
6 April 1998

1 of 82

Benchmarks for
Temporal Databases

C. Vassilakis - A. Sotiropoulou

How the proposed benchmarks for
temporal databases can be incorporated
to TOOBIS

1.0 TSQL2 Benchmark

1.1 Schema for TSQL2 Benchmark

Three interfaces will be defined according to the TSQL2 Benchmark:

• TheEmployee interface

• TheDepartment interface, and

• TheSkill interface

The following TODL statements may be used for the definition of the above inter-
faces1

enum GenderType {male, female};
interface Skill
(extent Skills,
 key name)
{

attribute String name;
}

1. Note that the time varying nature of the different attributes/relationships is defined in the
appropriate report from TSQL2 Committee

TSQL2 Benchmark

2 of 82 Benchmarks for Temporal Databases

interface Employee
(extent Employees,
 key name)
{

readonly attribute String id; 1

attribute String name valid;
attribute Long salary valid

granularity month;
attribute GenderType gender;
attribute Instant granularity day d_birth;
relationship Department belongsInDept

valid granularity day
inverse Department::hasEmployee;

relationship Department managerInDept
valid granularity day
inverse Department::hasManager;

relationship Set<Skill> hasSkills
valid granularity day;

}

interface Department
(extent Departments,
 key name)
{

attribute String name;
attribute Long budget valid granularity day;
relationship Set<Employee> hasEmployee

valid granularity day
inverse Employee::belongsInDept;

relationship Employee hasManager
valid granularity day
inverse Employee::managerInDept;

}

1. This is required due to the nature of the queries. This attribute will be set through the
“constructor” method and there will be no operation allowing this value to change.

TSQL2 Benchmark

Benchmarks for Temporal Databases 3 of 82

1.2 Queries - Explicit-attribute Output

1.2.1 Class O1.S1 (Duration, Interval, Computing)

Query Q 2.1.1: Which departments had managers who served for the shortest con-
tinuous period?

select d.name from Departments as d
where min(select duration(valid(m)) from

valid d.hasManager as m) =
min(select duration(valid(m1))

from Departments as d1,
valid d1.hasManager as m1)

Result: Query type is bag<string>

Query Q 2.1.2: Who worked continuously in the Book department for at least as
long as Di did?

select e.name from Employees as e
where exists d in valid e.belongsInDept:

duration(valid(d)) >=
max(select duration(valid(d1))

from Employees as e1,
valid e1.belongsInDept as d1

where e1.name = “Di” and
d1.name = “Book”)

Result: Query type is bag<string>

Query Q 2.1.3: Who worked continuously in the Toy department for at least as
long as Di did?

select e.name from Employees as e
where exists d in valid e.belongsInDept:

(duration(valid(d)) >=
max(select duration(valid(d1))

from Employees as e1,
(valid e1.belongsInDept) as d1
where d1->name = “Toy”))

Result: Query type is bag<string>

Query Q 2.1.4: Who worked continuously in a department longer than their current
manager worked in their (that) department?

select distinct e.name from Employees as e
where exists d in valid e.belongsInDept:

duration(valid(d)) >
sum(select duration(valid(d1))

from valid
e.belongsInDept.hasManager.belongsInDept

as d1
where d1.name = d.name)

Result: Query type is set<string>

TSQL2 Benchmark

4 of 82 Benchmarks for Temporal Databases

Query Q 2.1.5: Who had the same salary for the longest continuous time period?

select e.name from Employees as e
where max(select duration(valid(s))

from valid e.salary as s) =
max(select duration(valid(s1))

from Employees as e1, valid
e1.salary as s1)

Result: Query type is bag<string>

Query Q 2.1.6: Who worked for a manager in a department for a period as long as
that manager managed the department?

select distinct e1.name from Employees as e,
valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as m

group by e as e1, d as d1, m.value as m2
having sum(select duration(valid(x.d))

from partition as x) >=
sum(select duration(valid(m1))

from valid d1.hasManager as m1
where m1.name = m2.name)

Result: Query type is set<string>

Query Q 2.1.7: Which managers served continuously longer than some other man-
ager?

select distinct d.hasManager.name
from Departments as d,

(valid d.hasManager) as mgr
where exists (select * from Departments as d1,

valid d1.hasManager as mgr1
where duration(valid(mgr)) >

duration(valid(mgr1)))

Result: Query type is set<string>

1.2.2 Class O1.S2 (Duration, Interval, Other)

Query Q 2.2.1: Which employees had the same salary for a single period of at least
three years?

select e.name
from Employees as e,

(valid e.salary) as sal
where duration(valid(sal)) >=

interval “3” granularity Year

Result: Query type is bag<bag<string>>

TSQL2 Benchmark

Benchmarks for Temporal Databases 5 of 82

Query Q 2.2.2: Who worked for the same manager for at least five years continu-
ously?

select e.name from Employees as e
where exists m1 in valid[select m.value from

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as m:m.VT]:
duration(valid(m1)) > interval “5”

granularity Year

Result: Error: The historical equivalent of this class is not defined (Employee -
Employee_Historical_State)

Query Q 2.2.3: Which employees have stayed in the same department throughout
the past 5 years?

select e.name from Employees as e
where exists d in valid e.belongsInDept: valid(d)

contains period(now() - interval “5”
granularity Year, now())

Result: Query type is bag<string>

Query Q 2.2.4: For each department which has had the same managers and budget
for the last 18 months, list its current name, manager and budget.

select d.name, d.hasManager, d.budget
from Departments as d
where exists m in valid d.hasManager: valid(m)

contains period(now()- interval “18”
granularity Month, now()) and

exists b in valid d.budget: valid(b)
contains period(now() - interval “18”
granularity Month, now())

Result: Query type is bag<struct {name: string,
hasManager: Employee, budget: integer}>

Query Q 2.2.5: Who has worked in the Toy department and has earned at least 40K
throughout the last two years?

select e.name from Employees as e
where exists d in valid e.belongsInDept: valid(d)

contains period(now() - interval “2”
granularity Year, now()) and

40000 <= all (select s.value
from (valid e.salary)[period(now() -
interval “2” granularity Year, now())]

as s)
and d.name = “Toy”

Result: Query type is bag<string>

TSQL2 Benchmark

6 of 82 Benchmarks for Temporal Databases

Query Q 2.2.6: Who had at least three raises in a continuous five-year period?

select e.name from Employees as e,
(1 .. count(valid e.salary) - 2) as counter

where count(valid e.salary) > 4 and
(end(valid((valid e.salary)[counter+3])) -
begin(valid((valid e.salary)[counter]))) <

interval “5” granularity Year and
(valid e.salary)[counter] <

(valid e.salary)[counter+1] and
(valid e.salary)[counter+1] <

(valid e.salary)[counter+2] and
(valid e.salary)[counter+2] <

(valid e.salary)[counter+3]

Result: Query type is bag<string>

Query Q 2.2.7: Who had the most raises in a continuous five-year period?

select p.id
from Employees as p,

(partition valid as interval “1” granularity
Year trailing interval “4” granularity
Year)(valid p.salary) as five_year_sal

where count(select *
from 1 .. count(five_year_sal.partition)-1

as i
where (five_year_sal.partition)[i].value <

(five_year_sal.partition)[i+1].value) =
max(select count(select *

from 1 .. count(fys.partition)-1 as i1
where (fys.partition)[i1].value <

(fys.partition)[i1+1].value)
from Employees p1,

(partition valid as interval “1”
granularity Year trailing
interval “4” granularity Year)
(valid p1.salary) as fys)

Result: Query type is bag<string>

1.2.3 Class O1.S3 (Duration, Element, Computed)

Query Q 2.3.1: Who worked in the Toy department for at least as long as DI
worked there?

select e.name from Employees as e
where sum(select duration(valid(d))

from valid e.belongsInDept as d
where d.name = “Toy”) >=

sum(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where d1.name = “Toy” and e1.id = “DI”)

TSQL2 Benchmark

Benchmarks for Temporal Databases 7 of 82

Result: Query type is bag<string>

Query Q 2.3.2: Who worked in a department longer than their current manager
worked in that department?

select distinct f.name from Employees as e,
valid e.belongsInDept as d

group by e as f, d as g
having sum(select duration(valid(x.d))

from partition as x) >
sum(select duration(valid(d1))

from valid
f.belongsInDept.hasManager.belongsInDept

as d1
where d1.name = g.name)

Result: Query type is set<string>

Query Q 2.3.3: Which managers managed which departments, longer than Di man-
aged the Toy department?

select mx.name as Manager, dx.name as Department
from Departments as d,

valid d.hasManager as m
group by d as dx, m as mx
having sum(select duration(valid(x.m))

from partition as x) >
sum(select duration(valid(m1))

from Departments as d1,
valid d1.hasManager as m1

where d1.name = “Toy” and m1.name = “Di”)

Result: Query type is bag<struct {Manager: string,
Department: string}>

Query Q 2.3.4: Who had the same salary for the longest total time?

select ex.name from Employees as e,
valid e.salary as s

group by e as ex,s as sx
having sum(select duration(valid(x.s))

from partition as x) =
max(select sum(select duration(valid(x1.s1))

from partition as x1)
from Employees as e1,

valid e1.salary as s1
group by e1 as e1x, s1 as s1x)

Result: Query type is bag<string>

TSQL2 Benchmark

8 of 82 Benchmarks for Temporal Databases

Query Q 2.3.5: Which departments had managers who served for the shortest total
time?

select d.name from Departments as d
where exists m in valid d.hasManager:
 sum(select duration(valid(m1))
 from valid d.hasManager as m1
 where m1.id = m.id) =
 min(select sum(select duration(valid(x1.m2))
 from partition as x1)
 from Departments as d1,
 valid d1.hasManager as m2
 group by d1 as d1x, m2 as m2x)

Result: Query type is bag<string>

Query Q 2.3.6: List all employees currently in the Book department who received
salaries of over 40K longer than ED did.

select e.name from Employees as e
where e.belongsInDept.name = “Book” and

sum(select duration(valid(s))
from valid e.salary as s
where s > 40000) >

sum(select duration(valid(s1))
from Employees as e1,

valid e1.salary as s1
where e1.id = “ED” and s1 > 40000)

Result: Query type is bag<string>

Query Q 2.3.7: Who worked in the Toy department for at least as long as the total
time that the Toy department was NOT managed by ED?

select e.name from Employees as e
where sum(select duration(valid(d))

from valid e.belongsInDept as d
where d.name = “Toy”) >=

sum(select duration(valid(m))
from Departments as d1,

valid d1.hasManager as m
where d1.name = “Toy” and m.id != “ED”)

Result: Query type is bag<string>

TSQL2 Benchmark

Benchmarks for Temporal Databases 9 of 82

Query Q 2.3.8: Find the names of employees that have been in a department named
Toy for a shorter period than has DI.

select e.id
from Employees as e
where sum(select duration(valid(d))

from valid e.belongsInDept as d
where d.name = “Toy”) <=
sum(select duration(valid(d1))

from Employees as e1,
valid e1.belongsInDept as d1

where e1.id = “DI” and d1.name = “Toy”)

Result: Query type is bag<string>

Query Q 2.3.9: Find the current name and department for the employees which
made $40K for a longer period than DI did.

select e.name, e.belongsInDept
from Employees as e
where (exists sal in valid e.salary: sal >= 40000) and

sum(select duration(valid(s))
from valid e.salary as s
where s >= 40000)>
sum(select duration(valid(s1))

from Employees as e1,
valid e1.salary as s1

where e1.id = “DI” and
s1 >= 40000)

Result: Query type is bag<struct {name: string,
belongsInDept: Department}>

1.2.4 Class O1.S4 (Duration, Element, Other)

Query Q 2.4.1: Who managed the Book department for at least two years?

select e.id
from Employees as e
where (exists mgr in valid e.managerInDept:

mgr.name = “Book”) and
sum(select duration(valid(m))
from valid e.managerInDept as m
where m.name = “Book”) >=
interval “2” granularity Year

Result: Query type is bag<string>

TSQL2 Benchmark

10 of 82 Benchmarks for Temporal Databases

Query Q 2.4.2: Which employees had the same salary for at least three years?

select distinct ex.id
from Employees as e,

valid e.salary as s
group by e as ex, s as sx
having sum(select duration(valid(x.s))

from partition as x) >=
interval “3” granularity Year

Result: Query type is set<string>

Query Q 2.4.3: Who worked for the same manager for at least five years?

select e.name from Employees as e
where exists m1 in valid[select m.value

from valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)]

as m:m.VT]:
duration(valid(m1)) > interval “5”

granularity Year

Result:
Error: The historical equivalent of this class is not
defined (Employee - Employee_Historical_State)

Query Q 2.4.4: Who worked in a department for less than 6 months total?

select e.name from Employees as e
where exists (select dx from valid e.belongsInDept as d

group by d as dx
having sum(select duration(valid(x.d))

from partition as x) <
interval “6” granularity Month)

Result: Query type is bag<string>

Query Q 2.4.5: Who worked for the same manager for total time of at least five
years?

select e1.id
from Employees as e,

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as m

group by e as e1, m.value as mgr
having sum(select duration(x.m.VT)

from partition as x) >=
interval “5” granularity Year

Result: Query type is bag<string>

TSQL2 Benchmark

Benchmarks for Temporal Databases 11 of 82

1.2.5 Class O1.S5 (Other, Event, Computed)

Query Q 2.5.1: Find ED’s skills when he joined the Book department.

select (valid e.hasSkills)[valid at begin(valid(d))]
from Employees as e,

valid e.belongsInDept as d
where e.id = “ED” and d.name = “Book”

Result: Query type is bag<set<Skill>>

Query Q 2.5.2: Find the name and the budget of ED’s departments when he joined
them.

select d.name, (valid d.budget)[begin(valid(d))] as bud
from Employees as e, valid e.belongsInDept as d
where e.id = “ED”

Result: Query type is bag<struct {name: string, bud:
integer}>

Query Q 2.5.3: For each employee who was in the Toy department when it opened,
find all data and skills that were valid at the time.

select emp.id,
 (valid emp.name)[valid at
 begin(valid((valid d.hasEmployee)[0]))]
 as n,
 (valid emp.salary)[valid at
 begin(valid(((valid d.hasEmployee)[0])))]
 as s,
 emp.gender, emp.d_birth,
 (valid emp.belongsInDept)[valid at
 begin(valid(((valid d.hasEmployee)[0])))]
 as dept,
 (valid emp.managerInDept)[valid at
 begin(valid(((valid d.hasEmployee)[0])))]
 as man,
 (valid emp.hasSkills)[valid at
 begin(valid(((valid d.hasEmployee)[0])))]
 as skills
from Departments as d,
 ((valid d.hasEmployee)[0]) as emp
where d.name = “Toy”

Result: Query type is bag<struct {id: string, n: string, s:
integer, gender: integer, d_birth: instant granularity
day calendar Gregorian, dept: Department, man:
Department, skills: set<Skill>}>

TSQL2 Benchmark

12 of 82 Benchmarks for Temporal Databases

Query Q 2.5.4: Find the names valid when the budget of the Toy department was
decreased of the employees who had been working in the Toy department before the
budget was decreased.

