
A Web Services Composition Approach
based on Software Agents and Context

Zakaria Maamar
Zayed University, U.A.E

zakaria.maamar@zu.ac.ae

Soraya Kouadri M.
Fribourg University, Switzerland

kouadris@acm.org

Hamdi Yahyaoui
Laval University, Canada

hamdi.yahyaoui@ift.ulaval.ca

ABSTRACT
We present an agent-based and context-oriented approach
for Web services composition. A Web service is an acces-
sible application that other applications and humans can
discover and trigger to satisfy various needs. Due to the
complexity of Web services composition, we consider two
concepts to reduce this complexity: software agent and con-
text. A software agent is an autonomous entity that acts on
behalf of users, whereas context is any information relevant
to characterize a situation. During composition, software
agents engage conversations with their peers to agree on the
Web services that will participate in the composition.

Keywords
Web service, software agent, composition, context, security.

1. INTRODUCTION
The increasing demand of users for high quality and timely

information is putting businesses under the pressure of ad-
justing their know-how and seeking as well for more sup-
port from other businesses due to various arguments such
as cost-effectivity and expertise-availability. A strategy that
implements such a support is to merge business processes
despite well-known obstacles (e.g., lack of a common ontol-
ogy). In this paper, we illustrate a business process with
a Web service. A Web service is an accessible application
that other applications and humans can automatically dis-
cover and invoke [3]. In general, composing multiple Web
services (also called services in the rest of this paper) rather
than accessing a single service is essential and provides more
benefits to users. Discovering the component services, inte-
grating the services into a composite service, triggering the
composite service for execution, and last but not least moni-
toring this execution for the needs of exception handling are
among the operations that users will have to take care. Most
of these operations are complex, although repetitive with
a large segment suitable to computer aid and automation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus.
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

Therefore, Software Agents (SAs) are deemed appropriate
to assist users in their operations [5].

Entrusting the composition of Web services to software
agents is not obvious. Indeed, different issues are raised in-
cluding which businesses have the capacity to provision Web
services, when and where the provisioning of Web services
occurs, how Web services from separate businesses coordi-
nate their activities so conflicts can be avoided. To address
certain of these issues, agents need to be aware of the con-

text [4] in which the composition and execution of the Web
services will occur. For instance, before provisioning a ser-
vice for execution the computing capabilities of the resources
vs. the computing requirements of the service is assessed. In
this paper, we present our agent-based and context-oriented

approach for Web services composition.
In this approach, we leverage the interactions between

agents during the composition of services to the level of
conversations. A conversation is a consistent exchange of
messages between participants involved in joint operations
and consequently, have common interests. Ardisson et al.
observe in [2] that current Web services standards support
simple interactions and are mostly structured as question-
answer pairs. These limitations hinder the possibility of
expressing complex situations that require more that two
turns of interactions. To address these limitations, we il-
lustrate in this paper how agents engage conversations with
their peers when it comes for example to search for the com-
ponent services, to check the availability of these services,
and to trigger these services for execution.

Section 2 overviews various concepts such as Web services
and conversations. Section 3 presents the agentification of
Web services composition. Section 4 talks about the security
of the computing resources on which the Web services are
executed. Finally, Section 5 draws our conclusions. It should
be noted that the mechanisms (e.g., UDDI registries) for
discovering the component Web services, while important,
do not fall within this paper’s scope.

2. PRELIMINARIES

Web services. A Web service is an accessible application
that other applications and humans as well can discover and
invoke. Benatallah et al. suggest the following properties for
a Web service [3]: (i) independent as much as possible from
specific platforms and computing paradigms; (ii) developed
mainly for inter-organizational situations; and (iii) easily
composable (i.e., no need for complex adapters).

For our projects on Web services, we developed Service

1619

2004 ACM Symposium on Applied Computing

Chart Diagrams (SCDs) as a specification means of the com-
position of the Web services [7]. A SCD leverages an UML
state chart diagram, putting the focus on the execution con-
text of a service rather than only on the states of the service.
A SCD wraps the states of a Web service into four perspec-
tives: flow, business, information, and performance.

Software agents. A SA is a piece of software that au-
tonomously acts to carry out tasks on users’ behalf [5]. A
SA exhibits several features that make it different from other
traditional components: autonomy, goal-orientation, collab-
oration, flexibility, self-starting, temporal continuity, char-
acter, communication, adaptation, and mobility.

Context. Composed of con (with) and text, context is the
meaning that can be inferred from an adjacent text. Dey
considers in [4] context as any information that is relevant to
the interactions between the user and the environment. This
information can be related to the circumstances, objects, or
conditions by which a user is surrounded.

