ranking. The following definition describes the composability rules related to

business attributes:

Definition 4.17 – We say that the business attributes of opik are composable

with opjl’s business attributes if: (i) Costik ≥ Costjl; and (ii) Reputationik ≥
Reputationjl; and (iii) Regulatoryik ≥ Regulatoryjl. ♦

The last subset of qualitative rules compare run-time attributes: response time,

reliability, and availability. The time to executed a subcontracted operation opjl

should be less or equal to the response time expected expected by opik. Additionally,

opjl should be at least as reliable and available than opik. Below is the definition of

run-time related composability rules:

Definition 4.18 – We say that the run-time attributes of opik are composable with

opjl’s run-time attributes if (i) Timeik ≥ Timejl; and (ii) Reliabilityik ≤ Reliabilityjl;

and (iii) Availabilityik ≤ Availabilityjl. ♦

4.6 Business Process Composability

Service composition involves combining a set of generic operations in a specific way.

One important issue to consider is whether such combination provides an added

value. To address this issue, we define a rule, called composition soundness, to

check whether a given composition of generic operations is sound. By sound, we

mean that the way operations are combined provides an added value.

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 138

����������	
�� �
	����	���
�

�	

���������
����	
 ������	������

Figure 4.7: Example of Composition Template

4.6.1 Composition and Stored Templates

The definition of composition soundness is based on the notions of composition and

stored templates defined below. A composition template is built for each compos-

ite service CS and gives its general structure. It is modeled by a directed graph

(V, E) where V is a set of generic operation IDs (G-op-IDs) and E is a set of edges.

If an operation op is vertically composed with another operation op’ in CS, then

op and op’ represent the same node in V since the execution of op is “replaced”

by the execution of op’. Edges in E model horizontal composition relationships

between E’s operations. An edge (opik, opjl) belongs to E if opik is horizontally

composed with opjl. Figure 4.7 shows an example of composition template for

a composite service CS that collects social benefits for senior citizens. CS uses

four operations lookupSACenter, findTransportation, loookupMealsProviders,

and mealsOnWheels. CS first looks for senior activity center. Then, based on

the location of that center, it provides for transportation from citizen’s residence

to the center. It also looks for a participant restaurant around the center and

then, arranges for a delivery from the restaurant to center location. The template

shows that lookupSACenter is horizontally composed with findTransportation

and loookupMealsProviders. The loookupMealsProviders operation is horizon-

tally composed with mealsOnWheels.

Stored templates are defined by directed graphs similar to those used for com-

position templates. The difference between stored and composition templates is

twofold. First, stored templates are saved in a stored template repository (ST-

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 139

����������	
�� �
	����	���
�

�	

���������
����	
 ������	������

���
�
���	����	��

���
�
�������
�

Figure 4.8: Example of Stored Template

repository) while composition are computed for each composite service and then

discarded. Second, the interpretation given to composition and stored templates

are different. Composition templates model actual composite services as defined

by users. Hence they may or may not provide added values. Stored template

model “potential” composite services. They are generally pre-defined by domain

experts (i.e, community providers). Hence, they inherently provide added values.

For example, government agencies dealing with social services would agree that one

composite service that collects benefits for senior citizens would combine the follow-

ing operations: lookupSACenter, findTransportation, loookupMealsProviders,

mealsOnWheels, registerInsurance, and registerLegalAid (Figure 4.8). Stored

templates may also be “learned” by the system. Each time a composite service is

defined by a user, the system saves the corresponding composition template in the

ST-repository if the template does not already exist in the repository.

4.6.2 Composition Soundness

Because stored templates intrinsically provide added values, they can prove or dis-

prove the soundness of a composite service CS. The idea is to compare the com-

position template of CS (template(CS)) with the existing stored templates. The

following four cases are then possible:

1. Case 1: If template(CS) is equal to a given stored template ST, then CS

provides exactly the same functionalities as the functionalities modeled by ST.

B. Medjahed Chapter 4. A Composability Model for Semantic Web Services 140

We say that CS is exactly sound with respect to ST.

2. Case 2: If template(CS) is a subgraph of a given stored template ST, then CS

provides a subset of the functionalities modeled by ST. For example, the com-

position template depicted in Figure 4.7 is a subgraph of the stored templates

depicted in Figure 4.8. We say that CS is loosely sound with respect to ST.

3. Case 3: If a given stored template ST is a subgraph of template(CS), then CS

provides all the functionalities modeled by ST. CS also provides functionalities

not offered by ST. We say that CS is strongly sound with respect to ST.

4. Case 4: If none of the previous cases is possible, then CS is not sound.

We give below the definition of composition soundness rules.

Definition 4.19 – Let CS be a composite service. We define three composition

soundness rules as follows:

• CS is exactly sound if ∃ ST ∈ ST-repository | template(CS) = ST.

• CS is loosely sound if ∃ ST ∈ ST-repository | template(CS) ⊂ ST.

• CS is strongly sound if ∃ ST ∈ ST-repository | template(CS) ⊃ ST. ♦

Chapter 5

Automatic Composition of

Semantic Web Services

The automatic composition of Web services is a recent trend to unburden com-

posers from the complexity of the composition process (e.g., checking composabil-

ity, orchestrating Web services) [12, 74]. It is slated to play a major role in en-

abling the envisioned Semantic Web Services paradigm [133]. In this chapter, we

present a Semantic Web centered approach for the automatic composition of Web

services [80, 82]. The proposed approach builds on the semantic description frame-

work and composability model described in chapters 3 and 4 respectively. It consists

of three conceptually separate phases (Figure 5.1): specification, matchmaking, and

generation.

The specification phase (phase 1) enables high-level descriptions of composition

requests. For that purpose, we define a Composition Specification Language (CSL).

CSL extends UML activity diagrams [56] with an ontological description of the com-

position request. Using CSL, composers specify the what part of the desired compo-

sition but will not concern themselves with the how part. They are not required to

be aware of the full technical details such as the list of participant services and the

way they are executed and plugged together. The matchmaking phase (phase 2) uses

the composability model to generate composition plans that conform to composers’

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 142

specifications. One or several composition plans are generated for each composer’s

sub-request. By composition plan, we refer to the list of imported operations to

be outsourced, their orchestration order, and the way they interact with each other

(plugging operations, mapping messages, etc.) to “realize” the corresponding sub-

request. In the generation phase (phase 3), detailed descriptions of the composite

service are generated. We propose a Quality of Composition (QoC) model to assess

the quality of the generated descriptions.

���� �����
���	
����
�
� ���

����
�� 	
��
��� �
�

��� ��
� �	�
������
���

���
�
��	�� �
��������
� ���
���	
����
��
� ��� ��
� �	��

�������� ! "#
$�%&!

$�"'(��) *+
, !+�- "(��

������ " �*
.!�*�

/�&' 0 '�" �* 1&*&-�" �*
2�3 ���	�� �	�� �
�

�/ 4
4�*+5�+&

6

	����
�� �
� 7
���	
��� �
� 7 �

����8

9-'(&�"-�" �*

������ "&
/&-: '&

;5�! "# �0
������ " �* <;��=

.�-��&"&-�

������ " �* .!�*
���"

Figure 5.1: Overview of the Proposed Approach for Service Composition

This chapter is organized as follows. In Section 5.1, we define the model and

techniques used for the specification of composition requests. In Section 5.2, we pro-

pose a set of algorithms for checking composability and the automatic generation of

composition plans. In Section 5.3, we illustrate the process of generating composite

service descriptions.

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 143

5.1 Specification of Composition Requests

The specification of a composition request requires dealing with two major issues:

orchestration and description. A composer’s request generally includes one or sev-

eral sub-requests. For example, the request “visit a senior activity center” includes

several sub-requests such as “lookup for senior activity center” and “set appoint-

ment with a senior activity center”. The sub-requests should be executed in a

specific order and if certain conditions are true (e.g., look for senior activity center

then set up an appointment). Such order and conditions are specified through an

orchestration model. Additionally, the automatic generation of composite services

requires a clear and unambiguous description of the request and its sub-requests.

For example, the composition engine should understand what “lookup for senior

activity center” means. In this section, we define a language, called Composition

Specification Language (CSL), for the specification of composition requests.

5.1.1 Orchestration Model

We define two types of orchestration in our approach: composer-defined and system-

generated orchestration. Composer-defined is provided by the composer in the spec-

ification phase. It gives the execution order of the composition sub-requests. We

refer to it as inter-subrequest orchestration since it represents the orchestration of

sub-requests. System-generated orchestration is automatically generated by the com-

position engine. It gives the execution order of the participant services outsourced

for each sub-request. We refer to it as intra-subrequest orchestration since it repre-

sents the orchestration within sub-requests. The orchestration model presented in

this section deals with the first type. Details about system-generated orchestration

are given in Section 5.2.

Several orchestration models have been proposed in the literature such as UML

activity diagrams, Petri-nets, statecharts, and π-calculus. In our approach, we adopt

UML activity diagrams as an orchestration model [56]. Activity diagrams are the

most widely used process modeling techniques both in conventional interaction tech-

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 144

nologies (e.g., workflows) and Web services [5]. The reason for their success is their

ease-of-use and simplicity for modeling business processes. Several tools (e.g., Ra-

tional Rose) are available for designing business processes using activity diagrams.

Additionally, the Unified Modeling Language (UML) has become the de facto stan-

dard for representing application architectures and design models. Finally, activity

diagrams model orchestrations by specifying which actions should be performed,

from the beginning of the execution to the end. This seems to be the most natural

way in which users think of a process and developers code their applications [5].

������ ��� ��	
��
��

�

� ��	
��

��������
���	����
�

�	

��
 ��
�
	�
�
���

�	�

��	� ��

��
�
�

��	 �

� �
���

�	

��	� ��

��
�
�

��	 �

� ��������

��� �!
"#$�%

&!'�()
*+',-'.-�

����

����

/����

/����

Figure 5.2: Modeling Composition Request through Activity Diagrams

Activity diagrams show the flow of activities in a business process. In our ap-

proach, each activity represents a composition sub-request. A sub-request is modeled

as a capsule (i.e., as a rectangle with rounded corners) with the sub-request name

enclosed. We depict in Figure 5.2, an example of orchestration for a composition

request within our e-government scenario. The case officer specify the composition

request that is, “organizing a visit to a senior activity center” through an activity

diagram. The filled circle is the starting point of the diagram. The filled circle with

a border is the ending point. The composition request includes five sub-requests

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 145

(e.g., schedule transportation). The case officer has also the possibility to indi-

cate that one sub-request conditionally follows another. For example, the diamond

labeled “Trans. Available” tests whether a government-funded transportation is

available. In this case, a notification should be sent to the citizen with schedule.

Otherwise, the case officer performs a get driving directions from the citizen’s

home to the activity center location. Activity diagrams may also model parallelism

via fork and join constructs. A fork is represented by a black bar with one flow

going into it and several leaving it. It denotes the beginning of parallel processing.

A join is depicted by a black bar with several flows entering it and one leaving it.

It denotes the end of parallel processing.

����������� 	��

������
 �� ����

Figure 5.3: Composition Request with one Single Sub-request

A composition request specification may consist of only one sub-request. For

example, Figure 5.3 depicts a composition request that “provides translation from

English to Urdu”. The request contains one sub-request label translation from

English to Urdu. It is important to note that, during the composite service gen-

eration process, each sub-request may be mapped to a set of Web service operations

combined in a specific way. For example, the translation from English to Urdu

sub-request would be mapped to the combination of Web service operations in the

following order: English-French → French-Chinese → Chinese-Urdu.

5.1.2 Describing Composition Sub-Requests

Activity diagrams enable the specification of the execution order of the composition

sub-requests. They provide no means for describing sub-requests. Such description

concerns both syntactic and semantic features. To deal with this issue, we define an

ontology for sub-requests called sub-request ontology. All sub-requests are described

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 146

according to this ontology. Since a sub-request is meant to be mapped to one or

several generic operations, we adopt the ontology defined for generic operations

(Figure 3.3). Each sub-request is hence described by syntactic, static semantic,

dynamic semantic, and qualitative attributes.

<request>

<name> </name>

<description> </description>

<Parameters> <Parameters>

<subRequest>

<syntax> </syntax>

<staticSemantics> </staticSemantics>

<dynamicSemantics> </dynamicSemantics>

<quality> </quality>

</subRequest>

.......

</request>

Figure 5.4: Description of a Composition Request in CSL

The ontology-based description of a request and its sub-requests produces an

XML document. We give in Figure 5.4 the general form of this document. For

the sake of clarity, we omit references to XML namespaces. The top element

(<request>) contains the name of the request (<name> element), a text description

(<description>) of the request, a <parameters> element, and several <subRequest>

elements. The <parameters> element gives the input and output parameters used by

composition sub-requests. Similarly to profile inputs, sub-request parameters (input

and output) may be defined according to a specific taxonomy. The <subRequest>

element contains six sub-elements. The first sub-element (<syntax>) includes syn-

tactic attributes. The binding of a sub-request is similar to the binding of the compo-

sition request defined in the composer profile. The sub-elements <staticSemantics>

and <dynamicSemantics> describe the static and dynamic semantics of the sub-

request. The dynamic semantics of sub-request is limited to behavioral attributes.

Pre-operations and post-operations represent pre-defined business processes given by

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 147

community providers and are hence specific to generic operations. The <quality>

sub-elements contains qualitative attributes of the sub-request. The <input> and

<output> sub-elements describe the input and output parameters required by the

sub-request. A sub-request may use as input/output, the parameters defined

within the composer profile. It may also use the parameters defined within the

<parameters> element. In both cases, the <input> and <output> sub-elements

contain references to the parameters’ names.

5.1.3 Customization via Composer Profiles

Customization is a key requirement of the automatic composition of Web services.

Composers must be able to personalize the composition process according to their

preferences. Such preferences make up the composer’s profile. The general form of

the profile definition construct is given below:

Define Profile

Levels Assign <vector> To LW

Rules Assign <matrix> To RW

Degree Assign <value> To <τ -composability>

Binding Assign <value> To <binding>

Plans Assign <value> To <max-plans>

Input [<parameter>]+

As part of their profile definition, composers assign values to the level weights

vector (LW) and rule weights matrix (RW). They also provide the τ -composability

threshold and binding protocols supported by their composite services. Addition-

ally, they give the maximum number of composition plans to be generated for each

composition sub-request. They finally provide a list of input parameters (e.g., cit-

izen’s name, address) to be used during the execution of the generated composite

service. Each parameter is defined by its name, data type, unit, business role, and

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 148

language (Section 3.2). To facilitate the definition of such parameters, composers

may use pre-defined parameters defined in any existing taxonomy. An example of

such taxonomy is the RosettaNet Technical Dictionary. This dictionary contains

properties that can be used to describe characteristics of a product or service [33].

5.2 Outsourcing Web Services in the Matchmak-

ing Phase

Once a CSL specification (i.e., orchestration, profile, and description) is provided,

the next step is to generate composition plans relevant to each sub-request using

matchmaking algorithms. The general premise of such algorithms is to consider

each sub-request as an “abstract” operation. Abstract operation would then be

vertically composed with one or a combination of generic operations. Each vertical

composition returns a set of composition plans. Let n be the number of sub-requests

and Nb CP(r) be the number of plans generated for the rth sub-request. The number

of plans generated for the whole composition request would be
∑n

r=1 Nb CP (r).

(00) Matchmaking(Profile) {
(01) for each sub-request SRp do {
(02) Vert Comp1:1(SRp, Registry, Plans1:1[p], Profile, nb plans);
(03) if nb plans ≤ Profile.max plans
(04) then Vert Comp1:N(SRp, Registry, Plans1:n[p], Profile, nb plans);
(05) } }

Figure 5.5: Main Matchmaking Algorithm

The generation of composition plans is based on checking composability rules

between each sub-request and the imported operations. The main matchmaking

algorithm is depicted in Figure 5.5. For each sub-request, the algorithm first tries to

vertically compose it with one generic operation. We refer to such composition as a

one-to-one (1:1) composition. Each entry Plans1:1[p] contains the list of composition

plans generated for sub-request SRp. If the number of generated plans is less or equal

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 149

to the maximum number of plan per request, then the algorithm tries to vertically

compose the sub-request with a combination of generic operations. We refer to such

composition as a one-to-many (1:N) composition.

5.2.1 One-to-One Vertical Composition

We propose three algorithms for performing 1:1 vertical composition. The first

algorithm is operation-centric. It compares each sub-request SR with all operations

in the registry. The second algorithm is community-centric. It compares each sub-

request SR with the imported operations opik of each relevant community Ci. The

third algorithm adopts a message-centric approach for checking composability. It

compares the vertical composability of SR’s message with the messages in Ci and

then determines the imported operations with which SR is composable.

5.2.1.1 Operation-Centric Matchmaking Algorithm

The operation-centric algorithm for 1:1 vertical composition uses operations as a

basis for checking composability. It performs an exhaustive search in the service

registry. For that purpose, it browses the registry to determine all operations that

could “replace” each sub-request SR (Figure 5.6). The algorithm checks the vertical

composability of SR with every operation opik in the registry. Syntactic and static

semantic (at the operation level) composability are checked as illustrated in Chap-

ter 4. Static semantic composability at the message level is checked by comparing

SR’s input and output parameters with the input and output parameters of opik.

The composability degree is computed after checking each group of composability

rules. If the degree is greater or equal to τ -composability (specified in the composer

profile), then opik is a potential candidate to “replace” SR. In this case, opik is added

to the set of SR’s composition plans.

The operation-centric algorithm uses two procedures for checking syntactic and

static semantic composability (at the operation level). We give in Figure 5.7 the

algorithms executed by these procedures. A rule is checked if the corresponding

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 150

(00) Operation1:1(SR, Registry, Plans1:1, Profile, nb plans) {
(01) nb plans = 0
(02) degree = 0
(03) Plans1:1 = ∅
(04) for each operation opik ∈ Registry | (nb plans < Profile.max plans) do {
(05) syntactic vertical(SR, opik, degree)
(06) if degree > Profile.τ -composability
(07) then { Plans1:1 = Plans1:1 ∪ {opik}
(08) nb plans = nb plans + 1
(09) continue }
(10) static semantics vertical(SR, opik, degree)
(11) if degree > Profile.τ -composability
(12) then { Plans1:1 = Plans1:1 ∪ {opik}
(13) nb plans = nb plans + 1
(14) continue }
(15) message vertical(SR, opik, degree)
(16) if degree > Profile.τ -composability
(17) then { Plans1:1 = Plans1:1 ∪ {opik}
(18) nb plans = nb plans + 1
(19) continue }
(20) behavioral(SR, opik, degree)
(21) if degree > Profile.τ -composability
(22) then { Plans1:1 = Plans1:1 ∪ {opik}
(23) nb plans = nb plans + 1
(24) continue }
(25) } }

Figure 5.6: Operation-Centric Algorithm for 1:1 Vertical Composition

weight (assigned by the composer) is positive. For that purpose, we use a function

get weightR(CR) that returns the weight of the current rule CR from the RW ma-

trix. We also use a function get weightL(CL) that returns the weight of the current

level CL from the LW vector. The Static semantics vertical procedure uses two pro-

cedures composable(categoryik,categoryjl) and composable(purposeik,purposejl) that

check the conditions specified in Definition 4.7 and 4.8, respectively.

The message vertical() procedure checks that SR is message composable with

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 151

(00) Syntactic vertical(opik,opjl,degree) {
(01) d = 0
(02) if get weightR(CR) > 0 and modeik = “In/Out”
(03) then d = d + get weightR(CR);
(04) if get weightR(CR) > 0 and Bindingik ∩ Bindingjl 6= ∅
(05) then d = d + get weightR(CR);
(06) if get weightR(CR) > 0 and modeik = “In/Out” and

(07) |Injl| ≤ |Inik| and |Outik| ≤ |Outjl|
(08) then d = d + get weightR(CR);
(09) if get weightR(CR) > 0 and modeik = “Out/In” and

(10) |Injl| ≤ |Outik| and |Inik| ≤ |Outjl|
(11) then d = d + get weightR(CR);
(12) degree = degree + d × get weightL(CL);
(13) }

(00) Static semantics vertical(opik,opjl,degree) {
(01) d = 0
(02) if get weightR(CR) > 0 and serviceabilityik = serviceabilityjl

(03) then d = d + get weightR(CR);
(04) if get weightR(CR) > 0 and providerik ∩ providerjl 6= ∅ and

(05) consumerik ∩ consumerjl 6= ∅
(06) then d = d + get weightR(CR);
(07) if get weightR(CR) > 0 and composable(categoryik,categoryjl)
(08) then d = d + get weightR(CR);
(09) if get weightR(CR) > 0 and composable(purposeik,purposejl)
(10) then d = d + get weightR(CR);
(11) degree = degree + d × get weightL(CL);
(12) }

Figure 5.7: Syntactic and Operation Semantic Composability

opik (Figure 5.8). It uses a function Is message composable(M1,M2) which returns

true or false depending on whether a message M1 is composable with M2. To allow

a one-to-one mapping between M1’s and M2’s parameters, we use the matched set.

A parameter p2l of M2 is inserted in this set, if we already found a parameter p1k of

M1 that is composable with p2l.

Behavioral composability (the behavioral procedure) compares SR’s business

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 152

(00) Message vertical(opik,opjl,degree) {
(01) if modeik = “In/Out” and Is message composable(Inik,Injl) and
(02) Is message composable(Outjl,Outik)
(03) then degree = degree + get weightL(CL);
(04) if modeik = “Out/In” and Is message composable(Outik,Injl) and
(05) Is message composable(Outjl,Inik)
(06) then degree = degree + get weightL(CL);
(07) }

(00) Is message composable(M1,M2):boolean {
(01) matched = ∅
(02) for each param p1k ∈ M1 do

(03) { found = false
(04) for each param p2l ∈ M2 | p2l 6∈ matched do

(05) if composable(p1k,p2l)
(06) then { found = true
(07) matched = matched ∪ {p2l}
(08) break }
(09) if ¬found then return false

(10) } /* for in line (03) *

(11) return true

(12) }
Figure 5.8: Message Composability

logic rules with opik’s. Since B-composability rules are hierarchically organized

(Figure 4.6), we adopt a bottom-up approach for checking these rules. Indeed, if

the Plugin Postmatch rule is not satisfied, then the Plugin rule is necessarily not

satisfied since Plugin ⇒ Plugin Postmatch. We present in Figure 5.9, the algorithm

executed for checking behavioral composability. The algorithm uses four functions

check plugin postmatch(), check plugin, check exact postmatch(), and check exact.