select (select (valid e.name)[begin(valid((valid
d.budget)[i]))]

from (valid d.hasEmployee)[begin(valid((valid
d.budget)[i]))] as e) as names

from Departments as d,
(0 .. (count(valid d.budget)-2)) as i

where d.name = “Toy” and
(valid d.budget)[i] > (valid d.budget)[i+1]

Result: Query type is bag<struct {names: bag<string>}>

Query Q 2.5.5: Find ED’s skills when his salary increased from $30K to $40K.

flatten(select (valid e.hasSkills)[valid at
begin(valid(s))]
from Employees as e, valid e.salary as s
where e.id = “ED” and s = 40000 and

exists s1 in valid e.salary:
(s1 = 30000 and
end(valid(s1)) = begin(valid(s))))

Result: Query type is set<Skill>

1.2.6 Class O1.S6 (Duration, Element, Other)

Query Q 2.6.1: Find the name, current budget and manager of the Toy department.

select d.name, d.budget, d.hasManager
from Departments as d
where d.name = “Toy”

Result: Query type is bag<struct {name: string, budget:
integer, hasManager: Employee}>

Query Q 2.6.2: Find the skills for which ED became qualified after 1/1/83.

element(select (select s.value
from (valid e.hasSkills)[valid at

period(instant “1983-01-01”
granularity Day, now())] as s

except
select s1.value
from (valid e.hasSkills)[valid at

period(instant “beginning”,
instant “1983-01-01”
granularity Day)] as s1)

from Employees as e where e.id = “ED”)

Result: Query type is bag<set<Skill>>

TSQL2 Benchmark

Benchmarks for Temporal Databases 13 of 82

Query Q 2.6.3: Find DI’s salary on her 25th birthday.

select (valid e.salary) [valid at (e.d_birth +
interval “25”
granularity Year)]

from Employees as e
where e.id = “DI”

Result: Query type is bag<integer>

Query Q 2.6.4: Find the departments ED worked in before and not after 1/1/88.

select d.name from Employees as e,
valid e.belongsInDept as d

where e.id = “ED” and valid(d) precedes
instant “1988-01-01” granularity Day and
not exists d1 in valid e.belongsInDept:

(d1.name = d.name and instant
“1988-01-01”
granularity Day precedes valid(d1))

Result: Query type is bag<string>

Query Q 2.6.5: Find the date of birth and current name of the women who were
working in the Toy department on 1/1/83.

select e.d_birth, e.name
from Employees as e
where e.gender = 0 and

(valid e.belongsInDept)[instant “1983-01-01”
granularity Day].name = “Toy”

Result: Query type is bag<struct {d_birth: instant
granularity day calendar Gregorian, name: string}>

Query Q 2.6.6: Who worked in their current department for a longer time than their
current manager worked in that department?

select e.id
from Employees as e
where sum(select duration(valid(d))

from valid e.belongsInDept as d
where d.name = e.belongsInDept.name) >
sum(select duration(valid(d1))

from Employees as e1,
valid e1.belongsInDept as d1

where e1.id =
e.belongsInDept.hasManager.id and

d1.name = e.belongsInDept.name)

Result: Query type is bag<string>

TSQL2 Benchmark

14 of 82 Benchmarks for Temporal Databases

1.2.7 Class O1.S7 (Other, Interval, Computed)

Query Q 2.7.1: Find the names of all employees that changed department while DI
was working in a department called Toy.

select e.name from Employees as e
where exists d in valid e.belongsInDept :

exists(select * from Employees as e1,
valid e1.belongsInDept as d1

where e1.id = “DI” and d1.name = “Toy”
and begin(valid(d)) overlaps

valid(d1))

Result: Query type is bag<string>

Query Q 2.7.2: Which of all the skills ever recorded did ED not acquire while
working in the Book department?

select sk.name from Skills as sk
except
flatten(select (select bs.name

from (valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1] as bs

where (valid e.belongsInDept)[begin(
valid((valid e.hasSkills)[i]))].
name = “Book”)

from Employees as e,
2 .. count(valid e.hasSkills) as i

where e.id = “ED” and
count(valid e.hasSkills) >= 2)

Result: Query type is bag<string>

Query Q 2.7.3: Of the skills at some time possessed by ED, list those he did not
acquire while he was working in the Book department.

select s.name
from Employees as e1,

valid e1.hasSkills as skills,
skills as s

except
flatten(select (select bs.name

from (valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1] as bs

where (valid e.belongsInDept)[begin(
valid((valid e.hasSkills)[i]))].

name = “Book”)
from Employees as e,

2 .. count(valid e.hasSkills) as i
where e.id = “ED” and
count(valid e.hasSkills) >= 2)

Result: Query type is bag<string>

TSQL2 Benchmark

Benchmarks for Temporal Databases 15 of 82

Query Q 2.7.4: For any employee who re-acquired a skill, find the name of the
employee when a skill was re-acquired.

select (valid e.name)[valid at begin(valid(s))]
from Employees as e,

valid e.hasSkills as s, s as as1,
valid e.hasSkills as s1,
valid e.hasSkills as s2

where begin(valid(s)) > begin(valid(s1)) and
begin(valid(s1)) > begin(valid(s2)) and
as1 in s2 and not (as1 in s1)

Result: Query type is bag<string>

Query Q 2.7.5: Find the gender and name at the time of all employees that started
working in some department before ED acquired the skill Driving for the second
time.

select e.gender as g,
(valid e.name)[valid at begin(valid(d))] as n

from Employees as e, valid e.belongsInDept as d,
Employees as e1, valid e1.hasSkills as s,
s as ask

where e1.id = “ED” and ask.name = “Driving” and
begin(valid(d)) precedes valid(s) and
count(select s1

from valid e1.hasSkills as s1,
s1 as as1

where as1.name = “Driving” and
valid(s1) precedes valid(s)) = 1

Result: Query type is bag<struct {g: integer, n: string}>

Query Q 2.7.6: Who worked in a department for a given manager for at least the
period when that manager managed the department?

select e.id
from Employees as e,

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as m

where not exists (select *
from Departments as d1,

valid d1.hasManager as m1
where d1.name = d.name and

m1.id = m.value.id and
not exists d2 in valid

e.belongsInDept: valid(d2)
contains valid(m1))

Result: Query type is bag<string>

TSQL2 Benchmark

16 of 82 Benchmarks for Temporal Databases

Query Q 2.7.7: What was the highest salary earned by ED before changing his
name to Edward?

max(select s from Employees as e,
valid e.salary as s

where e.id = “ED” and begin(valid(s))
precedes
min(select valid(n)

from valid e.name as n
where n = “Edward”))

Result: Query type is integer

1.2.8 Class O1.S8 (Other, Interval, Other)

Query Q 2.8.1: Find the name and skill pairs sometime possessed by people who
worked in the Book or Toy department last year.

select ns.name, ns.skill
from Employees as e,

tstruct(name: valid e.name,
skill: valid e.hasSkills) as ns

where exists d in (valid e.belongsInDept)[period(now() -
interval “2” granularity Year, now() -
interval “1” granularity Year)]:

d.value.name = “Book” or d.value.name = “Toy”

Result: Query type is bag<struct {name: string, skill:
set<Skill>}>

Query Q 2.8.2: Find the current name and skills of all people who worked for the
Book or Toy department last year.

select e.name, e.hasSkills
from Employees as e
where exists d in (valid e.belongsInDept)[period(now() -

interval “2” granularity Year, now() -
interval “1” granularity Year)] :

d.value.name = “Toy” or d.value.name = “Book”

Result: Query type is bag<struct {name: string, hasSkills:
set<Skill>}>

Query Q 2.8.3: Find their names (when they reported to DI) for all people who
reported to DI before last year.

select (valid e.name)[valid at mgr.VT]
from Employees as e,

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as mgr

where mgr.value.id = “DI” and
mgr.VT precedes now() - interval “2”

granularity Year

Result: Query type is bag<list struct {value: string, VT:
period}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 17 of 82

Query Q 2.8.4: Find the current manager of anyone who acquired a skill between
1983 and 1987 inclusive.

select e.belongsInDept.hasManager
from Employees as e
where count(valid e.hasSkills) > 1 and

exists i in 2 .. count(valid e.hasSkills) :
(period “[1983-1-1, 1988-1-1)”
granularity Day contains begin(valid(
(valid e.hasSkills)[i])) and
count((valid e.hasSkills)[i] except

(valid e.hasSkills)[i-1]) > 0)

Result: Query type is bag<Employee>

Query Q 2.8.5: Find the name current of anyone who lost a skill in the last four
years.

select e.name
from Employees as e
where count(valid e.hasSkills) > 1 and

exists i in 2 .. count(valid e.hasSkills) :
(period(now() - interval “4” granularity
Year, now()) granularity Year contains
begin(valid((valid e.hasSkills)[i])) and
count((valid e.hasSkills)[i-1] except

(valid e.hasSkills)[i]) > 0)

Result: Query type is bag<string>

Query Q 2.8.6: Find the current name and department of anyone who changed their
name or salary between July 1987 and June 1988 inclusive.

select e.name, e.belongsInDept
from Employees as e
where exists (select *

from (valid e.salary)
[period “[1987-07, 1988-08)”] as s1,
(valid e.salary)
[period “[1987-07, 1988-08)”] as s2

where s1.value != s2.value)
or exists (select *

from (valid e.name)
[period “[1987-07, 1988-08)”] as n1,
(valid e.name)
[period “[1987-07, 1988-08)”] as n2

where n1.value != n2.value)

Result: Query type is bag<struct {name: string,
belongsInDept: Department}>

TSQL2 Benchmark

18 of 82 Benchmarks for Temporal Databases

Query Q 2.8.7: Which employees stayed at their first salary for less than one year?

select e.name
from Employees as e
where duration(valid((valid e.salary)[0])) <

interval “1” granularity Year

Result: Query type is bag<string>

Query Q 2.8.8: List the names and current managers and budgets of all depart-
ments with budgets of less than 200K during any period between January 1, 1985
and December 31, 1989.

select d.name as name, d.hasManager as manager,
d.budget

from Departments as d
where exists b in ((valid d.budget)

[period “[1985-01-01,1990-01-01)”]):
b.value < 200000

Result: Query type is bag<struct {name: string, manager:
Employee, budget: integer}>

Query Q 2.8.9: Who worked in the Toy department at some point and earned at
least 40K throughout the last two years?

select e.name
from Employees as e,

snapshot e.belongsInDept as dep_name
where (“Toy” = dep_name.name) and

(for all s in (valid e.salary)
[period(now()-interval “2” granularity Year,
now())] : s.value >= 40000)

Result: Query type is bag<string>

1.2.9 Class O1.S9 (Other, Element, Computed)

Query Q 2.9.1: Find the names of departments that always had a budget greater
than $90K during the times when managed by someone named Di.

select d.name
from Departments as d
where for all bm in tstruct(budget: valid d.budget,
 manager: valid d.hasManager):
 (bm.budget > 90000 or
 bm.manager.name = “Di”)

Result: Query type is bag<string>

TSQL2 Benchmark

Benchmarks for Temporal Databases 19 of 82

Query Q 2.9.2: Find ED’s salaries when he worked in the same department as DI.

select s.value as salary
from flatten(select (valid e1.salary)[commonPeriod.VT]

from Employees as e1,
Employees as e2,
tstruct(EdDept: valid e1.belongsInDept,

DiDept: valid e2.belongsInDept)
as commonPeriod

where e1.id = “ED” and e2.id = “DI”) as s

Result: Query type is bag<struct {salary: integer}>

Query Q 2.9.3: Find the names of the departments that ED worked in while earning
$40K.

select d.value.name as DeptName
from flatten(select (valid e.belongsInDept)[valid(s)]
 from Employees as e, valid e.salary as s
 where e.id = “ED” and s = 40000) as d

Result: Query type is bag<struct {DeptName: string}>

Query Q 2.9.4: Find ED’s names after he left the Toy department.

select n.value as name
from flatten (select (valid e.name)

[period(end(valid(d)), now())]
from Employees as e,

valid e.belongsInDept as d
where e.id = “ED” and

d.name = “Toy”) as n

Result: Query type is bag<struct {name: string}>

Query Q 2.9.5: Find the skills that ED possessed sometime when he worked in the
Toy department.

flatten(select sd.skills
from Employees as e,

tstruct(skills: valid e.hasSkills,
dept: valid e.belongsInDept) as sd

where e.id = “ED”
and sd.dept.name = “Toy”)

Result: Query type is set<Skill>

TSQL2 Benchmark

20 of 82 Benchmarks for Temporal Databases

Query Q 2.9.6: What new skills did ED obtain after he changed his name to
Edward?

select (select ns.name
from valid e.hasSkills as nsk, nsk as ns
where cp precedes valid(nsk)) except
(select os.name
from valid e.hasSkills as osk, osk as os
where begin(valid(osk)) precedes cp)

from (select e
from Employees as e
where e.id = “ED”) as e,
(select begin(valid(n))

from valid e.name as n
where n = “Edward”) as cp

Result: Query type is bag<string>

Query Q 2.9.7: What where Toy’s departmental budgets when it had a manager
named Di?

select bm.budget as budget, n.VT as when
from Departments as d,

tstruct(budget: valid d.budget,
manager: valid d.hasManager) as bm,

(valid bm.manager.name)[bm.VT] as n
where d.name = “Toy” and n.value = “Di”

Result: Query type is bag<struct {budget: integer, when:
instant granularity Second calendar Gregorian}>

1.2.10 Class O1.S10 (Other, Element, Other)

Query Q 2.10.1: Which managers managed which departments between January 1,
1982 and December 31, 1989?

select d.name as DeptName, m as Manager
from Departments as d, valid d.hasManager as m
where valid(m) overlaps period “[1982-1-1, 1990-1-1)”

Result: Query type is bag<struct {DeptName: string,
Manager: Employee}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 21 of 82

1.3 Queries - Valid-time Output

1.3.1 Class O2.S1 (Duration, Interval, Computed)

Query Q 3.1.1: Find the times when persons with a shorter employment in the Toy
department than DI were employed in the Book department.

select valid(d)
from Employees as e,

valid e.belongsInDept as d
where sum(select duration(valid(d1))

from valid e.belongsInDept as d1
where d1.name = “Toy”) <
sum(select duration(valid(d2))

from Employees as e1,
valid e1.belongsInDept as d2

where e1.id = “DI” and
d2.name = “Toy”) and

d.name = “Book”

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.2: Find the employment periods of persons that made 40K for a
longer time than DI made 40K.

select valid(d)
from Employees as e, valid e.belongsInDept as d
where sum(select duration(valid(s))

from valid e.salary as s
where s >= 40000) >
sum(select duration(valid(s1))

from Employees as e1,
valid e1.salary as s1

where e1.id = “DI” and s1 >= 40000)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.3: Find the starting times in the Book department of persons which
possessed the Filing skill for a longer time than DI.