Conversations. Smith et al. define in [10] conversations
as a sequence of messages involving participants who intend
to achieve a particular purpose. In general, a conversation
either succeeds or fails. On one side, a conversation succeeds
because what was expected from the conversation in term
of outcome has been achieved. On the other side, a conver-
sation fails because the conversation faced several technical
difficulties or didn’t achieve what was expected.

3. AGENTIFICATION OF WEB SERVICES
Three types of input sources can contribute to the devel-

opment of a context: service, user, or both user and service.
In [8], it is noted that a user-centric context promotes ap-
plications that move with users, adapt according to changes
in the available resources, and provide configuration mech-
anisms based on users’ personal-preferences. We advocate
that a service-centric context promotes applications that al-
low service adaptability, deal with service availability, and
support an on-the-fly service composition. In this paper, the
focus is on the context of services.

3.1 Agent-based deployment
The rationale of the agentification of Web services com-

position is to determine the appropriate types and roles
of agents that will deploy this composition. Currently, we
put forward three types of agents: composite-service-agent,
master-service-agent, and service-agent.

We consider a Web service as a component that is instanti-
ated each time it is being called to participate in a composi-
tion. Before the instantiation happens, several elements re-
lated to the Web service have to be checked. These elements
constitute a part of the context, denoted by W-context, of
the Web service and are as follows: (i) the number of ser-
vice instances currently running vs. the maximum number
of service instances that simultaneously can be run,(ii) the
execution status and location of each service instance de-
ployed, and (iii) the time of request of the service instance
vs. the time of availability of the next service instance.

The role of the master-service-agent is to track the Web
service instances that are obtained from a Web service. Web
services, Master-service-agents, and W-contexts are all stored

in a pool (Fig. 1). A master-service-agent processes the re-
quests of instantiation that are submitted to a Web service.
These requests originate from composite-service-agents that
identify the composite services to set-up. For instance, the
master-service-agent makes decisions on whether a Web ser-
vice is authorized to join a composite service. In case of
approval, a service instance and a context, denoted by I-
context, are created. An authorization can be rejected for
different reasons: period of non-availability, overloaded sta-
tus, or exception situation.

To be informed about the running instances of a Web ser-
vice so the W-context can be updated, the master-service-
agent associates each instance created with two components:
a service-agent and an I-context. The service-agent man-
ages the service chart diagram and the I-context of the ser-
vice instance. For example, the service-agent knows the
states that the service instance should take, and the Web
services that need to join the composite service after the
execution of this service instance is completed.

Master-service-agents and service-agents are in constant
interactions. Indeed, the content of I-contexts feed the con-
tent of W-contexts with various details: (i) what is the ex-
ecution status of a service instance? (ii) When is the exe-
cution of a service instance supposed to resume in case it
has been suspended? And, (iii) when is the execution of a
service instance expected to complete?

With regard to composite-service-agents, their role is to
trigger the specification of the composite services and mon-
itor their deployment. A composite-service-agent ensures
that the appropriate component services are involved and
collaborating according to a specific specification. When
a composite-service-agent downloads the specification of a
composite service, it (i) establishes a context denoted by
C-context for this composite service, and (ii) identifies the
first Web services to be triggered. For the sake of simplic-
ity, we assume that the Web services constitute a sequence.
However, our description is service chronology-independent.
When the first Web service is known, the composite-service-
agent interacts with the master-service-agent of this Web
service in the objective to ask for a service instantiation.
If the master-service-agent agrees on this instantiation af-
ter checking the W-context (Section 3.3), a service-agent
and an I-context are set up. Afterwards, the service chart
diagram of the new service-instance is transmitted to the
service-agent. The service-agent initiates the execution of
the service instance and notifies the master-service-agent
about the execution status. Because of the regular noti-
fications between service-agents and master-service-agents,
exceptional situations are immediately handled so corrective
actions are timely carried-out on time. In addition, while the
Web service instance is being performed, the service-agent
identifies the Web services that are due for execution after
this service instance. In case there are Web services due for
execution, the service-agent requests from the composite-
service-agent to engage conversations with their respective
master-service-agent.