These functions return true if the corresponding B-composability rules are satis-

fied.

B-composability is based on proving implications between business logic rules’

conditions (pre- and post-conditions). However, proving expressions such as

Cond1 ⇒ Cond2 is a NP-complete problem [36, 110]. To deal with this issue we

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 153

(00) Behavioral(opik,opjl,degree) {
(01) d = 0;
(02) isPluginPost = check Plugin Postmatch(opik,opjl);
(03) if ¬isPluginPost
(04) then isPlugin = false

(05) else isPlugin = check Plugin(opik,opjl);
(06) isExactPost = check Exact Postmatch(opik,opjl);
(07) if ¬isPlugin or ¬isExactPost
(08) then isExact = false

(09) else isExact = check Exact(opik,opjl);
(10) if get weightR(CR) > 0 and isPluginPre
(11) then d = d + get weightR(CR);
(12) if get weightR(CR) > 0 and isPluginPost
(13) then d = d + get weightR(CR);
(14) if get weightR(CR) > 0 and isPlugin
(15) then d = d + get weightR(CR);
(16) if get weightR(CR) > 0 and isExactPost
(17) then d = d + get weightR(CR);
(18) if get weightR(CR) > 0 and isExact
(19) then d = d + get weightR(CR);
(20) degree = degree + degree × get weightL(CL);
(21) }

(00) Prover(Cond1,Cond2) :boolean {
(01) while true do

(02) if ∃ x1
1,...,x

1
n in Cond1 and x2

1,...,x
2
m in Cond2 | composable(x1

i ,x
2
j)

(03) then replace x1
1,...,x

1
n and x2

1,...,x
2
m by x2

1

(04) else break

(05) for each term t2p in Cond2 do

(06) if ∃ term t1q in Cond1 | t1q ⇒ t2p

(07) then return true

(08) else return false

(09) }
Figure 5.9: Behavioral Composability

define an approximate solution. The proposed solution is based on the assumption

that each condition is a conjunction of terms. Each term has the form x <r> v where

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 154

x is parameter, v is a constant value, and <r> is a relational operator that belongs

to {=, 6=,<,>,leq,≥}. The theorem prover first unifies the parameters in Cond1 and

Cond2. The unification step works as follows: if there are parameters x1
1,...,x

1
n in

Cond1 that are composable with parameters x2
1,...,x

2
m in Cond2, then replace x1

1,...,x
1
n

and x2
1,...,x

2
m by the same parameter name (say x2

1). The second step of the prover is

to match each term t2p of Cond2 with a term t1q in Cond1. We say that t2p matches

with t1q if t1q ⇒ t2p. Proving the matching between terms is done by applying one

of the inference rules for relational operators (Table 5.1, 5.2, 5.3, 5.4, 5.5, 5.6). If a

given term in Cond2 matches with no term in Cond1, then Cond1 ⇒ Cond2 is false.

If all terms in Cond2 are matched with a term in Cond1, then Cond1 ⇒ Cond2 is

false.

x > a ∧ a = b

x > b

x > a ∧ a > b

x > b

x > a

x ≥ a

x > a ∧ a ≥ b

x ≥ b

Table 5.1: Inference Rules for the “>” Operator

x ≥ a ∧ a = b

x ≥ b

x ≥ a ∧ a > b

x > b

x ≥ a ∧ a ≥ b

x ≥ b

Table 5.2: Inference Rules for the “≥” Operator

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 155

x < a ∧ a = b

x < b

x < a ∧ a < b

x < b

x < a

x ≤ a

x < a ∧ a ≤ b

x ≤ b

Table 5.3: Inference Rules for the “<” Operator

x ≤ a ∧ a = b

x ≤ b

x ≤ a ∧ a < b

x < b

x ≤ a ∧ a ≤ b

x ≤ b

Table 5.4: Inference Rules for the “≤” Operator

x 6= a ∧ a = b

x 6= b

Table 5.5: Inference Rules for the “ 6=” Operator

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 156

x = a ∧ a = b

x = b

x = a

x ≥ a

x = a

x ≤ a

x = a ∧ a < b

x < b

x = a ∧ a > b

x > b

x = a ∧ a ≤ b

x ≤ b

x = a ∧ a ≥ b

x ≥ b

Table 5.6: Inference Rules for the “=” Operator

5.2.1.2 Community-Centric Matchmaking Algorithm

The community-centric algorithm for 1:1 vertical composition uses communities as

a basis for selecting service operations. It browses “relevant” communities to deter-

mine all imported operations that could “replace” a sub-request SR (Figure 5.6).

To accelerate the search process, the algorithm focuses on communities Ci

whose category may be composed with SR’s category. The remaining communi-

ties and their imported operations are pruned from the service space. The algo-

rithm then checks the vertical composability of SR with every imported operation

opik in Ci. It considers imported operations instead of generic ones because im-

ported operation are the actual operations offered by community members. Ad-

ditionally, imported operations may change the description of generic operations

(e.g., removing input/output parameters). The algorithms for syntactic vertical(),

static semantics vertical(), message vertical(), and behavioral() procedures are simi-

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 157

(00) Vert Comp Operation1:1(SR, Registry, Plans1:1, Profile, nb plans) {
(01) nb plans = 0
(02) degree = 0
(03) Plans1:1 = ∅
(04) for each community Ci ∈ Registry | category composable vertical(Ci, SR)
(05) and (nb plans < Profile.max plans) do
(06) for each imp. operation opik ∈ Ci | (nb plans < Profile.max plans) do {
(07) syntactic vertical(SR, opik, degree)
(08) if degree > Profile.τ -composability
(09) then { Plans1:1 = Plans1:1 ∪ {opik}
(10) nb plans = nb plans + 1
(11) continue }
(12) static semantics vertical(SR, opik, degree)
(13) if degree > Profile.τ -composability
(14) then { Plans1:1 = Plans1:1 ∪ {opik}
(15) nb plans = nb plans + 1
(16) continue }
(17) message vertical(SR, opik, degree)
(18) if degree > Profile.τ -composability
(19) then { Plans1:1 = Plans1:1 ∪ {opik}
(20) nb plans = nb plans + 1
(21) continue }
(22) behavioral(SR, opik, degree)
(23) if degree > Profile.τ -composability
(24) then { Plans1:1 = Plans1:1 ∪ {opik}
(25) nb plans = nb plans + 1
(26) continue }
(27) } }

Figure 5.10: Community-Centric Algorithm for 1:1 Vertical Composition

lar to those presented in the operation-centric algorithm. Similarly to the operation-

centric algorithm, the composability degree is computed after each composability

rule. If the degree is greater or equal to τ -composability, then opik is a potential

candidate to “replace” SR.

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 158

5.2.1.3 Message-Centric Matchmaking Algorithm

The main characteristic of the community-centric algorithm is that it compares

sub-requests with all operations in the community to generate composition plans.

However, message parameters in different operations may be “similar” (in terms

of composability rules) and hence do not have to be compared for each operation.

The message-centric algorithm approaches the matchmaking problem from another

perspective. It checks the composability of messages instead of operations and then

derives the operations that could be vertically composed with a sub-request.

The design of the message-centric matchmaking algorithm raises two important

issues: (i) how should community messages be modeled (ii) how can outsourced

operations be deduced from messages. To deal with these issues we use the concept

of finite automaton [118]. A finite automaton has several parts including a set of

states and rules or transitions for going from one state to another, depending on

the input symbol. It also has an input alphabet that indicates the allowed input

symbols. It finally has a start state and a set of accept or final states.

Formally, a finite automaton is a 5-tuple (Q,
∑

,δ,q0,F) where Q is a finite set of

states,
∑

is a finite set called alphabet, δ: Q×∑→Q is the transition function, q0 ∈ Q

is the start state, and F ⊆ Q is the set of final states. The transition function δ

defines the rules for moving from a state to another. If the automaton has an arrow

from a state S1 to a state S2 labeled with the input symbol x, that means that,

if the automaton is in state S1 when it reads a x, it then moves to state S2. We

generally indicate this with the transition function by saying that δ(S1,x) = S2. An

empty transition (noted ε) between S1 and S2 means that we can move from S1 to

S2 without reading any input. When the automaton receives an input string, it

processes that string and produces an output. The output is accept if all the string

is parsed and the automaton reaches a final state. Otherwise, the output is reject.

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 159

A) Defining the Automaton for Community Messages

Since checking message composability from sub-requests to an imported operations

concerns only the input messages of In/Out operations, we define an Input Automa-

ton (IAi) for each community Ci. IAi models Ci’s input messages related to In/Out

operations. IAi has iq0 as an initial state. The alphabet of IAi is the set of XML

Schema data types. The use of data types as alphabet has the important advantage

of limiting the alphabet size since the number of data types is finite. IAi is updated

each time that an In/Out generic operation is imported.

��� �� ���� ��	� ����	��
 ���� ���

����� ����������
������� �����
����� �����

Figure 5.11: Automaton States and Transitions Definition

Let us now illustrate the algorithm used for building this automata. Assume

that an input message M = {P1, P2,..., Pm} is defined by a community member (by

projection, extension, or adjustment). The algorithm for adding M to IAi includes

two steps: (i) defining states and transitions, and (ii) checking determinism. In

the first step, the message parameters are sorted according to their XML Schema

data type. Let P1, P2,..., Pm be the order obtained for M parameters. New states

S1, S2,...., Sm are then created (Figure 5.11). Each state Si corresponds to a param-

eter Pi (Figure 5.11). A transition labeled with P1 data type is first created from

iq0 to S1. A transition labeled with Pi+1’s data type is then created from Si to Si+1

(i=1,m-1). Since an SR’s input message may map to a subset of M parameters,

then all states Si (i=1,m) are made final. Each final state contains the ID of M’s

operation. Additionally, we create an empty transition ε from iq0 to Si (i=2,m-1).

An empty transition is also created from each state Si to another state Sj where

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 160

1≤i≤m-2, j≤m, and j≥i+2. If, for example, SR’s input message contains only P3

and P5, then it would be accepted by the automaton.

The second step of the automaton definition algorithm is determinism. An au-

tomaton is deterministic if (i) it does not contain empty transitions and (ii) each

state has zero or one exiting arrow for each alphabet symbol. If at least one of

those conditions is not true, then the automaton is nondeterministic. Determinism

is an important feature of automata. Every step of computation in a deterministic

automaton follows in a unique way from the preceding way. When the automaton is

in a given state and reads the next input symbol, it determines without ambiguity

what the next state will be. IAi is, by definition, nondeterministic because of the

existence of empty transitions. To facilitate the process of comparing SR’s messages,

we transform IAi into a deterministic automaton. Indeed, every nondeterministic

automaton can be converted into an equivalent deterministic automaton [118]. We

adopt the algorithm presented in [118] to eliminate empty transition in a finite

automaton. We summarize in Figure 5.12 the algorithm for building IAi. This

automaton is incrementally updated each time that an imported operation with an

input message M is defined.

(00) UpdateAutomaton(IAi, M) {
(01) Let IAi = (Q,

∑
,δ,q0,F)

(02) Let M = {P1, P2,..., Pm}
(03)

∑
=

∑ ∪ {S1, S2,..., Sm}
(04) F = F ∪ {S1, S2,..., Sm}
(05) δ(q0, P1.type) = S1

(06) for i=2 to m-1 do

(07) δ(q0, ε) = Si

(08) for i=1 to m-1 do

(09) δ(Si, Pi+1.type) = Si+1

(10) for i=1 to m-2 do

(11) for j=i+2 to m do

(12) δ(Si, ε) = Sj

(13) eliminate empty transitions(A) }
Figure 5.12: Updating Input Automata

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 161

(00) Vert Comp Message1:1(SR, Registry, Plans1:1, Profile, nb plans) {
(01) degree = 0
(02) Plans1:1 = ∅
(03) for each community Ci ∈ Registry | category composable vertical(Ci, SR) ∧
(04) (nb plans < Profile.max plans) do {
(05) if SR.mode = “In/Out”
(06) then accepted automaton(IAi, SR.input, Final, degree)
(07) then accepted automaton(IAi, SR.output, Final, degree)
(08) for each imported operation opik | (opik ∈ Operations(Final)) ∧
(09) (nb plans < Profile.max plans) do {
(10) if SR.mode = “I/O” and ¬Is message composable(SR.output, opik.output)
(11) then continue;
(12) if SR.mode = “O/I” and ¬Is message composable(SR.input, opik.output)
(13) then continue;
(14) if get weightR(CR) > 0 and Bindingik ∩ Bindingjl 6= ∅
(15) then degree = degree + get weightR(CR);
(16) if degree > Profile.τ -composability
(17) then { Plans1:1 = Plans1:1 ∪ {opik}
(18) nb plans = nb plans + 1
(19) continue }
(20) static semantics vertical(SR, opik, degree)
(21) if degree > Profile.τ -composability
(22) then { Plans1:1 = Plans1:1 ∪ {opik}
(23) nb plans = nb plans + 1
(24) continue }
(25) behavioral(SR, opik, degree)
(26) if degree > Profile.τ -composability
(27) then { Plans1:1 = Plans1:1 ∪ {opik}
(28) nb plans = nb plans + 1
(29) continue }
(30) } } }

Figure 5.13: Message-Centric Algorithm for 1:1 Vertical Composition

B) Algorithm for Vertical Composition

The message-centric algorithm for 1:1 vertical composition uses IAi of relevant

communities Ci to select service operations (Figure 5.13). To avoid comparison

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 162

with all operations, the algorithm prunes the Web service space at three levels.

First, it focuses on communities Ci whose category may be composed with SR’s

category. Second, it considers only “In/Out” operations in Ci. Third, it checks

composability only with operations that are message composable with SR.

The algorithm considers two cases depending on the mode of SR. If SR’s mode

is “In/Out”, then we check whether SR’s input is accepted by IAi via the function

accepted automaton(IAi,SR.input,Final,degree). We then consider only operations

that belong to the Final set (i.e., accepted by IAi). Let us assume that SR’s in-

put is mapped with the input of an operation opik (i.e., opik belongs to Final). In

this case, opik’s output is compared (in terms of message composability) with SR’s

output. If SR’s mode is “Out/In”, then IAi is used to test whether SR’s output

is accepted via the function check automaton(OAi, SR.output, Final, degree). Let

us assume that SR’s output is mapped with the input of an operation opik. In

this case, opik’s output is compared with SR’s input. The algorithm then checks

binding composability since mode and PN-composability are checked in the previ-

ous steps. The algorithms for static semantics vertical(), Is message composable(),

and behavioral() procedures are similar to those used in the operation-centric and

community-centric algorithms.

5.2.2 One-to-Many Vertical Composition

The one-to-many vertical composition algorithm determines the set of imported op-

erations which, combined in certain way, could be vertically composed with a sub-

request. For example, the English-Urdu sub-request is composable with the combi-

nation of three operations: English-French, French-Chinese, and Chinese-Urdu.

To support 1:N vertical composition, we introduce the notion of flow graph. The

flow graph links together all operations that are horizontally composable. The nodes

of this graph are of two types: operation and compound nodes (Figure 5.14). Arrows

in this graph relate nodes of different types. Operation nodes may be linked to

compound nodes and vice versa. However, no operation node is linked with another

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 163

operation node. Similarly, no compound node is linked to another compound node.

����

����

����

����

����

�	

�	�

�	
�

�	

�	�

�	�

���� �	

�
� ��� ��

�
� ��� ��

��� ��

��� �
���� ��

��� ��

Figure 5.14: The Flow Graph

Each compound node And in the flow graph has one predecessor opi and one

successor opj (e.g. And2). This situation models the fact that opi is horizontally

composable with opj. This means that opj can be invoked after the execution of opi.

The arrow opi → And is labeled with opi’s outputs that could be used as opj’s inputs.

opj is labeled with its output parameters. The compound node And is labeled with

opi’s inputs. If the same opi’s output occurs m times on the arrow, then opi should

be executed m times before invoking opj (e.g., x4 in op4). Each compound node is

labeled with all input parameters defined in its predecessors (i.e., operations).

The flow graph is built in an incremental fashion, each time an operation op is

imported (Figure 5.15). This assumes that all operations in the service registry are

already modeled in the flow graph. To update this graph, we compare op with each

operation node opi in the graph. If op is horizontally composable with opi, then a

new operation node is created for op. A new compound node Andk is also inserted in

the graph. Horizontal composability is checked by evaluating the conditions defined

in Chapter 4 for horizontal composition. The procedure composable horizontal()

returns the set of parameters P of op that are horizontally composable with opi’s

parameters. The nodes op, Andk, and opi are then linked by the following edges:

op → Andk → opi. The edge op → Andk is labeled with P . The operation node op

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 164

is labeled with its outputs. The compound node is labeled with the inputs of op.

(00) UpdateFlowGraph(FG,op) {
(01) for each operation node opi ∈ FG do

(02) if composable horizontal(op,opi,P)
(03) then { add arrow(op,Andk);
(04) add arrow(Andk,opi);
(05) add label arrow(op,Andk,P);
(06) add label node(op,op.output);
(07) add label node(Andk,op.input);
(08) k = k + 1; };
(09) }

Figure 5.15: Updating the Flow Graph

To illustrate the definition of a flow graph, we consider the example depicted in

Figure 5.16. The example is related to the get driving directions sub-request

(Figure 5.2). The operation People Lookup returns the address and phone number

of a person (outputs), given her/his name and state of residence (inputs). The oper-

ation Driving Directions Address returns the driving direction (output) from a

source to a destination address (outputs). Assume that People Lookup is horizon-

tally composable with Driving Directions Address. Since Driving Directions

Address requires two address parameters, it could be executed after executing

People Lookup twice. The first execution of People Lookup returns the source

address and the second execution gives the destination address.

The combination of People Lookup and Driving Directions Address as de-

picted in Figure 5.16 defines an “abstract operation” that returns the driving direc-

tions given the name and state of residence of two persons. The flow graph contains

two operation nodes and one compound node. The arrow from People Lookup to

And1 contains the output parameter address twice. The compound node is labeled

with the parameters name, state, name, and state. The operation node Driving

Directions Address is labeled with the parameter driving direction.

We depict in Figure 5.17 the flow graph of the language translation example.

We assume that English-French is horizontally composable with French-Chinese

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 165

������
������

�	
� �
��
� ��

�������
������ ����
�������

������
������

�	
� �
��
� ��

�� ! "

#$�$! "

�� ! %

#$�$! %

&''(!)) "

*+,-! "

&''(!)) %

*+,-! %

#,.(/!

0�(1!$

2(343-15),.(/!6$�(1!$7

�������
����������
89:�

�� ! ;
#$�$! ;
�� ! <
#$�$! <

23(!/$3,-5;6<7

=�>

=�?
=�@

ABCD EFGHI

������
������

�������
������ ����
�������

JKLM

�''(!))6
N+,-! -� !6)$�$!6

-� !6)$�$!

�''(!))6
�''(!))

'(343-1 '3(!/$3,-

Figure 5.16: Flow Graph for the Driving Directions Example

��������
�	
���

�	
����
����
�

����
�
�

	������������� �

����������� ����� � ���� �

��� �� ��!

����������� "
���� "

#$%& '()*+

��������
�	
���

�	
����
����
�

����
�
�

	��,-./ ,-.0

����������� " ���� "

����������� "

����������� �

����������� �

���� �
����������� �

Figure 5.17: Flow Graph for the Language Translation Example

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 166

and that French-Chinese is horizontally composable with Chinese-Urdu. The flow

graph corresponding to these operations contains two compound nodes And1 and

And2 and three operation nodes. And1 and And2 are labeled with the parameters

English word and French word respectively. English-French, French-Chinese, and

Chinese-Urdu are labeled with the parameters French word, Chinese word, and Urdu

word rspectively. The combination of the three operations as depicted in Figure 5.17

defines three abstract operations. The first operation provides translation from

English to Chinese, the second operation enables translation from English to Urdu,

and the third operation allows translation from French to Urdu.

The flow graph is used to determine composition plans through 1:N vertical

composition (Figure 5.18). Let SR be a composition sub-request. The issue is how

to determine the operations to be outsourced from SR. We identify two cases based

on the mode of SR. If SR is an In/Out sub-request, then the matchmaking algorithm

looks for a compound node, say Andinitial, so that SR’s input is composable with

Andinitial’s input message. It also looks for an operation node, say opfinal, so that

opfinal’s output message is composable with SR’s output message. The second case

of the algorithm concerns Out/In sub-requests. The matchmaking algorithm looks,

in this case, for a compound node, say Andinitial, so that Andinitial’s input message

is message composable with SR’s output message. It also looks for an operation

node, say opfinal, so that opfinal’s output message is message composable with SR’s

input message. In both cases (In/Out and Out/In modes), Andinitial’s predecessor

is the initial operation of SR’s composition plan. Additionally, opfinal is the final

operation in that plan. To determine the intermediary operations, we calculate a

path from Andinitial to opfinal in the flow graph. We use the breadth-first search

algorithm for this purpose [36].

To illustrate the 1:N composability algorithm, we consider the language trans-

lation example (Figure 5.17). Assume that SR (In/Out sub-request) aims at

providing translation from English to Urdu. SR’s input and output are equal

to the parameters English word and Urdu word respectively. SR’s input is mes-

sage compatible with And1’s input and Chinese-Urdu’s output is message com-

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 167

(00) Vert Comp1:N(SRp, Registry, Plans1:n, Profile, nb plans) {
(01) while .true. do {
(02) if SR.mode = “In/Out”
(03) then { compound = search compound composable(FG,SR.input,found1);
(04) operation = search operation composable(FG,SR.output,found2); }
(06) if SR.mode = “Out/In”
(07) then { compound = search compound composable(FG,SR.output,found1);
(08) operation = search operation composable(FG,SR.input,found2); }
(09) if ¬found1 or ¬found2 then break;
(10) path = breadth first search(FG,compound,operation);
(11) Plans1:n = Plans1:n ∪ {path}
(12) nb plans = nb plans + 1
(13) } }

Figure 5.18: One-to-many Vertical Composition

patible with SR’s output. The algorithm then determines the path from And1

to Chinese-Urdu using the breadth-first search algorithm. This gives the path

And1 → French-Chinese → And2 → Chinese-Urdu. By replacing And1 by

its predecessor and eliminating And2, the composition plan generated for SR is

English-French → French-Chinese → Chinese-Urdu.