select begin(valid(inBook))
from Employees as e, valid e.belongsInDept as inBook
where inBook.name = “Book” and

sum(select duration(valid(s))
from valid e.hasSkills as s
where exists aSkill in s:

aSkill.name = “Filling”) >
sum(select duration(valid(s1))

from Employees as e1,
valid e1.hasSkills as s1

where e1.id = “DI” and
exists aSkill in s1:

aSkill.name = “Filling”)

TSQL2 Benchmark

22 of 82 Benchmarks for Temporal Databases

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.1.4: Return the times when persons employed a shorter time than DI
acquired a skill.

select (begin(valid(newSkill)))
from Employees as e,

1 .. (count(valid e.hasSkills) - 1) as i,
(valid e.hasSkills) as newSkill

where count((valid e.hasSkills)[i+1] except
(valid e.hasSkills)[i]) > 0 and

sum(select duration(valid(d))
from valid e.belongsInDept as d) >

sum(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “DI”)

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.1.5: Find the employment periods of persons employed shorter time
than DI.

select valid(d)
from Employees as e, valid e.belongsInDept as d
where sum(select duration(valid(d))

from valid e.belongsInDept as d1) <
sum(select duration(valid(d2))

from Employees as e2,
valid e2.belongsInDept as d2

where e2.id = “DI”)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.6: When did someone get a raise more quickly than DI got her first
raise?

select begin(valid((valid e.salary)[i]))
from Employees as e,

2 .. (count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and

(valid e.salary)[i] > (valid e.salary)[i-1]
and (begin(valid((valid e.salary)[i])) -

begin(valid((valid e.salary)[i-1]))) <
(select begin(valid((valid e1.salary)[i1])) -

begin(valid((valid e1.salary)[i1-1]))
from Employees as e1,

2 .. (count(valid e1.salary) -1) as i1
where e1.name = “DI” and

(valid e1.salary)[i1] >
(valid e1.salary)[i1-1]

order by i)[1]

TSQL2 Benchmark

Benchmarks for Temporal Databases 23 of 82

Result: Query type is bag<instant granularity Month
calendar Gregorian>

Query Q 3.1.7: What was the longest period when no one was hired or left unem-
ployed?

max(select duration(p)
 from periods(period_set(period(instant “1970-01-01”,
 now())) granularity Day -
 period_set(select begin(valid (e))
 from Departments as d,
 valid d.hasEmployee as e)
 granularity Day) as p)

Result: Query type is interval granularity Day calendar
Gregorian

Note: We suppose that we are interested in time periods after the year 1970.

Query Q 3.1.8: What was the longest period when no one received a raise?

max(select duration(p)
from periods(period_set(period(instant “1970-01-01”,

now())) granularity day -
period_set(select begin(valid((valid

e.salary)[i]))
from Employees as e,
2 .. count(valid e.salary) as i
where count(valid e.salary) > 1

and (valid e.salary)[i] >
(valid e.salary)[i-1])

granularity day) as p)

Result: Query type is interval granularity day calendar
Gregorian

Query Q 3.1.9: When was the longest period when a department was without a
manager?

max(select duration(valid(m))
from Departments as d,

valid d.hasManager as m
where m = nil)

Result: Query type is interval granularity Day calendar
Gregorian

TSQL2 Benchmark

24 of 82 Benchmarks for Temporal Databases

1.3.2 Class O2.S2 (Duration, Element, Other)

Query Q 3.2.1: Find employment periods in the Toy department for persons that
have worked there for at least 8 years.

select valid(dept)
from Employees as e,

valid e.belongsInDept as dept
where dept.name = “Toy” and

sum(select duration(valid(d))
from valid e.belongsInDept as d
where d.name = “Toy”) >=

interval “8” granularity Year

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.2: Find the starting times of managers which managed a department
for at least 5 years.

select begin(valid(mgr))
from Departments as d, valid hasManager as mgr
where sum(select duration(valid(m))

from valid d.hasManager as m
where m.id = mgr.id) > interval “5”

granularity Year

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.2.3: Find the rehiring dates of employees with a gap in employment that
exceeds 1 month.

select begin(valid((valid e.belongsInDept)[i]))
from Employees as e,

2 .. (count(valid e.belongsInDept)-1) as i
where count(valid e.belongsInDept) >= 2 and

(begin(valid((valid e.belongsInDept)[i])) -
end(valid((valid e.belongsInDept)[i-1]))) >

interval “1” granularity Month

Result: Query type is bag<instant granularity Day calendar
Gregorian>

TSQL2 Benchmark

Benchmarks for Temporal Databases 25 of 82

Query Q 3.2.4: Find the times when persons possessed skills that they lost and
regained more than 1 year later.

select valid(s)
from Employees as e, valid e.hasSkills as s
where exists aSkill in s:

(exists s1 in valid e.hasSkills:
(begin(valid(s1)) > (end(valid(s)) +
interval “1” granularity Year) and
aSkill in s1 and
not (exists s2 in valid e.hasSkills:

(begin(valid(s2)) < end(valid(s)) and
begin(valid(s1)) > end(valid(s2)) and
aSkill in s2))))

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.5: Find budget periods that exceed 2 years.

select valid(budgets)
from Departments as d,

(valid d.budget) as budgets
where duration(valid(budgets)) >

interval “2” granularity Year

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.6: When did no one’s salary change for at least six months?

select p
from periods(period(instant “1970-01-01” granularity
Day,
 now()) granularity Day -
 period_set(select begin(valid(s))
 from Employees as e,
 valid e.salary as s)
 granularity Day) as p
where duration(p) > interval “6” granularity Month

Result: Query type is bag<period granularity Day calendar
Gregorian>

1.3.3 Class O2.S3 (Duration, Element, Computed)

Query Q 3.3.1: When did somebody have the same salary for the longest continu-
ous period?

select valid(sal)
from Employees as e,

(valid e.salary) as sal
where duration(valid(sal)) =

max(select duration(valid(sal1))
from Employees as e1,

valid e1.salary as sal1)

TSQL2 Benchmark

26 of 82 Benchmarks for Temporal Databases

Result: Query type is bag<period granularity Month
calendar Gregorian>

Query Q 3.3.2: When did anybody work for a manager in a department for as long
as that manager managed that department?

select valid(d)
from Employees as e, valid e.belongsInDept as d
where exists m in (valid d.hasManager)[valid(d)]:

not exists (select *
from valid d.hasManager as m1
where m1 = m.value and

not exists (select *
from valid e.belongsInDept as d1
where d1 = d and

(valid(d1) contains m.VT)))

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.3.3: When did someone manage the Toy department for longer than DI
did?

select valid(ToyMgr)
from Departments as d, valid d.hasManager as ToyMgr
where d.name = “Toy” and

sum(select duration(valid(m1))
from valid d.hasManager as m1
where m1.id = ToyMgr.id) >

sum(select duration(valid(m2))
from valid d.hasManager as m2
where m2.id = “DI”)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.3.4: When did anyone have a skill longer than ED had Driving?

select valid(skills)
from Employees as e, valid e.hasSkills as skills,

Skills as s
where sum(select duration(valid(skills1))

from valid e.hasSkills as skills1
where s in skills1) >
sum(select duration(valid(skills2))

from Employees as e1,
valid e1.hasSkills as skills2

where e1.id = “ED” and
exists s2 in skills2:

s2.name = “Driving”)

Result: Query type is bag<period granularity Day calendar
Gregorian>

TSQL2 Benchmark

Benchmarks for Temporal Databases 27 of 82

1.3.4 Class O2.S4 (Duration, Element, Other)

1.3.5 Class O2.S5 (Other, Event, Computed)

1.3.6 Class O2.S6 (Other, Event, Other)

Query Q 3.6.1: When did anybody have at least the skills that DI currently has?

select valid(s)
from Employees as e, valid e.hasSkills as s
where count(element(select e1.hasSkills

from Employees as e1
where e1.id = “DI”) except s) = 0

Result: Query type is bag<period granularity Day calendar
Gregorian>

1.3.7 Class O2.S7 (Other, Interval, Computed)

Query Q 3.7.1: When did the Toy budget decrease?

select begin(valid((valid d.budget)[i]))
from Departments as d,

1 .. (count(valid d.budget) - 1) as i
where d.name = “Toy” and

count(valid d.budget) >= 2 and
(valid d.budget)[i-1] > (valid d.budget)[i]

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.7.2: When did an employee change name?

select begin(valid((valid e.name)[i]))
from Employees as e,

1 .. (count(valid e.name) - 1) as i
where count(valid e.name) >= 2 and

(valid e.name)[i-1] != (valid e.name)[i]

Result: Query type is bag<instant granularity Second
calendar Gregorian>

Query Q 3.7.3: When did the salary of an employee increase while the employee
was a manager?

select begin(valid((valid e.salary)[i]))
from Employees as e, 1 .. (count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and

(valid e.salary)[i-1] < (valid e.salary)[i]
and exists d in Departments:

((valid d.hasManager)
[begin(valid((valid e.salary)[i]))]).id

 = e.id

Result: Query type is bag<instant granularity Month
calendar Gregorian>

TSQL2 Benchmark

28 of 82 Benchmarks for Temporal Databases

Query Q 3.7.4: Find the periods during which DI earned $40K and was manager of
the Toy department.

select valid(s) intersect valid(m)
from Employees as e, Departments as d,

valid e.salary as s, valid d.hasManager as m
where e.id = “DI” and d.name = “Toy” and

s = 40000 and valid(s) overlaps valid(m)
and m.id = e.id

Result: Query type is bag<period granularity Month
calendar Gregorian>

Query Q 3.7.5: Find the acquisition dates of the skills ED acquired before or dur-
ing the year he joined the Toy department.

select distinct begin(valid((valid e.hasSkills)[i]))
from Employees as e,

1 .. (count(valid e.hasSkills)-1) as i
where e.id = “ED” and

count(valid e.hasSkills) >= 2 and
year(begin(valid((valid e.hasSkills)[i]))) <=

min(select year(begin(valid(d)))
from Employees as e1,

valid e1.belongsInDept as d
where e1.id = “ED” and

d.name = “Toy”) and
count((valid e.hasSkills)[i] except

(valid e.hasSkills)[i-1]) > 0

Result: Query type is set<instant granularity Day calendar
Gregorian>

1.3.8 Class O2.S8 (Other, Interval, Other)

Query Q 3.8.1: Find the beginning of a continuous period in which ED was named
Edward, in which he had a constant salary, and which includes the year 1989.

select begin(valid(n) intersect valid(s))
from Employees as e, valid e.name as n,

valid e.salary as s
where e.id = “ED” and n = “Edward” and

(valid(n) intersect valid(s)) contains
period “[1989-01-01, 1990-01-01)”
granularity Year

Result: Query type is bag<instant granularity Second
calendar Gregorian>

TSQL2 Benchmark

Benchmarks for Temporal Databases 29 of 82

Query Q 3.8.2: Find the dates, before or after the years 1984 and 1985, when ED
acquired a skill.

select begin(valid((valid e.hasSkills)[i]))
from Employees as e,

1 .. (count(valid e.hasSkills)-1) as i
where e.id = “ED” and

count(valid e.hasSkills) >= 2 and
begin(valid((valid e.hasSkills)[i])) precedes
instant “1984-01-01” granularity Day and
instant “1985-12-31” granularity Day precedes
begin(valid((valid e.hasSkills)[i])) and
count(((valid e.hasSkills)[i]) except

((valid e.hasSkills)[i-1])) > 0

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.8.3: Find ED’s unemployment periods when he was not exactly 30
years old.

period_set(element(select
period(begin(valid(first(valid e.belongsInDept))),
 max(set(now(), end(valid(last(valid
e.belongsInDept))))))
 from Employees as e
 where e.id = “ED”))
except period_set(select valid(d)
 from Employees as e1,
 valid e1.belongsInDept as d
 where e1.id = “ED”)
except period_set(element(select period(e2.d_birth +
 interval “30” granularity Year, e2.d_birth+
 interval “31” granularity Year)
 from Employees as e2
 where e2.id = “ED”))

Result: Query type is period set granularity Second
calendar Gregorian

Query Q 3.8.4: Find the time periods when DI worked in the department in which
she has been working during all of 1987.

select valid(d)
from Employees as e, valid e.belongsInDept as d
where e.id = “DI” and

d in (select d1
from valid e.belongsInDept as d1
where valid(d1) contains

period “[1987-01-01, 1988-01-01)”
granularity Day)

Result: Query type is bag<period granularity Day calendar
Gregorian>

TSQL2 Benchmark

30 of 82 Benchmarks for Temporal Databases

Query Q 3.8.5: Find all the dates, between 1/1/83 and 12/31/85, when the Toy
department budget changed.

select begin(valid((valid d.budget)[i]))
from Departments as d,

1 .. (count(valid d.budget)-1) as i
where count(valid d.budget) >= 2 and

(valid d.budget)[i] !=
(valid d.budget)[i-1] and

period “[1983-01-01, 1986-01-01)”
granularity Day contains

begin(valid((valid d.budget)[i]))

Result: Query type is bag<instant granularity Day calendar
Gregorian>

1.3.9 Class O2.S9 (Other, Element, Computed)

Query Q 3.9.1: At what times did an employee simultaneously possess at least the
same skills that DI possessed?

select joinedSkills.VT
from Employees as e,

tstruct(someSkills: valid e.hasSkills,
DISkills: element(select

valid e1.hasSkills
from Employees as e1
where e1.id = “DI”)) as joinedSkills

where count(joinedSkills.DISkills except
joinedSkills.someSkills) = 0 and
e.id != “DI”

Result: Query type is bag<period granularity Gregorian
calendar Day>

Query Q 3.9.2: When was the budget for Toy department more than 100K?

select valid(budg)
from Departments as d,

(valid d.budget) as budg
where d.name = “Toy” and budg > 100000

Result: Query type is bag<period granularity Day calendar
Gregorian>

TSQL2 Benchmark

Benchmarks for Temporal Databases 31 of 82

Query Q 3.9.3: What was the last continuous period when ED was named Edward
and had Driving, Filing and Typing as skills simultaneously?