Fig. 1 represents an execution session of composite service
CS1 that has 4 primitive component services: service{1,2,3,4}.
Each service instance has a service chart diagram. The
clouds in the same figure correspond to contexts. I-context
is the core context that the service-agent uses for updating
the C-context and W-context of the respective composite-
service-agent and master-service-agent. The exchange of in-

1620

Session of composite service
 1

SCD-Web

service
1

SCD-Web

service
2

SCD-Web

service
3

SCD-Web

service
4

I
-Context

Update

I
-Context

Update

Interactions
 Pool of Master-

service-agents

W
-Context

C
-Context

Store of

composite service

specifications

Access

Composite-service-agent
 Service-agent
 Master-service-agent

Figure 1: Agents for Web services composition

formation that occurs between a master-service-agent and
a service-agent has already been discussed in the previous
paragraphs. In addition to a copy (or a part based on the
level of detail that needs to be tracked) of that exchange
that is sent to composite-service-agents, these ones receive
extra details from service-agents: (i) the next services to
be called for execution, and (ii) the type of these services
whether mandatory or optional.

3.2 Details on I/W/C-contexts
Besides the three types of agents that are identified dur-

ing the agentification of Web services composition (Fig. 1),
three types of services are considered: composite service,
Web service, and Web service instance. Each service is at-
tached to a specific context. The I-context is the most-
grained one, whereas the C-context is the least-grained one.
The W-context is in between the two contexts. Details on
an I-context are used for updating a W-context, whereas
details on a W-context are used for updating a C-context.
We use Tuple Spaces to implement the update operations
between contexts [1]. However, because of lack of space
these operations are not discussed1, and only the structure
of I-context is presented.

The I-context of a Web service instance consists of the
parameters label, service-agent label, status, previous ser-
vice instances, next service instances, regular actions, be-
gin time, end time (expected and effective), reasons of fail-
ure/suspension, corrective actions, and date.

We pointed out in the beginning of Section 3 that a service-
centric context is adopted. This has been shown with the
W-context of a Web service that constitutes the link be-
tween the I-contexts and C-contexts. A service-centric con-
text promotes service adaptability, availability, and on-the-
fly composition. We meet these requirements in our agentifi-
cation approach of Web services composition. A composite
service may have to adapt its list of component Web ser-
vices due to the availability of certain of these components.
Availability is illustrated with two cases: a service is either
mandatory or optional, and the maximum number of ser-

1Example: modified(I-context i, WebServiceInstance
wsi)[true]—update(Wcontext w, WebService ws) means
that if the I-context i of the Web service instance wsi has
been modified, therefore the respective W-context w of the
web service ws needs also to be updated after collecting in-
formation from this I-context i.

vices instances that can be created compared to the current
number of service instances that are running. Since Web
services are instantiated on a request-basis, this means that
an on-the-fly composition is supported.

In our work, we see a W-context of a Web service along
three perspectives: instance, execution, and time. The ra-
tionale of each perspective is as follows.

1. Instance perspective: deals with creating service in-
stances, assigning them to composite services, and get-
ting ready the next service instances.

2. Execution perspective: deals with meeting the com-
puting resource requirements of service instances, track-
ing their execution, and avoiding conflicts on these
computing resources.

3. Time perspective: deals with time-related parameters
of and constraints on service instances.

3.3 Conversations between agents
In the following and for the sake of simplicity, a compo-

nent service always refers to a Web service. In a reactive
composition such as the one that features our agentifica-
tion approach, the selection of the component services of a
composite service is done on-the-fly. We outsource the selec-
tion operations to composite-service-agents that engage con-

versations with the respective master-service-agent of the
appropriate Web services. In these conversations, master-
service-agents decide if their Web service will join the com-
position process after checking the C-contexts. In case of a
positive decision, Web service instances, service-agents, and
I-contexts are deployed.

When a Web service instance is being executed, its service-
agent checks its service chart diagram. The purpose is to
verify if additional Web services have to be executed. In case
of a positive verification, the service-agent requests from the
composite-service-agent to engage conversations with the
master-service-agents of these Web services. These conver-
sations have two aims: (i) invite master-service-agents and
thus, their Web service to participate in the composition
process; and (ii) ensure that the Web services are got ready
for instantiation in case of invitation acceptance.

Fig. 2 depicts a conversation diagram between a service-
agent, a composite-service-agent, and a master-service-agent.
The composite-service-agent is in charge of a composite ser-
vice that has n component Web services(1, ··· , i, j, ··· , n). In
this figure, rounded rectangles are states (states with under-
lined labels belong to Web service instances, whereas other
states belong to agents), italic sentences are conversations,
and numbers are the chronology of conversations. Initially,
Web service instancei takes an execution state. Further-
more, service-agenti and the composite-service-agent take
each a conversation state. In these conversation states, ac-
tivities to request the participation of the next Web services
(i.e., Web servicej) are performed.