5.3 Generating Composite Service Descriptions

At the end of the matchmaking phase, one or several composition plans are generated

for each composition sub-request. The aim of the generation phase is to replace

each sub-request by a composition plans. Composers first select a composition

plan for each sub-requests. Based on the selected plans, we generate a composite

service description. The generation process is conducted in three steps. We first

replace each sub-request by the selected composition plan. We then insert the pre-

operations and post-operations of each operation of the plan. We finally compute

Quality of Composition (QoC) parameters to assess the quality of the generated

plan. Composers have the possibility to select other plan if they do not like the

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 168

quality of the generated composite service description.

5.3.1 Replacing Sub-requests by Composition Plans

Assume now that a composition plan is selected for each composable sub-request.

Using those plans and the activity diagram (noted ADs) specified by the composer,

we generate an activity diagram (noted ADg) for the composite service. Each sub-

request SR is substituted by the operation in the corresponding plan. If the plan

is obtained through 1:N composition, then the execution order of those operations

in ADg is similar to their execution order in the plan. Figure 5.19 illustrates the

technique used for replacing a request in ADs by its composition plan.

We sketch in Figure 5.20 the algorithm executed for replacing a subrequest SR

by a plan P. Let SRi and SRj be a predecessor and succesor of SR in ADs, respec-

tively. We first create an activity Ai in ADg for each operation opi in P. For each

arrow opi → opj in P, we then create a transition Ai → Aj in ADg. The activ-

ity SR is then discarded. Finally, a transition is created from SRi to the activity

corresponding to the first operation in P. Likewise, a transition is created from the

activity corresponding to the last operation in P to SRj.

5.3.2 Inserting Pre and Post-Operations

Once, all sub-requests are replaced by their composition plans in the activity dia-

gram, the final step of the generation phase is to include pre- and post-operations

in ADg. We determine the pre-operations and post-operations of every operation

contained in ADg. The idea is to “augment” each operation inserted in ADg by its

pre and post-operation relationships. We summarize in Figure 5.21, the algorithm

used for that purpose.

Let opi be an operation inserted in ADg. The first step is to search for opi in the

OPD diagram. We use the well-known breadth-first algorithm for such task [36].

If opi is found, we determine all operations that are related to opi via pre and

post operation relationships. For that purpose, we determine the set P of all OPD

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 169

��

��

��

���

���

������	
��

���

������ ��� ��������
��	��	� ���

����������� ��	�

����	��� ��

��

���

�����	��� ��������
��	��	� ��

���

��

Figure 5.19: Replacing a Sub-request by its Composition Plan

(00) Replace(SR,Plan) {
(01) Let SRi be a predecessor of SR in ADs;
(02) Let SRj be a succesor of SR in ADs;
(03) Let op1 be the first operation in Plan;
(04) Let opn be the last operation in Plan;
(05) for each operation opi ∈ Plan do

(06) create an activity Ai;
(07) for each opi → opj in Plan do

(08) create a transition Ai → Aj;
(09) create a transition SRi → A1;
(10) create a transition An → SRj;
(11) }

Figure 5.20: Replacing a Sub-request by its Composition Plan

diagram’s paths that contain opi as a vertex. We use the Floyd-Warshall dynamic

programming algorithm for computing these paths [36]. The OPD sub-diagram that

contain all paths in P needs then to be inserted in ADg. For that purpose, each

arrow that exists in the sub-diagram is inserted into ADg.

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 170

(00) Insert(ADg,OPD) {
(01) for each opi ∈ ADg do

(02) if found(opi, OPD)
(03) then { sub-diagram = compute paths(opi, OPD);
(04) for each opi ∈ sub-diagram
(05) create an activity Ai;
(06) for each opi → opj ∈ sub-diagram
(07) create a transition Ai → Aj in ADg; }
(08) }

Figure 5.21: Inserting Pre and Post Operations

5.3.3 Quality of Composition

Once the activity diagram of a composite service is generated, the next step consists

in checking its quality. We define a Quality of Composition (QoC) model for

composite services. The model includes three parameters: composition soundness,

composition ranking, and composition completeness.

Checking Composition Soundness – The first quality criterion we check is

composition soundness (Chapter 4). A composition template CT is computed

for the generated composite service. We use adjacency-matrix graph represen-

tation to model templates. Each composition template CT is represented by a

|OP(CT)| × |P(CT)| matrix T where OP(CT) is the set of operations in the tem-

plate. The entry Tij corresponds to the operations opi and opj. It is equal to 1 iff

there is an arrow from opi to opj. It is equal to 0 otherwise. Stored templates are

represented in the same way as composition templates.

We propose an algorithm for checking soundness based on comparing CT and

ST matrices (Figure 5.22). The first step of the algorithm is the unification CT and

ST vertices. This consists in adding to CT all vertices that belong to ST-CT and

adding to ST all vertices that belong to CT-ST. In this way, both CT and ST will

have the same set of vertices. The resulting templates are then represented by the

matrices as explained previously. The next step consists in computing the classical

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 171

(00) Sound(CT,Stored,result) {
(01) result = “not sound”;
(02) for each ST ∈ Stored do {
(03) unification(CT,ST);
(04) R = matrix(CT) - matrix(ST);
(05) if R = 0 then result = “exactly sound”;
(06) if R > 0 then result = “strongly sound”;
(07) if R < 0 then result = “loosely sound”;
(08) if result 6= “not sound” then break;
(09) } }

Figure 5.22: Algorithm for Composition Soundness

substraction between matrices: R = matrix(CT) - matrix(ST). Four cases are then

possible. If all elements in the matrix R are equal to 0, then CT and ST are similar.

The composite service is hence exactly sound with respect to ST. If all elements in

R are equal to 1/0, then ST is a subgraph of CT. The composite service is hence

strongly sound with respect to ST. If all elements in R are equal to -1/0, then CT

is a subgraph of ST. The composite service is hence loosely sound with respect to

ST. If all elements in R are equal to -1, 1 or 0, then CT is not comparable with

ST. CT should then be compared to another stored template (if any). If no stored

template is left, then CT is not sound.

Composition Ranking – Assume that a composite service is sound with respect

to stored template ST. We define a QoC parameter called ranking that gives an

approximation of ST “importance”. For each composite service, we determine its

composition template CT. Assume that CT is sound with respect to a stored tem-

plate STi. We define a function R (R stands for reference) so that R(STi) gives the

number of times that composite services that are sound with respect to STi have

been created. This assumes that a ranking coefficient is maintained for each stored

template. The ranking of CT with respect to STi is the proportion of references to

ST. If the composite service is not sound, then its ranking is equal to zero. We give

below the formula used to compute the ranking of a sound composite service (s is

B. Medjahed Chapter 5. Automatic Composition of Semantic Web Services 172

the number of stored templates):

Ranking(CT, STi) =
R(STi)∑s

k=1R(ST k)

Composition Completeness - This parameter, noted CC, is used to assess com-

posite services that are not sound. It gives the proportion of composition sub-

requests that are composable with participant service operations. CC allows the

generation of composite service descriptions whose composition sub-requests are

not “fully” composable with participant services. The value of CC is set by ser-

vice composers in their profile and depends on their level of expertise. Indeed, if the

value CC is relatively low (e.g., 25%), the algorithm might return composite services

for which 75% of the composition sub-requests are not composable with participant

service operations. In this case, composers may need to change their specification

(e.g., data types) so that the desired sub-request can deal with participant services’

features. The following formula defines the CC parameter for a composite service

CS:

CC(CS) =
| Composable(SubRequests) |

| Sub−Requests |
where Composable(SubRequests) is the set of sub-requests that are composable

with participant services.

Chapter 6

Implementation and Performance

Study

This chapter is devoted to the implementation and performance study of the proposed

approach for composition [83, 17]. We provide an implementation of our techniques

in WebDG prototype. We use social and welfare services within the Family and

Social Services Administration (FSSA). Then, we provide an extensive performance

study of our composition approach. For that purpose, we first define an analytical

model for the proposed composition algorithms. We compare the performance of

these algorithm using that model.

Another way to study the performance is through experiments. However, it is

difficult to do such experiments in “real” Web service environments or prototypes

(e.g., WebDG). Indeed, the availability of large and various numbers of services is

not always guaranteed. Additionally, it is often desirable to measure performance

for specific and various configurations of Web services (e.g., services with more than

a certain number of operations) which is not always simple to achieve. To deal

with this issue, we define a testbed for Web services called Web Service Benchmark-

ing Framework (WSBF). We conduct an extensive experimental performance study

using WSBF testbed.

This chapter is organized as follows. In Section 6.1, we describe our implemen-

B. Medjahed Chapter 6. Implementation and Performance Study 174

tation in WebDG prototype. In Section 6.2, we present the salient features of the

proposed Web service benchmarking framework. In Section 6.3, we describe our

performance study. We first define our analytical model and then we describe the

simulation experiments and their results.

6.1 WebDG Prototype

WebDG is built with a holistic perception of e-government Web services. It aims at

providing a Web service middleware that enables citizens and case officers to access

government e-services via a rich, uniform, and flexible interface. The design and

development of WebDG is directed by two key guidelines: the use of Web service

standards (e.g., WSDL, SOAP, and UDDI) and extensibility (i.e., ability to add

new functionalities). Our focus in WebDG is on implementing the composition

techniques proposed in this dissertation.

6.1.1 WebDG Services

As a proof of concept, we implemented several FSSA applications in WebDG. These

include WIC, Medicaid, and TOP. WebDG applications, developed in Java (JDK

1.3), access databases (Oracle 8.0.5) to retrieve/store government and citizens’ in-

formation. WIC (Women, Infant, and Children) provides Federal grants to States

for supplemental food, health care referrals, and nutrition education for low-income

pregnant, breastfeeding, and non-breastfeeding postpartum women. It also provides

nutritional assistance to infants and children who are found at nutritional risk. Med-

icaid is a jointly-funded (Federal and State) health insurance program for specific

groups of low-income and needy people. It covers 36 million individuals including

children, senior citizens, blind, and/or disabled, and people eligible for federally as-

sisted payments. TOP (Teen Outreach Pregnancy) provides pregnant teens with

childbirth and postpartum educational support, housing information, and adoption

services.

B. Medjahed Chapter 6. Implementation and Performance Study 175

To enable access to the aforementioned applications in WebDG, we “wrapped”

them into Web services. We use state-of-the-art technologies for implementing

WebDG. Table 6.1 gives a summary of these technologies. WebDG services are

deployed using Apache SOAP (2.2). Apache SOAP provides not only server-side

infrastructure for deploying and managing service, but also client-side API for in-

voking those services. Each service has a deployment descriptor. The descriptor

includes the unique identifier of the Java class to be invoked, session scope of the

class, and operations in the class available for the clients. Each service is deployed

using the service management client by providing its descriptor and the URL of the

Apache SOAP servlet rpcrouter.

Product Version Role

Oracle 8.0.5 WIC, Medicaid, and TOP databases. Used also as a

template repository.

Java JDK 1.3 WIC, Medicaid, and TOP “legacy” applications.

JDBC 2.0 Database connection.

Apache SOAP 2.2 SOAP server.

Systinet WASP UDDI Standard 3.1 UDDI server.

J2EE Cloudscape 4.0 UDDI registry.

IBM WSTK 2.0 Convert applications into WSDL descriptions.

Tomcat 3.2.1 Web server and Java Servlet engine.

Table 6.1: Enabling Technologies

We use WSDL language to describe WebDG services. WSDL descriptions are

extended with semantic features defined in the community ontology (e.g., purpose,

business role). We use IBM Web Service Tool Kit (WSTK) to automatically generate

WSDL files for Web services from Java class files. These WSDL files are accessible

through tModels stored in the UDDI registry. We adopt Systinet’s WASP UDDI

Standard 3.1 as our UDDI toolkit. Cloudscape (4.0) database is used as a UDDI

registry. WASP UDDI provides client-side API (Application Programming Inter-

face) for publishing and inquiring about Web services. Each Web service has one or

more operations. For example, WIC service has an operation check eligibility

which takes a citizen’s eligibility information as input (e.g., salary, family size) and

checks this information against categorical (e.g., pregnant women), financial (e.g.,

B. Medjahed Chapter 6. Implementation and Performance Study 176

household income), and nutritional (e.g., children at risk) criteria. If the citizen’s

eligibility information satisfies all of the three criteria, the operation updates the

eligibility status for this citizen to “eligible, wait for approval”. Otherwise, the op-

eration updates the status to “not eligible”. In both cases, a message is returned to

the customer.

6.1.2 Architecture

WebDG system is implemented across a network of Solaris workstations. We present

the architecture of WebDG in Figure 6.1. The architecture is organized into four

layers. The first layer contains a set of Oracle databases that store government

and citizens’ data. The second layer includes “proprietary” applications (e.g., WIC

application) developed in Java. Each application access databases from the first

layer. The third layer contains Web services. The Web service are either simple or

composite. Simple Web services wrap proprietary applications defined in the lower

layer. Composite services are automatically generated by the WebDG manager. The

upper layer includes a Graphical User Interface (GUI) and WebDG manager. Citi-

zens and case officers access WebDG via a GUI implemented using HTML/Servlet.

Three types of requests are submitted through the GUI: discovery, invocation, and

composition.

The WebDG manager is at the core of WebDG system. It is composed of several

modules: Request Handler, Matchmaker, Service Locator, One-to-One Composer,

One-to-Many Composer, generator and QoC Manager. The request handler is the

router of the WebDG manager. The task it performs depends on the type of request

it receives. If the request type is “discovery”, it forwards it to the service locator

which implements UDDI Inquiry Client using WASP UDDI API. If the request type

is “invocation”, the request handler invokes the corresponding operation through

SOAP Binding Stub which is implemented using Apache SOAP API.

If the request type is “composition”, the request handler forwards the composi-

tion specification (XML document) to the matchmaker. The matchmaker uses JAXP

B. Medjahed Chapter 6. Implementation and Performance Study 177

(Java API for XML Processing) to parse CSL specifications, check their correctness,

and decompose them into sub-requests. For each sub-request, the matchmaker in-

teracts with the service locator to get operations from the service registry. Then, it

forwards these operations to the one-to-one composer which implements one-to-one

algorithms for vertical composition. We currently consider the operation-centric

algorithm.

������ ���

	
��

�
�����
� ��������
�

�
�� ��

�������

��
 �� ���!
"��#�

�

$%%&

$%%&

'()*+,(
-(.+/0)1

2(345
6787.()

2(3 '()*+,(/

9��

2(3 :;+(80

<�
�=

�>

?)@A)+(07)1
BAA;+,70+@8/

"��#�
�� ���

:+0+C(8/ D
5@*()8E(80

4707

FGHGIJKL IMNOJLPQRGSTJK JUGHL

V�
���
�!

WXYZ[\][^Z[_`\a bcdefgh[iW]bj
khh[lm_ghZncoghp[Z[nqikloj

rhfdnZ dfirstj
uZYdeqoZg_dndvZ_dX[tZqiuotj

wXxoeZnhYh[_ iwoj
bXYYm[dnZ_dX[yzdeèibyj

][fhvh[fh[_{d| d[pi]{j

}~��~��� ~�

����

�������� ���
� ��������������� ��������

����� �

� ���� �

� ¡��� ~�

�������� ���
¢��£����¤����

¥¦§¨

©�����ª�������� «©ª¬

­®¯°±²°­®¯
³²´µ²¶¯·

¸²³
¹º®º»¯·

¼®½²¾º±¿²®

À¯®¯·º±²·

Figure 6.1: WebDG Architecture

At the end of its execution, the one-to-one composer returns a set of operations.

Each operation could be used as a composition plan. If all operations in the registry

are checked and the maximum number of plans is not reached, the matchmaker in-

B. Medjahed Chapter 6. Implementation and Performance Study 178

vokes the one-to-many composer which implements the flow graph-based algorithm.

At the end of its execution, the one-to-many composer returns a set of horizontally

composed operations that could be used as composition plans. The matchmaker

returns all generated plans to the user via the request handler. The user selects

a composition plan for each sub-request and returns it to the matchmaker. The

matchmaker sends the selected plans to the generator which augments them with

pre and post-operations. The resulting composite service is forwarded to the QoC

manager which checks QoC parameters. The composite service along with the values

of its QoC parameters are finally returned to the user.

6.1.3 WebDG Scenario

We present a scenario that illustrates the main features of WebDG. We consider

the case of a pregnant teen Mary visiting case officer John to collect social benefits

to which she is entitled. Mary would like to apply for a government funded health

insurance program. She also needs to consult a nutritionist to maintain an appro-

priate diet during her pregnancy. As Mary will not able to take care of the future

newborn, she is interested in finding a foster family.

The fulfillment of the teen’s needs requires accessing different services scattered

in and outside the local agency. For that purpose, the case manager may either look

for simple Web services that fit specific needs of the teen or specify all teen’s needs

through one single composite Web services. In the following, we describe the main

steps for discovering and composing Web services using WebDG.

• Step 1: Web Service Discovery – To locate a specific Web service, John

could provide either the service name, if known, or properties. This is achieved

by selecting the “By Program Name” or “By Program Properties” nodes re-

spectively (Figure 6.2). WebDG currently supports two properties: Category

and Agency. Assume John is interested in a service that provides help in find-

ing foster families. He would select the adoption and pregnancy categories and

the Division of Family and Children agency. WebDG would return the Teen

B. Medjahed Chapter 6. Implementation and Performance Study 179

Outreach Pregnancy (TOP) service. TOP offers childbirth and postpartum ed-

ucational support for pregnant teens.

Figure 6.2: Discovering E-Government Services

• Step 3: Composing Web Services – Assume now John wants to specify

Mary’s needs through one single composite service called Pregnancy Benefits

(PB). For that purpose, he selects the “Advanced Programs” node (Figure 6.3).

Examples of PB’s operations include Find Available Nutritionist, Find

PCP Providers (which looks for primary care providers), and Find

Pregnancy Mentors. After checking composability rules, WebDG would re-

turn composition plans that conform to BP specification. Each plan has an ID

(number). John would click on the plan’s ID to display the list of outsourced

services. In our scenario, WIC (a federally funded food program for Women,

Infants, and Children), Medicaid (a healthcare program for low income

citizens and families), and TOP services would be outsourced by PB.

B. Medjahed Chapter 6. Implementation and Performance Study 180

Figure 6.3: Mappings of the Composite Service Operations

6.2 Web Service Benchmarking Framework

WSBF provides simple and efficient means for generating a large number of service

descriptions based on the WSDL standard. It uses as input a set of parameters

provided by the user (e.g., number of services to be generated and their arrival

rate). It returns a list of XML files containing the generated WSDL descriptions.

These descriptions are stored in a service registry specified by the user. The main

features of WSBF include the following:

• Customized Generation: WSBF allows user-controlled generation of Web ser-

vice descriptions. Users have the ability to specify the modes of service oper-

ations. They also give as input the taxonomy to be used for categorizing Web

services. This allows the generation of Web services for various application

domains such as E-commerce and e-government. Finally, users specify the

data type system (e.g., XML Schema) to be used for message parameters.

B. Medjahed Chapter 6. Implementation and Performance Study 181

• Use of Statistical Models: WSBF generates service descriptions at an arrival

rate that follows a statistical model specified by the user. Statistical models

are also used to remove services from the registry. We use Systinet’s WASP

UDDI Standard 3.1 as our UDDI toolkit. Cloudscape (4.0) database is used

as a UDDI registry. Additionally, WSBF enables users to specify the range

and statistical models for several quantitative attributes such as the number

of operations per service, messages, and parameters per message.

• Extensibility: WSBF is extensible at different levels. For example, new sta-

tistical models such as Geometric and Poisson can be plugged into WSBF.

Additionally, new service attributes that are not in the current WSDL version

can be added to the generation process (e.g., semantic attributes defined for

generic operations).

6.2.1 Statistical Distribution Models in WSBF

WSBF currently includes four (4) statistical distribution models for randomly gen-

erating quantitative attributes: Gaussian, Poisson, Uniform, and Binomial [105].

The algorithms used in WSBF to implement the aforementioned statistical models

are mostly adopted from [105]. In the models given below, we use the function

Random() from Java’s Random class to generate a random real number between 0

and 1:

• Gaussian Distribution: In this model (also known as Normal Distribution),

the generated data follows a bell-shaped distribution. This distribution is and

completely determined by its mean and standard Deviation. We use the Java’s

built-in random number generator (nextGaussian() method of Random class)

to generate numbers according to this model.

• Binomial Distribution: This model measures the number of times that a par-

ticular event will occur in a sequence of observations. The binomial distribu-

B. Medjahed Chapter 6. Implementation and Performance Study 182

tion is specified by the number of observations and the probability of event

occurrence.

�����������	� �
��

����� �����

���������������� !"#���$

%& '()'* (+,
%-.-/01 ('+,

2���� �3�4�5
����������������

������6���
�7
7	������

8"����"�

������6���
�7
7	������

9���:�"

������6���
�7
7	������

;������

������6���
�7
7	������

<��=��:

> ����

Figure 6.4: UML Class Diagram for Statistical Models

• Poisson Distribution: This model is often used to measure the number of

events in a specific time period. It is often used to describe situations in which

the probability of an event is small and the number of opportunities for the

event is large. Poisson is an extension of the binomial distribution in which

the number of samples is infinite.

• Uniform Distribution: A uniform distribution is one for which the probability

of occurrence is the same for all integer values within an interval of values.

We depict in Figure 6.4 the UML class diagram for WSBF’s distribution models.

The Client, which may be the Generator or Publisher, interacts only with Distribu-

B. Medjahed Chapter 6. Implementation and Performance Study 183

tionModel and DistributionModelFactory. DistributionModel is an abstract interface

of concrete distribution models, such Uniform, Gaussian and Poisson. Distribution-

ModelFactory creates concrete distribution model depending on the model’s name.

Note that more distribution models can be used without changing the Client class.

6.2.2 Generation Flow

The process of generating Web services includes two phases (Figure 6.5): the input

phase and generation phase. In the input phase, users provide a set of parameters

related to services as well as their operations, port types, and messages. The gener-

ation phase uses these parameters to randomly produce WSDL service descriptions.

These descriptions are automatically stored in a service repository. The location

of the repository is given by users as part of their input parameters. Service pa-

rameters include the number of WSDL descriptions to be generated and the arrival

rate of Web services. The arrival rate represents the duration (in seconds) between

the generation of two consecutive services. This parameter is particularly important

to simulate the dynamics of Web service environments. To enable random arrival

times, users specify the minimum and maximum durations. After each service gen-

eration, the arrival time for the next service is computed by randomly selecting a

value between the minimum and maximum durations. This selection is based on a

statistical distribution model (e.g., Poisson) specified by users.