(select ns.VT
from Employees as e,

tstruct(name: valid e.name,
skills: valid e.hasSkills) as ns

where e.id = “ED” and ns.name = “Edward” and
count(set(“Filing”, “Driving”, “Typing”)

except
(select s.name from ns.skills as s)) = 0

order by begin(ns.VT) desc)[0]

Result: Query type is period granularity Gregorian
calendar Second

Query Q 3.9.4: When did DI earn less than ED?

select joinedSalary.VT
from Employees as e1, Employees as e2,

tstruct(DISal: valid e1.salary,
EDSal: valid e2.salary) as joinedSalary

where e1.id = “DI” and e2.id = “ED” and
joinedSalary.DISal < joinedSalary.EDSal

Result: Query type is bag<period granularity Gregorian
calendar Month>

Query Q 3.9.5: When did ED work in Toy department while the department was
managed by DI?

select mgr.VT
from Employees as e,

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as mgr

where e.id = “ED” and
d.name = “Toy” and
mgr.value.id = “DI”

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.9.6: When did an employee currently named Edward have driving
skills?

select valid(skills)
from Employees as e, valid e.hasSkills as skills
where e.name = “Edward” and exists s in skills :

s.name = “Driving”

Result: Query type is bag<period granularity Day calendar
Gregorian>

TSQL2 Benchmark

32 of 82 Benchmarks for Temporal Databases

1.3.10 Class O2.S10 (Other, Element, Other)

1.4 Queries - Explicit-attribute and Valid-time output

1.4.1 Class O3.S1 (Duration, Interval, Computed)

Query Q 4.1.1: Who, and when, were continuously employed in the Toy depart-
ment shorter than DI was continuously employed in the Toy department?

select e.id, valid(d) as dx
from Employees as e, valid e.belongsInDept as d
where d.name = “Toy” and duration(valid(d)) < any

(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “DI” and d1.name = “Toy”)

Result: Query type is bag<struct {id: string, dx: period
granularity Day calendar Gregorian}>

Query Q 4.1.2: Who, and when, were continuously employed in the Toy depart-
ment shorter than DI was continuously employed in the Toy department, and what
their gender and date of birth?

select e.id, valid(d) as dt, e.gender, e.d_birth
from Employees as e, valid e.belongsInDept as d
where d.name = “Toy” and duration(valid(d)) < any

(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “DI” and d1.name = “Toy”)

Result: Query type is bag<struct {id: string, dt: period
granularity Day calendar Gregorian, gender: integer,
d_birth: instant granularity day calendar Gregorian}>

Query Q 4.1.3: Who were continuously employed in the Toy department shorter
than DI was continuously employed in the Toy department, and when did this
employment start?

select e.id, begin(valid(d)) as dt
from Employees as e, valid e.belongsInDept as d
where d.name = “Toy” and duration(valid(d)) < any

(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “DI” and d1.name = “Toy”)

Result: Query type is bag<struct {id: string, dt: instant
granularity Day calendar Gregorian}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 33 of 82

Query Q 4.1.4: Return the name on 01-Jan.-1984 along with the date 01-Jan.-1984
for each employee who was continuously employed in the Toy department shorter
than Di was continuously employed in that department.

select (valid e.name)[instant “1984-1-1”
granularity Day] as name, instant “1984-1-1”
granularity Day as when

from Employees as e, valid e.belongsInDept as d
where d.name = “Toy” and duration(valid(d)) < any

(select duration(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “DI” and d1.name = “Toy”)

Result: Query type is bag<struct {name: string, when:
instant granularity Day calendar Gregorian}>

1.4.2 Class O3.S2 (Duration, Interval, Other)

Query Q 4.2.1: When was the Toy department’s budget constant and greater than
$175K for more than one year, and what was the budget?

select valid(b) as vb, b
from Departments as d, valid d.budget as b
where d.name = “Toy” and

duration(valid(b)) > interval “1”
granularity Year and

b > 175000

Result: Query type is bag<struct {vb: period granularity
Day calendar Gregorian, b: integer}>

Query Q 4.2.2: When was the Toy department’s budget constant and greater than
$175K for more than one year, and who was the manager for that time?

select valid(b) as vb, (select m.value.id as mvi
from (valid d.hasManager)[valid(b)]

as m)
as vbs

from Departments as d, valid d.budget as b
where d.name = “Toy” and b > 175000 and

duration(valid(b)) > interval “1”
granularity Year

Result: Query type is bag<struct {vb: period granularity
Day calendar Gregorian, vbs: bag<struct {mvi: string}>}>

Note: The result schema of this query is bag<struct<period, set<string>>> i.e. each
period is associated with aset of id, since during the 1-year period, the department
may have changed its manager.

TSQL2 Benchmark

34 of 82 Benchmarks for Temporal Databases

Query Q 4.2.3: Who managed a department with a budget that exceeded $175K
and then held constant for one year, and when did that occur?

select m.id, valid(m) as when
from Departments as d, (valid d.hasManager) as m
where exists b in (valid d.budget):

(b > 175000 and
period(begin(valid(m)),

begin(valid(m))+interval “1”
granularity Year) contains valid(b))

Result: Query type is bag<struct {id: string, when: period
granularity Day calendar Gregorian>

Query Q 4.2.4: What departments were in continuous operation (and when) longer
than the duration between ED’s and DI’s birth dates?

Note: We consider that a department is operational if it has at least one employee.

select d.name, valid(e) as when
from Departments as d, valid d.hasEmployee as e
where count(e) > 0 and

duration(valid(e)) >
abs(element(select e1.d_birth

from Employees as e1
where e1.id = “ED”) -
element(select e2.d_birth
from Employees as e2
where e2.id = “DI”))

Result: Query type is bag<struct {name: string, when:
period granularity Day calendar Gregorian}>

Query Q 4.2.5: Who worked in one department for at least two years continuously
and what were the periods of employment in that department?

select e.id, valid(d) as vd
from Employees as e, valid e.belongsInDept as d
where (exists d1 in valid e.belongsInDept:

((duration(valid(d1)) >
interval “2” granularity Year)

and d1.name = d.name))

Result: Query type is bag<struct {id: string, vd: period
granularity Day calendar Gregorian}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 35 of 82

1.4.3 Class O3.S3 (Duration, Element, Computed)

Query Q 4.3.1: Who, when, and for which department did anybody work for as
long as the length of time that department’s budget was below 200K?

select e.id, d.name, valid(d) as vd
from Employees as e, valid e.belongsInDept as d
where sum(select duration(valid(d1))

from valid e.belongsInDept as d1
where d1.name = d.name) >
sum(select duration(valid(b))

from valid d.budget as b
where b < 200000)

Result: Query type is bag<struct {id: string, name:
string, vd: period granularity Day calendar Gregorian}>

Query Q 4.3.2: Who and when did anybody work in a department longer than their
current manager worked in that department?

select e.id, valid(d) as vd
from Employees as e, valid e.belongsInDept as d
where sum(select duration(valid(d1))

from valid e.belongsInDept as d1
where d1.name = d.name) >
sum(select duration(valid(d2))

from Employees as e1,
valid e1.belongsInDept as d2

where e1.id =
e.belongsInDept.hasManager.id
and d2.name = d.name)

Result: Query type is bag<struct {id: string, vd: period
granularity Day calendar Gregorian}>

Query Q 4.3.3: For all employees who managed any departments at least as long as
DI managed the Toy department, list their names, their gender, their departments
and their salary histories during that time.

select (valid e.name)[valid(m)] as vname, e.gender,
(valid e.belongsInDept)[valid(m)] as vdept,
(valid e.salary)[valid(m)] as vsal

from Employees as e, valid e.managerInDept as m
where sum(select duration(valid(m1))

from valid e.managerInDept as m1
where m1.name = m.name) >
sum(select duration(valid(m2))

from Employees as e1,
valid e.managerInDept as m2

where e1.id = “DI” and
m2.name = “Toy”)

Result: Query type is bag<struct {vname: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, gender: integer, vdept: list struct {value:

TSQL2 Benchmark

36 of 82 Benchmarks for Temporal Databases

Department, VT: period granularity Day calendar
Gregorian}, vsal: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.3.4: For departments that had a manager that served for the shortest
total time, list the department name, the shortest-serving manager(s) and the times
when those managers served the department.

select d.name, m.id, valid(m) as vm
from Departments as d, valid d.hasManager as m
where sum(select duration(valid(m1))

from valid d.hasManager as m1
where m1.id = m.id) =
min(select sum(select duration(valid

(x.mgr1))
from partition as x)

from Departments as d1,
valid d1.hasManager as mgr1

group by mgr1.id, d1.name)

Result: Query type is bag<struct {name: string, id:
string, vm: period granularity Day calendar Gregorian}>

Query Q 4.3.5: For all departments which had budgets of at least 200K for a longer
total time than budgets of less than 200K, list their names, budgets and times when
the budgets were not below 200K.

select d.name, (valid d.budget)[valid(b)] as vbb,
valid(b) as vb
from Departments as d, valid d.budget as b
where b >= 200000 and

sum(select duration(valid(b1))
from valid d.budget as b1
where b1 >= 200000) >

sum(select duration(valid(b2))
from valid d.budget as b2
where b2 < 200000)

Result: Query type is bag<struct {name: string, vbb: list
struct {value: integer, VT: period granularity Day
calendar Gregorian}, vb: period granularity Day calendar
Gregorian}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 37 of 82

Query Q 4.3.6: What skills did ED hold for at least as long as the total time during
his employment that he did not have the Driving skill, and when did he have those
skills?

select longSkill, (select x.aSkill.skillPeriod
 from partition as x) as longSkillPeriod
from Employees as e,
 (select s.name as skillName,
 valid(s1) as skillPeriod
 from valid e.hasSkills as s1, s1 as s)
 as aSkill
where e.id = “ED”
group by aSkill.skillName as longSkill
having sum(select duration(x.aSkill.skillPeriod)
 from partition as x) >
 (element(select
 end(valid((valid
 e1.belongsInDept)[count
 (valid e1.belongsInDept)-1])) -
 begin(valid((valid
 e1.belongsInDept)[0]))
 from Employees as e1
 where e1.id = “ED”)) -
 sum(select duration(valid(s2))
 from Employees as e2,
 valid e2.hasSkills as s2
 where not exists someSkill in s2:
 someSkill.name = “Driving”)

Result: Query type is bag<struct {longSkill: string,
longSkillPeriod: bag<period granularity Day calendar
Gregorian>}>

1.4.4 Class O3.S4 (Duration, Element, Other)

Query Q 4.4.1: Find the oldest employee who was a Typist on 12/31/85, and the
times when that employee had been a Typist so far.

(select e.id, (select valid(s1)
from valid e.hasSkills as s1
where exists oneSkill in s1:

oneSkill.name = “Typist”) as when
from Employees as e
where “Typist” in (select s.name

from (valid e.hasSkills)
[instant “1985-12-31”] as s)

order by e.d_birth asc)[0]

Result: Query type is struct {id: string, when: bag<period
granularity Day calendar Gregorian>}

TSQL2 Benchmark

38 of 82 Benchmarks for Temporal Databases

Query Q 4.4.2: For employees in the Toy department who had worked less than DI
in that department as of 1/1/85, find their names on 1/1/85 and the time difference
on 1/1/85.

select (valid e.name)[instant “1985-1-1”] as name,
EmpDuration - DIDuration as TimeDiff

from Employees as e,
set(sum(select duration(d.VT)

from (valid e.belongsInDept)
[period(instant “beginning”,

instant “1985-1-1”)] as d
where d.value.name = “Toy”))

as EmpDuration,
set(sum(select duration(d1.VT)

from Employees as e1,
(valid e1.belongsInDept)
[period(instant “beginning”,

instant “1985-1-1”)] as d1
where e1.id = “DI” and

d1.value.name = “Toy”))
as DIDuration

where DIDuration > EmpDuration

Result: Query type is bag<struct {name: string, TimeDiff:
interval granularity Day calendar Gregorian}>

Query Q 4.4.3: Find the current employees who worked at least during 1987, and
the times in 1987 during which they worked.

select e.id, (select d.VT
 from (valid e.belongsInDept)[period
 “[1987-01-01, 1988-01-01)”] as d)
 as times
from Employees as e
where period_set(select d1.VT
 from (valid e.belongsInDept)
 [period “[1987-01-01, 1988-01-01)”
 granularity Day] as d1)
 granularity Day =
 period_set(period “[1987-01-01, 1988-01-01)”)
 granularity Day

Result: Query type is bag<struct {id: string, times:
bag<period granularity Day calendar Gregorian>}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 39 of 82

1.4.5 Class O3.S5 (Other, Event, Computed)

Query Q 4.5.1: List the names and ages of all employees at the time they received
their first salary increment.

select (valid e.name)[firstInc] as Name,
firstInc - e.d_birth as Age

from Employees as e,
(set(min(select begin(valid((valid

 e.salary)[i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and

(valid e.salary)[i-1] <
(valid e.salary)[i]))

union set(instant ”forever”)) as firstInc
where firstInc != instant “forever”

Result: Query type is bag<struct {Name: string, Age:
interval granularity Month calendar Gregorian}>

Query Q 4.5.2: List the name and salary histories up until their 25th birthday of all
female employees.

select (valid e.name)[period (e.d_birth, e.d_birth +
interval “25” granularity Year)] as name,

(valid e.salary)[period (e.d_birth, e.d_birth
+ interval “25” granularity Year)]

as salary
from Employees as e
where e.gender = 0

Result: Query type is bag<struct {name: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, salary: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.5.3: When and who ever changed their names?

select e.id, (select begin(valid((valid e.name)[i]))
as b

from 1..(count(valid e.name)-1) as i
where count(valid e.name) >=2 and

(valid e.name)[i] !=
(valid e.name)[i-1]) as s1

from Employees as e
where count(distinct(snapshot e.name)) > 1

Result: Query type is bag<struct {id: string, s1:
bag<struct {b: instant granularity Second calendar
Gregorian}>}>

TSQL2 Benchmark

40 of 82 Benchmarks for Temporal Databases

Query Q 4.5.4: How old was ED and what skills did he have at the time he changed
his name to Edward?

select changeDate - e.d_birth as age,
(valid e.hasSkills)[changeDate] as skills

from Employees as e,
(select begin(valid((valid e.name)[i]))
from 1..(count(valid e.name)-1) as i
where count(valid e.name) >=2 and

(valid e.name)[i] = “Edward” and
(valid e.name)[i-1] != “Edward”)

as changeDate
where e.id = “ED”

Result: Query type is bag<struct {age: interval
granularity Second calendar Gregorian, skills:
set<Skill>}>

Query Q 4.5.5: When did ED acquire the Driving skill, and what other skills did he
have at the time?

select beginDriving, (valid e.hasSkills)[beginDriving]
as skills
from Employees as e,

set(min(select begin(valid(s))
from valid e.hasSkills as s
where exists aSkill in s:

aSkill.name = “Driving”))
as beginDriving

where e.id = “ED”

Result:
Query type is bag<struct {beginDriving: instant
granularity Day calendar Gregorian, skills: set<Skill>}>

Query Q 4.5.6: Who was the first female manager of the Toy department, and when
did she become manager of that department for the first time?

