6 April 1998

Benchmarks for
Temporal Databases

C. Vassilakis- A. Sotiropoulou

How the proposed benchmarks for
temporal databases can be incorporated
to TOOBIS

1.0 TSQL2 Benchmark

1.1 Schema for TSQL2 Benchmark
Three interfaces will be defined according to the TSQL2 Benchmark:

e TheEmployee interface
e TheDepartment interface, and
e TheSkill interface

The following TODL statements may be used for the definition of the above inter-
faces

enum GenderType {male, female};
interface Skill

(extent Skills,

key name)

{
}

attribute String name;

1. Note that the time varying nature of the different attributes/relationships is defined in the
appropriate report from TSQL2 Committee

10f 82

TSQL2 Benchmark

interface Employee
(extent Employees,
key name)
{
readonly attribute String id;
attribute String name valid;
attribute Long salary valid
granularity month;
attribute GenderType gender;
attribute Instant granularity day d_birth;
relationship Department belongsinDept
valid granularity day
inverse Department::hasEmployee;
relationship Department managerinDept
valid granularity day
inverse Department::hasManager;
relationship Set<Skill> hasSkills
valid granularity day;

interface Department
(extent Departments,
key name)
{
attribute String name;
attribute Long budget valid granularity day;
relationship Set<Employee> hasEmployee
valid granularity day
inverse Employee::belongsinDept;
relationship Employee hasManager
valid granularity day
inverse Employee::managerinDept;

1. This is required due to the nature of the queries. This attribute will be set through the
“constructor” method and there will be no operation allowing this value to change.

2 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

1.2

121

Queries - Explicit-attribute Output

Class 01.S1 (Duration, Interval, Computing)

Query Q 2.1.1: Which departments had managers who served for the shortest con-
tinuous period?

select d.name from Departments as d
where min(select duration(valid(m)) from
valid d.hasManager as m) =
min(select duration(valid(m1))
from Departments as d1,
valid d1.hasManager as m1l)

Result: Query type is bag<string>

Query Q 2.1.2: Who worked continuously in the Book department for at least as
long as Di did?

select e.name from Employees as e
where exists d in valid e.belongsinDept:
duration(valid(d)) >=
max(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.name = “Di” and
dl.name = “Book”)

Result: Query type is bag<string>

Query Q 2.1.3: Who worked continuously in the Toy department for at least as
long as Di did?

select e.name from Employees as e
where exists d in valid e.belongsinDept:
(duration(valid(d)) >=
max(select duration(valid(d1))
from Employees as el,
(valid el.belongsinDept) as d1
where dl->name =“Toy"))

Result: Query type is bag<string>

Query Q 2.1.4: Who worked continuously in a department longer than their current
manager worked in their (that) department?

select distinct e.name from Employees as e
where exists d in valid e.belongsinDept:
duration(valid(d)) >
sum(select duration(valid(d1))
from valid
e.belongsinDept.hasManager.belongsinDept
as di
where d1.name = d.name)

Result: Query type is set<string>

Benchmarks for Temporal Databases 30f 82

TSQL2 Benchmark

122

Query Q 2.1.5: Who had the same salary for the longest continuous time period?

select e.name from Employees as e
where max(select duration(valid(s))
from valid e.salary as s) =
max(select duration(valid(s1))
from Employees as el, valid
el.salary as sl)

Result: Query type is bag<string>

Query Q 2.1.6: Who worked for a manager in a department for a period as long as
that manager managed the department?

select distinct el.name from Employees as e,
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as m
group by e as el, d as d1, m.value as m2
having sum(select duration(valid(x.d))
from partition as x) >=
sum(select duration(valid(m1))
from valid d1.hasManager as m1l
where ml.name = m2.name)

Result: Query type is set<string>

Query Q 2.1.7: Which managers served continuously longer than some other man-
ager?

select distinct d.hasManager.name
from Departments as d,
(valid d.hasManager) as mgr
where exists (select * from Departments as d1,
valid d1.hasManager as mgrl
where duration(valid(mgr)) >
duration(valid(mgrl)))

Result: Query type is set<string>
Class 01.S2 (Duration, Interval, Other)
Query Q 2.2.1: Which employees had the same salary for a single period of at least

three years?