Upon receiving a request from service-agenti about the
need of involving Web servicej (0), the composite-service-
agent engages conversations with master-service-agentj (1).
This service is an element of the composite service under
preparation. A composite service is decomposed into three
parts. The first part is the Web service instances that have
completed their execution (Web services1, ··· , i−1). The sec-
ond part is the Web service instance that is now being ex-
ecuted (Web service instancei). And, the third part is the

1621

Conversation
 1. Request to join

a composite service

 2.1 Decline to join

Monitoring

Assessment

Request

considered

2.2 Request to delay

Assessment

Preparation

Decision made

Conversation

Web service

instance
i
done

Composite-service-agent

 2.2.1 Accept to delay

Reject to

delay/decline

2.3 Accept to join
 Service to

get ready

Execution

Conversation

Web service
j

Master-service-agent

j

Execution
 Conversation
 0. Web service

needed

Invitation

accepted

Execution

with success

Service-agent

i

Web service

instance
i

Service-agent

j

Web service

instance
j

Deployment

later on

Conversation

Invocation Web service instance
j

I
-Context

I
-Context
 C
-Context
 W
-Context

Figure 2: Conversation diagram between agents

rest of the component services that have to get ready for
execution (Web servicesj, ··· , n). Initially, master-service-
agentj is in a monitoring mode in which it tracks the in-
stances of Web servicej that are currently participating in
different composite services. When it receives a request
to create an additional instance, master-service-agentj en-
ters the assessment state. Based on the W-context of Web
servicej , master-service-agentj evaluates the request of the
composite-service-agent and makes a decision on one of the
following options: (a) decline the request, (b) delay its mak-
ing decision, or (c) accept the request. Due to lack of space,
only (a) and (c) options are presented.

Option a. Master-service-agentj of Web servicej declines
the request of the composite-service-agent. A conversation
message is sent from master-service-agentj to the composite-
service-agent for information (2.1). Because a component
service can be either mandatory or optional in a composite
service, the composite-service-agent has to decide whether it
has to pursue with master-service-agentj . To this end, the
composite-service-agent relies on the specification of Web
servicei and the C-context of the composite service. Two
exclusive cases are offered to the composite-service-agent:

• If Web servicej is optional, the composite-service-agent
enters again the conversation state, asking the master-
service-agent of another Web servicek, (k 6= j) to join
the composite service (1).

• If Web servicej is mandatory, the composite-service-
agent engages further conversations with master-service-
agentj asking for example for the reasons of rejection
or the availability of the next instance of Web servicej .

Option c. Master-service-agentj of Web servicej accepts
to join the composite service. Consequently, it informs its
acceptance to the composite-service-agent (2.3). This is fol-
lowed by a Web Service Level Agreement (WSLA) between
the two agents [6]. At the same time, master-service-agentj

ensures that Web servicej is getting ready for execution
through the preparation state.

When the execution of Web service instancei is completed,
service-agenti informs the composite-service-agent about that.
According to the agreement of Option c, the composite-
service-agent interacts with service-agentj so the newly cre-
ated instance of Web servicej is triggered. Therefore, Web
service instancej enters the execution state. At the same
time, the composite-service-agent initiates conversations with
the master-service-agents of the next Web services that fol-
low Web servicej .

4. SECURITY OF WEB SERVICES
Because Web services require the computing resources of

hosts on which they are executed, we ensure that neither
the services misuse these resources nor the hosts alter the
integrity of the services. We highlight our security strategy
that prevents services from misusing the resources of hosts.

4.1 Service-based access control
The Role-Based Access Control (RBAC) is a well-know

approach for managing access rights of users in businesses [9].
In a business, it is common that users play roles based
on role’s requirements vs. user’s capabilities. In an open
service-oriented environment, the RBAC strategy is inap-
propriate. Because new services may be offered and existing
services may be changed or withdrawn, a continuous adap-
tation of the access privileges that are assigned to roles and
thus, to users is deemed mandatory. Managing roles and
their access privileges becomes a real burden. The execution
of the Web services constitutes a serious threat to comput-
ing hosts. A Web service can use the local services of a host
(e.g., calendar) to request some sensitive information.

To handle the aforementioned security situations, we are
in the process of designing a service-based access control ar-

chitecture. Fig. 3 represents this architecture where numbers
correspond to the steps that grant a Web service the right
to use the resources of a host. The rationale of monitoring
module and security context is explained below. We note

1622

that a security context is totally different from the contexts
of Section 3.2.