(select m.id, begin(valid(m)) as when
from Departments as d, valid d.hasManager as m
where d.name = “Toy” and m.gender = 0
order by begin(valid(m)) asc)[0]

Result: Query type is struct {id: string, when: instant
granularity Day calendar Gregorian}

1.4.6 Class O3.S6 (Other, Event, Other)

Query Q 4.6.1: Find the name and salary histories of employees whose date-of-
birth was after 1/1/56.

select valid e.name, valid e.salary
from Employees as e
where instant “1956-01-01” precedes e.d_birth

TSQL2 Benchmark

Benchmarks for Temporal Databases 41 of 82

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.2: Find the name and salary histories of employees who were called
“Ed” after 1/1/88

select valid e.name, valid e.salary
from Employees as e
where exists n in (valid e.name)[period(instant

“1988-01-01”, instant “forever”)]:
n.value = “Ed”

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.3: Find the name and salary histories since their latest pay raise of
employees whose latest pay raise was in 1985.

select (valid e.name)[period(latestRaise, now())] as n1,
(valid e.salary)[period(latestRaise, now())]

as sal1
from Employees as e,

set(max(select begin(valid(
(valid e.salary)[i]))

from 2..count(valid e.salary) as i
where (valid e.salary)[i] >

(valid e.salary)[i-1]))
as latestRaise

where count(valid e.salary) > 2 and
year(latestRaise) = 1985

Result:
Query type is bag<struct {n1: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, sal1: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.6.4: Find the name and salary histories of employees whose latest pay
raise occurred after the date-of-birth of every other employee.

select valid e.name, valid e.salary
from Employees as e
where max(select e1.d_birth from Employees as e1)

precedes
max(select begin(valid((valid e.salary)[i]))

from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and

(valid e.salary)[i] >
(valid e.salary)[i-1])

TSQL2 Benchmark

42 of 82 Benchmarks for Temporal Databases

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.5: Find the name and salary histories of employees whose latest pay
raise occurred on the date-of-birth of some other employee.

select valid e.name, valid e.salary
from Employees as e
where max(select begin(valid((valid e.salary)[i]))

from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >=2 and

(valid e.salary)[i] >
(valid e.salary)[i-1]) =

any(select e1.d_birth from Employees as e1)

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.6: Who and when had at least the skills that DI currently has?

select e.id, (valid(s)) as when
from Employees as e, valid e.hasSkills as s
where count(element(select e1.hasSkills

from Employees as e1
where e1.id = “DI”)

except s) = 0

Result: Query type is bag<struct {id: string, when: period
granularity Day calendar Gregorian}>

1.4.7 Class O3.S7 (Other, Interval, Computed)

Query Q 4.7.1: For the time before ED first worked in the Toy department, find the
salary paid, and the time it was paid, of any employee who was in the Toy depart-
ment at a time before Ed worked there.

select e.id, (valid e.salary)[period(instant
“beginning”,

EdJoinToy - interval “1” granularity Day)] as
sal
from Employees as e,

set(min(select begin(valid(d1))
from Employees as e1,

valid e1.belongsInDept as d1
where e1.id = “ED” and

d1.name = “Toy”)) as EdJoinToy
where exists d in valid e.belongsInDept:

(d.name = “Toy” and
begin(valid(d)) precedes EdJoinToy)

TSQL2 Benchmark

Benchmarks for Temporal Databases 43 of 82

Result:
Query type is bag<struct {id: string, sal: list struct
{value: integer, VT: period granularity Month calendar
Gregorian}}>

Query Q 4.7.2: Find the greatest salary under $50K paid to ED and the times dur-
ing which it was paid.

(select targetSal, (select valid(x.s) as vxs from
partition as x) as when

from Employees as e,
valid e.salary as s

where e.id = “ED” and s < 50000
group by s as targetSal
order by targetSal desc)[0]

Result: Query type is struct {targetSal: integer, when:
bag<struct {vxs: period granularity Month calendar
Gregorian}>}

Query Q 4.7.3: Find ED’s salary history.

select valid e.salary
from Employees as e
where e.id = “ED”

Result: Query type is bag<attribute integer valid
granularity Month calendar Gregorian>

Query Q 4.7.4: For employees that were drivers and simultaneously made less than
$40K, find the names, salaries and times during which this occurred.

select (valid e.name)[sal_skill.VT] as name,
(valid e.salary)[sal_skill.VT] as sal,

sal_skill.VT
from Employees as e,

tstruct(aSal: valid e.salary,
Skills: valid e.hasSkills) as sal_skill

where sal_skill.aSal < 40000 and
(exists aSkill in sal_skill.Skills :

aSkill.name = “Driving”)

Result: Query type is bag<struct {name: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, sal: list struct {value: integer, VT: period
granularity Month calendar Gregorian}, VT: period
granularity Gregorian calendar Month}>

TSQL2 Benchmark

44 of 82 Benchmarks for Temporal Databases

Query Q 4.7.5: For the Toy department when ED worked there, find the budgets
and associated times.

select (valid d.budget)[EdsLabour] as vbudg, EdsLabour
from Departments as d,

(select valid(es)
from valid d.hasEmployee as es
where exists e in es:

e.id = “ED”) as EdsLabour
where d.name = “Toy”

Result: Query type is bag<struct {vbudg: list struct
{value: integer, VT: period granularity Day calendar
Gregorian}, EdsLabour: period granularity Day calendar
Gregorian}>

1.4.8 Class O3.S8 (Other, Interval, Other)

Query Q 4.8.1: For all employees that have been in the Book or Toy departments
sometime during the last two years, find their current names and their skills together
with the times when they were valid.

select e.name, valid e.hasSkills
from Employees as e
where exists d in (valid e.belongsInDept) [period(now()-

interval “2” granularity Year, now())]:
d.value.name = “Book” or d.value.name = “Toy”

Result: Query type is bag<struct {name: string, hasSkills:
relationship set<Skill> valid granularity Day calendar
Gregorian}>

Query Q 4.8.2: Find the current names of all people who reported to DI before last
year along with the time when they reported to her.

select e.name, mgr.VT
from Employees as e,

valid e.belongsInDept as d,
(valid d.hasManager)[valid(d)] as mgr

where mgr.value.id = “DI” and
begin(mgr.VT) precedes

now() - interval “1” granularity Year

Result: Query type is bag<struct {name: string, VT: period
granularity Day calendar Gregorian}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 45 of 82

Query Q 4.8.3: Find the manager and time when a skill was acquired between 1983
and 1987 (inclusive) by anyone who acquired a skill between these times.

select (valid(valid e.belongsInDept)[acquireSkill].
hasManager)[acquireSkill] as manager,

acquireSkill
from Employees as e,

(select begin(valid((valid e.hasSkills)[i]))
from 2..count(valid e.hasSkills) as i
where count((valid e.hasSkills)[i] except

(valid e.hasSkills)[i-1]) > 0)
as acquireSkill

where count(valid e.hasSkills) > 1 and
acquireSkill overlaps period
“[1983-01-01,1988-01-01)” granularity Day

Result: Query type is bag<struct {manager: Employee,
acquireSkill: instant granularity Day calendar
Gregorian}>

Query Q 4.8.4: For anyone who had two raises in the period March 1982 and
March 1985 (inclusive), find the current name and the dates when raises occurred
during the aforementioned times.

select e.name, raiseDates
from Employees as e,

set(select begin(valid((valid e.salary)[i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >=2 and

(valid e.salary)[i] >
(valid e.salary)[i-1] and
begin(valid((valid e.salary)[i]))
overlaps period(“1982-3”, “1985-4”)

granularity Month)
as raiseDates

where count(raiseDates) = 2

Result: Query type is bag<struct {name: string,
raiseDates: bag<instant granularity Month calendar
Gregorian>}>

1.4.9 Class O3.S9 (Other, Element, Computed)

Query Q 4.9.1: Find the salary history associated with the name Ed when it was
associated with a person that had the Driving skill.

flatten(select (valid e.salary)[ns.VT]
from Employees as e,

tstruct(name: valid e.name,
skills: valid e.hasSkills) as ns

where ns.name = “Ed” and
exists aSkill in ns.skills :

aSkill.name = “Driving”)

TSQL2 Benchmark

46 of 82 Benchmarks for Temporal Databases

Result: Query type is set<struct {value: integer, VT:
period granularity Month calendar Gregorian}>

Query Q 4.9.2: Find the salary history, during the periods in which ED had a driv-
ing skill, of the employees who earned less than $50K throughout 1989.

select e.id, (valid e.salary)[EdDriving] as salary
from Employees as e,

(select valid(s)
from Employees as e1,

valid e1.hasSkills as s
where e1.id = “ED” and

exists aSkill in s:
aSkill.name = “Driving”) as EdDriving

where not exists aSal in (valid e.salary)[period
“[1989-01-01, 1990-01-01)” granularity Year]:
aSal.value > 50000

Result: Query type is bag<struct {id: string, when: list
struct {value: integer, VT: period granularity Month
calendar Gregorian}}>

Query Q 4.9.3: Find the name and salary histories of male employees when they
were directed by a woman.

select (valid e.name)[femaleMgr] as fname,
(valid e.salary)[femaleMgr] as fsalary

from Employees as e,
(select m.VT
from valid e.belongsInDept as d,

(valid d.hasManager)[valid(d)] as m
where m.value.gender = 0) as femaleMgr

where e.gender = 1

Result:
Query type is bag<struct {{fname: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, fsalary: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.9.4: Find the department, the current manager name, and the periods
when a department manager earned more than one third of the departmental budget.

select d.name as dept, d.hasManager.name as manager,
(select sal.VT
from tstruct(mgr: valid d.hasManager,

budg: valid d.budget) as mb,
(valid mb.mgr.salary)[mb.VT] as sal

where sal.value > (mb.budg/3)) as
highPaidManagerPeriods

from Departments as d

TSQL2 Benchmark

Benchmarks for Temporal Databases 47 of 82

Result:
Query type is bag<struct {name: string, manager: string,
highPaidManagerPeriods: bag<period granularity Month
calendar Gregorian>}>

Note: This query returns a tuple for each department; for some departments the field
highlyPaidManagerPeriods may be an empty set.

Query Q 4.9.5: Find the name and the salary history of the employees in the peri-
ods they earned as much as their managers (distinct from themselves).

select (valid e.name)[bigSal] as name,
(valid e.salary)[bigSal] as sal

from Employees as e,
(select ms.VT
from tstruct(dept: valid e.belongsInDept,

sal: valid e.salary) as ds,
(valid ds.dept.hasManager)[ds.VT] as m,
(valid m.value.salary)[m.VT] as ms

where ms.value <= ds.sal and
m.value.id != e.id) as bigSal

Result:
Query type is bag<struct {name: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, sal: list struct {value: integer, VT: period
granularity Month calendar Gregorian}}>

Query Q 4.9.6: When did one person earn a lower salary than another younger per-
son, and who were those persons?

select e1.id as younger, e2.id as older, joinedSal.VT
from Employees as e1, Employees as e2,

tstruct(sal1: valid e1.salary,
sal2: valid e2.salary) as joinedSal

where e2.d_birth precedes e1.d_birth and
joinedSal.sal2 < joinedSal.sal1

Result:
Query type is bag<struct {younger: string, older:
string, VT: period granularity Gregorian calendar
Month}>

Query Q 4.9.7: When and who had the same salary for the longest continuous
period of time?

select e.id, valid(s) as when
from Employees as e, valid e.salary as s
where duration(valid(s)) =

max(select duration(valid(s1))
from Employees as e1,

valid e1.salary as s1)

Result: Query type is bag<struct {id: string, when: period
granularity Month calendar Gregorian}>

TSQL2 Benchmark

48 of 82 Benchmarks for Temporal Databases

Query Q 4.9.8: List DI’s skill and salary histories during the time she was a man-
ager.

select (valid e.hasSkills)[DIMgr] as skills,
(valid e.salary)[DIMgr] as salaries

from Employees as e,
(select valid(m)
from Departments as d,

valid d.hasManager as m
where m.id = “DI”) as DIMgr

where e.id = “DI”

Result: Query type is bag<struct {skills: list struct
{value: set<Skill>, VT: period granularity Day calendar
Gregorian}, salaries: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query 4.9.9: List the names and salary histories of all employees when they were
managers and earned at least 36K.

select (valid e.name)[targetPeriod] as mname,
(valid e.salary)[targetPeriod] as msal

from Employees as e,
(select valid(m) intersect valid(s)
from Departments as d,

valid d.hasManager as m,
valid e.salary as s

where s >= 36000 and m.id = e.id and
valid(m) overlaps valid(s))

as targetPeriod

Result:
Query type is bag<struct {mname: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, msal: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

1.4.10 Class O3.S10 (Other, Element, Other)

Query Q 4.10.1: Find the budget history in the period from 1/1/82 to 12/31/84 and
from 1/1/87 till now of all departments ED ever worked in.

select (valid d.budget)[period
“[1982-01-01, 1985-01-01)”] as budg1,

(valid d.budget)[period
“[1987-01-01, now())”] as budg2

from Departments as d
where exists es in valid d.hasEmployee:

(exists e in es: e.id = “ED”)

Result: Query type is bag<struct {budg1: list struct
{value: integer, VT: period granularity Day calendar
Gregorian}, budg2: list struct {value: integer, VT:
period granularity Day calendar Gregorian}}>

TSQL2 Benchmark

Benchmarks for Temporal Databases 49 of 82

Query Q 4.10.2: Find the name and the budget history in 1984 and 1987 of the
department being directed by Di.

select d.name, (valid d.budget)[period
“[1984-01-01, 1985-01-01)”]

as budg1,
(valid d.budget)[period

“1987-01-01, 1988-01-01)”] as budg2
from Departments as d
where d.hasManager.name = “Di”

Result:
Query type is bag<struct {name: string, budg1: list
struct {value: integer, VT: period granularity Day
calendar Gregorian}, budg2: list struct {value: integer,
VT: period granularity Day calendar Gregorian}}>

Query Q 4.10.3: Find the name of the department where ED working at the begin-
ning of both of the years 1986 and 1987 and the periods ED worked there.

select d.name,
(select valid(d1)
from valid e.belongsInDept as d1
where d.name = d1.name) as EDPeriod

from Employees as e,
(select (valid e.belongsInDept)

[instant “1986-01-01”]
from set(1) as dummy
where ((valid e.belongsInDept)

[instant “1986-01-01”]).name =
((valid e.belongsInDept)

[instant “1986-01-01”]).name) as d
where e.id = “ED”

Result: Query type is bag<struct {name: string, EDPeriod:
bag<period granularity Day calendar Gregorian>}>

TSQL2 Benchmark

50 of 82 Benchmarks for Temporal Databases

Query Q 4.10.4: Find the current name of the manager ED had on both 1984’s

Christmas and his 27th birthday, and the dates the manager started as a manager.

select mgr.name,
(select begin(valid(m))
from Departments as d,

valid d.hasManager as m
where m.id = mgr.id) as beginMgr

from Employees as e,
(select (valid(valid e.belongsInDept)

[instant “1984-12-25”].hasManager)
[instant “1984-12-25”]

from set(1) as dummy
where (valid(valid e.belongsInDept)

[instant “1984-12-25”].hasManager)
[instant “1984-12-25”].id =

(valid(valid e.belongsInDept)
[e.d_birth+interval “27” granularity

Year].hasManager)
[e.d_birth+interval “27” granularity

Year].id) as mgr
where e.id = “ED”

Result: Query type is bag<struct {name: string, beginMgr:
bag<instant granularity Day calendar Gregorian>}>

Query Q 4.10.5: Find the department name, the then manager, the modification
dates and the new values of the budget for every budget change that occurred in
1984, 1986 and 1988.

select d.name, (valid d.hasManager)[changeDate]
as Manager,
(valid d.budget)[changeDate] as Budget,
changeDate

from Departments as d,
(select begin(valid((valid d.budget)[i]))
from 1..(count(valid d.budget)-1) as i
where count(valid d.budget) >= 2 and