select e.name
from Employees as e,

(valid e.salary) as sal
where duration(valid(sal)) >=

interval “3” granularity Year

Result: Query type is bag<bag<string>>

4 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.2.2: Who worked for the same manager for at least five years continu-
ously?

select e.name from Employees as e
where exists m1 in valid[select m.value from
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as m:m.VT]:
duration(valid(m1)) > interval “5”
granularity Year

Result: Error: The historical equivalent of this class is not defined (Employee -
Employee_Historical_State)

Query Q 2.2.3: Which employees have stayed in the same department throughout
the past 5 years?

select e.name from Employees as e

where exists d in valid e.belongsinDept: valid(d)
contains period(now() - interval “5”
granularity Year, now())

Result: Query type is bag<string>

Query Q 2.2.4: For each department which has had the same managers and budget
for the last 18 months, list its current name, manager and budget.

select d.name, d.hasManager, d.budget

from Departments as d

where exists m in valid d.hasManager: valid(m)
contains period(now()- interval “18”
granularity Month, now()) and

exists b in valid d.budget: valid(b)

contains period(now() - interval “18”
granularity Month, now())

Result: Query type is bag<struct {name: string,
hasManager: Employee, budget: integer}>

Query Q 2.2.5: Who has worked in the Toy department and has earned at least 40K
throughout the last two years?

select e.name from Employees as e
where exists d in valid e.belongsinDept: valid(d)
contains period(now() - interval “2”
granularity Year, now()) and
40000 <= all (select s.value
from (valid e.salary)[period(now() -
interval “2” granularity Year, now())]
as s)
and d.name = “Toy”

Result: Query type is bag<string>

Benchmarks for Temporal Databases 5 0f 82

TSQL2 Benchmark

Query Q 2.2.6: Who had at least three raises in a continuous five-year period?

select e.name from Employees as e,
(1 .. count(valid e.salary) - 2) as counter
where count(valid e.salary) > 4 and
(end(valid((valid e.salary)[counter+3])) -
begin(valid((valid e.salary)[counter]))) <
interval “5” granularity Year and
(valid e.salary)[counter] <
(valid e.salary)[counter+1] and
(valid e.salary)[counter+1] <
(valid e.salary)[counter+2] and
(valid e.salary)[counter+2] <
(valid e.salary)[counter+3]

Result: Query type is bag<string>

Query Q 2.2.7: Who had the most raises in a continuous five-year period?

select p.id
from Employees as p,
(partition valid as interval “1” granularity
Year trailing interval “4” granularity
Year)(valid p.salary) as five_year_sal
where count(select *
from 1 .. count(five_year_sal.partition)-1
asi
where (five_year_sal.partition)[i].value <
(five_year_sal.partition)[i+1].value) =
max(select count(select *
from 1 .. count(fys.partition)-1 as il
where (fys.partition)[il].value <
(fys.partition)[il+1].value)
from Employees p1,

(partition valid as interval “1”
granularity Year trailing
interval “4” granularity Year)
(valid pl.salary) as fys)

Result: Query type is bag<string>
1.2.3 Class 01.S3 (Duration, Element, Computed)

Query Q 2.3.1: Who worked in the Toy department for at least as long as DI
worked there?

select e.name from Employees as e
where sum(select duration(valid(d))
from valid e.belongsinDept as d
where d.name = “Toy”) >=
sum(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where d1l.name = “Toy” and el.id = “DI")

6 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Result: Query type is bag<string>

Query Q 2.3.2: Who worked in a department longer than their current manager
worked in that department?

select distinct f.name from Employees as e,
valid e.belongsinDept as d
groupbyeasf,dasg
having sum(select duration(valid(x.d))
from partition as x) >
sum(select duration(valid(d1))
from valid
f.belongsinDept.hasManager.belongsinDept
as di
where d1.name = g.name)

Result: Query type is set<string>

Query Q 2.3.3: Which managers managed which departments, longer than Di man-
aged the Toy department?

select mx.name as Manager, dx.name as Department
from Departments as d,
valid d.hasManager as m
group by d as dx, m as mx
having sum(select duration(valid(x.m))
from partition as x) >
sum(select duration(valid(m1))
from Departments as d1,
valid d1.hasManager as m1
where d1.name = “Toy” and m1l.name = “Di")