Resource
Service
 5. Action/

response(yes)

Monitoring module

1. R
equest

of use

4.
 re

sp
on

se

(y
es

/n
o)

Security context

2. Security

context check

Pattern database

3. Rules check

Figure 3: Service-based access control architecture

First of all, a service submits a request of use to the mon-
itoring module (1). Once received, the monitoring module
checks the security context of the resource that this service
is about to use (2). Details on the security context are in
Section 4.2. Next, the monitoring module browses the pat-
tern database (3). The objective is to identify any malicious

pattern that might exist in the database and present sim-
ilarities with the execution trace of the service requesting
the use of the resources. Details on the pattern database
are in Section 4.3. A response to grant or deny the request
of use is sent back to the service (4). Finally, the request
is implemented (5) in case of a positive response from the
monitoring module.

4.2 Security context specification
In Fig. 3, the monitoring module decides if a service has

the right to use a resource. To this end, the monitoring
module relies on a security context that has the following
format: (S1 → S2 → · · · → Sn)•R where Si is a service, R is
a resource, → is a calling operation between services, and • is
a use request of a resource. Each resource R has a security
context that needs to be checked each time a request of use
of that resource is initiated. The final decision to grant/deny
the use of a resource R is based on the algorithm of Fig. 4.

Input: S1, S2, · · · , Sn, R
Get Security Context (SC) of R
If any Si in SC not have the right to use R
Then Deny request to use R
Else Call check rules()

Figure 4: Algorithm for a resource request of use

Check rules() is a function that uses a database of mali-
cious patterns. It guarantees that the actions to be per-
formed before granting the right of using a resource R do
not constitute a malicious attack. Otherwise, the request of
use is denied.

4.3 Pattern database
The pattern database stores all the potential threats on

the resources of an environment of Web services. A pattern
identifies each threat. A pattern is based on the execution
trace of a service with regard to the sequence of primitive
actions (i.e., no services called) that are implemented. Re-
lying on the database, the monitoring module controls both
the security context of any use request of a resource and the
primitive actions that a service will perform. For example,
let us assume a and b as primitive actions. When a ser-
vice plans to perform action a then action b, the monitoring

module checks if a · b does not constitute a malicious pat-
tern (· represents a sequence of actions). To this end, the
monitoring module consults the pattern database.

5. CONCLUSION
In this paper, we presented our approach for compos-

ing Web services using software agent and context. Several
types of agents are suggested: composite-service-agents as-
sociated with composite services, master-service-agents as-
sociated with Web services, and service-agents associated
with Web service instances. The different agents have been
aware of the context of their respective services in the ob-
jective to devise composite services on-the-fly. Three types
of context are used: I-context, W-context, and C-context.
Conversations between agents have also featured the com-
position of Web services. Before Web service instances are
created, agents engage conversations to decide if service in-
stances are created and annexed to a composite service.
Such a decision is based on several factors such as the max-
imum number of service instances that can deployed at the
same time.

6. REFERENCES
[1] S. Ahuja, N. Carriero, and D. Gelernter. Linda and

Friends. Computer, 19(8), August 1986.

[2] L. Ardissono, A. Goy, and G. Petrone. Enabling
Conversations with Web Services. In Proc. of

AAMAS’2003, Melbourne, Australia, 2003.

[3] B. Benatallah, Q. Z. Sheng, and M. Dumas. The
Self-Serv Environment for Web Services Composition.
IEEE Internet Computing, 7(1), January/February
2003.

[4] A. K. Dey, G. D. Abowd, and D. Salber. A Conceptual
Framework and a Toolkit for Supporting the Rapid
Prototyping of Context-Aware Applications.
Human-Computer Interaction Journal, Special Issue

on Context-Aware Computing, 16(1), 2001.

[5] N. Jennings, K. Sycara, and M. Wooldridge. A
Roadmap of Agent Research and Development.
Autonomous Agents and Multi-Agent Systems, Kluwer

Academic Publishers, 1(1), 1998.

[6] H. Ludwig, A. Keller, A. Dah, and R. King. A Service
Level Agreement Language for Dynamic Electronic
Services. In Proc. of WECWIS’2002, Newport Beach,
California, USA, 2002.

[7] Z. Maamar, B. Benatallah, and W. Mansoor. Service
Chart Diagrams - Description & Application. In Proc.

of WWW’2003, Budapest, Hungary, 2003.

[8] M. Roman and R. H. Campbell. A User-Centric,
Resource-Aware, Context-Sensitive, Multi-Device
Application Framework for Ubiquitous Computing
Environments. Technical report,
UIUCDCS-R-2002-2282 UILU-ENG-2002-1728,
Departement of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL, USA, 2002.

[9] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based Access Control Models. IEEE Computer,
20(2), February 1996.

[10] I. A. Smith, P. R. Cohen, J. M. Bradshaw,
M. Greaves, and H. Holmback. Designing
Conversation Policies using Joint Intention Theory. In
Proc. ICMAS’1998, Paris, France, 1998.

1623