Operation parameters include the number of operations within a service. To gen-

erate services with various numbers of operations, users specify the range (minimum

and maximum) of possible values for this parameter. A random number is generated

within this range for each service based on a user-specified distribution model. For

the operation modes, users have the choice between specifying a fixed value for all

operations (e.g., In/Out) or requesting a random generation of modes. The first port

type parameter is the number of port types. This parameter is randomly generated

using a range and statistical model similarly to the number of operation. Another

port type parameter specified by users is the binding protocols supported by the

B. Medjahed Chapter 6. Implementation and Performance Study 184

arrival time
Determine

- Service Registry

- Number of Services

- Arrival Rate Range

- Number of Operations - Number of Port Types - Number of Messages

Range and Distribution

Model

- Number of Parts Range

and Distribution Model

- Data Types

and Distribution Model

- Binding Protocols

Range and Distribution

Model

- Operation Modeand Distribution Model

- Service Categories and

Distribution Model

Input Service
Parameters

Input Operation
Parameters

Input Port Type
Parameters

Input Message
Parameters

Phase

Generation

Phase

Input

.

.
.

.

[another operation to generate]

[no operations to generate]

- Number of operations
- Number of port types
- Number of messages

Store service

description in

repository

Regroup
operations into
port types

Determine operation
mode

For input and/or output

message, determine:

- Number of Param.
- Data type of each param

[no services to generate]

- Service Category
Determine:

[another service to generate]

Figure 6.5: UML Activity Diagram for Web Service Generation

B. Medjahed Chapter 6. Implementation and Performance Study 185

generated services. Finally, message parameters contain the number of messages

within a service, the number of parameters per messages, and the parameters’ data

types. The number of messages and parameters are randomly generated similarly

to the number of operations and port types. For the parameters’ data types, users

provide a list of types (e.g., XML Schema). A data type is then randomly selected

and assigned to each parameter.

The generation phase starts once all input parameters are given. For more flex-

ibility, users have the possibility to leave some input parameters unspecified. A

default value is then assigned to those parameter. For example, Uniform is the de-

fault statistical distribution model. During the second phase, a category, number of

operations, number of port types, and number of messages are first randomly gen-

erated for each service. Then, the generator determines the mode of each operation

either randomly or based on the value set by the user. It also randomly selects the

number of parameters and data types within input and output messages. Once all

operations are generated, they are randomly grouped into port types. The whole

WSDL description is stored in the repository. Finally, an arrival time is computed

before generating the next service description.

6.2.3 Architecture

WSBF is fully implemented in Java and includes four components (Figure 6.6): the

Random Number Generator, Generator, Analyzer, Publisher, and GUI (Graphical

User Interface). The Random Number Generator consists of four modules corre-

sponding to different statistical distribution models: Gaussian, Poisson, Binomial,

and Uniform.

The Generator is the core of WSBF. It is composed of an interface, service de-

finer, and history log. The interface takes user’s input from the GUI and obtains

necessary random numbers from the random number generator (e.g., number of

operations for each service). User specified values (e.g., number of services) are

directly forwarded to the service definer. This module is in charge of generating

B. Medjahed Chapter 6. Implementation and Performance Study 186

������ ����	

�	�	
���

������ ��������

������� ��������

�
������ !"	

#��	
$��	 %�!#&

'�� ()	

*+,- ��. /0�123

�	�	
���

45678 569 :;5;<=;<>5?
@<=;A<BC;<D6 ED98?=

:8AF<>8
G85;CA8=

++H
I�J��1�K

L=8A=M N6OC;

PQA88

R:@S
@D>CT86;

R:@S
@D>CT86;

H�1����U� V��W�U�
+������

X��1��K
Y�J

*Z+,-3

��[���2��

\AA<F5? 569
S85F<67 45;8=

Figure 6.6: WSBF Architecture

WSDL descriptions and ensuring their syntactic correctness. WSDL descriptions

are manipulated using JDOM, a Java-based (Document Object Model) for XML

documents. JDOM provides means to represent XML documents for easy manipu-

lation. Information, such as the time to generate each WSDL description, is stored

in the history log. This information is useful for monitoring the generation process.

Once a WSDL description has been generated, it is forwarded to the publisher which,

based on the service arrival rate, stores a tModel of the description into the UDDI

registry. The publisher also uses the leaving rate to remove service description’s

tModel from the registry.

Each generated description can be viewed through the WSDL analyzer. The

aim of the analyzer is twofold. First, it extracts service attributes such as category,

operations, and input/output messages. Second, it provides statistical information

about each service description, such as the number of operations and the average

number of parts per message. The analyzer uses DOM (Document Object Model)

B. Medjahed Chapter 6. Implementation and Performance Study 187

and XPath technologies. A WSDL document is first parsed by a DOM handler.

Then a tree-like structure is built and parsed by an XPath engine (Jaxen). As a

result, an XPath-ready structure is constructed. Finally, the analyzer uses XPath

to parse the service description.

Figure 6.7: WSBF Generation Interface

The GUI was developed using Java Swing. It includes the generator, analyzer,

and publisher tabs. Figure 6.7 depicts the service generator tab. It includes four

panels: Services, Operations, Bindings, and Parts. These panels provide means for

the specification of users’ input.

The service analyzer tab displays WSDL documents in a user-friendly way (JTree,

a tree-like structure (Figure 6.8). Service descriptions may also be displayed in

text format. The analyzer also returns several statistics such as the number of

operations per mode and the average number of parameters per message. The

statistical analysis is currently done during generation. The statistical results are

then stored in statistical files. Clicking on the analyzer tab allows the display of

those statistics in a tabular format.

B. Medjahed Chapter 6. Implementation and Performance Study 188

Figure 6.8: WSBF Analyzer Interface

The publisher tab enables users to select the service registry that would store

the generated descriptions (Figure 6.9). Users may also specify the list of service

categories and the number of business services in the registry. The dynamic aspect

of Web services is “simulated” by specifying the arrival and leaving times for a Web

service in the registry.

6.3 Performance Study

The aim of our performance study it twofold. First, we show the scalability of our

approach by computing the composition time for large number of Web services.

Second, we compare the performance of the different composition algorithms. Our

focus in this section is on one-to-one composition since one-to-many composition

does not involve access to the service registry and searching in the service space.

We conduct our performance study using the following methodology. We first define

an analytical model for the proposed algorithms. We compare the algorithms using

B. Medjahed Chapter 6. Implementation and Performance Study 189

Figure 6.9: WSBF Publisher Interface

that model. Then, we compare the same algorithms based on simulation. We

use WSBF testbed for that purpose. We finally compare the results obtained in

the analytical and experimental studies. Comparing them can prove/disprove the

correctness of our testbed and the predictiveness of the proposed analytical model.

6.3.1 Analytical Model

In this section, we present the analytical model for each composition algorithm.

The total composition time for each algorithm will be the sum of the global time

for checking syntactic composability (T ST), global time for checking static semantic

composablity (T SS), and global time for checking dynamic semantic composability.

Table 6.2 defines the parameters and symbols used in this section. The composition

time can be expressed as follows:

T = TST + TSS + TDS

B. Medjahed Chapter 6. Implementation and Performance Study 190

Tmin = Tmin
ST + Tmin

SS + Tmin
DS

Tmax = Tmax
ST + Tmax

SS + Tmax
DS

Variables

Nop Number of operations in the registry
NC Number of communities
Nopc Number of operations per community
Pmax Maximum number of plans
CSR Number of sub-request in a composition
PM Number of parameters per message
Bop Number of business rules per operations
TC Number of terms per condition
AF Number of final states in the automaton
IR Number of inference rules

Performance measurement parameters and functions

Ut Time to obtain description from UDDI registry
Ot Time to parse a service description
T Total composition time
Tmin Minimum total composition time
Tmax Maximum total composition time
TST Total syntactic composability time
TSS Total static semantic composability time
TDS Total dynamic semantic composability time
T min

ST Minimum total syntactic composability time
T min

SS Minimum total static semantic composability time
T min

DS Minimum total dynamic semantic composability time
T max

ST Maximum total syntactic composability time
T max

SS Maximum total static semantic composability time
T max

DS Maximum total dynamic semantic composability time
Tmsg Time to check message composability for one operation
tST Time to check syntactic composability for one operation
tSS Time to check static semantic composability (operation level) for one operation

Table 6.2: Symbols and Parameters

For each composition algorithm, we compute the average execution time. Thus,

T is equal to (Tmin +Tmax)/2. To simplify the analysis, we assume that the times to

a description from a UDDI registry and parse that description are fixed values. It is

also reasonable to assume that times to check syntactic and static semantic (at the

operation level) composability for an operation are fixed values. In contrast, message

and behavioral composability times depend on the number of message parameters

and business logic rules, respectively. Thereby, Ut, Ot, tST , and tSS are constants.

B. Medjahed Chapter 6. Implementation and Performance Study 191

In the rest of this section, we will show how to derive composition time for each

algorithm.

Operation-Centric Algorithm

Let start by computing the minimum composition time Tmin. This time corresponds

to the case where Pmax iterations of the algorithm are executed. This means that

we get a composition plan after each iteration. The total syntactic composability

time Tmin
ST is then equal to Pmax × tST . The total static semantic composability

time Tmin
SS is equal to Pmax × (tSS + Tmsg). Let us now compute the time Tmsg

for checking message composability. Tmsg refers to the time of comparing a pair of

message twice. At minimum, each parameter in a message would be compared to

one parameter of the dual message. Hence, Tmsg is equal to 2×PM and Tmin
SS is equal

to Pmax × (tSS + 2 × PM). The last time to compute is the total time for dynamic

semantic composability Tmin
DS . Since the algorithm performs vertical composition,

dynamic semantic composability does not check plugin prematch rule. Based on the

definition of B-composability rules, there is a need to execute the theorem prover

nine (9) times: one for plugin postmatch, two for exact postmatch, two for plugin,

and four for exact B-composability. At minimum, each business rule would be proved

using the first inference rule. Tmin
DS is then equal to Pmax × (9× Bop × TC). Based

on the above analysis, we have:

Tmin = Pmax × (Ut + Ot + tST + tSS + 2× PM + 9×Bop × TC)

The maximum composition time refers to the case where all operations in the

registry are checked. This means that the number of iterations executed by the

algorithm is equal to Nop. Consequently, Tmax
ST and Tmax

SS are equal to Nop× tST and

Nop × (tSS + Tmsg), respectively. Let us now compute the formula for Tmsg. The

first parameter of each message should be compared to PM parameters of the other

B. Medjahed Chapter 6. Implementation and Performance Study 192

message. The next parameter needs to be compared to PM - 1 parameters, and so

on. Hence, PM is equal to the following:

Tmsg = 2× (PM + (PM − 1) + ... + 1) = PM × (PM + 1)

We need now to compute the total time for dynamic semantic composability

Tmax
DS . As mentioned previously, we execute the theorem prover nine (9) times to

check the different B-composability rules. We compare each rule in the sub-request

with all rules of the current operations. The total of comparisons is then B2
op. For

each term, we need to go through all inference rules for a total of TC × IR. Tmax
DS is

then equal to Nop × (9× B2
op × TC × IR). The maximum composition time is then

given below:

Tmax = Nop × (Ut + Ot + tST + tSS + PM × (PM + 1) + 9×B2
op × TC × IR)

The previous formulas give composition times for one sub-request. In what

follows, we specify the total execution time for the operation-centric algorithm when

executed on CSR sub-requests. In this case, we consider the times to access the

registry and parse operation descriptions:

TST =
1

2
× tST × CSR × (Nop + Pmax)

TSS =
1

2
×Nop × CSR × (tSS + PM × (PM + 1)) +

1

2
× Pmax × CSR × (tSS + 2× PM)

TDS =
9

2
×Nop × CSR × (B2

op × TC × IR) +
9

2
× Pmax × CSR ×Bop × TC

T =
1

2
×Nop × CSR × (Ut + Ot + tST + tSS + PM × (PM + 1) + 9×B2

op × TC × IR)

+
1

2
× Pmax × CSR × (Ut + Ot + tST + tSS + 2× PM + 9×Bop × TC)

B. Medjahed Chapter 6. Implementation and Performance Study 193

We compare in Figure 6.10 the times for syntactic (TST), static semantic (TSS),

and dynamic semantic composition (TDS). To enable a better visualization of the

figure, we represent TST , TSS, and TDS using logarithm function. The graph shows

that most of the composition time is spent on checking static and dynamic compos-

ability. Indeed, B-composability (dynamic semantics) compares all business logic

rule of each sub-request with the business logic rules of target operations. Similarly,

static semantics compares all message parameters of each sub-request with message

parameters of target operations. This is in contrast with syntactic composability

which performs three comparisons for each pair (sub-request,target): binding, mode,

and number of parameters.

Community-Centric Algorithm

The minimum composition time Tmin for the community-centric algorithm corre-

sponds to the case where all outsourced operations are obtained during the first PM

iterations. It is thereby similar to that of the operation-centric algorithm:

Tmin = Pmax × (Ut + Ot + tST + tSS + 2× PM + 9×Bop × TC)

The maximum composition time Tmax refers to the case where all operations are

checked for composability. However, in contrast to the operation centric algorithm,

only the operations within a specify community are checked. This means that the

number of iterations executed by the algorithm equals Nopc. Let us now derive the

relationship between Nopc and Nop. We assume that the operations within a registry

are uniformly distributed across communities. Hence, Nopc = Nop

NC
. Tmax can now

be derived from the formula of the operation-centric algorithm by replacing Nop by
Nop

NC
:

B. Medjahed Chapter 6. Implementation and Performance Study 194

Composition Time for the Operation Centric Algorithm

0

2

4

6

8

10

12

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

Number of Operations

Lo
g(

Ti
m

e)

Syntax

Static Sem

Dynamic Sem

Figure 6.10: Composition Time for the Operation Centric Algorithm

Tmax =
Nop

NC

× (Ut + Ot + tST + tSS + PM × (PM + 1) + 9×B2
op × TC × IR)

Finally, the composition times are as follows:

TST =
1

2
× tST × CSR × (

Nop

NC

+ Pmax)

TSS =
Nop

2×NC

× CSR × (tSS + PM × (PM + 1)) +
1

2
× Pmax × CSR × (tSS + 2× PM)

B. Medjahed Chapter 6. Implementation and Performance Study 195

TDS =
9×Nop

2×NC

× CSR × (B2
op × TC × IR) +

9

2
× Pmax × CSR ×Bop × TC

T =
Nop

2×NC

× CSR × (Ut + Ot + tST + tSS + PM × (PM + 1) + 9×B2
op × TC × IR)

+
1

2
× Pmax × CSR × (Ut + Ot + tST + tSS + 2× PM + 9×Bop × TC)

Composition Time for the Community Centric
Algorithm

0

1

2

3

4

5

6

7

8

9

10

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

Number of Operations

Lo
g(

Ti
m

e) Syntax

Static Sem

Dynamic Sem

Figure 6.11: Composition Time for the Community Centric Algorithm

We compare in Figure 6.11 the times for syntactic (TST), static semantic (TSS),

and dynamic semantic composition (TDS). As for the operation-centric algorithm,

the algorithm spends most of the time in checking static and dynamic semantic com-

B. Medjahed Chapter 6. Implementation and Performance Study 196

posability rules. Figure 6.12 shows that the number of communities has an impact

on the composition time. We consider two cases where the number of communities is

50 and 500. The figure states that the composition time for NC = 50 is higher than

then composition time for NC = 500. The bigger is the number of communities, the

smaller is the composition time. Indeed, the number of operations with which the

algorithm checks composability is smaller in the case of NC = 50.

Community Algorithm for Different Numbers of
Communities

0

1

2

3

4

5

6

7

8

9

10

0
40

00
80

00
12

000
16

000
20

000
24

000
28

000

Number of Operation

Lo
g(

Ti
m

e)

50 Communities

500 Communities

Figure 6.12: Community-centric Algorithm for Different Numbers of Communities

B. Medjahed Chapter 6. Implementation and Performance Study 197

Message-Centric Algorithm

The minimum composition time for the message-centric algorithm is similar to the

minimum time for the operation-centric and community-centric algorithms. In what

follows, we compute the maximum composition time. The message-centric algo-

rithm prunes the space of operations to be checked at two levels: community and

automaton levels. We consider only operations that belong to a given community.

Additionally, the first message composability comparison is done only with In/Out

operations. Finally, composability checking is done only with operations that be-

long to a final state of the input automaton. Let us assume that the mode of an

operation follows a uniform distribution. Assume also that operations are uniformly

distributed over the final states of the automaton. The number of operations to be

checked for composability equals Nopc

2×AF
. Since Nopc = Nop

NC
, the number of operations

equals Nop

2×NC×AF
.

Let us now compute the number of comparisons for checking message compos-

ability. The first comparison is done through the input automaton. The comparison

time is hence equal to PM , that is the size of the message to be verified by the

automaton for acceptance. The second comparison is done as in operation-centric

algorithm. It is thereby equal to PM×(PM+1)
2

. The maximum time for checking static

semantic composability is:

Tmax
SS =

Nop

2×NC × AF

(tSS + PM +
PM × (PM + 1)

2
)

The following formulas specify the total execution time for the message-centric

algorithm:

TST =
1

2
× tST × CSR × (

Nop

NC × AF

+ Pmax)

TSS =
Nop

2×NC × AF

× CSR × (tSS + PM × (PM + 1))

B. Medjahed Chapter 6. Implementation and Performance Study 198

+
1

2
× Pmax × CSR × (tSS + 2× PM)

TDS =
9×Nop

2×NC × AF

× CSR × (B2
op × TC × IR) +

9

2
× Pmax × CSR ×Bop × TC

T =
Nop

2×NC × AF

× CSR × (Ut + Ot + tST + tSS + PM × (PM + 1)

+9×B2
op × TC × IR)

+
1

2
× Pmax × CSR × (Ut + Ot + tST + tSS + 2× PM + 9×Bop × TC)

Composition Time for the Message Centric Algorithm

0

1

2

3

4

5

6

7

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

Number of Operations

Lo
g(

Ti
m

e)

Syntax

Static Sem

Dynamic Sem

Figure 6.13: Composition Time for the Message Centric Algorithm

We compare in Figure 6.13 the times for syntactic (TST), static semantic (TSS),

B. Medjahed Chapter 6. Implementation and Performance Study 199

and dynamic semantic composition (TDS). As for the operation-centric and com-

munity centric algorithm, the algorithm spends most of the time in checking static

and dynamic semantic composability rules.

Composition Time for Operation, Commmunity,
and Message Centric Algorithms

0

2

4

6

8

10

12

0

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

Number of Operations

Lo
g(

Ti
m

e) Operation Alg

Community Alg

Message Alg

Figure 6.14: Composition Time for Operation, Community, and Message Centric

Algorithms

Our main motivation behind designing different algorithms for vertical composi-

tion was to decrease the composition time. Figure 6.14 illustrates that the compo-

sition time for the operation-centric algorithm is longer than the community-centric

algorithm’s time. The latter time is longer than the time for composing services us-

ing the message-centric algorithm. Indeed, the first algorithm compares sub-requests

B. Medjahed Chapter 6. Implementation and Performance Study 200

with all operations in the registry. The second algorithm focuses on a subset of op-

erations that belong to the same community. The third algorithm reduces the size of

the service space further by comparing sub-requests with the operations that belong

to final states of the input automaton.

The design of the community-centric and message-centric algorithm was mainly

driven by the following design approach: reduce the composition time dedicated to

message composability. This is because significant time is spent on static semantic

composability as mentioned previously. Figure 6.15 validates our approach. It

shows that the message-centric algorithm substantially reduces the static semantic

composition time. It also states that the community-centric algorithm outperforms

the operation-centric algorithm in terms of static semantic composition time.

6.3.2 Experiments

The purpose of our experiment is to compare the execution times of the different

composition algorithms. The simulation results are compared against the analytical

results. We run our experiments on a Sun Enterprise Ultra 10 server with a 440-

MHz UltraSPARC-IIi processor, 1-GB of RAM, and under Solaris operating system.

Although the algorithm is implemented in WebDG prototype, we use WSBF testbed

to run the experiments. This allows the generation of a large number of services

which would be difficult to achieve in the current WebDG version.

Nop 1000 - 15000

NC 50 - 500

Pmax 20

CCR 10

PM 50 - 100

Bop 10 - 20

TC 10

AF 1000 - 3000

Confidence level 0.98

Confidence accuracy 0.02

Table 6.3: Simulation settings

B. Medjahed Chapter 6. Implementation and Performance Study 201

Static Semantic Composition for Operation,
Community, and Message Algorithms

0

1

2

3

4

5

6

7

8

9

10

0
40

00
80

00
12

000
16

000
20

000
24

000
28

000

Number of Operations

Lo
g(

Ti
m

e) Operation Alg

Community Alg

Message alg

Figure 6.15: Static Semantic Composition for Operation, Community, and Message

Centric Algorithms

Table 6.3 shows the common settings for all simulation experiments. The Con-

fidence level and confidence accuracy shown in Table 6.3 are used to control the

accuracy of the simulation results. Given N sample results Y1, Y2, ..., YN , the con-

fidence accuracy is defined as H/Y, where H is the confidence interval half-width

and Y is the sample mean of the results (Y = (Y1 + Y2 + ... + YN)/N). The con-

fidence level is defined as the probability that the absolute value of the difference

between the Y and µ (the true mean of the sample results) is equal to or less than

H. H is defined by H = tα/2;N−1 × σ/
√

N where σ2 is the sample variance given by

B. Medjahed Chapter 6. Implementation and Performance Study 202

σ2 = Σi(Yi − Y)2/(N − 1) (thus σ is the standard deviation), and t is the standard

t distribution. Users can specify the values of confidence level and accuracy before

starting simulation. The simulation is not complete until the expected confidence

level and accuracy are achieved.

Composition requests are simulated through a random request generator. The

generation of requests follows the exponential distribution. During each simulation

round, there are 50 requests generated. Each composition request contains 10 sub-

requests. At the end of the round, the result is checked against the confidence level

and confidence accuracy. The simulation continues if the confidence conditions are

not satisfied.