(valid d.budget)[i] !=
(valid d.budget)[i-1] and
year(begin(valid((valid d.budget)[i])))

in set(1984, 1986, 1988))
as changeDate

Result: Query type is bag<struct {name: string, Manager:
Employee, Budget: integer, changeDate: instant
granularity Day calendar Gregorian}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 51 of 82

2.0 Kalua and Robertson benchmark

2.1 The Event History database

As described in the Kalua and Robertson paper, the Event History database is used
for social sciences. As described in the paper under question there is one “relation”
- this paper too deals with temporal query languages based on relational databases -
Employment that contains all the needed information. This relation can be one
class in our model and can be defined as:

enum sex_enum {female, male};
interface Employement
(extent Employements,
key name)
{

attribute String name;
attribute Instant graularity day dob;
attribute sex_enum sex;
attribute String mstatus

valid granularity day;
attribute String occupation

valid granularity day;
attribute String residence

valid granularity day;
}

2.1.1 Queries on the Event History Database

QA1: What were the names and marital statuses of managers during the periods
when they were managers?

select e.name as name,
flatten(select (valid e.mstatus)[valid(m)]

from valid e.occupation as m
where m = “Manager”) as mstatus

from Employements as e
where “Manager” in (valid e.occupation)

Result: Query type is bag<struct {name: string, mstatus:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

QA2: What were the marital statuses of those who lived with their parents?

select e.name as name,
flatten(select (valid e.mstatus)[valid(wp)]

from valid e.residence as wp
where wp = “with parents”) as mstatus

from Employements as e
where “with parents” in (valid e.residence)

Result: Query type is bag<struct {name: string, mstatus:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

Kalua and Robertson benchmark

52 of 82 Benchmarks for Temporal Databases

QA3: List the names and sex of all employees who have ever been divorced.

select e.name as name, e.sex as sex
from Employements as e
where “Divorced” in (valid e.mstatus)

Result: Query type is bag<struct {name: string, sex:
char}>

QA4: List the names, marital status histories and residence histories of all managers
before they became managers.

select e.name as name, (valid e.mstatus)[beforeMgr]
as mstatus, (valid e.residence)[beforeMgr]
as residence

from Employements as e,
set(period(instant “beginning”,

min(select begin(valid(occup))
from valid e.occupation as occup
where occup = “Manager”))) as

beforeMgr
where “Manager” in (valid e.occupation)

Result: Query type is bag<struct {name: string, mstatus:
list struct {value: string, VT: period granularity Month
calendar Gregorian}, residence: list struct {value:
string, VT: period granularity Month calendar
Gregorian}}>

QA5: List all people who lived with their parents along with their jobs during those
periods.

select e.name as name,
flatten(select (valid

e.occupation)[valid(wp)]
from valid e.residence as wp
where wp = “With parents”) as occupation

from Employements as e
where “With parents” in (valid e.residence)

Result: Query type is bag<struct {name: string,
occupation: set<struct {value: string, VT: period
granularity Month calendar Gregorian}>}>

QA6: List all people who never lived with their parents along with their sex and
their residence histories.

select e.name as name, e.sex as sex,
valid e.residence as residence

from Employements as e
where not(“With parents” in (valid e.residence))

Result: Query type is bag<struct {name: string, sex: char,
residence: attribute string valid granularity Month
calendar Gregorian}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 53 of 82

QA7: What jobs did the widows do?

select e.name as name,
flatten(select (valid e.occupation)[valid(w)]

from valid e.mstatus as w
where w = “widow”) as occupation

from Employements as e
where “widow” in (valid e.mstatus)

Result: Query type is bag<struct {name: string,
occupation: set<struct {value: string, VT: period
granularity Month calendar Gregorian}>}>

QA8: List all people who ever worked as programmers and who lived with their
parents at some time, along with their employment and residence histories.

select e.name as name, valid e.occupation as occupation,
valid e.residence as residence

from Employements as e
where “Programmer” in (valid e.occupation) and

“With parents” in (valid e.residence)

Result:
Query type is bag<struct {name: string, occupation:
attribute string valid granularity Month calendar
Gregorian, residence: attribute string valid granularity
Month calendar Gregorian}>

QA9: What jobs did the divorced men do?

select e.name as name,
flatten(select (valid e.occupation)[valid(m)]

from valid e.mstatus as m
where m = “divorced”) as occupation

from Employements as e
where “divorced” in (valid e.mstatus)

Result:
Query type is bag<struct {name: string, occupation:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

Kalua and Robertson benchmark

54 of 82 Benchmarks for Temporal Databases

QA10: List all people who lived with their parents while married or divorced, giv-
ing the times when this occurred.

select e.name as name,
(struct(mstatus: mr.mstatus,

VT: mr.VT))
as mstatus

from Employements as e,
(select struct(mstatus: mrs.mstatus,

VT: mrs.VT)
from tstruct(mstatus: valid e.mstatus,

residence: valid e.residence)
as mrs

where mrs.mstatus in (“married”, “divorced”)
and mrs.residence = “with parents”)
as mr

Result:
Query type is bag<struct {name: string, mstatus: struct
{mstatus: string, VT: period granularity Gregorian
calendar Month}}>

Note This query yields the more “reasonable” result:

The described result is returned by the following query:

select e.name as name,
(select struct(mstatus: ms, VT: valid(ms)) as

mstatus_str
from valid e.mstatus as ms
where ms in (“divorced”, “married”)

and exists r in valid e.residence:
(valid(r) overlaps valid(ms)

and r = “with parents”)) as mstatus,
(select struct(residence: r1, VT: valid(r1))

as residence_str
from valid e.residence as r1
where r1 = “with parents” and

exists ms1 in valid e.mstatus:
(valid (r1) overlaps valid(ms1) and
ms1 in (“divorced”, “married”)))

 as res_str
from Employements as e
where exists mr in tstruct(mstatus: valid e.mstatus,

residence: valid e.residence):
(mr.mstatus in (“married”, “divorced”)
and mr.residence = “with parents”)

Result:
Query type is bag<struct {name: string, mstatus:
bag<struct {mstatus_str: struct {mstatus: string, VT:
period granularity Month calendar Gregorian}}>, res_str:

Ken Wits

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 55 of 82

bag<struct {residence_str: struct {residence: string,
VT: period granularity Month calendar Gregorian}}>}>

QA11: Retrieve all spells defined by Marital Status and Residence for Kim Bruce
and Ken Witts.

select e.name as name,
(select struct(spell: mr.VT,

mstatus: mr.mstatus,
residence: mr.residence)

from tstruct(mstatus: valid e.mstatus,
residence: valid e.residence)

as mr) as spells
from Employements as e
where e.name in (“Kim Bruce”, “Ken Witts”)

Result:
Query type is bag<struct {name: string, spells:
bag<struct {spell: period granularity Gregorian calendar
Month, mstatus: string, residence: string}>}>

QA12: List the names and sex of all those who ever lived with their parents during
the period of survey, along with their residence histories during the periods that they
did not live with their parents.

select e.name as name, e.sex as sex,
(select r as residence,valid(r) as VT
from valid e.residence as r
where r != “with parents”) as residence

from Employements as e
where “with parents” in (valid e.residence)

Result:
Query type is bag<struct {name: string, sex: char,
residence: bag<struct {residence: string, VT: period
granularity Month calendar Gregorian}>}>

QA13: List all women who re-married within a year after a divorce, along with
their marital histories.

select e.name as name, valid e.mstatus as mstatus
from Employements as e
where e.sex = ‘F’ and

exists ms1 in valid e.mstatus:
(ms1 = “divorce”

and exists ms2 in (valid e.mstatus)
[valid(ms1) + interval “1”

granularity Year]:
ms2.value = “married”)

Result: Query type is bag<struct {name: string, mstatus:
attribute string valid granularity Month calendar
Gregorian}>

Kalua and Robertson benchmark

56 of 82 Benchmarks for Temporal Databases

QA14: List all people who re-married after they were divorced, along with their
marital histories.

select e.name as name, valid e.mstatus as mstatus
from Employements as e
where exists ms1 in valid e.mstatus:

(ms1 = “divorced” and
exists ms2 in valid e.mstatus:

(ms2 = “married” and
(valid(ms1)) precedes

begin(valid(ms2))))

Result: Query type is bag<struct {name: string, mstatus:
attribute string valid granularity Month calendar
Gregorian}>

QA15: List all people who changed jobs within a year after divorcing, along with
their new jobs.

select e.name as name,
(select struct(mstatus: ms,

VT: valid(ms)) as mstatus,
struct(occupation: occup,

VT: valid(occup)) as occupation
from valid e.mstatus as ms,

valid e.occupation as occup
where ms = “divorced” and

(begin(valid(occup)) - begin(valid(ms)))
< interval “1” granularity Year)
as shortChange

from Employements as e
where exists (select *

from valid e.mstatus as ms1,
valid e.occupation as occup1

where ms1 = “divorced” and
((begin(valid(occup1)) -
begin(valid(ms1))) < interval
“1” granularity Year))

Result: Query type is bag<struct {name: string,
shortChange: bag<struct {mstatus: struct {mstatus:
string, VT: period granularity Month calendar
Gregorian}, occupation: struct {occupation: string, VT:
period granularity Month calendar Gregorian}}>}>

Note: The result schema for this query is such that it can accomodate for people
with more than one divorces, followed closely by job changes

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 57 of 82

QA16: Calculate the number of divorces per year for the four years preceding Janu-
ary 1988.

select Year as Year, count(partition) as divorced
from Employements as e, valid e.mstatus as ms
where ms = “divorced” and

year(begin(valid(ms))) in (1984 .. 1987)
group by year(begin(valid(ms))) as Year

Result: Query type is bag<struct {Year: integer, divorced:
integer}>

Note: This query returns data only for the years in which at least one divorce was
issued. Data for all the years are returned by the following query:

select year as year,
count(select *

from Employements as e,
valid e.mstatus as ms

where year(begin(valid(ms))) = year)
as divorced

from 1984 .. 1987 as year

Result: Query type is bag<struct {year: integer, divorced:
integer}>

QA17: Calculate the total work-months of employment per calendar year for men
from 1982 through 1984.

select begin(year) as year,
sum(select duration(x.VT intersect year)

from partition as x
where x.value != “None”)

from (select e.occupation
from Employements as e
where e.sex = ‘M’)

group by (partition valid as interval “1”
granularity Year) as
year

having year(begin(year)) in (1982 .. 1984)

Result:
Error: Syntax error: syntax error|as

QA18: Calculate the total work-months of unemployment per calendar year from
1982 through 1984.

select year as year,
sum(select duration(x.VT intersect year)

from partition as x
where x.value = “None”)

from (select e.occupation from Employees as e)
group by partition valid as interval “1” granularity
year calendar

as year
having year(begin(year)) in (1982 .. 1984)

Kalua and Robertson benchmark

58 of 82 Benchmarks for Temporal Databases

Result:
Error: Syntax error: syntax error|as

2.2 The University Database

This database keeps personal and professional data for faculty members and the
departments they work for. There following objects are defined:

enum sex {male, female};
interface FDepartment
(extent FDepartments
 key FDept)
{

attribute String FDept;
relationship Person Secretary valid

inverse Person::isSecretary;
relationship Person Head valid

inverse Person::isHead;
}

interface Faculty
(extent Faculties
 key FName)
{

attribute String FName;
attribute sex FSex;
attribute String MStatus valid;
attribute short no_dependents valid;
relationship Department inDept valid;
attribute String Rank valid;
attribute long Salary valid;
state relationship Set<Publication>

publications
inverse Publication::written_by;

relationship Department isSecretary valid
inverse Department::Secretary;

relationship Department::isHead valid
inverse Department::Head

}

interface Publication
(extent Publications)
{

attribute String journal;
attribute String issue;
attribute Instant granularity month

effective_time;
relationship Person written_by

inverse Person::publications;
}

Three issues are worth noting about the University database:

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 59 of 82

1. The database schema consists of the three extents, rather than four; more specifi-
cally, the “Pers_Data” and “Professional” extents (relations) have been merged
into a single extent named “Persons”

2. Although the Temporal Object Data Model (TODM) provides inverse relation-
ships for valid time data and these relationships could be used in some queries,
we prefered not to use them, so that the functionality of the language could be
evaluated, rather than the richness of the data model. However, we have used the
ability to use path expressions so as to access properties of the objects pointed to
by relationships.

We consider as “forward” direction of the relationship the traversal path from the
extent using the object as a foreign key, while the other direction is the “inverse”
one.

For instance, the relationship

Department::relationship Person Secretary valid

is considered to be the “forward” direction, while the relationship

Person::relationship Department isSecretary valid

is considered to be the “inverse” direction

3. Some queries have been rendered more complex than they could actually be,
while trying to match the result schema proposed in the paper for queries. For
example, query B1 could have been formulated as follows:

select p.fname, s as salary, valid(s) as when
from Persons as p, valid p.salary as s
where s >= 50000

This formulation is quite simpler than the one used in the answers section but the
resulting schema depicted in the following table is more “relational-like”, instead
of the more “object-oriented” result suggested in the paper:

2.2.1 Queries on the University Database

QB1: List all faculty who have ever earned a salary of at least 50000

select pd.fname as fname, pd.salary as salary
from (select p.FName as fname,

(select s as Salary,
valid(s) as salary_period

from valid p.Salary as s
where s >= 50000) as salary

from Faculties as p) as pd
where count(pd.salary) > 0

Result: Query type is bag<struct {fname: string, salary:
bag<struct {Salary: integer, salary_period: period
granularity Month calendar Gregorian}>}>

Fname Salary When

Bob Grass 51000 [1991-8, NOW)

Don Irsay 51000 [1989-08, 1991-01)

Don Irsay 56000 [1991-01, NOW)

Kalua and Robertson benchmark

60 of 82 Benchmarks for Temporal Databases

QB2: Which secretaries have worked in more than one department, where and
when?

select secretary,
(select x.ds.department as dept, x.ds.VT as VT
from partition as x) as department

from (select d.FDept as department,
s as secretary, valid(s) as VT

from FDepartments as d,
valid d.Secretary as s) as ds

group by secretary
having count(select distinct x1.ds.department

from partition as x1) > 1

Result: Query type is bag<struct {secretary: Faculty,
department: bag<struct {dept: string, VT: period
granularity Month calendar Gregorian}>}>

QB3: What departments were headed by Dick Bond and Tim Young and who were
their secretaries?

select head as head,
(select x.hd.department as department,

x.hd.VT as when,
x.hd.secretary as secretary

from partition as x) as HeadData
from (select h.FName as head,

d.FDept as department,
valid(h) as VT,
(valid d.Secretary)[valid(h)] as secretary
from FDepartments as d, valid d.Head as h
where h.FName in (“Dick Bond”, “Tim Young”))
as hd

group by hd.head as head

Result: Query type is bag<struct {head: string, HeadData:
bag<struct {department: string, when: period granularity
Month calendar Gregorian, secretary: list struct {value:
Faculty, VT: period granularity Month calendar
Gregorian}}>}>

Note: The result schema of the query associates with each head name a set of
departments and with each department a set of pairs <secretary, when>. This allows
for persons who were in head of more than one departments and each department
may have changed secretary.