Result: Query type is bag<struct {Manager: string,
Department: string}>

Query Q 2.3.4: Who had the same salary for the longest total time?

select ex.name from Employees as e,
valid e.salary as s
group by e as ex,s as sx
having sum(select duration(valid(x.s))
from partition as x) =
max(select sum(select duration(valid(x1.s1))
from partition as x1)
from Employees as el,
valid el.salary as s1
group by el as elx, sl as s1x)

Result: Query type is bag<string>

Benchmarks for Temporal Databases 7 of 82

TSQL2 Benchmark

Query Q 2.3.5: Which departments had managers who served for the shortest total
time?

select d.name from Departments as d
where exists m in valid d.hasManager:
sum(select duration(valid(m1))
from valid d.hasManager as m1
where ml.id = m.id) =
min(select sum(select duration(valid(x1.m2))
from partition as x1)
from Departments as d1,
valid d1.hasManager as m2
group by d1 as d1x, m2 as m2x)

Result: Query type is bag<string>

Query Q 2.3.6: List all employees currently in the Book department who received
salaries of over 40K longer than ED did.

select e.name from Employees as e
where e.belongsinDept.name = “Book” and
sum(select duration(valid(s))
from valid e.salary as s
where s > 40000) >
sum(select duration(valid(s1))
from Employees as el,
valid el.salary as s1
where el.id = “ED” and s1 > 40000)

Result: Query type is bag<string>

Query Q 2.3.7: Who worked in the Toy department for at least as long as the total
time that the Toy department was NOT managed by ED?

select e.name from Employees as e
where sum(select duration(valid(d))

from valid e.belongsinDept as d

where d.name = “Toy”) >=

sum(select duration(valid(m))
from Departments as d1,
valid d1.hasManager as m
where d1.name = “Toy” and m.id != “ED")

Result: Query type is bag<string>

8 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.3.8: Find the names of employees that have been in a department named
Toy for a shorter period than has DI.

select e.id
from Employees as e
where sum(select duration(valid(d))
from valid e.belongsinDept as d
where d.name = “Toy”) <=
sum(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy")

Result: Query type is bag<string>

Query Q 2.3.9: Find the current name and department for the employees which
made $40K for a longer period than DI did.

select e.name, e.belongsinDept
from Employees as e
where (exists sal in valid e.salary: sal >= 40000) and
sum(select duration(valid(s))
from valid e.salary as s
where s >= 40000)>
sum(select duration(valid(sl1))
from Employees as el,
valid el.salary as s1
where el.id = “DI” and
sl >=40000)

Result: Query type is bag<struct {name: string,
belongsinDept: Department}>

1.2.4 Class 01.S4 (Duration, Element, Other)

Query Q 2.4.1: Who managed the Book department for at least two years?

select e.id

from Employees as e

where (exists mgr in valid e.managerinDept:
mgr.name = “Book”) and
sum(select duration(valid(m))
from valid e.managerinDept as m
where m.name = “Book”) >=
interval “2” granularity Year

Result: Query type is bag<string>

Benchmarks for Temporal Databases 9 of 82

TSQL2 Benchmark

Query Q 2.4.2: Which employees had the same salary for at least three years?

select distinct ex.id

from Employees as e,
valid e.salary as s

group by e as ex, s as sx

having sum(select duration(valid(x.s))
from partition as x) >=
interval “3” granularity Year

Result: Query type is set<string>

Query Q 2.4.3: Who worked for the same manager for at least five years?

select e.name from Employees as e
where exists m1 in valid[select m.value
from valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)]
as m:m.VT]:
duration(valid(m1)) > interval “5”
granularity Year

Result:
Error: The historical equivalent of this class is not
defined (Employee - Employee_Historical_State)

Query Q 2.4.4: Who worked in a department for less than 6 months total?

select e.name from Employees as e
where exists (select dx from valid e.belongsinDept as d
group by d as dx
having sum(select duration(valid(x.d))
from partition as x) <
interval “6” granularity Month)