We run several sets of experiments for the different algorithms. In the first

set (Table 6.4), we compare the syntactic, static semantic, and dynamic semantic

composition times for the operation-centric algorithm. We vary the number of op-

erations from 1000 to 15000 with an iteration range of 1000. Figure 6.16 depicts the

experimental results obtained for the operation-centric algorithm. As illustrated

in the chart, the behavior of this algorithm is similar to the one obtained in the

analytical study.

Composability Nop

Experiment 1 Syntactic 1000 - 15000

Experiment 2 Static Semantic 1000 - 15000

Experiment 3 Dynamic Semantic 1000 - 15000

Table 6.4: Experiments - Syntactic and Semantic Composability for the Operation

Centric Algorithm

In the second set of experiments (Table 6.5), we compare the syntactic, static

semantic, and dynamic semantic composition times for the community-centric al-

gorithm. Figure 6.17 depicts the experimental results obtained for the community-

centric algorithm. As illustrated in the chart, the behavior of this algorithm is

similar to the one obtained in the analytical study.

In the third set of experiments (Table 6.6), we compare the syntactic, static se-

B. Medjahed Chapter 6. Implementation and Performance Study 203

Experiments - Operation Centric Algorithm

0

1

2

3

4

5

6

7

8

9

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

Number of Operations

L
o

g
(T

im
e
)

Syntactic
Static Sem
Dynamic Sem

Figure 6.16: Experiments - Syntactic and Semantic Composability for the Operation

Centric Algorithm

Composability Nop

Experiment 1 Syntactic 1000 - 15000

Experiment 2 Static Semantic 1000 - 15000

Experiment 3 Dynamic Semantic 1000 - 15000

Table 6.5: Experiments - Syntactic and Semantic Composability for the Community

Centric Algorithm

mantic, and dynamic semantic composition times for the message-centric algorithm.

Figure 6.18 depicts the experimental results obtained for the message-centric algo-

rithm. As illustrated in the chart, the behavior of this algorithm is similar to the

one obtained in the analytical study.

In the fourth set of experiments (Table 6.7), we assess the impact of the com-

B. Medjahed Chapter 6. Implementation and Performance Study 204

Experiments - Composition Time for the
Community Centric Algorithm

0

1

2

3

4

5

6

7

8

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
000

11
000

12
000

13
000

14
000

15
000

Number of Operations

Lo
g(

Ti
m

e) Syntax

Static Sem

Dynamic Sem

Figure 6.17: Experiments - Syntactic and Semantic Composability for the Commu-

nity Centric Algorithm

Composability Nop

Experiment 1 Syntactic 1000 - 15000

Experiment 2 Static Semantic 1000 - 15000

Experiment 3 Dynamic Semantic 1000 - 15000

Table 6.6: Experiments - Syntactic and Semantic Composability for the Message

Centric Algorithm

munity number NC on the performance of the community-centric algorithm. We

consider two cases where this number is equal to 10 and 50. Figure 6.19 depicts the

B. Medjahed Chapter 6. Implementation and Performance Study 205

Experiments - Message Centric Algorithm

0

1

2

3

4

5

6

7

8

10
00

30
00

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

Number of Operations

L
o

g
(T

im
e
)

Syntax
Static Sem
Dynamic Sem

Figure 6.18: Experiments - Syntactic and Semantic Composability for the Message

Centric Algorithm

experimental results obtained for the community-centric algorithm for two different

numbers of communities. As illustrated in the chart, the behavior of this algorithm

is similar to the one obtained in the analytical study.

Nop NC

Experiment 1 1000 - 15000 10

Experiment 2 1000 - 15000 50

Table 6.7: Experiments - Community Centric Algorithm for Various Numbers of

Communities

In the fifth set of experiments (Table 6.8), we compare the total composition time

for the three algorithms: operation-centric, community-centric, and message centric

algorithms. Figure 6.20 depicts the experimental results obtained for the operation,

B. Medjahed Chapter 6. Implementation and Performance Study 206

Experiments - Composition Time for 10 and 50
Communities

0

1

2

3

4

5

6

7

8

10
00

30
00

50
00

70
00

90
00

11
00

0

13
00

0

15
00

0

Number of Operations

L
o

g
(T

im
e
)

Community 10
Community 50

Figure 6.19: Experiments - Community Centric Algorithm for Various Numbers of

Communities

community, and message centric algorithms in terms of their total composition time.

As illustrated in the chart, the behavior of these algorithms is similar to the one

obtained in the analytical study.

Algorithm Nop

Experiment 1 Operation-Centric 1000 - 15000

Experiment 2 Community-Centric 1000 - 15000

Experiment 3 Message-Centric 1000 - 15000

Table 6.8: Experiments - Total Composition Times for the Different Algorithms

In the last set of experiments (Table 6.9), we focus on the static semantic com-

position time. We compare this time for the three algorithms: operation-centric,

community-centric, and message centric algorithms. Figure 6.21 depicts the exper-

B. Medjahed Chapter 6. Implementation and Performance Study 207

Experiments - Composition Time for Operation,
Community, and Message Centric Algorithms

0

1

2

3

4

5

6

7

8

9

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

11
00

0

12
00

0

13
00

0

14
00

0

15
00

0

Number of Operations

L
o

g
(T

im
e

)

Operation Alg
Community Alg
Message Alg

Figure 6.20: Experiments - Total Composition Times for the Different Algorithms

imental results obtained for the operation, community, and message centric algo-

rithms in terms of their static composition time. As illustrated in the chart, the

behavior of these algorithms is similar to the one obtained in the analytical study.

Algorithm Nop

Experiment 1 Operation-Centric 1000 - 15000

Experiment 2 Community-Centric 1000 - 15000

Experiment 3 Message-Centric 1000 - 15000

Table 6.9: Experiments - Static Semantic Composition Times for the Different Al-

gorithms

B. Medjahed Chapter 6. Implementation and Performance Study 208

Experiments - Static Semantic Composition for
Operation, community, and Message Algorithms

0

1

2

3

4

5

6

7

8

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
000

11
000

12
000

13
000

14
000

15
000

Number of Operations

Lo
g(

Ti
m

e) Operation Alg
Community Alg
Message Alg

Figure 6.21: Experiments - Static Semantic Composition Times for the Different

Algorithms

6.3.3 Summary

The results obtained in the analytical and experimental study are comparable. These

can be summarized as follows. First, most of the composition time (for the three

algorithms) is spent on checking static and dynamic composability. Indeed, B-

composability (dynamic semantics) compares all business logic rule of each sub-

request with the business logic rules of target operations. Similarly, static semantics

compares all message parameters of each sub-request with message parameters of

B. Medjahed Chapter 6. Implementation and Performance Study 209

target operations. This is in contrast with syntactic composability which performs

three comparisons for each pair (sub-request,target): binding, mode, and number of

parameters. Second, the number of communities has an impact on the composition

time. The bigger is the number of communities, the smaller is the composition time.

Third, the composition time for the operation-centric algorithm is longer than the

community-centric algorithm’s time. The latter time is longer than the time for

composing services using the message-centric algorithm. Indeed, the first algorithm

compares sub-requests with all operations in the registry. The second algorithm

focuses on a subset of operations that belong to the same community. The third

algorithm reduces the size of the service space further by comparing sub-requests

with the operations that belong to final states of the input automaton. Fourth,

the message-centric algorithm substantially reduces the static semantic composition

time. Additionally, the community-centric algorithm outperforms the operation-

centric algorithm in terms of static semantic composition time.

Chapter 7

Related Work

There is a large body of research in the field of Web service composition, the result

of which appeared in the related literature. In this Chapter, we overview major

techniques, prototypes, standards, and platforms for Web service composition that

are most closely related to our research. In Section 7.1, we describe the major efforts

for enabling the automatic composition of Web services. In Section 7.2, we overview

Web service composition research prototypes. In Section 7.3, we discuss ongoing

standardization efforts for Web service composition In Section 7.3, we describe cur-

rent commercial platforms for Web service composition.

7.1 Automatic Composition of Web Services

In this section, we discuss related work dealing with the different issues for the

automatic composition of Web services. These include the ontological support of

semantic Web services, checking the composability of Web services, and generating

composite service descriptions.

Ontological Support for Semantic Web Services – Significant research is be-

ing devoted to the standardization of service ontologies in DAML-S (DARPA Agent

Markup Language for Web Services) [74]. DAML-S provides the ability to organize

B. Medjahed Chapter 7. Related Work 211

Web services into ontologies. DAML-S divides service descriptions into the service

profile, model, and grounding. The service profile provides a high level description of

a Web service. It expresses required input of the service and the output the service

will provide to the requester. The service model defines the operations and their

execution flow in the Web service. Service grounding provides a mapping between

DAML-S and the WSDL standard and describes how the service may actually be

invoked. The service profile in DAML-S provides the means for Web service dis-

covery. It is divided into a description of the service, its functionalities, and its

functional attributes. The description provides human understandable information

about the Web service. For example, a description includes the name of the service

and its textual description. A functionality in DAML-S describes properties like

input, output, precondition, effect, etc.

Several features distinguish our ontological approach from DAML-S. First,

DAML-S proposes an ontology for Web services not for community of Web services.

Our approach provides means for the semantic description of Web services and

their ontological organization into communities. Second, the static semantics in

DAML-S mostly focuses on describing operations’ features. We define a broader

view of static semantics by describing semantics both at the operation and message

levels. Third, DAML-S gives little support for the dynamic semantics of Web

services. It does not allow the specification of pre-operations and post-operation

which are particularly important for enabling the automatic generation of business

processes. Additionally, the notion of behavior and business logic is not explicitly

defined. Fourth, DAML-S providers define their service operations from scratch.

In our approach, providers inherit the functionalities of a community simply by

registering their services with it. They may also personalize that community to

best fit their capabilities.

Composability of Web Services – Several techniques have recently been proposed

in the literature to deal with service matching and composability. [104] proposes a

solution based on DAML-S for semantic matching between service advertisements

B. Medjahed Chapter 7. Related Work 212

and capabilities. The matching technique is limited to comparing inputs and out-

puts of the advertisement with inputs and outputs of the request. LARKS defines

five rules for service matchmaking: context matching, profile comparison, similarity

matching, signature matching, and constraint matching [120]. Those rules mostly

compare service text descriptions, signatures (inputs and outputs), and logical con-

straints about inputs and outputs. [72] describes the design of a service matchmaker

that uses DAML-S based ontology. It uses techniques from knowledge representa-

tion to match service capabilities. In particular, it defines a Description Logic (DL)

reasoner; advertisements and requests are represented in DL notations.

A composability rule that compares service categories is presented in [7].

However, features operation modes, message data types, static semantics, dynamic

semantics, and soundness are not considered. [75] presents a model for checking

composability. Unlike in our approach, this model is limited to checking syntactic

features (input and output events of component services). In addition, it only checks

composability on a a posteriori basis to replace a component service by another. [57]

defines composability rules to compare service categories and messages. It does not

seem to consider features related the static semantics, dynamic semantics, quality of

operation, and composition soundness. Process templates and reference processes are

defined in [25] and [113] respectively. However, these notions are different from the

notion of stored templates. Indeed, process templates and reference processes are

used as a priori “canvas” when defining composite services. In contrast, stored tem-

plates are used a posteriori to check a posteriori the soundness of composite services.

Generation of Composite Services – Automatic service composition has been

the focus of several recent projects. DAML-S defines a semantic markup for Web

services based on the use of ontologies [74] . DAML-S introduces the notions of pre-

requisites (called Preconditions) and consequences (called Effects) of Web services

to cater for automatic composition. It is not clear, however, how composite services

are generated using DAML-S specifications. DAML-S does not define the notion of

service composability. Additionally, it does not consider semantic properties such

B. Medjahed Chapter 7. Related Work 213

as purpose, parameter’s unit and business role. An architecture for service composi-

tion in pervasive computing environments is presented in [29]. Service descriptions

are provided in DAML-S. They also include platform specific information such as

processor type, speed, and memory availability. The composition manager uses a se-

mantic service discovery mechanism to select component services. This mechanism

uses a Jini based semantic discovery framework. The matching mechanism mostly

focuses on comparing service attributes. In contrast, the matchmaking algorithm

proposed in this dissertation is based on a set of composability rules that compare

the structure of messages, their business function, the semantics and data types of

their parameters, qualitative properties, and the soundness of composite services.

WSMF (Web Service Modeling Framework) combines the concepts of Web ser-

vices and ontologies to cater for semantic Web enabled services [21]. WSMF is still

in its early stage. The techniques for the semantic description and composition

of Web services are still ongoing. Furthermore, WSMF does not address the issue

of service composability. An approach for ontology-based composition of Web ser-

vices is proposed in [22]. It uses DAML-S for describing Web services. Semantic

matching of Web service capabilities is limited to comparing QoS (Quality of Ser-

vice) dimensions and input/output parameters of Web services. In our approach,

we compare additional features such as category, purpose, parameters’ data types,

units, and business roles. Additionally, [22] mostly focuses on the automatic selec-

tion of Web services. Only few details are given about the way composite services

are generated. Ninja [55] introduces a technique called Automatic Path creation

(APC) to cater for automatic service composition. When an APC receives requests

for composite service execution, the APC creates a path that includes a sequence

of operators that perform computation on data and connectors that provide data

transport between operators. Ninja mostly focuses on fault tolerance by replicating

services on multiple workstations. It uses a limited operator functional classification

(four categories) to automate the selection of operators. It is also mainly based on

input-output matching of services. SWORD [107] uses a rule-base expert system to

automatically determine whether a desired composite service can be achieved using

B. Medjahed Chapter 7. Related Work 214

existing services. SWORD does not seem to focus on service composability and

semantic description of Web services.

7.2 Research Prototypes

In this section, we overview research prototypes that support Web service compo-

sition. Note that the list of prototypes described in this section is not exhaustive.

We focus on a representative set of such prototypes.

CMI (Collaboration Management Infrastructure) [112, 53] – CMI provides an archi-

tecture for inter-enterprise workflows. The main components of CMI engine includes

the CORE, coordination and the awareness engines. The CORE engine provides

basic primitives used by the coordination and awareness engines. These primitives

include constructs for defining resources, roles, and generic state machines. CMI’s

coordination model extends the traditional workflow coordination primitives with

advanced primitives such as placeholder. The concept of placeholder enables the

dynamic establishment of trading relationships. A placeholder activity is replaced at

runtime with a concrete activity having the same input and output as those defined

as part of the placeholder. A selection policy is specified to indicate the activity that

should be executed. If multiple providers offer implementations for an activity inter-

face, the selection policy may use a broker to choose the implementation that offers

the “best” quality of service. CMI’s awareness model captures information that is

closely related to a specific role and situation of a process participant. Awareness in-

formation is specified by process/awareness designers using awareness specifications.

eFlow [26] – eFlow is a platform that supports the specification, enactment, and

management of composite services. A composite service is described as a process

schema that combines basic or composite services. A composite service is modeled

by a graph that defines the order of execution among the nodes in the process.

It may include service, decision, and event nodes. Service nodes represent the

B. Medjahed Chapter 7. Related Work 215

invocation of a basic or composite service. The definition of a service node contains

a search recipe represented in a query language. When a service node is invoked, a

search recipe is executed to select a reference to a specific service. Decision nodes

specify the alternatives and rules controlling the execution flow. Event nodes enable

service processes to send and receive several types of events. A service process

instance is an enactment of a process schema. To support heterogeneity of services,

eFlow provides adapters for services that support various B2B interaction protocols

such as OBI and RosettaNet.

WISE (Workflow based Internet SErvices) [111, 70] – WISE aims at providing

an infrastructure for the support of cross-organizational business processes in

virtual enterprises. WISE architecture is organized into four components: process

definition, enactment, monitoring and coordination. The process definition com-

ponent allows Virtual Business Process (VBPs) to be defined using as building

blocks the entries of a catalog where companies within a trading community

(TC) can post their services. The process enactment component compiles the

description of the VBP into a representation suitable for enactment and controls

the execution of the process by invoking the corresponding services of the TC.

The process monitoring component keeps track of the progress made in the

execution of the VBP. The information produced by this tool is used to create an

awareness model used for load balancing, routing, quality of service, and analysis

purposes. The process coordination component supports multimedia conferencing

and cooperative browsing of relevant information between all participants in the TC.

CrossFlow [73] – The main contribution of CrossFlow is in using the concept of

contracts as a basic tool for cooperation. Businesses specify their interactions

through contracts (e.g., purchase and employment contracts). When a provider

wants to advertise a service, it uses its contract manager to send a contract

template to a trader or matchmaking engine. When a consumer wants to outsource

a service, it uses a contract template to search for relevant providers via the trader.

B. Medjahed Chapter 7. Related Work 216

If a matching is found between consumer’s requirements and provider’s offer, an

electronic contract is made by filling in the template. Based on the specifications in

the contract, a dynamic contract and service enactment infrastructure are set up.

The symmetrical infrastructure in provider’s and consumer’s sides contains proxy

gateways that control their interactions. The dynamically created modules can be

removed after contract completion.

Mentor-Lite [134] – Mentor-Lite addresses the problem of distributing the execution

of workflows. The idea is to partition the overall workflow specification into several

sub-workflows, each encompassing all the activities that are to be executed by a

given entity within an organization. The basic building block of Mentor-Lite is an

interpreter for workflow based on state charts. Two other modules are integrated

with the workflow interpreter defining the workflow engine: communication

manager and log manager. The communication manager is responsible for sending

and receiving synchronization messages between the engines. It uses the Trans-

action Processing (TP) monitor Tuxedo for delivering synchronization messages

within queued transactions. The log manager provides logging and recovery facili-

ties. A separate workflow log is used at each site where a workflow engine is running.

XL (XML Language) [49, 50] – XL defines an XML language for the specification

of Web services. An XL service specification contains local declarations, declarative

clauses, and operation specifications. Two kinds of local variables can be declared

in XL. The first kind of variable represents the internal state of the service. The

second kind of variable represents the internal state of a particular conversation in

which the service is involved (e.g., session ID). Declarative clauses include variables

that control the Web service global state. In particular, the history and on change

clauses address the issue of external manageability and adaptability. If the history

clause is specified, all operation invocations are automatically logged. The on

change clause uses triggers to detect changes in variables declared in the Web

services’ local declarations.

B. Medjahed Chapter 7. Related Work 217

SELF-SERV (compoSing wEb accessibLe inFormation and buSiness sERvices)

[10, 114] – SELF-SERV proposes a process-based language for composing Web

services based on state charts. It also defines a peer-to-peer Web service execution

model in which the responsibility of coordinating the execution of a composite

service is distributed across several peer components called coordinators. The

coordinator is a lightweight scheduler which determines when a state within a state

chart should be entered and what should be done when the state is entered. It also

determines when should a state be exited and what should be done after the state

is exited. The knowledge needed by a coordinator to answer these questions at

runtime is statically extracted from the state chart describing the composite service

operations and represented in the form of routing tables.

In Table 7.2, the aforementioned prototypes are compared using key interaction

layers presented in Chapter 2. For example, eFlow uses RMI at the communication

layer. At the content layer, eFlow provides adapters to support different interaction

protocols such as OBI and RosettaNet. Interoperability at the business layer is

enabled through a process description model based on state machines.

The same prototypes are compared in Table 7.2 using key interaction dimen-

sions defined in Chapter 2. For example, eFlow allows loose coupling among B2B

participants. In terms of autonomy, trading partners do not need to reveal how

their services are implemented. Heterogeneous interaction protocols are supported

through adapters. External manageability and adaptability are possible via event

tracking and process templates respectively. Security, however is not addressed.

Scalability is accommodated using distributed service enactment engines.

B. Medjahed Chapter 7. Related Work 218

Communication Layer Content Layer Business Process Layer

CMI Transport protocols
(e.g., HTTP, CORBA)
must a priori be agreed
upon

Message format (e.g., XML, EDI)
must a priori be agreed upon

State machine based model for
process description

WISE Coordination and com-
munication module

Not Addressed Virtual business processes

Cross
Flow

Java RMI Contract in XML Contracts

Mentor-
Lite

Transaction Processing
(TP) monitor (Tuxedo)

Not Addressed Business processes expressed as
state and activity charts

eFlow Java RMI Provides adapters to support dif-
ferent protocols such as OBI and
RosettaNet

State machine based model for
process description

XL SOAP XML Schema Little or no statements for
inter-service business processes

SELF-
SERV

SOAP Not Addressed State charts

Table 7.1: Prototypes vs. Interaction Layers

7.3 Standardization Efforts

Efforts are underway to define standards for composing Web services [3]. These

include WSFL (Web Services Flow Language) [62], XLANG [87], and BPEL4WS

(Business Process Execution Language for Web Services) [9], and BPEL4WS [9].

WSFL [62] – WSFL introduces the notions of flow and global model for defining

composite services. The flow model specifies the execution sequence between

component services. It is represented by a directed graph. Each node of the graph,

called activity, models a single step of the overall business goal to be achieved

through composition. Activities are bound to services through a locator element.

This binding can be either static or dynamic. In a static binding, the service

is directly specified in the locator. In a dynamic binding, the locator may, for

example, contain a UDDI query that returns a list of candidate services; a service

is then selected through a given selection policy (e.g., the first service in the list).

Two types of edges are used to connect activities: control links and data links.

Control links prescribe the order in which activities have to be performed. Data

B. Medjahed Chapter 7. Related Work 219

Coupling Autonomy Heterogeneity Ext.
Manag.