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 61 of 82

QB4: Which departments have been headed by the same person during two or more
distinct periods, who and when?

select x.fdept as fdept, x.headData as Head
from (select d.FDept as fdept,

(select h.FName as head, valid(h) as when
from valid d.Head as h
where exists d1 in valid d.Head:

(((d1.inDept).FDept = d.FDept) and
(begin(valid(h)) precedes

begin(valid(d1))))) as headData
from FDepartments as d)
as x

where count(x.headData) > 0

Result: Query type is bag<struct {fdept: string, Head:
bag<struct {head: string, when: period granularity Month
calendar Gregorian}>}>

QB5: When, and of which department was Ann Byron head?

select h.FName as head, d.FDept as dept,
valid(h) as when

from FDepartments as d, valid d.Head as h
where h.FName = “Ann Byron”

Result: Query type is bag<struct {head: string, dept:
string, when: period granularity Month calendar
Gregorian}>

Note: The result schema of this query is:

i.e. the name “Ann Byron” is not associated with a set of pairs <dept, when>, but
occurs in each result tuple. This can be easily fixed by using the “group by” clause
and adding an exterior level query, just as in query B3.

Head Dept When

Kalua and Robertson benchmark

62 of 82 Benchmarks for Temporal Databases

QB6: Which secretaries have worked in the same department during two or more
distinct periods? Where, when and under whom?

select s.FName as secretary, d.FDept as dept,
(select h.FName as HeadName, valid(h) as when
from valid d.Head as h
where exists s1 in valid d.Secretary:

(s.FName = s1.FName and
valid(s1) overlaps valid(h))) as Head

from FDepartments as d,
valid d.Secretary as s

where begin(valid(s)) = min(select begin(valid(s2))
from valid d.Secretary as s2
where s2.FName = s.FName)

and begin(valid(s)) != max(select
begin(valid(s3))

from valid d.Secretary as s3
where s3.FName = s.FName)

Result: Query type is bag<struct {secretary: string, dept:
string, Head: bag<struct {HeadName: string, when: period
granularity Month calendar Gregorian}>}>

QB7: List all faculty who published in the same journal at least twice, along with
the journal issues and publication dates.

select FName as fname, journal as journal,
(select x.issue as issue,

x.effective_time as effective_time
from Publications as x)

as Publication_Data
from Publications as p
group by written_by as FName, journal as journal
having count(partition) > 1

Result: Query type is bag<struct {fname: Faculty, journal:
string, Publication_Data: bag<struct {issue: string,
effective_time: instant granularity month calendar
Gregorian}>}>

QB8: When did the associate professors attain this rank?

select p.FName as assoc_name,
begin(valid(r)) as date_promoted

from Faculties as p, valid p.FRank as r
where r = “Assoc.”

Result: Query type is bag<struct {assoc_name: string,
date_promoted: instant granularity Month calendar
Gregorian}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 63 of 82

QB9: List all assistant professors who got promoted in the last three years, along
with their department and salary immediately before their promotion.

select p.FName as promoted_assist,
begin(valid(r)) as date_of_promotion,
((valid p.inDept)[begin(valid(r)) -

interval “1” granularity Month]).FDept
as Dept,

(valid p.Salary)[begin(valid(r)) -
interval “1” granularity Month]
as salary

from Faculties as p,
valid p.FRank as r

where r = “Assoc.” and
now() - interval “3” granularity Year

precedes begin(valid(r))

Result: Query type is bag<struct {promoted_assist: string,
date_of_promotion: instant granularity Month calendar
Gregorian, Dept: string, salary: integer}>

QB10: List the names, departments and salaries of all associate professors at the
time Bob Gross got promoted from associate to full.

select p.FName,
(valid p.inDept)[promotionDate] as dept,
(valid p.Salary)[promotionDate] as salary

from Faculties as p,
(select begin(valid(r))
from Faculties as p1,

valid p1.FRank as r
where p1.FName = “Bob Gross” and r = “Full”)

as promotionDate
where (valid p.FRank)[promotionDate] = “Assoc.”

Result: Query type is bag<struct {FName: string, dept:
FDepartment, salary: integer}>

QB11: List all faculty who were promoted after being in a department for less than
3 years, along with their department and rank while in that department.

select p.FName as fname,
struct(deptName: d.FDept,

when: valid(d)) as fdept,
(select r as rank, valid(r) as when
from valid p.FRank as r
where exists d1 in valid p.inDept:

(valid(r) overlaps valid(d1) and
d1.FDept = d.FDept)) as rank_info

from Faculties as p, valid p.inDept as d
where exists r1 in valid p.FRank:

(r1 != first(valid p.FRank) and
begin(valid(r1)) - begin(valid(d)) <

interval “3” granularity Year)

Kalua and Robertson benchmark

64 of 82 Benchmarks for Temporal Databases

Result: Query type is bag<struct {fname: string, fdept:
struct {deptName: string, when: period granularity Month
calendar Gregorian}, rank_info: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

QB12: Which faculty stayed at the associate rank for at least six years?

select p.FName as six_year_assoc, valid(r) as when
from Faculties as p, valid p.FRank as r
where r = “Assoc.” and

duration(valid(r)) >= interval “6”
granularity Year

Result: Query type is bag<struct {six_year_assoc: string,
when: period granularity Month calendar Gregorian}>

QB13: Who have been full professors for the last four years? and what have been
their department and salary histories during this period?

select p.FName as profsLast4Years,
(valid p.inDept)[period(instant “now” -
 interval “4” granularity Year, instant
“now”) granularity Month]

as dept,
(valid p.Salary)[period(instant “now” -
interval “4” granularity Year, instant “now”)
granularity Month]

as salary
from Faculties as p
where exists r in valid p.FRank :

(r = “Full” and valid(r) contains
period(instant “now” - interval “4”

granularity Year, instant “now”)
granularity Month)

Result: Query type is bag<struct {profsLast4Years: string,
dept: list struct {value: FDepartment, VT: period
granularity Month calendar Gregorian}, salary: list
struct {value: integer, VT: period granularity Month
calendar Gregorian}}>

QB14: For all current full professors, list their marital status and salary histories
since January 1990.

select p.FName as fname,
(valid p.MStatus)[period(instant “1990-01”

granularity Month, instant “now”)
granularity Month] as mstatus,

(valid p.Salary)[period(instant “1990-01”
granularity Month, instant “now”)
granularity Month] as salary

from Faculties as p
where p.FRank = “Full”

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 65 of 82

Result:
Query type is bag<struct {fname: string, mstatus: list
struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: list struct {value:
integer, VT: period granularity Month calendar
Gregorian}}>

QB15: Who got promoted from assistant to full professor while at least one other
faculty in the university remained at the associate rank? When did this happen and
what departments were they in at the time?

select p.FName as fname,
(select d.FDept as deptName,

valid(d) as when
from valid p.inDept as d
where valid(d) contains promotionDate)

as fdept,
(select r as rank, valid(r) as when
from valid p.FRank as r
where r in set(“Assist.”, “Full”)) as rank

from Faculties as p,
(select begin(valid(r))
from valid p.FRank as r
where count(valid p.FRank) > 2 and

r = “Full”) as promotionDate
where exists(select *

from Faculties as p1
where exists r1 in valid p1.FRank:

(r1 = “Assoc.” and valid(r1) contains
promotionDate))

Result: Query type is bag<struct {fname: string, fdept:
bag<struct {deptName: string, when: period granularity
Month calendar Gregorian}>, rank: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

QB16: Which faculty lost their spouses while still employed by the university and
how long did they stay widowed?

select p.FName as widowed_faculty,
duration(valid(m)) as mourning_period

from Faculties as p, valid p.MStatus as m
where m = “Widowed” and

exists d in valid p.inDept:
valid(d) contains begin(valid(m))

Result: Query type is bag<struct {widowed_faculty: string,
mourning_period: interval granularity Month calendar
Gregorian}>

Kalua and Robertson benchmark

66 of 82 Benchmarks for Temporal Databases

QB17: Which faculty have ever served as associate professors and ever earned at
least 40000, along with their rank and salary histories?

select p.FName as fname,
valid p.FRank as rank,
valid p.Salary as salary

from Faculties as p
where “Assoc.” in (valid p.FRank) and

(exists s in valid p.Salary:
s >= 40000)

Result: Query type is bag<struct {fname: string, rank:
attribute string valid granularity Month calendar
Gregorian, salary: attribute integer valid granularity
Month calendar Gregorian}>

QB18: Which secretaries have worked under more than one head in the same
department? Where, when and under whom?

select secretary as secretary, dept as dept,
(select x1.dhs.head as head,

x1.dhs.when as when
from partition as x1) as head

from (select d.FDept as dept, hs.head.FName as head,
hs.secretary.FName as secretary,
hs.VT as when

from FDepartments as d,
tstruct(head: valid d.Head,

secretary: valid d.Secretary) as hs)
as dhs

group by dhs.secretary as secretary, dhs.dept as dept
having count(select distinct x.dhs.head

from partition as x) > 1

Result: Query type is bag<struct {secretary: string, dept:
string, head: bag<struct {head: string, when: period
granularity Gregorian calendar Month}>}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 67 of 82

QB19: Which secretaries have worked in the same department and under the same
head during two or more distinct periods? Where, when and under whom?

select Secretary as secretary, dept as dept,
(select x.hsd.headName as headName,

x.hsd.when as when
from partition as x) as Head

from (select d.FDept as dept, hs.Head.FName as headName,
hs.Secretary.FName as Secretary,
hs.VT as when

from FDepartments as d,
tstruct(Head: valid d.Head,

Secretary: valid d.Secretary) as hs)
as hsd

group by hsd.headName as headName,
hsd.Secretary as Secretary,
hsd.dept as dept

having count(partition) > 1

Result: Query type is bag<struct {secretary: string, dept:
string, Head: bag<struct {headName: string, when: period
granularity Gregorian calendar Month}>}>

QB20: Which faculty have earned at least 40000 while serving as an associate pro-
fessor, along with their salaries during that period?

select fs.fname as fname, fs.salary as salary
from (select p.FName as fname,

(select rs.salary as salary,
rs.VT as when

from tstruct(rank: valid p.FRank,
salary: valid p.Salary)

as rs
where rs.rank = “Assoc.” and

rs.salary > 40000) as salary
from Faculties as p) as fs

where count(fs.salary) > 0

Result: Query type is bag<struct {fname: string, salary:
bag<struct {salary: integer, when: period granularity
Gregorian calendar Month}>}>

Kalua and Robertson benchmark

68 of 82 Benchmarks for Temporal Databases

QB21: Which faculty have earned at least 40000 while serving as an associate pro-
fessor, along with their rank and salary histories up to the time they ceased to be
associate professors?

select p.FName as fname,
(valid p.FRank)[period(instant “beginning”,
 ceaseDate) granularity Month] as rank,
(valid p.Salary)[period(instant “beginning”,
ceaseDate) granularity Month] as salary

from Faculties as p,
(select end(valid(r))
from valid p.FRank as r
where r = “Assoc.”) as ceaseDate

where exists rs in tstruct(rank: valid p.FRank,
salary: valid p.Salary) :

(rs.rank = “Assoc.” and
rs.salary >= 40000)

Result: Query type is bag<struct {fname: string, rank:
list struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: list struct {value:
integer, VT: period granularity Month calendar
Gregorian}}>

QB22: When and in which department did Cheri Best work under Mike Webb?

select d.FDept as cheri_mike_dept, h.VT as when
from Faculties as p,

valid p.inDept as d,
(valid d.Head)[valid(d)] as h

where p.FName = “Cheri Best” and
h.value.FName = “Mike Webb”

Result: Query type is bag<struct {cheri_mike_dept: string,
when: period granularity Month calendar Gregorian}>

QB23: Which departments have been headed by assistant professors at one point or
another?

select da.dept as dept,
da.assist_prof_head as assist_prof_head

from (select d.FDept as dept,
(select h.FName as headName,

r.VT as when
from valid d.Head as h,

(valid h.FRank)[valid(h)] as r
where r.value = “Assoc.”)

as assist_prof_head
from FDepartments as d) as da

where count(da.assist_prof_head) > 0

Result: Query type is bag<struct {dept: string,
assist_prof_head: bag<struct {headName: string, when:
period granularity Month calendar Gregorian}>}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 69 of 82

QB24: What were the salaries of assistant professors with exactly one dependent?

select os.one_depend_assists as one_depend_assists,
os.salary as salary

from (select p.FName as one_depend_assists,
(select ds.salary as salary,

ds.VT as when
from tstruct(no_dependents: valid

p.no_dependents,
salary: valid p.Salary) as ds

where ds.no_dependents = 1) as salary
from Faculties as p) as os

where count(os.salary) > 0

Result: Query type is bag<struct {one_depend_assists:
string, salary: bag<struct {salary: integer, when:
period granularity Gregorian calendar Month}>}>

QB25: List all faculty who got promoted while single, along with their department,
rank and salary immediately before their promotion.

select p.FName as fname,
date_of_promotion as date_of_promotion,
(valid p.inDept)[date_of_promotion -

interval “1” granularity Month] as dept,
(valid p.FRank)[date_of_promotion -

interval “1” granularity Month] as rank,
(valid p.Salary)[date_of_promotion -

interval “1” granularity Month] as salary
from Faculties as p,

(select begin(valid(r))
from valid p.FRank as r
where
(valid p.MStatus)[begin(valid(r))] =

“Single” and
r != (valid p.FRank)[1])

as date_of_promotion

Result: Query type is bag<struct {fname: string,
date_of_promotion: instant granularity Month calendar
Gregorian, dept: FDepartment, rank: string, salary:
integer}>

QB26: What publication submissions were made by faculty while serving as full
professors?

select p.written_by.FName, p.journal, p.issue,
p.effective_time

from Publications as p
where (valid p.written_by.FRank)

[begin(p.effective_time)] = “Full”

Result: Query type is bag<struct {FName: string, journal:
string, issue: string, effective_time: instant
granularity month calendar Gregorian}>

Kalua and Robertson benchmark

70 of 82 Benchmarks for Temporal Databases

QB27: What were the salaries of the other faculty in Philosophy when Randy Wells
was head of department?

select fs.fname as fname, fs.salary as salary
from (select p.FName as fname,

flatten(select (valid p.Salary)
[valid(d) intersect when]

from valid p.inDept as d,
(select valid(head)
from FDepartments as d1,

valid d1.Head as head
where d1.FDept = “Philosophy”

and Head.FName =
“Randy Wells”)

as when
where d.FDept = “Philosophy”)

as salary
from Faculties as p
where p.FName != “Randy Wells”) as fs

where count(fs.salary) > 0

Result: Query type is bag<struct {fname: string, salary:
set<struct {value: integer, VT: period granularity Month
calendar Gregorian}>}>

QB28: What is the publication record of current full professors?

select p.FName,
(select pub
from Publications as pub
where pub.written_by.FName = p.FName)

as publi
from Faculties as p
where p.FRank = “Full”

Result: Query type is bag<struct {FName: string, publi:
bag<Publication>}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 71 of 82

QB29: Which female faculty changed their rankand marital status in the same year
and what rank and marital status information supports this retrieval?