Result: Query type is bag<string>

Query Q 2.4.5: Who worked for the same manager for total time of at least five
years?

select el.id
from Employees as e,
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as m
group by e as el, m.value as mgr
having sum(select duration(x.m.VT)
from partition as x) >=
interval “5” granularity Year

Result: Query type is bag<string>

10 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

125

Class 01.S5 (Other, Event, Computed)

Query Q 2.5.1: Find ED'’s skills when he joined the Book department.

select (valid e.hasSkills)[valid at begin(valid(d))]
from Employees as e,

valid e.belongsinDept as d
where e.id = “ED” and d.name = “Book”

Result: Query type is bag<set<Skill>>

Query Q 2.5.2: Find the name and the budget of ED’s departments when he joined
them.

select d.name, (valid d.budget)[begin(valid(d))] as bud
from Employees as e, valid e.belongsinDept as d
where e.id = “ED”

Result: Query type is bag<struct {name: string, bud:
integer}>

Query Q 2.5.3: For each employee who was in the Toy department when it opened,
find all data and skills that were valid at the time.

select emp.id,
(valid emp.name)[valid at
begin(valid((valid d.hasEmployee)[0]))]
asn,
(valid emp.salary)[valid at
begin(valid(((valid d.hasEmployee)[0])))]
as s,
emp.gender, emp.d_birth,
(valid emp.belongsinDept)[valid at
begin(valid(((valid d.hasEmployee)[0])))]
as dept,
(valid emp.managerinDept)[valid at
begin(valid(((valid d.hasEmployee)[0])))]
as man,
(valid emp.hasSkills)[valid at
begin(valid(((valid d.hasEmployee)[0])))]
as skills
from Departments as d,
((valid d.hasEmployee)[0]) as emp
where d.name = “Toy”

Result: Querytypeis bag<struct{id: string, n: string, s:
integer, gender: integer, d_birth: instant granularity
day calendar Gregorian, dept: Department, man:
Department, skills: set<Skill>}>

Benchmarks for Temporal Databases 11 of 82

TSQL2 Benchmark

Query Q 2.5.4: Find the names valid when the budget of the Toy department was
decreased of the employees who had been working in the Toy department before the
budget was decreased.

select (select (valid e.name)[begin(valid((valid
d.budget)[i]))]
from (valid d.hasEmployee)[begin(valid((valid
d.budget)[i]))] as e) as names
from Departments as d,
(0 .. (count(valid d.budget)-2)) as i
where d.name = “Toy” and
(valid d.budget)[i] > (valid d.budget)[i+1]

Result: Query type is bag<struct {names: bag<string>}>

Query Q 2.5.5: Find ED's skills when his salary increased from $30K to $40K.

flatten(select (valid e.hasSkills)[valid at
begin(valid(s))]
from Employees as e, valid e.salary as s
where e.id = “ED” and s = 40000 and
exists sl in valid e.salary:
(s1 =30000 and
end(valid(sl)) = begin(valid(s))))

Result: Query type is set<Skill>
1.2.6 Class 01.S6 (Duration, Element, Other)

Query Q 2.6.1: Find the name, current budget and manager of the Toy department.

select d.name, d.budget, d.hasManager
from Departments as d
where d.name = “Toy”

Result: Query type is bag<struct {name: string, budget:
integer, hasManager: Employee}>

Query Q 2.6.2: Find the skills for which ED became qualified after 1/1/83.

element(select (select s.value
from (valid e.hasSkills)[valid at
period(instant “1983-01-01"
granularity Day, now())] as s
except
select sl.value
from (valid e.hasSkills)[valid at
period(instant “beginning”,
instant “1983-01-01"
granularity Day)] as s1)
from Employees as e where e.id = “ED”)

Result: Query type is bag<set<Skill>>

12 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.6.3: Find DI's salary on her Z*Bbirthday.

select (valid e.salary) [valid at (e.d_birth +
interval “25”
granularity Year)]
from Employees as e
where e.id = “DI”

Result: Query type is bag<integer>

Query Q 2.6.4: Find the departments ED worked in before and not after 1/1/88.