Adaptability Security Scalability

CMI Tight
and long
term

External
systems only
need to re-
veal the state
they are in
after they
accomplish
a task, not
how they
accomplish
the task

Use of object-
oriented prox-
ies

State de-
pendent
control
flow and
use of
aware-
ness
events

Primitives
such as op-
tional and
inhibitor can
be used for
coping with
some unfore-
seen events

Role Distributed
and parallel
engines for
execution

WISE Tight
and long
term

Partners
must adver-
tise services
in encapsu-
lated objects

Object-based
middleware

Process
monitor-
ing and
analysis
module

Execution
guarantee

Not
Ad-
dressed

Distributed
architec-
ture

Cross
Flow

Loose
and
tran-
sient

Partners
must agree
on service
contract
definition

Partners must
install service
contract run
time environ-
ment

Quality
of Service
(QoS)
module
provides
moni-
toring
facilities

Primitives
for flexible
execution are
restricted to
those provided
by traditional
workflows

Not
Ad-
dressed

Cost of
entry: par-
ticipants
must lo-
cally install
contract
run time
environ-
ment

Mentor-
Lite

Tight
and long
term

Participants
do not need
to reveal how
services are
implemented

Application
programs are
connected to
the workflow
engine by spe-
cific wrappers

Not Ad-
dressed

Not Addressed Not
Ad-
dressed

Workflows
are parti-
tioned into
several sub-
workflows
and dis-
tributed

eFlow Loose
and long
term

External
systems need
to describe
their services
not their im-
plementation

Provides
adapters
for different
protocols and
platforms such
as OBI, Roset-
taNet, and
e-speak

Event
tracking

Provides
process tem-
plates, service
nodes, and
service data
repositories
for reuse

Not
Ad-
dressed

Distributed
service
enactment
engines

XL Loose
and
tran-
sient

Participants
do not need
to reveal how
services are
implemented

Web services
can be written
in XL, Java, or
other languages

History
clauses

Change
clauses

Security
fea-
tures of
J2EE

Not Ad-
dressed

SELF-
SERV

Loose
and
tran-
sient

Participants
do not need
to reveal how
services are
implemented

Service wrap-
pers

Not Ad-
dressed

Not Addressed Not
Ad-
dressed

Peer-
to-peer
execution
model

Table 7.2: Prototypes vs. Interaction Dimensions

B. Medjahed Chapter 7. Related Work 220

links represent the flow of information between activities. The global model specifies

how component services interact. It includes a set of plug link elements. A plug link

connects an operation of the composite service (called exported operation) to an

operation of a component service. This indicates that the corresponding interaction

must take place to completely implement an activity.

XLANG [87] – XLANG provides language constructs for describing behavioral

aspects of Web services and combining those services to build multi-party business

processes. At the intra-service level, XLANG extends WSDL language by adding a

behavior element. A behavior defines the list of actions that belong to the service

and the order in which these actions must be performed. XLANG defines two

types of actions: regular WSDL operations and XLANG-specific actions (e.g.,

timeout operations). At the inter-service level, XLANG defines a contract element

which provides means for interconnecting several XLANG service descriptions.

The execution order of XLANG actions is defined through control processes (e.g.,

sequence, while). A particular control process named context enables the support of

transactions. The concept of transaction, as used in databases, guarantees that in

case of failure, the partial updates of a service execution are rolled back. XLANG

adopts a looser notion of transaction based on compensation. The execution of

actions in a context may fail or be cancelled for a variety of business and technical

reasons (e.g., communication failure). In this case a compensation code, explicitly

specified by the provider, is executed.

BPEL4WS [9] – BPEL4WS combines the features of both WSFL (support for

graph oriented processes) and XLANG (structural constructs for processes) for

defining business processes. A business process is composed of several steps called

activities. BPEL4WS defines a collection of primitive activities such as invoke to

invoke a Web service operation. These primitive activities can combined into more

complex primitives using any of the structure activities provided in BPEL4WS.

These include the ability to (1) define an ordered sequence of steps (sequence), (2)

B. Medjahed Chapter 7. Related Work 221

have branching using the now common “case-statement” approach (switch), (3)

define a loop (while), (4) execute one of several alternative paths (pick), and (5)

indicate that a collection of steps should be executed in parallel (flow). BPEL4WS

provides mechanisms to handle and recover from errors in business processes

(throw and catch constructs). It also adopts the notion of compensating actions

defined in XLANG. Fault handling and compensating are supported by introduc-

ing the notion of a scope. A scope is the unit of fault handling and/or compensation.

ebXML (Electronic Business XML) [96] – ebXML aims at defining a set of speci-

fications for enabling B2B interactions among companies of any size. The basic part

of the ebXML infrastructure is the repository. It stores important information about

businesses along with the products and services they offer. At the communication

layer, businesses exchange messages through the messaging service. One important

feature of the ebXML messaging service is that it does not rely on a specific trans-

port protocol. It allows for the use of any common protocol such as SMTP, HTTP,

and FTP.

At the content layer, companies interact through business documents. A busi-

ness document is a set of information components that are interchanged as part

of a business process. Business documents are composed of three types of com-

ponents: core components, domain components, and business information objects.

Core components, stored in the core library, are information components that are

re-usable across industries. Domain components and business information objects

are larger components stored in the domain library and business library respectively.

Core components are provided by the ebXML library while domain component and

business information objects are provided by specific industries or businesses.

At the business process layer, ebXML defines a business process specification

schema available in UML and XML versions. The UML version only defines a UML

class diagram. It is not intended for the direct creation of a business process specifi-

cation but provides a representation of all the elements and relationships required for

its creation. The XML version allows the creation of XML documents representing

B. Medjahed Chapter 7. Related Work 222

ebXML-compliant business process specifications. ebXML provides a set of common

business process specifications that are shared by multiple industries. These specifi-

cations, stored in the business library, can be used by companies to build customized

business processes. Interactions between business processes are represented through

choreographies. A choreography specifies the ordering and transitions between busi-

ness transactions. To model collaboration in which companies can engage, ebXML

defines collaboration protocol agreements (CPAs). A CPA is an agreement by two

trading partners which specifies in advance the conditions under which the trading

partners will collaborate (e.g., terms of shipment and terms of payment).

The ebXML infrastructure enables secure and reliable communications by using

emerging security standards (e.g., SSL and S-HTTP). In addition, digital signatures

can be applied to individual messages or a group of related messages to guarantee

authenticity. With regard to autonomy and adaptability, ebXML appears to of-

fer the same kind of properties as eCO. External manageability can be provided by

adding specific activities in shared business processes. The initial goal of the ebXML

initiative was to support a fully distributed set of repositories which is an interest-

ing feature for improving scalability. However, to date, only a single repository is

specified.

7.4 Deployment Platforms

Major software vendors (IBM, Microsoft, Sun Microsystems, HP, Oracle, BEA

systems, etc) are currently working on implementing Web service platforms. The

purpose of this section is not to compare commercial products but to overview

their main features. Because there are a large number of products, this section

does not attempt to cover all of them. Instead, we focus on the major players in

this arena. Our coverage is based on user manuals and white papers since there are

few or no published technical papers detailing commercial products. Additionally,

existing products are at various development stages and operate at different levels

of disclosure.

B. Medjahed Chapter 7. Related Work 223

Microsoft .NET [86] – .NET embraces the concept of Web services to enable B2B

interaction. It consists of three key elements: .NET Framework and tools, .NET

Enterprise Servers, and .NET Service Building Blocks. .NET Framework and tools

provides the standard-based tools for SOAP, WSDL, and UDDI. .NET Enterprise

Servers provides the core components for building Web services. These include

database like SQL Server 2000, messaging software like Exchange 2000 Server, busi-

ness process technology like BizTalk Server 2000, and Internet Security and Accel-

eration Server. .NET Service Building Blocks contains pre-defined Web services

created using the .NET infrastructure (e.g., Passport and HailStorm).

SOAP is used as the main transport protocol in the communication layer.

Interoperability at the communication layer is also supported by Microsoft Message

Queue (MSMQ) supplemented with gateways for sending and receiving documents

in various formats from trading partners. Microsoft Host Integration Server is used

to support connection to proprietary systems like IBM mainframes. Heterogeneity

at the content layer is addressed by adhering to open standards (XML and WSDL)

and the wrapping of applications as .NET Managed Components. Building business

processes (called Orchestration) is done through BizTalk Server. Developers use

the Biztalk Orchestration Designer to create Biztalk processes. These are compiled

into XLANG schedules which are executed by the Biztalk Scheduler Engine.

WebSphere [63] – WebSphere is a family of IBM products for B2B interactions.

The application server is the cornerstone of WebSphere. It aims at providing

database and backend integration as well as security and performance capability

(e.g. workload management). The WebSphere application server Advanced Edition

adds support for J2EE specification. It also extends J2EE with direct access to

advanced CORBA services for greater flexibility and improved interoperability. The

advanced edition integrates support for key Web service standards such as SOAP,

UDDI, and WSDL. Additionally, it provides distributed transaction support for

major database systems including IBM’s DB2, Oracle, Sybase, and Informix. Other

B. Medjahed Chapter 7. Related Work 224

products make up the WebSphere platform. These include WebSphere Business

Components, WebSphere Commerce, and WebSphere MQ Family. The WebSphere

Business Components provides pre–built, tested, and “plug and play” components

for building new applications or extending existing ones. WebSphere Commerce

provides mechanisms for building B2B sites including catalog creation and payment

processing. WebSphere MQ Family, formerly known as as MQSeries, is a family

of message-oriented middleware products that enable communication between

applications running on different hardware platforms.

Sun ONE (Sun Open Net Environment) [89] – Sun ONE is a platform for Web

services developed by Sun. Two main product lines make up the Sun ONE platform:

Forte tools and iPlanet. Forte tools offer Integrated Development Environment (IDE)

for the Java, C, C++, and Fortran languages. It enables developers to access the

plug-ins they need and hence speed the development of Web services. iPlanet is the

core of Sun ONE platform. It includes a stack of products that allow the creation,

deployment, and execution of Web services. Examples of such products are the

iPlanet Portal Server, iPlanet Application Server, and iPlanet Integration Server.

The iPlanet Portal Server is the representation layer of iPlanet. It delivers services

to end-users by aggregating content and providing security, personalization, and

knowledge management. The iPlanet Application Server enables access to legacy

applications and databases. It also provides a J2EE execution environment for Web

services. The iPlanet Integration Server is a workflow-based engine that enables

businesses to define workflows across legacy applications and create services.

Sun ONE uses workflows to ensure interoperability at the business process

layer. However, it is not clear how services are composed using the iPlanet

Application Server. Sun ONE supports the emerging Web service standards such

as SOAP, WSDL, and UDDI. The iPlanet Portal Server enables the integration of

any HTML or XML encoded content and heterogeneous applications that run on

major operating systems such as Microsoft Windows, and Unix. Complementary

packages provide additional functionality including secure communications. iPlanet

B. Medjahed Chapter 7. Related Work 225

addresses scalability by offering built-in services such as load balancing.

Vitria BusinessWare [128] – Vitria BusinessWare emphasizes on business process

management and automation. It adopts UML and WfMC reference model for mod-

eling business processes. The exchange of information between trading partners is

done using XML. However, BusinessWare assumes that those partners will agree

upon a common standard XML DTD to describe the documents to be exchanged.

BusinessWare also requires businesses to agree on the semantics of business pro-

cesses’ activities. BusinessWare’s processes are divided into two types: public and

private. A placement of purchase order described in RosettaNet PIPs is an example

of public process. The way that different companies deal with an incoming order

from a customer is an example of private process. The separation between private

and public process allows trading partners to change their private process without

affecting the cross-organization public business process.

BusinessWare is composed of four modules: Business process management,

Business-to-Business communications, Enterprise application integration, and

Real-time analysis. The Business process management controls and coordinates

the flow of information between internal and external process systems. Both

private and public processes can be defined using the graphical modeling tool. The

Business-to-Business communications is responsible for interactions with trading

partners using multiple protocols (HTTP-S, FTP, IIOP, SOAP, EDI, fax and

email) and data formats (XML, IDL, EDI, RosettaNet). The Enterprise application

integration provides connectors for major databases, messaging systems, and

packaged applications. The Real-time analysis enables the gathering and analysis

of process information. It allows businesses to identify processing bottlenecks and

react to fast-changing business conditions.

Oracle Integration Server [98] – Oracle Integration Server is one of the products

of Oracle Application Server which is based on J2EE and emerging Web service

standards. It supports transport protocols such as SOAP, HTTP-S, SMTP, FTP/S,

B. Medjahed Chapter 7. Related Work 226

IIOP, and various messaging systems (JMS, IBM MQSeries, TIBCO/Rendezvous).

The Integrator has two main components. The first component provides an EJB

container for executing the designed business process. The second component

consists of the design and management tools which include Integration Modeler,

Business Process Monitor, and Business Intelligence. The Integration Modeler

offers a set of Web-based tools to model business process, map data sources from

one form to another, and set up relationships with trading partners. The Business

Process Monitor provides means for users to monitor, analyze, and drill down

on the state of the business process (such as start, stop, resume). The Business

Process Intelligence uses Oracle data warehousing facilities to analyze and gather

information about the overall flow of business processes (i.e., the frequency of

messages being sent/received).

HP NetAction [60] – The HP NetAction software suite includes the HP NetAction

Internet Operating Environment (IOE), a platform for building B2B applications.

The IOE includes the HP Process Manager and HP Web Services Platform. HP

Process Manager (formerly called ChangeEngine) allows the graphical definition of

business processes and provides an environment that automates the execution of

those processes. It has a component-based architecture based on J2EE. HP Process

Manager also provides an audit logger that can be used to read information in

XML format from a JMS (Java Message Service) queue. It allows the definition of

audit nodes within a business process to indicate the points in the process at which

audit information should be collected. HP Web Services Platform is a standards-

based architecture for developing Web services. Key components of the HP Web

Services Platform include HP-SOAP 2.0, HP Service Composer (a graphical tool

for creating and mapping WSDL interfaces), HP Registry Composer (a graphical

tool for registering and discovering Web services in UDDI registries). HP an-

nounced in July 2002 it was discontinuing its development and support of NetAction.

BEA WebLogic Integrator [8] – BEA WebLogic Integrator is the cornerstone of

B. Medjahed Chapter 7. Related Work 227

BEA WebLogic E-Business Platform. It is built on top of a J2EE compliant

application server and J2EE connector architecture. It supports current Web

service standards such as SOAP, UDDI, and WSDL. The Integrator is composed of

four major modules: Application server, Application integration, Business process

management, and B2B integration. The Application server provides the infras-

tructure and functionalities for developing and deploying multi-tiers distributed

applications as EJB components. The Application integration leverages the J2EE

connector architecture to simplify integration with existing enterprise applications

such as SAP R/3 and PeopleSoft. The Business process management provides

a design tool and execution engine for business processes. The B2B integration

manages interactions with external business processes. A separate module called

B2B integration/collaboration is used to manage different B2B protocols (such as

RosettaNet PIPs, BEA’s eXtensible Open Collaboration Protocol) and Quality of

Service (QoS) of the trading partners.

WebMethods [132] – WebMethods is composed of three modules: WebMethods

Enterprise Server, WebMethods Enterprise Adaptor and WebMethods Enterprise

Rule Agent. The Rule Agent is used to set up specific business rules that are

required for integrating business processes across different enterprises. The

adaptors connect information sources to WebMethods Enterprise Server and

provide bi-directional mapping of information between the native format and the

server’s. Several adaptors are provided to allow the mapping of XML messages

to industry-adopted message types (RossettaNet, cXML, OBI, EDI). The hub of

the system is WebMethods Enterprise Server which acts as the central control and

storage point. It uses XML for exchanging messages between trading partners.

The server supports multiple transport protocols such as SOAP, HTTP, HTTP-S,

RMI-IIOP, SMTP and FTP. It also defines a process-oriented language called Flow

to visually compose services.

TIBCO ActiveEnterprise [123] – ActiveEnterprise uses a set of products to enable

B. Medjahed Chapter 7. Related Work 228

B2B interactions. TIBCO InConcert is a tool for defining and managing dynamic

workflows. TIBCO IntegrationManager defines and manages automated business

processes that span multiple applications and transactions. TIBCO MessageBroker

performs rule-based transformation and mapping of messages between different

messaging softwares. TIBCO Hawk is a sophisticated tool for administrating and

monitoring of system behaviors within ActiveEnterprise. TIBCO Rendezvous is

an advanced messaging system that supports publish/subscribe, request/reply,

synchronous/asynchronous, certified and transactional messaging paradigms.

ActiveEnterprise supports other messaging protocols such as JMS, HTTP/S, COM,

CORBA and MQSeries. At the content layer, ActiveEnterprise supports various

vertical and horizontal industry standards such as cXML, RosettaNet, EDI, and

HealthCare standards.

In Table 7.3, commercial Web service platforms are summarized using the fol-

lowing set of parameters: major modules, communication standards, content and

business process standards, and key technologies. For example, BEA Weblogic Inte-

grator includes an application server, application integration, business process man-

agement, and B2B Integration. The communication standards supported in BEA

Weblogic Integrator are SOAP, JMS and IIOP. BEA Weblogic Integrator supports

WSDL, XML, RosettaNet-PIP, and BEA-XOCP as content and business process

standards. The key technologies that are supported include components (J2EE),

XML, workflows, and Web services. Note that all deployment platforms support

HTTP as a communication protocol. Additionally, the list of supported standards

(communication, content, and B2B protocol) is non-exhaustive as new standards

are constantly being added.

B. Medjahed Chapter 7. Related Work 229

Major Modules Communication
Standards

Content and Business
Process Standards

Key Technologies

IBM WebSphere Application Server,
MQSeries, Business
Components, Web-
Sphere Commerce

MQSeries, JMS,
IIOP, SOAP,
HTTP

WSDL, XML,
RosettaNet-PIP,
cXML, EDI

Components
(J2EE), XML,
Web Services

Sun ONE Forte tools and
iPlanet

JMS, SOAP,
LDAP, WAP,
IIOP, HTTP

EDI, XML, WSDL Components
(J2EE), XML,
Web services and
Workflow

Oracle
Integration
Server

Integration Modeler,
System Monitoring
and Administration,
Business Process
Monitor, Business
Intelligence

Oracle Queue,
JMS, SOAP,
IIOP, MQSeries,
TIBCO/rendezvous,
HTTP

XML, WSDL, EDI,
RosettaNet-PIP,
ebXML

Components
(J2EE), workflow,
XML, data mining,
Web services

HP NetAction HP Opencall, HP
Chat, HP NetAction
Internet Operating
Environment

SOAP, JMS,
IIOP, HTTP

XML, WSDL Components
(J2EE), XML,
workflow
(ChangeEngine),
Web services

Microsoft .NET .NET Framework
and Tools, .NET
Enterprise Servers,
.NET Service Build-
ing Blocks

MSMQ, SOAP,
Microsoft Host
Integration
Server, HTTP

XML, WSDL,
RosettaNet-PIP,
XLANG from BizTalk
Server

DCOM, MSMQ,
Web services,
XML, BizTalk
Orchestration
Engine

BEA WebLogic
Integrator

Application Server,
Application Integra-
tion, Business Pro-
cess Management,
B2B Integration

SOAP, JMS,
IIOP, HTTP

WSDL, XML,
RosettaNet-PIP, BEA-
XOCP

Components
(J2EE), XML,
workflow, Web
services

WebMethods Enterprise Server,
Enterprise Adaptor,
and Enterprise Rule
Agent

SOAP, IIOP,
JMS, HTTP

WSDL, XML, EDI,
RosettaNet-PIP,
ebXML, cXML, OBI

Components, work-
flow, Web services
and Agents

Vitria Business
Ware

Business Process
Management, B2B
Communications,
Enterprise Applica-
tion Integration and
Real-Time Analysis

SOAP, IIOP,
JMS, HTTP

XML, EDI,
RosettaNet-PIP,
ebXML, xCBL, cXML

Components,
XML, workflow,
process model,
process analysis

TIBCO
Active
Enterprise

InConcert, Integra-
tionManager, Mes-
sageBroker, Hawk,
and Rendezvous

SOAP, JMS,
IIOP, MQSeries,
HTTP

WSDL, XML, HL7,
EDI, RosettaNet-PIP,
BizTalk, ebXML,
cXML, xCBL

Messaging soft-
ware, XML,
workflow, Web
services

Table 7.3: Deployment Platforms

Chapter 8

Conclusions

In this chapter, we summarize the results of our dissertation and discuss future

research directions for Web service composition.

8.1 Summary

Web service composition is emerging as the technology of choice for enabling

inter-enterprise interactions on the Web [5, 77]. However, current techniques

for service composition are generally ad-hoc, time consuming, and error prone.

In this dissertation, we proposed an approach for the automatic composition of

Web services. Based on “abstract” specifications of composition requests, the

composition engine automatically generates detailed descriptions of composite

services that fulfill those requests. This requires dealing with three major research

thrusts: (i) describing the semantics of Web services, (ii) selecting “relevant”

participants and checking their composability, and (iii) generating composite

service descriptions. We also implemented our approach in WebDG, a prototype for

accessing e-government Web services. We summarize below our major contributions

in this dissertation.

Ontology-based Organization and Description of Web Ser-

B. Medjahed Chapter 8. Conclusions 231

vices [76, 78, 81, 11, 4] – Understanding the semantics of Web services is a

key requirement for the automatic composition of those services. The first step of

our research was thereby to define a framework for the semantic description of Web

services. We proposed an ontology-based framework for organizing Web services

and describing their semantics. Web Services are grouped into communities based

on their domain of interest. Service providers identify a community of interest and

register their service with it. Each community is an instance of an ontology, called

community ontology. The community ontology includes a set of generic operations

that can be used “as is” or customized by underlying services.

Multilevel Model for Web Service Composability [83, 79] – Assume now that

the composition engine is able to “understand” the meaning and capabilities of each

Web service. The issue then is to select “relevant” participants while making sure

that those participants “can” actually interact with each other. For that purpose,

we proposed a composability model for semantic Web services. The model is defined

by a set of rules called composability rules. Each rule compares a specific feature

of interacting Web services. We organized composability rules into five levels:

syntactic, static semantic, dynamic semantic, qualitative, and business process.

Each rule specifies the constraints and requirements for checking horizontal,

vertical, and hybrid composability. We also introduced the notions of composability

degree and τ -composability to cater for partial and total composability.

Automatic Generation of Composite Services [80, 82] – Based on the

proposed framework for semantic Web services and multilevel composability model,

we designed a technique for the automatic generation of composite services from

high-level specifications of composition requests. The proposed technique consists

of three conceptually separate phases: specification, matchmaking, and generation.

We defined a Quality of Composition (QoC) model to assess the quality of the

generated composite service. We also proposed two sets of algorithms for enabling

one-to-one and one-to-many compositions, respectively. The first set (one-to-one

B. Medjahed Chapter 8. Conclusions 232

composition) includes operation-centric, community-centric, and message-centric

algorithms. The operation-centric algorithm uses operations as a basis for checking

composability. It performs an exhaustive search in the service registry. The

community-centric algorithm uses communities as a basis for selecting service

operations. It focuses on communities whose category may be composed with

sub-requests’ categories. The remaining communities and their imported operations

are pruned from the service space. The message-centric algorithm checks the

composability of messages instead of operations and then derives the operations

that could be vertically composed with sub-requests. The one-to-many composition

algorithm is based on the notion of flow graph which links together all operations

that are horizontally composable.

Implementation and Performance Study [83, 17] – We implemented the pro-

posed techniques in WebDG, a prototype for accessing e-government Web services.