select mr.fname as fname, mr.mstatus as mstatus,
mr.rank as rank

from (select p.FName as fname,
(select m as mstatus, valid(m) as when
from valid p.MStatus as m
where (valid(m) !=

valid((valid p.MStatus)[1]))
and exists r1 in valid p.FRank:

((r1 != first(valid p.FRank))
 and
year(begin(valid(r1))) =

year(begin(valid(m)))))
as mstatus,

(select r as rank, valid(r) as when
from valid p.FRank as r
where (valid(r) !=

valid((valid p.FRank)[1]))
and exists m1 in valid p.MStatus:

((valid(m1) !=
valid((valid p.MStatus)[1]))
and year(begin(valid(m1))) =

year(begin(valid(r)))))
as rank

from Faculties as p
where p.FSex = ‘F’) as mr

where count(mr.mstatus) > 0

Result: Query type is bag<struct {fname: string, mstatus:
bag<struct {mstatus: string, when: period granularity
Month calendar Gregorian}>, rank: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

Kalua and Robertson benchmark

72 of 82 Benchmarks for Temporal Databases

QB30: Which faculty got promoted while they had fewer than three publications?
And what were their ranks and publications through the time of their third publica-
tion?

select p.FName as fname,
(select pub.journal as journal,

pub.effective_time as when
from Publications as pub
where pub.written_by.FName = p.FName and

begin(pub.effective_time) precedes
third_pub_time) as journal,

(valid p.FRank)[period(instant “beginning”,
third_pub_time)

granularity Month]
as rank

from Faculties as p,
(select begin(pubs[3])

from set(select
begin(pub1.effective_time)
from Publications as pub1
where pub1.written_by.FName =

p.FName
order by begin

(pub1.effective_time))
as pubs

where count(pubs) >= 3) as third_pub_time
where exists r in valid p.FRank:

r != first(valid p.FRank) and
count(select *

from publications as pub2
where pub2.written_by.FName = p.FName

and begin(pub2.effective_time) <
third_pub_time) < 3

Result: Query type is bag<struct {fname: string, journal:
bag<struct {journal: string, when: instant granularity
month calendar Gregorian}>, rank: list struct {value:
string, VT: period granularity Month calendar
Gregorian}}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 73 of 82

QB31: What have been the highest salaries paid by each department? Who earned
these, when and at what rank?

select dept as dept,
(select p.FName,

(valid p.FRank)[x.ds.VT] as rank,
x.ds.salary as salary,
x.ds.VT as when

from partition as x
where x.ds.salary = max(select x1.ds.salary

from partition as x1))
as highest_salary

from Faculties as p,
tstruct(dept: valid p.inDept,

salary: valid p.Salary) as ds
group by ds.dept as dept

Result: Query type is bag<struct {dept: FDepartment,
highest_salary: bag<struct {FName: string, rank: list
struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: integer, when: period
granularity Gregorian calendar Month}>}>

Note: The result schema of the query associates with each dept a set of data describ-
ing the highest salaries. Moreover, within each record describing the highest salary,
the rank is a set, allowing this for changes of the rank, while the person was receiv-
ing a constant salary.

QB32: What have been the highest salaries paid to associate professors by each
department? Who earned these and when?

select dept as dept,
(select x.p.FName as fname,

x.rsd.salary as salary,
x.rsd.VT as when

from partition as x
where x.salary = max(select x1.salary

from partition as x1))
as assoc_high_salary

from Faculties as p, tstruct(salary: valid p.Salary,
rank: valid p.FRank,
dept: valid p.inDept) as rsd

where rs.rank = “Assoc.”
group by rsd.dept

Result:
*:abort

Kalua and Robertson benchmark

74 of 82 Benchmarks for Temporal Databases

QB33: Tabulate the total number of faculty publications by rank.

select rank as rank, count(partition) as no_pubs
from (select (valid p.FRank)[begin(pub.effective_time)]

from Faculties as p,
Publications as pub

where pub.written_by.FName = p.FName)
as pubRank

group by pubRank as rank

Result: Query type is bag<struct {rank: string, no_pubs:
integer}>

QB34: Tabulate the total number of faculty publications by gender.

select sex as sex, count(partition) as no_pubs
from (select p.FSex

from Faculties as p,
Publications as pub

where pub.written_by.FName = p.FName)
as pubSex

group by pubSex as sex

Result: Query type is bag<struct {sex: char, no_pubs:
integer}>

QB35: What was the composition of Computer Science faculty by rank as of Janu-
ary 1992?

select rank as rank, count(partition) as no_faculty
from Faculties as p
where ((valid p.inDept)[instant “1992-01” granularity

Month]).FDept = “Computer Science”
group by (valid p.FRank)[instant “1992-01” granularity

Month] as rank

Result: Query type is bag<struct {rank: string,
no_faculty: integer}>

Note: This query will not return data for rank “Assoc.”

2.3 The Clinical Database

Contains information about Manic Depressive patients. There is only one object
used and it is defined as follows:

enum sex_enum {male, female};

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 75 of 82

interface manic_depr
(extent ManicDeprs
key patient)
{

attribute String patient;
attribute sex_enum sex;
attribute String episode_phase valid;
attribute String treatment valid;

}

2.3.1 Queries on the Clinical Database

QC1: List all bipolar patients who experienced some form of mania as well as
depression within a month of each other, along with any supporting information.

select p.patient as patient, p.episode as episode
from (select md.patient as patient,

(select e as episode, valid(e) as when
from valid md.episode_phase as e
where (e like “*Mania” or

e like “*Depression”) and
exists e1 in valid md.episode_phase:

((e1 like “*Mania” or
e1 like “*Depression”)

and e[length(e)-5: length(e)]
 !=
e1[length(e1)-

5:length(e1)]
 and
abs(begin(valid(e1)) -

end(valid(e))) < interval
“1” granularity Month or

abs(begin(valid(e)) -
end(valid(e1))) < interval
“1” granularity Month))

as episode
from ManicDeprs as md) as p

where count(p.episode) > 0

Result: Query type is bag<struct {patient: string,
episode: bag<struct {episode: string, when: period
granularity Second calendar Gregorian}>}>

Kalua and Robertson benchmark

76 of 82 Benchmarks for Temporal Databases

QC2: List all patients who had the same episode of mania or depression recur
within a month after the last one.

select p.patient as patient, p.episode_phase as episode
from (select md.patient as patient,

(select e as episode_phase,
valid(e) as when
from valid md.episode_phase as e
where exists e1 in valid

md.episode_phase:
(e1 = e and
begin(valid(e1)) != begin(valid(e))
and (abs(begin(valid(e1)) -

(end(valid(e))))) <
interval “1”
granularity Month

or abs(begin(valid(e)) -
(end(valid(e1)))) <
interval “1”
granularity Month)) as

episode_phase
from ManicDeprs as md) as p

where count(p.episode_phase) > 0

Result: Query type is bag<struct {patient: string,
episode: bag<struct {episode_phase: string, when: period
granularity Second calendar Gregorian}>}>

QC3: For those patients who experienced severe mania, what treatment were they
on at the time? And when did they experience this?

select md.patient as patient, valid(e) as when,
(valid md.treatment)[begin(valid(e))]

as treatment
from ManicDeprs as md, valid md.episode_phase as e
where e = “Severe Mania”

Result: Query type is bag<struct {patient: string, when:
period granularity Second calendar Gregorian, treatment:
string}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 77 of 82

QC4: Who experiencednew bouts of mania or depression while on lithium treat-
ment?

select md.patient as p_id,
struct(episode: e, when: valid(e))

as new_episode,
struct(treatment: t, when: valid(t))

as treatment
from ManicDeprs as md,

valid md.episode_phase as e,
valid md.treatment as t

where (valid(e) != valid((valid md.episode_phase)[1]))
 and
(e != “Normal”) and (t = “Lithium”) and
valid(t) contains begin(valid(e))

Result: Query type is bag<struct {p_id: string,
new_episode: struct {episode: string, when: period
granularity Second calendar Gregorian}, treatment:
struct {treatment: string, when: period granularity
Second calendar Gregorian}}>

QC5: For each patient, tabulate the total number of bouts of mania and the total
number of bouts of depression.

select md.patient as patient,
count(select e from valid md.episode_phase

as e
where e like “*Mania”)

as no_bouts_manic,
count(select e1 from valid md.episode_phase

as e1
where e1 like “*Depression”)

as no_bouts_depressive
from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
no_bouts_manic: integer, no_bouts_depressive: integer}>

QC6: Tabulate the combined number ofnew bouts of mania or depression by treat-
ment type.

select treatment,
count(partition) as no_new_bouts

from (select t
from ManicDeprs as md,

valid md.episode_phase as e,
valid md.treatment as t

where (valid(e) !=
valid((valid md.episode_phase)[1]))
and (e != “Normal”) and
(valid(t) contains begin(valid(e))))

as new_bouts
group by new_bouts as treatment

Kalua and Robertson benchmark

78 of 82 Benchmarks for Temporal Databases

Result: Query type is bag<struct {treatment: string,
no_new_bouts: integer}>

QC7: Tabulate the combined total number of days when the patient had bouts of
mania or depression of any degree by treatment type.

select treatment as treatment,
sum(select duration(x.et.VT)

from partition as x) as days_md_bouts
from ManicDeprs as md,

tstruct(episode: valid md.episode_phase,
treatment: valid md.treatment) as et

where et.episode != “Normal”
group by et.treatment as treatment

Result: Query type is bag<struct {treatment: string,
days_md_bouts: interval granularity Gregorian calendar
Second}>

QC8: What was the total number of days that each patient was “normal” during the
six-month period?

select md.patient as patient,
sum(select duration(e.VT)

from (valid md.episode_phase)
[period(instant “now” -

interval “6” granularity Month,
instant “now”)
granularity Month] as e

where e.value = “Normal”)
as total_days_normal

from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
total_days_normal: interval granularity Second calendar
Gregorian}>

Kalua and Robertson benchmark

Benchmarks for Temporal Databases 79 of 82

QC9: For each patient, tabulate the total number of days when they were manic and
the total number of days when they were depressive during the six-month period.

select md.patient as patient,
sum(select duration(e.VT)

from (valid md.episode_phase)[period(
instant “now” -
interval “6” granularity Month,
instant “now”)
granularity Month] as e

where e.value like “*Mania”)
as tot_day_manic,

sum(select duration(e1.VT)
from (valid md.episode_phase)[period(

instant “now” -
interval “6” granularity Month,
instant “now”)
granularity Month] as e1

where e1.value like “*Depression”)
as tot_days_depressive

from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
tot_day_manic: interval granularity Second calendar
Gregorian, tot_days_depressive: interval granularity
Second calendar Gregorian}>

QC10: What were the longest and shortest periods of “normality” in days for each
patient?

select md.patient as patient,
max(select duration(valid(e))

from valid md.episode_phase as e
where e = “Normal”) as max_normal_period,

min(select duration(valid(e1))
from valid md.episode_phase as e1
where e1 = “Normal”) as min_normal_period

from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
max_normal_period: interval granularity Second calendar
Gregorian, min_normal_period: interval granularity
Second calendar Gregorian}>

Glaxo Queries

80 of 82 Benchmarks for Temporal Databases

3.0 Glaxo Queries

GLAXO 1. In the visit1, the inclusion criteria 8 of the VerificationOfEligibility
container cannot be true if the number of corticoid uses is > 10 or < 2 in IllnessHIs-
tory container, and reversely.

select p.name
from patients as p,

(valid (p.on.illnessHistory)) as ill,
(valid p.on.verificationOfEligibility) as elig

where ((ill.value[0]).corticoidsUses4 <= 10 and
 (ill.value[0]).corticoidsUses4 >= 2 and
 ((elig.value[0]).oralCorticoid3 = 0 or
 (elig.value[0]).oralCorticoid3 = 1))

Glaxo 2. If an aggravation is detected in the SummaryOfVisit of visit 2, check that
the date of TrialEnd is between visit1 and visit2, and that at least one concomitant
treatment has started between visit1 and visit2 + 1 day

select p.name
from patients as p, p.on.visiSummary as sum,

p.on.physicalExam as phy,
p.on.trialEnd as tend,
p.on.concomitantTreatment as treat

where ((valid sum.value)[0]).criteriaAggravation = 1 and
period(valid(valid phy.value)[0]),

valid(valid phy.value)[1]))
contains tend.value.dateOfTrialEnd0
and exists ct in treat:
period(valid(valid phy.value)[0]),

valid(valid phy.value)[1]) contains
ct.value.beginingDate5

Glaxo 3. What is the time to reach an increase of 10% of VEMS, with regards to
J0?

select p.name, period(valid(valid
p.on.functionalRespiratoryTest.value)[0]),
min(valid(frt)))

from patients as p,
valid p.on.functionalRespiratoryTest.value

as frt
where frt.theoreticalVems >= 1.1 * ((valid

p.on.functionalRespiratoryTest.value)[0].
theoreticalVems

Delta Queries

Benchmarks for Temporal Databases 81 of 82

Glaxo 4. What is the average value of MaximumExpiratoryDebit (am and pm)
week by week

select p.name, (select n.amMaximumExpiratoryDebit
from weekly.partition as n) as amAvg,
(select n.pmMaximumExpiratoryDebit
from weekly.partition as n) as pmAvg

from patients as p,
(valid p.periodicIndividualNotebook.value)
(partition valid as interval “7” day)

as weekly
where p.periodicIndividualNotebook != nil

4.0 Delta Queries

Contains the following interfaces

interface ProductGroup
(extent ProductGroups)
{

attribute String attName;
relationship ProductGroup relPartOf

inverse ProductGroup::relComposedOf;
relationship Set<ProductGroup> relComposedOf

inverse ProductGroup::relPartOf;
relationship Set<Product> relHasProducts

inverse Product::relBelongs;
};
interface Product
(extent Products key attProductCode)
{

attribute String attProductCode;
attribute String attName;
attribute String attType;
attribute String attStatus valid event

granularity Day;
attribute Short attDuration valid state

granularity Day;
attribute Float attPrice valid state

granularity Day;
relationship ProductGroup relBelongs

inverse ProductGroup::relHasProducts;
};

4.1 Queries

Delta 1. Show the name, the price and the period during which this price was valid,
for each product, ordered by name and group

select p.attName as pName, pr as price,
valid(pr) as time

from Products p, valid p.attPrice as pr
order by p.attName, p.relBelongs.attName

Delta Queries

82 of 82 Benchmarks for Temporal Databases

Delta 2. Display the name, the price and the period during which this price was
valid, for each product whose price changed the last X months

select p.attName as pName, pr as price,
valid(pr) as time

from Products p, valid p.attPrice as pr
where begin(valid(pr)) >

now() - interval($1) granularity Month

Delta 3. Display the name, the price and the period during which this price was
valid, for each product whose price changed during the last X months Y times

select p.attName as pName, pr as price,
valid(pr) as time

from Products p, valid p.attPrice as pr
where count(select *

from valid p.attPrice as pr1
where valid(pr1) >
now() - interval($1) granularity Month) > $2