We defined an analytical model for studying the performance of the proposed al-

gorithms for composition. We also conducted a set of experiments to evaluate the

performance and scalability of these algorithms. We defined a benchmarking frame-

work for Web services. The benchmark enables the generation of a large number

of Web services and the simulation of important characteristics of the Web service

space such as dynamics and heterogeneity. Its main features include customized

generation (i.e., user-controlled generation), use of statistical distribution models

(e.g., Poisson for service arrival rate) and extensibility (e.g., adding new service

attributes).

8.2 Directions for Future Research

We identify the following directions for future research: dynamic composition of

Web services, dependable service composition, the support of mobile services, and

grid services.

B. Medjahed Chapter 8. Conclusions 233

Dynamic Composition of Web Services – The number of services to be inte-

grated may be large and continuously changing. Web service composition requires

flexibility to dynamically adapt to changes that may occur in partners’ applications.

Participants must be able to respond rapidly to changes where both operational

(e.g., server load) and market (e.g., changes in regulations) environments are not

easily predictable. Additionally, the competitive nature of the Web makes possible

the availability of alternate services that provide “similar” functions. To stay

competitive, businesses should team up with the “best” available services at any

given time. They need to form short term relationships and then disband when it is

no longer profitable to stay together. This form of partnership does not assume any

a priori trading relationship. The support of dynamic composition will facilitate

the establishment of on demand and real-time partnerships. Services will not

statically be bound to each other. New partners with relevant features should be

dynamically discovered and assembled. Currently, relationships among component

services are mostly established at development time. While technologies such as

SOAP, WSDL, and UDDI provide capabilities for defining Web services, they

clearly are not sufficient to facilitate the establishment of dynamic business relation-

ships. More research effort is needed to enable the creation of dynamic relationships.

Dependable Composition of Web Services – Transaction support is required

to provide reliable and dependable execution of composite services. Traditional

transaction management techniques [47] are not appropriate in the context of

composite services. The participants of a composite service may be heterogeneous

and autonomous. They may not be transactional and if they are, their transactional

features may not be compatible with each other. In addition, participant services,

for different reasons (e.g., quality of services), may not be willing to comply

with constraints such as resource locking, until the termination of the composite

service execution. New transaction techniques are required in the context of

Web services. For instance, it is important to extend the description of services

by explicitly describing transactional semantics of Web service operations. An

B. Medjahed Chapter 8. Conclusions 234

example is to specify that an operation can be aborted without effect from a

requester’s perspective. It is also imperative to extend service composition models

to specify transactional semantics of an operation or a group of operations. An

example is to specify how to handle the unavailability of a participant service. The

effective handling of transactional aspects at the composite service level, should be

facilitated by exploiting the transactional capabilities of participant services. A

few industry standards such as WS-Coordination [64], WS-Transaction [65], and

Business Transaction Protocol (BTP) [95] are already emerging for transaction

support of composite services.

Support of Mobile Services – In our current work, we focused on Web service

composition in “wired” infrastructures with fixed or stationary users. In our future

research, we intend to extend our research on Web service composition to wireless

environments [137, 126]. Indeed, the past years have witnessed a boom in wireless

technologies. Sophisticated wireless devices such as cellular phones and PDAs are

now available at affordable prices. Emerging technologies including 3G and 4G

(third and fourth generation) are under development to increase the bandwidth of

wireless channels. However, most of the proposed Web service concepts cannot or

may not be easily applicable to mobile services. This is due to the peculiarities

of wireless environments including limited bandwidth, unbalanced client-server

communication, limited power supply, and frequent unavailability of wireless

networks. For example, using UDDI for discovering Web services requires multiple

costly round-trips over wireless networks. Invoking Web services using SOAP may

increase mobile hosts’ power consumption and waiting time. This calls for new

techniques to adapt Web services to the wireless world.

Grid Services – Grid computing is another research area we would like to explore

in the future. The aim of research on grids is to provide scalable and transparent

methods for accessing resources in distributed environments. Grid concepts and

technologies were first developed to enable scientific collaborations. Applications

B. Medjahed Chapter 8. Conclusions 235

include collaborative visualization of large scientific datasets and computationally

demanding data analyses (e.g., in astronomy). Just as the Web began as the tech-

nology for scientific collaboration and was recently adopted in various applications

such as e-commerce and e-government, a similar trajectory is expected for Grid

technologies [45].

One of the challenges is the support of dynamic integration of resources. These

resources must be discovered on-the-fly, selected when requests are submitted, and

released after the requests are fulfilled. In both grids and Web services, we often

need to integrate “resources” across distributed, heterogeneous, and autonomous

systems. One possible way to realize grids on the Web is to view grid resources

as Web services. In this way, grids can be defined by reusing, assembling, and co-

ordinating existing resources. The challenge is to define techniques for discovering,

selecting, creating, and assembling grids using Web service composition techniques.

Bibliography

[1] N. Adam, O. Dogramaci, A. Gangopadhyay, and Y. Yesha. Electronic

Commerce: Technical, Business, and Legal Issues. Prentice Hall (ISBN:

0139490825), August 1998.

[2] N. R. Adam and Y. Yesha. Strategic Directions in Electronic Commerce

and Digital Libraries: Towards a Digital Agora. ACM Computing Surveys,

28(4):818–835, December 1996.

[3] S. Aissi, P. Malu, and K. Srinivasan. E-Business Process Modeling: The Next

Big Step. IEEE Computer, 35(5):55–62, May 2002.

[4] M. S. Akram, B. Medjahed, and A. Bouguettaya. Supporting Dynamic

Changes in Web Service Environments. In Proceedings of the International

Conference on Service Oriented Computing, pages 319–334, Trento, Italy, De-

cember 2003.

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts,

Architecture, and Applications. Springer Verlag (ISBN: 3540440089), June

2003.

[6] ATIS. Electronic Data Interchange Guideline Consistency Subcommittee

(EGCS). http://www.atis.org/atis/tcif.

[7] K. Baina, K. Benali, and C. Godart. A Process Service Model for Dynamic

Enterprise Process Interconnection. In Proceedings of the International Con-

236

B. Medjahed Bibliography 237

ference on Cooperative Information Systems, pages 239–254, Trento, Italy,

September 2001.

[8] BEA. WebLogic Integrator. http://www.bea.com/products/weblogic/integrator.

[9] BEA, IBM, and Microsoft. Business Process Execution Language for Web

Services (BPEL4WS). http://xml.coverpages.org/bpel4ws.html.

[10] B. Benatallah, M. Dumas, M. Sheng, and A. H. H. Ngu. Declarative Composi-

tion and Peer-to-Peer Provisioning of Dynamic Web Services. In Proceddings

of the IEEE International Conference on Data Engineering, pages 297–308,

San Jose, California, USA, February 2002.

[11] B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid, and J. Beard.

Composing and Maintaining Web-based Virtual Enterprises. In Proceedings

of the International Workshop on Technologies for E-Services, pages 155–174,

Cairo, Egypt, September 2000.

[12] T. Berners-Lee. Services and Semantics: Web Architecture.

http://www.w3.org/2001/04/30-tbl, April 2001.

[13] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

[14] M. Bichler, A. Segev, and J. L. Zhao. Component-based E-Commerce: As-

sessment of Current Practices and Future Directions. ACM SIGMOD Record,

27(4):7–14, December 1998.

[15] A. Bouguettaya, B. Benatallah, and A. K. Elmagarmid. Interconnecting

Heterogeneous Information Systems. Kluwer Academic Publishers (ISBN

0792382161), July 1998.

[16] A. Bouguettaya, A. Elmagarmid, B. Medjahed, and M. Ouzzani. Ontology-

Based Support for Digital Government. In Proceedings of the International

B. Medjahed Bibliography 238

Conference on Very Large Databases, pages 633–636, Roma, Italy, September

2001.

[17] A. Bouguettaya, B. Medjahed, A. Rezgui, M. Ouzzani, and Z. Wen. Privacy

Preserving Composition of Government Web Services (Demo). In Proceedings

of the NSF Conference for Digital Government Research, pages 429–432, Los

Angeles, California, USA, May 2002.

[18] A. Bouguettaya, M. Ouzzani, B. Medjahed, and J. Cameron. Managing Gov-

ernment Databases. IEEE Computer, 34(2):56–64, February 2001.

[19] M. Brodie. The B2B E-commerce Revolution: Convergence, Chaos, and Holis-

tic Computing. In Information System Engineering: State of the Art and

Research Themes. S. Brinkkemper, E. Lindencrona, and Solvberg (editors),

London, England, June 2000.

[20] C. Bussler. B2B Protocol Standards and their Role in Semantic B2B Integra-

tion Engines. IEEE Data Engineering Bulletin, 24(1):3–11, March 2001.

[21] C. Bussler, D. Fensel, and A. Maedche. A Conceptual Architecture for Se-

mantic Web Enabled Web Services. SIGMOD Record, 31(4):24–29, December

2002.

[22] J. Cardoso and A. Sheth. Semantic e-Workflow Composition. Technical report,

LSDIS Lab, Department of Computer Science, University of Georgia, July

2002.

[23] F. Casati, U. Dayal, and M.-C. Shan. E-Business Applications for Supply

Chain Automation: Challenges and Solutions. In Proceddings of the IEEE

International Conference on Data Engineering, pages 71–78, Heidelberg, Ger-

many, April 2001.

B. Medjahed Bibliography 239

[24] F. Casati, D. Georgakopoulos, and M.-C. Shan, editors. Proceedings of the In-

ternational Workshop on Technologies for E-Services, Roma, Italy, September

2001.

[25] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M.-C. Shan. Adaptive

and Dynamic Service Composition in eFlow. In Proceedings of the Interna-

tional Conference on Advanced Information Systems Engineering, pages 13–31,

Stockholm, Sweden, June 2000.

[26] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan. eFlow:

a Platform for Developing and Managing Composite e-Services. Technical

Report HPL-2000-36, HP Laboratoris, Palo Alto, California, USA, 2000.

[27] F. Casati, M. Sayal, and M.-C. Shan. Developing E-Services for Composing

E-Services. In Proceedings of the International Conference on Advanced In-

formation Systems Engineering, pages 171–186, Interlaken, Switzerland, June

2001.

[28] F. Casati and M.-C. Shan. Models and Languages for Describing and Discover-

ing E-Services (Tutorial). In Proceedings of the International ACM SIGMOD

Conference on Management of Data, Santa Barbara, California, USA, May

2001.

[29] D. Chakraborty, F. Perich, A. Joshi, T. Finin, and Y. Yesha. A Reactive

Service Composition Architecture for Pervasive Computing Environments. In

Proceedings of the International Personal Wireless Communications Confer-

ence, pages 53–62, Singapore, October 2002.

[30] E. Cobb. The Evolution of Distributed Component Architectures. In Pro-

ceedings of the International Conference on Cooperative Information Systems,

pages 7–21, Trento, Italy, September 2001.

[31] C. Collet, T. Coupaye, and T. Svensen. NAOS: Efficient and Modular Reactive

Capabilities in an Object-Oriented Database System. In Proceedings of the

B. Medjahed Bibliography 240

International Conference on Very Large Databases, pages 132–143, Santiago,

Chile, September 1994.

[32] CommerceNet. eCO. http://eco.commerce.net.

[33] RosettaNet Consortium. RosettaNet. http://www.rosettanet.org.

[34] X12 Consortium. EDI (Electronic Data Interchange) ANSI X12.

http://www.x12.org.

[35] XML/EDI Consortium. XML/EDI. http://www.xmledi-group.org.

[36] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. MIT Press (ISBN: 0262032937), September 2001.

[37] F. Curbera, M. Duftler, R. Khalaf, and W. Nagy. Unraveling the Web Services

Web. IEEE Internet Computing, 6(2):86–93, March 2002.

[38] cXML Consortium. cXML. http://www.cxml.org.

[39] U. Dayal, M. Hsu, and R. Ladin. Business Process Coordination: State of the

Art, Trends, and Open Issues. In Proceedings of the International Conference

on Very Large Databases, pages 3–13, Roma, Italy, September 2001.

[40] Y. Ding, D. Fensel, and and B. Omelayenko M. Klein. The Semantic Web: Yet

Another Hip? Data and Knowledge Engineering, 41(3):205–227, May 2002.

[41] A. Dogac. A Survey of the Current State-of-the-Art in Electronic Commerce

and Research Issues in Enabling Technologies. In Proceddings of the Euro-Med

Net Conference, Electronic Commerce Track, pages 50–53, Nicosia, Cyprus,

March 1998.

[42] A. Dogac, editor. Special Issue on Electronic Commerce, ACM SIGMOD

Record, 27(4), December 1998.

B. Medjahed Bibliography 241

[43] A. Dogac, editor. Special Issue on Electronic Commerce, Distributed and Par-

allel Databases, an International Journal, 7(2), April 1999.

[44] A. Dogac and I. Cingil. A Survey and Comparison of Business-to-Business

E-Commerce Frameworks. ACM SIGecom Exchanges, 2(2):16–27, June 2001.

[45] F. Douglis and I. T. Foster. The Grid Grows Up. IEEE Internet Computing,

7(4):24–26, July 2003.

[46] Drala. Drala Event Broker. http://www.dralasoft.com.

[47] A. K. Elmagarmid, editor. Database Transaction Models for Advanced Appli-

cations. Morgan Kaufmann (ISBN:1558602143), December 1992.

[48] D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Elec-

tronic Commerce. Springer Verlag (ISBN: 3540003029), September 2003.

[49] D. Florescu, A. Grunhagen, and D. Kossmann. XL: An XML Programming

Language for Web Service Specification and Composition. In Proceedings of the

International World Wide Web Conference, pages 65–76, Honolulu, Hawaii,

USA, May 2002.

[50] D. Florescu, A. Grunhagen, D. Kossmann, and S. Rost. XL: Platform for

Web Services. In roceedings of the International ACM SIGMOD Conference

on Management of Data, page 625, Madison, Wisconsin, USA, May 2002.

[51] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch: Why Reuse

Is So Hard. IEEE Software, 12(6):17–26, November 1995.

[52] D. Georgakopoulos, editor. Information Technology for Virtual Enterprises,

Proceedings of the International Workshop on Research Issues on Data Engi-

neering, Sidney, Australia, March 1999.

B. Medjahed Bibliography 242

[53] D. Georgakopoulos, H. Schuster, A. Cichocki, and D. Baker. Managing Process

and Service Fusion in Virtual Enterprises. Information Systems, 24(6):429–

456, September 1999.

[54] A. Gomez-Perez and O. Corcho. Ontology Languages for the Semantic Web.

IEEE Intelligent Systems, 17(1):54–60, January 2002.

[55] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable, Dis-

tributed Data Structures for Internet Service Construction. In Proceedings

of the Symposium on Operating Systems Design and Implementation, pages

319–332, San Diego, California, USA, October 2000.

[56] Object Management Group. Unified Modeling Language Specification (Version

1.3). http://www.omg.org/technology/documents/formal/uml.htm, 1999.

[57] J. V. D. Heuvel, J. Yang, and M. P. Papazoglou. Service Representation,

Discovery and Composition for E-marketplaces. In Proceedings of the In-

ternational Conference on Cooperative Information Systems, pages 270–284,

Trento, Italy, September 2001.

[58] J. Hopkins. Component Primer. Communications of the ACM, 43(10), Octo-

ber 2000.

[59] I. Horrocks. DAML+OIL: a Description Logic for the Semantic Web. IEEE

Data Engineering Bulletin, 25(1):4–9, March 2002.

[60] HP. NetAction. http://www.hp.com.

[61] M. N. Huhns. Agents Web Services. IEEE Internet Computing, 6(4):93–95,

July 2002.

[62] IBM. Web Services Flow Language (WSFL).

http://xml.coverpages.org/wsfl.html.

[63] IBM. WebSphere. http://www.ibm.com.

B. Medjahed Bibliography 243

[64] IBM. WS-Coordination. http://www-106.ibm.com/developerworks/.

[65] IBM. WS-Transaction. http://www-106.ibm.com/developerworks/.

[66] IETF. EDIINT. http://www.ietf.org.

[67] IETF. The Internet Engineering Task Force. http://www.ietf.org.

[68] R. Kalakota and A. B. Whinston. Frontiers of Electronic Commerce. Addison

Wesley (ISBN: 0201845202), February 2000.

[69] G. Larsen. Component-based Enterprise Frameworks. Communications of the

ACM, 43(10):24–26, October 2000.

[70] A. Lazcano, H. Schuldt, G. Alonso, and H. J. Schek. WISE: Process based

E-Commerce. IEEE Data Engineering Bulletin, 24(1):46–51, March 2001.

[71] S. M. Lewandowski. Frameworks for Component-based client/server Comput-

ing. ACM Computing Survey, 30(1):3–27, March 1998.

[72] L. Li and I. Horrocks. A Software Framework for Matchmaking Based on

Semantic Web Technology. In Proceedings of the International World Wide

Web Conference, pages 331–339, Budapest, Hungary, May 2003.

[73] H. Ludwig and Y. Hoffner. Contract-based Cross-Organisational Workflows -

The CrossFlow Project. In Proceedings of the International Joint Conference

on Work Activities Coordination and Collaboration, pages 1–6, San Francisco,

California, USA, February 1999.

[74] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE

Intelligent Systems, 16(2):46–53, March 2001.

[75] M. Mecella, B. Pernici, and P. Craca. Compatibility of e -Services in a Co-

operative Multi-platform Environment. In Proceedings of the International

Workshop on Technologies for E-Services, pages 44–57, Roma, Italy, Septem-

ber 2001.

B. Medjahed Bibliography 244

[76] B. Medjahed, B. Benatallah, A. Bouguettaya, and A. Elmagarmid. WebBIS:

A Framework for Agile Integration of Web Services. International Journal of

Cooperative Information Systems, 13(2), June 2004.

[77] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A. Elmagarmid.

Business-to-Business Interactions: Issues and Enabling Technologies. The

VLDB Journal, 12(1):59–85, May 2003.

[78] B. Medjahed and A. Bouguettaya. A Dynamic Foundational Architecture for

Semantic Web Services. Distributed And Parallel Databases, an International

Journal, 2004 (submitted).

[79] B. Medjahed and A. Bouguettaya. A Multilevel Composability Model for

Semantic Web Services. IEEE Transactions on Knowledge and Data Engi-

neering, 2004 (submitted).

[80] B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing Web Services

on the Semantic Web. The VLDB Journal, 12(4):333–351, November 2003.

[81] B. Medjahed, A. Bouguettaya, and M. Ouzzani. Semantic Web Enabled E-

Government Services. In Proceedings of the NSF Conference for Digital Gov-

ernment Research, pages 250–253, Boston, Massachussets, USA, May 2003.

[82] B. Medjahed, M. Ouzzani, and A. Bouguettaya. Using Web Services in E-

Government Applications. In Proceedings of the NSF Conference for Digital

Government Research, pages 371–376, Los Angeles, California, USA, May

2002.

[83] B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani. Infrastructure for

E-Government Web Services. IEEE Internet Computing, 7(1):58–65, January

2003.

[84] B. Meyer. On To Components. IEEE Computer, 32(1):139–140, January 1999.

B. Medjahed Bibliography 245

[85] Microsoft. Distributed Component Object Model (DCOM).

http://www.microsoft.com.

[86] Microsoft. .NET. http://www.microsoft.com/net/.

[87] Microsoft. Web Services for Business Process Design (XLANG).

http://xml.coverpages.org/xlang.html.

[88] Sun Microsystems. Java RMI (Remote Method Invocation).

http://java.sun.com/products/jdk/rmi.

[89] Sun Microsystems. Sun ONE. http://www.sun.com.

[90] P. Muth, D. Wodtke, J. Weissenfels, A. K. Dittrich, and G. Weikum. From

Centralized Workflow Specification to Distributed Workflow Execution. Jour-

nal of Intelligent Information Systems, 10(2):159–184, March 1998.

[91] NASA. Scientific and Engineering Workstation Procurement (SEWP).

http://www.sewp.nasa.gov.

[92] United Nations. United Nations Directories for Electronic Data In-

terchange for Administration, Commerce and Transport (UN/EDIFACT).

http://www.unece.org/trade/untdid/welcome.htm.

[93] Netscape. Secure Socket Layer (SSL) 3.0 Specification.

http://wp.netscape.com/eng/ssl3/.

[94] H. S. Nwana and D. T. Ndumu. An Introduction to Agent Technology. Lecture

Notes in Artificial Intelligence, Number 1198, Springer Verlag, 1997.

[95] OASIS. Business Transaction Protocol. http://www.oasis-open.org/cover.

[96] OASIS and United Nations. ebXML. http://www.ebxml.org.

[97] OBI. OpenBuy. http://www.openbuy.org.

B. Medjahed Bibliography 246

[98] Oracle. Integration Server Starter Pack. http://otn.oracle.com/software.

[99] R. Orfali and D. Harkey. Client/Server Programming With Java and CORBA.

Wiley Computer Publishing (ISBN: 047124578X), March 1998.

[100] M. Ouzzani, B. Benatallah, and A. Bouguettaya. Ontological Approach for In-

formation Discovery in Internet Databases. Distributed and Parallel Databases,

an International Journal, 8(3):367–392, July 2000.

[101] M. Ouzzani and A. Bouguettaya. Query Processing and Optimization on the

Web. Distributed and Parallel Databases, an International Journal, 15(3):187–

218, May 2004.

[102] M. Ouzzani, B. Medjahed, and A. Bouguettaya. Optimized Querying of E-

Government Services. In Proceedings of the NSF Conference for Digital Gov-

ernment Research, pages 363–366, Boston, Massachussets, USA, May 2003.

[103] A. Paepcke, C. K. Chang, H. Garcia-Molina, and T. Winograd. Interoperabil-

ity for Digital Libraries Worldwide. Communications of the ACM, 41(4):33–43,

April 1998.

[104] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic Matching

of Web Services Capabilities. In Proceedings of the International Semantic

Web Conference, pages 318–332, Sardinia, Italy, June 2002.

[105] S. K. Park and K. W. Miller. Random Number Generators: Good Ones Are

Hard to Find. Communications of the ACM, 31(10):1192–1201, October 1988.

[106] C. Petrie and C. Bussler. Service Agents and Virtual Enterprises: A Survey.

IEEE Internet Computing, 7(4):68–78, July 2003.

[107] S. R. Ponnekanti and A. Fox. SWORD: A Developer Toolkit for Web Service

Composition. In Proceedings of the International World Wide Web Confer-

ence, pages 83–107, Honolulu, Hawaii, USA, May 2002.

B. Medjahed Bibliography 247

[108] S. Ran. A Model for Web Services Discovery with QoS. SIGecom Exchanges,

4(1):1–10, March 2003.

[109] E. Roman, S. W. Ambler, and T. Jewell. Mastering Enterprise JavaBeans.

Wiley Computer Publishing (ISBN: 0471417114), December 2001.

[110] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice

Hall (ISBN: 0137903952), December 2002.

[111] C. Schuler, H. Schuldt, G. Alonso, and H.-J. Schek. Workflows over Workflows:

Practical Experiences with the Integration of SAP R/3 Business Workflows in

WISE. In Proceedings of the Informatik’99 Workshop “Enterprise-wide and

Cross-enterprise Workflow Management: Concepts, Systems, Applications”,

pages 65–72, Paderborn, Germany, October 1999.

[112] H. Schuster, D. Baker, A. Cichocki, D. Georgakopoulos, and M. Rusinkiewicz.

The Collaboration Management Infrastructure. In Proceddings of the IEEE

International Conference on Data Engineering, pages 485–487, San Jose, Cal-

ifornia, USA, March 2000.

[113] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and

Composing Service-Based and Reference Process-Based Multi-enterprise Pro-

cesses. In Proceedings of the International Conference on Advanced Informa-

tion Systems Engineering, pages 247–263, Stockholm, Sweden, June 2000.

[114] M. Shen, B. Benatallah, M. Dumas, and E. O.-Y. Mak. SELF-SERV: A Plat-

form for Rapid Composition of Web Services in a Peer-to-Peer Environment.

In Proceedings of the International Conference on Very Large Databases, pages

1051–1054, Hong Kong, China, August 2002.

[115] A. P. Sheth and J. A. Larson. Federated Database Systems for Managing

Distributed, Heterogeneous, and Autonomous Databases. ACM Computing

Surveys, 22(3):183–236, September 1990.

B. Medjahed Bibliography 248

[116] S. S. Y. Shim, V. S. Pendyala, M. Sundaram, and J. Z. Gao. Business-to-

Business E-Commerce Frameworks. IEEE Computer, 33(10):40–47, October

2000.

[117] M. P. Singh. Physics of Service Composition. IEEE Internet Computing,

5(3):6, May 2001.

[118] M. Sipser. Introduction to the Theory of Computation. Brooks Cole (ISBN

053494728X), December 1996.

[119] B. Spitznagel and Garlan D. A Compositional Formalization of Connector

Wrappers. In Proceedings of the International Conference on Software Engi-

neering, pages 374–384, Portland, Oregon, USA, May 2003.

[120] K. Sycara, M. Klush, and S. Widoff. Dynamic Service Matchmaking Among

Agents in Open Information Environments. ACM SIGMOD Record, 28(1):47–

53, March 1999.

[121] C. Szyperski. Component Software - Beyond Object-Oriented Programming.

Addison-Wesley (ISBN: 0201745720), November 2002.

[122] The Stencil Group. How Web Services Will Beat the “New New Thing” Rap.

http://www.stencilgroup.com/ideas scope 200106newnew.html.

[123] TIBCO. ActiveEnterprise. http://www.tibco.com.

[124] S. Tsur, S. Abiteboul, R. Agrawal, U. Dayal, J. Klein, and G. Weikum. Are

Web Services the Next Revolution in e-Commerce? (Panel). In Proceedings of

the International Conference on Very Large Databases, pages 614–617, Roma,

Italy, September 2001.

[125] S. D. Urban, S. W. Dietrich, A. Saxena, and A. Sundermier. Interconnection

of Distributed Components: An Overview of Current Middleware Solutions.

Journal of Computer and Information Sciences and Engineering, 1(1):23–31,

March 2001.

B. Medjahed Bibliography 249

[126] U. Varshney and R. J. Vetter, editors. Special Issue on Mobile Commerce,

MONET 7(3), June 2002.

[127] S. Vinoski. Web Services Interaction Models, Part 1: Current Practice. IEEE

Internet Computing, 6(3):89–91, May 2002.

[128] Vitria. BusinessWare. http://www.vitria.com.

[129] W3C. Simple Object Access Protocol (SOAP). http://www.w3.org/TR/soap.

[130] W3C. Universal Description, Discovery, and Integration (UDDI).

http://www.uddi.org.

[131] W3C. Web Services Description Language (WSDL).

http://www.w3.org/TR/wsdl.

[132] WebMethods. WebMethods. http://www.webmethods.com.

[133] G. Weikum, editor. Special Issue on Organizing and Discovering the Semantic

Web, IEEE Data Engineering Bulletin, 25(1), March 2002.

[134] J. Weissenfels, M. Gillmann, O. Roth, G. Shegalov, and W. Wonner. The

Mentor-Lite Prototype: A Light-Weight Workflow Management System. In

Proceddings of the IEEE International Conference on Data Engineering, pages

685–686, San Diego, California, USA, February 2000.

[135] M. Wooldrige and N. R. Jennings. Intelligent Agents: Theory and Practice.

Knowledge Engineering Review, 10(2):115–152, 1995.

[136] J. Yang and M. P. Papazoglou. Interoperation Support for Electronic Business.

Communications of the ACM, 43(6):39–47, June 2000.

[137] X. Yang, A. Bouguettaya, B. Medjahed, W. He, and H. Long. Organizing and

Accessing Web Services on Air. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 33(6):742–757, November 2003.

B. Medjahed Bibliography 250

[138] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z.Sheng. Quality

Driven Web Services Composition. In Proceedings of the International World

Wide Web Conference, pages 411–421, Budapest, Hungary, May 2003.

Appendix A

Vita

Personal Information

• Full Name: Brahim Medjahed

• E-mail: brahim@vt.edu

• Home Page: http://www.nvc.cs.vt.edu/∼brahim

Research Interests

Databases, Internet Computing, Semantic Web, Web Service, Workflow.

Education

• May 2004: Ph.D. in Computer Science and Applications, Department of Com-

puter Science, Virginia Tech (GPA: 4.0/4.0).

– Thesis: Semantic Web Enabled Composition of Web Services

– Advisor: Dr Athman Bouguettaya

251

B. Medjahed Appendix A. Vita 252

• September 1995: M.Sc. in Computer Science, Algiers University of Sciences

and Technology, Algeria.

• June 1991: B.Sc. in Computer Science, Algiers University of Sciences and

Technology, Algeria.

• June 1986: Baccalaureate (high school diploma), Algiers, Algeria.

Research Experience

• Research Assistant (May 2000 - December 2003): Department of

Computer Science, Virginia Tech.

– For my Ph.D. thesis research, I worked on developing an approach for

the automatic composition of Semantic Web services. I proposed an on-

tological framework for organizing and describing Web services on the

Semantic Web. Based on this framework, I defined a multilevel com-

posability model to check whether Web services can be combined to-

gether. The model checks Web service composability at different levels

including syntactic, semantic (static and dynamic), qualitative (Quality

of Operation), and business process levels. Finally, I proposed a set of

algorithms for checking composability and automatically generating a de-

tailed composite service description from the high-level description of a

desired composition. The proposed techniques were implemented in the

WebDG prototype, a system for providing customized government Web

services (NSF funded project).

• Visiting Scholar (Summer 2001): Department of Computer Sciences,

Purdue University.

– I designed and implemented e-services using different e-service platforms

including HP NetAction platform, HP e-speak, and UDDI/WSDL/SOAP.

B. Medjahed Appendix A. Vita 253

The aim was to compare different e-service platforms. This work was part

of a HP-funded project conducted in collaboration between Virginia Tech

and Purdue University.

• Research Assistant (August 1999 - May 2000): Department of Com-

puter Science, Virginia Tech.

– My early work in the WebDG Project (funded by NSF) focussed on orga-

nizing and querying Web databases. I looked at the use of ontologies to

cluster and browse Web databases. Tools used for that purpose include

CORBA products (Orbix, OrbixWeb, Visibroker, JavaIDL, etc), RMI,

DCOM, EJB and the IIOP standard.

• Research Assistant (March 1999 - August 1999): School of Informa-

tion Systems, Queensland University of Technology, Australia.

– I worked on the design of a proactive and adaptive transaction model

in open, heterogeneous, and distributed environments. This work was

funded by an ARC SPIRIT project (Australia).

• Research Assistant (September 1993 - May 1995): Department of

Computer Science, Algiers University of Sciences and Technology,

Algeria.

– The topic of my M.Sc. research thesis was concurrency control for nested

transactions. I designed and implemented a technique based on serial-

ization graphs for checking the serializability of a concurrent execution

of nested transactions. This work was part of a project funded by the

Algerian Department of Education.

B. Medjahed Appendix A. Vita 254

Teaching Experience

• Teaching Assistant (March 1999 - August 1999): School of Informa-

tion Systems, Queensland University of Technology, Australia.

– Course: Introduction to Databases. I conducted weekly Lab sessions,

graded projects and exams, and held office hours.

• Lecturer (September 1995 - February 1999): Algiers University of

Sciences and Technology, Algeria.

– Courses: Algorithms - Compilers - Computer Architecture. I prepared

and gave weekly lectures, conducted weekly Lab sessions, designed and

graded homeworks, projects, and exams.

• Associate Lecturer (September 1995 - December 1998): Educaform

(Private Undergraduate Institute), Algeria.

– Courses: Introduction to Computer Science - Data Structures - Computer

Architecture. I prepared and gave weekly lectures, conducted weekly Lab

sessions, designed and graded homeworks, projects, and exams.

• Teaching Assistant (September 1992 - June 1994): National Insti-

tute of Computer Science, Algiers, Algeria.

– Course: Compilers. I conducted weekly Lab sessions, graded projects

and exams, designed and graded homeworks, and held office hours.

• Teaching Assistant (September 1993 - June 1994): Algiers Univer-

sity of Sciences and Technology, Algeria.

– Course: Introduction to the Theory of Computation. I conducted weekly

Lab sessions, designed and graded homeworks, graded exams, and held

office hours.

B. Medjahed Appendix A. Vita 255

Publication

Journals

1. B. Medjahed, B. Benatallah, A. Bouguettaya, and A. Elmagarmid. WebBIS:

A Framework for Agile Integration of Web Services. International Journal of

Cooperative Information Systems, 13(2), June 2004 (to appear).

2. B. Medjahed, A. Bouguettaya, and A. Elmagarmid. Composing Web Services

on the Semantic Web. The VLDB Journal, Special Issue on the Semantic

Web, 12(4), November 2003.

3. X. Yang, A. Bouguettaya, B. Medjahed, H. Long, W. He. Organizing and

Accessing Web Services on Air. IEEE Transactions on Systems, Man, and

Cybernetics - Part A: Systems and Humans, 33(6), November 2003.

4. B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. Elma-

garmid. Business-to-Business Interactions: Issues and Enabling Technologies.

The VLDB Journal , 12(1), May 2003.

5. B. Medjahed, A. Rezgui, A. Bouguettaya, and M. Ouzzani. Infrastructure for

E-Government Web Services. IEEE Internet Computing, 7(1), January/February

2003.

6. A. Bouguettaya, M. Ouzzani, B. Medjahed, and J. Cameron. Managing Gov-

ernment Databases. IEEE Computer, 34(2), February 2001.

7. B. Medjahed, A. Bouguettaya. Customized Delivery of Pervasive Web Ser-

vices. IEEE Computer (under review).

8. B. Medjahed and A. Bouguettaya. A Multilevel Composability Model for Se-

mantic Web Services. IEEE Transactions on Knowledge and Data Engineering

(under review).

B. Medjahed Appendix A. Vita 256

9. B. Medjahed and A. Bouguettaya. A Dynamic Foundational Architecture for

Semantic Web Services. Distributed And Parallel Databases (under review).

Book Chapters

10. A. Bouguettaya, A. Rezgui, B. Medjahed, M. Ouzzani. Internet Computing

Support for Digital Government. In The Practical Handbook of Internet Com-

puting, CRC Press (to appear).

11. A. Bouguettaya, B. Benatallah, B. Medjahed, M. Ouzzani, L. Hendra. Adap-

tive Web-based Communities. In Information Modeling for Internet Applica-

tion, (P. Van Bommel, editor), ISBN 1- 59140- 050- 3, Idea Group Publishing,

October 2002.

12. A. Bouguettaya, B. Medjahed, M. Ouzzani, Y. Meng. Ubiquitous Access to

Web Databases. In Web Powered Databases (D. Taniar and W. Rahayo, edi-

tors), ISBN 1-59140-035-X, Idea Group Publishing, August 2002.

13. A. Bouguettaya, M. Ouzzani, B. Medjahed, and A. Elmagarmid. Supporting

Data and Services Access in Digital Government Environments. In Advances

in Digital Government Technology, Human Factors, and Policy (W. J. McIver

and A. K. Elmagarmid, editors), ISBN 0-306-47374-7, Kluwer Academic Pub-

lishers, May 2002.

Conferences

14. M. S. Akram, B. Medjahed, and A. Bouguettaya. Supporting Dynamic Changes

in Web Service Environments. 1st International Conference on Service Ori-

ented Computing, SOC 2001, Trento, Italy, December 2003.

15. B. Medjahed, A. Bouguettaya, and M. Ouzzani. Semantic Web Enabled E-

Government Services. The dg.o 2003 NSF Conference for Digital Government

Research, Boston, USA, May 2003.

B. Medjahed Appendix A. Vita 257

16. M. Ouzzani, A. Bouguettaya, and B. Medjahed. Optimized Querying of E-

Government Services. The dg.o 2003 NSF Conference for Digital Government

Research, Boston, USA, May 2003.

17. A. Rezgui, M. Ouzzani, A. Bouguettaya, and B. Medjahed. Preserving Privacy

in Web Services. The 4th International ACM Workshop on Web Information

and Data Management, WIDM 2002, Virginia, USA, November 2002.

18. B. Medjahed, M. Ouzzani, and A. Bouguettaya. Using Web Services in E-

Government Applications. The dg.o 2002 NSF Conference for Digital Govern-

ment Research, Los Angeles, USA, May 2002.

19. A. Bouguettaya, B. Medjahed, A. Rezgui, M. Ouzzani, and Z. Wen. Privacy

Preserving Composition of Government Web Services (Demo Paper). The

dg.o 2002 NSF Conference for Digital Government Research, Los Angeles,

USA, May 2002.

20. A. Bouguettaya, A. Elmagarmid, B. Medjahed, and M. Ouzzani. Ontology-

based Support for Digital Government. The 27th Conference on Very Large

Databases, VLDB 2001, Roma, Italy, September 2001.

21. A. Bouguettaya, A. Elmagarmid, B. Medjahed, and M. Ouzzani. A Web-

based Architecture for Government Databases and Services. The dg.o 2001

NSF Conference for Digital Government Research, Los Angeles, USA, May

2001.

22. B. Medjahed. Discovering and Integrating Web-based E-Services. ACM Inter-

national Student Research Workshop, Charlotte, North Carolina, USA, Febru-

ary 2001.

23. B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elmagarmid, and J. Beard.

Composing and Maintaining Web-based Virtual Enterprises. First VLDB

Workshop on Technologies for E-Services, TES 2000, Cairo, Egypt, September

2000

B. Medjahed Appendix A. Vita 258

24. H. Seba, B. Medjahed, and M. Atroun. Compound Conflict Serializability: A

Criterion for Strong Correctness in Multidatabases, BDA’98 (French Database

Conference), Hamamet, Tunisia, October 1998 (in French).

25. H. Seba, B. Medjahed, and M. Atroun. Preservation of Strong Correctness in

Multidatabases, 2nd National conference on Computer Science, Biskra, Algeria,

November 1997 (in French).

26. B. Medjahed. Serialization Graph Construction in Object Oriented Database

Systems, 3rd International Symposium on Programming and Systems (ISPS’97),

Algiers, Algeria, April 1997 (in French).

27. B. Medjahed and N. Belkhodja. On the Serializability for Nested Transactions,

3rd IASTED International Conference on Computer Applications in Industry,

Cairo, Egypt, December, 1994.

28. B. Medjahed and N. Belkhodja. A Serializability Approach for Nested Trans-

actions, 6th Conf. on Parallel and Distributed Systems of French-speaking

Countries (RenPar’6), Lyon, France, June 1994 (in French).

29. B. Medjahed, N. Belkhodja, and M. Atroun. Multilevel and Nested Trans-

actions, 7th International Conference on Computer Systems (JISI’7), Tunis,

Tunisia, May 1994 (in French).

Theses

31. B. Medjahed. M.Sc. Thesis, Concurrency Control for Nested Transactions,

Algiers University of Sciences and Technology, Algeria, September 1995 (in

French).

32. B. Medjahed and R. Hamadi. B.Sc. Project, Implementation and Compari-

son of Multiversion Concurrency Control, Algiers University of Sciences and

Technology, Algeria, June 1991 (in French).

B. Medjahed Appendix A. Vita 259

Talks and Presentations

1. Automatic Composition of Web Services. Invited talk, Rutgers University,

July 2003.

2. Semantic Web Enabled E-Government Services. Paper presentation, dg.o 2003

NSF Conference for Digital Government Research, May 2003.

3. Semantic Web Support for Digital Government. Birds of a feather session,

dg.o 2003 NSF Conference for Digital Government Research, May 2003.

4. Optimized Querying of E-Government Services. Poster presentation, dg.o 2003

NSF Conference for Digital Government Research, May 2003.

5. Declarative and Dynamic Composition of Web Services. Invited talk, Mitretek,

June 2002.

6. WebDG: Integrated Access to E-Government Databases and Services. Demo

Presentation, Virginia Department for the Aging, October 2002.

7. WebDG: An E-Government Infrastructure for Uniform Privacy Preserving Ac-

cess to Autonomous Web Databases and Services. Paper presentation, AOL

Common Ground Research Day Workshop, November 2002.

8. Uniform and Secure Access to Web Databases and Services. Paper presenta-

tion, AOL Common Ground Research Day Workshop, November 2001.

9. Using Web Services in E-Government Applications. Paper presentation, dg.o

2002 NSF Conference for Digital Government Research, May 2002.

10. Privacy Preserving Composition of Government Web Services. Demo pre-

sentation, dg.o 2002 NSF Conference for Digital Government Research, May

2002.

B. Medjahed Appendix A. Vita 260

11. Web-based Architecture for Government Databases and Services. Demo pre-

sentation, dg.o 2001 NSF Conference for Digital Government Research, May

2001.

12. Managing Government Databases. Demo Presentation, Indiana Family and

Social Services Administration, August 2001.

13. Ontology-based Support for Digital Government. Paper presentation, VLDB

2001 Conference, September 2001.

14. Discovering and Integrating Web-based E-Services. Poster presentation, ACM

International Student Research Workshop, February 2001.

Grants

• I participated in the write-up of two research grant proposals successfully

funded by NIH and Sun Microsystems respectively. I also helped in the write-

up of an NSF research grant proposal (under review).

• I attended two workshops at Virginia Tech on grant writing. The titles of the

workshop were “Finding Funds” and “Writing Successful Grants”.

Awards

• April 2003: Virginia Tech’s Award to present a paper at dg.o.2003 Conference

• November 2002: Outstanding reviewer award, IEEE Internet Computing.

• December 2001: Computing Research Association’s (CRA) award to attend

the CRA Academic Careers Workshop.

B. Medjahed Appendix A. Vita 261

• September 2001: Virginia Tech’s award to present a paper at VLDB 2001

Conference

• February 2001: ACM award to present a paper at the ACM International

Student Research Workshop, Charlotte, North Carolina, USA, February 2001.

• March 1999: Recipient of a three-year Scholarship for Ph.D. Studies, School

of Information Systems, Queensland University of Technology, Brisbane, Aus-

tralia.

Honors

• Invited to appear in the “Who’s Who In America” (October 2004).

• Student Member of the IEEE, IEEE Computer Society, and ACM since 1999.

• B.Sc. and M.Sc. in Computer Science with First Honor.

Professional Activities

Program Committee Membership

• International Workshop on Ubiquitous Computing (IWUC 2004), April 13-14

2004, Porto, Portugal.

• First IEEE International Workshop on Electronic Contracting (WEC’04), July

6-9, San Diego, California.

Workshop and Seminar Organization

• I Helped in the organization of the IEEE RIDE (Research Issues on Data

Engineering) 2004 Workshop. I was responsible of maintaining the workshop

Web site, managing submissions, and handling reviews.

B. Medjahed Appendix A. Vita 262

• Student volunteer in the 32nd ACM Technical Symposium on Computer Sci-

ence Education.

• Fall 2002 - Spring 2003: Coordinator of ECEG (E-Commerce & E-Government

Research Lab) Seminars.

Technical Refereeing

• Journals:

– ACM Computing Survey, 2001. IEEE Transactions on Knowledge and

Data Engineering, 2001. IEEE Internet Computing, 2002. Distributed

and Parallel Databases Journal, 1999, 2000, 2001, 2002, and 2003. En-

cyclopedia of Biomedical Engineering, 2003. Knowledge and Information

Systems, 2000. International Journal of Information Technology, 1999.

• Conferences:

– International Conference on Data Engineering (ICDE), 2002. Interna-

tional Conference on Extending Database Technology (EDBT), 2004.

International Conference on Web Services (ICWS), 2003. International

Conference on Electronic Commerce (CEC), 2003. International Confer-

ence on Information and Knowledge Management (CIKM), 2001. Inter-

national Conference on Tools with Artificial Intelligence (ICTAI), 1999,

2000, 2003. International Conference on Cooperative Information Sys-

tems (CoopIS), 1999. Distributed Objects and Applications Conference

(DOA), 1999. VLDB Workshop on Technologies for E-Services (TES),

2003. Workshop on Research Issues on Data Engineering (RIDE), 2002.

International Workshop on Mobility in Databases and Distributed Sys-

tems (MDDS), 2000.

Students Co-Advising

• M.Sc. Independent Study Projects, Department of Computer Science, Virginia

Tech.

B. Medjahed Appendix A. Vita 263

– Yu Wang. Implementation of Distributed Ontologies.

– Edward Gemperline. Deploying E-Services Using E-Speak and DCOM.

– Zhaohong Li. Deploying E-Services Using E-Speak and EJB.

– Rongfang Ma. A Uniform Interface for Querying Government Databases

and Invoking Services.

– Xinyuan Zhang. Benchmarking Web Services.

– Hongmei Hao. Accessing E-Government Web Services.

– Hao Long. Implementing Web Services for Government Applications.