select d.name from Employees as e,
valid e.belongsinDept as d
where e.id = “ED” and valid(d) precedes
instant “1988-01-01" granularity Day and
not exists d1 in valid e.belongsinDept:
(d1.name = d.name and instant
“1988-01-01"
granularity Day precedes valid(d1))

Result: Query type is bag<string>

Query Q 2.6.5: Find the date of birth and current name of the women who were
working in the Toy department on 1/1/83.

select e.d_birth, e.name

from Employees as e

where e.gender = 0 and
(valid e.belongsinDept)[instant “1983-01-01"
granularity Day].name = “Toy”

Result: Query type is bag<struct {d_birth: instant
granularity day calendar Gregorian, name: string}>

Query Q 2.6.6: Who worked in their current department for a longer time than their
current manager worked in that department?

select e.id
from Employees as e
where sum(select duration(valid(d))
from valid e.belongsinDept as d
where d.name = e.belongsinDept.name) >
sum(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id =
e.belongsinDept.hasManager.id and
dl.name = e.belongsinDept.name)

Result: Query type is bag<string>

Benchmarks for Temporal Databases 13 of 82

TSQL2 Benchmark

1.2.7 Class 01.S7 (Other, Interval, Computed)

Query Q 2.7.1: Find the names of all employees that changed department while DI
was working in a department called Toy.

select e.name from Employees as e
where exists d in valid e.belongsinDept :
exists(select * from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy”
and begin(valid(d)) overlaps
valid(dl))

Result: Query type is bag<string>

Query Q 2.7.2: Which of all the skills ever recorded did ED not acquire while
working in the Book department?

select sk.name from Skills as sk
except
flatten(select (select bs.name
from (valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1] as bs
where (valid e.belongsinDept)[begin(
valid((valid e.hasSkills)[i]))].
name = “Book”)
from Employees as e,
2 .. count(valid e.hasSkills) as i
where e.id = “ED” and
count(valid e.hasSkills) >= 2)

Result: Query type is bag<string>

Query Q 2.7.3: Of the skills at some time possessed by ED, list those he did not
acquire while he was working in the Book department.

select s.name
from Employees as el,
valid el.hasSkills as skills,
skills as s
except
flatten(select (select bs.name
from (valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1] as bs
where (valid e.belongsinDept)[begin(
valid((valid e.hasSkills)[i]))].
name = “Book”)
from Employees as e,
2 .. count(valid e.hasSkills) as i
where e.id = “ED” and
count(valid e.hasSkills) >= 2)

Result: Query type is bag<string>

14 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.7.4: For any employee who re-acquired a skill, find the name of the
employee when a skill was re-acquired.

select (valid e.name)[valid at begin(valid(s))]

from Employees as e,
valid e.hasSkills as s, s as as1,
valid e.hasSkills as s1,
valid e.hasSkills as s2

where begin(valid(s)) > begin(valid(s1)) and
begin(valid(sl)) > begin(valid(s2)) and
aslin s2 and not (asl in sl)

Result: Query type is bag<string>

Query Q 2.7.5: Find the gender and name at the time of all employees that started
working in some department before ED acquired the skill Driving for the second
time.

select e.gender as g,
(valid e.name)[valid at begin(valid(d))] as n
from Employees as e, valid e.belongsinDept as d,
Employees as el, valid el.hasSkills as s,
s as ask
where el.id = “ED” and ask.name = “Driving” and
begin(valid(d)) precedes valid(s) and
count(select s1
from valid el.hasSkills as s1,
sl as asl
where asl.name = “Driving” and
valid(s1) precedes valid(s)) = 1

Result: Query type is bag<struct {g: integer, n: string}>

Query Q 2.7.6: Who worked in a department for a given manager for at least the
period when that manager managed the department?

select e.id
from Employees as e,
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as m
where not exists (select *
from Departments as d1,
valid d1.hasManager as m1
where d1.name = d.name and
ml.id = m.value.id and
not exists d2 in valid
e.belongsinDept: valid(d2)
contains valid(m1))

Result: Query type is bag<string>

Benchmarks for Temporal Databases 15 of 82

TSQL2 Benchmark

1.2.8

Query Q 2.7.7: What was the highest salary earned by ED before changing his
name to Edward?

max(select s from Employees as e,
valid e.salary as s
where e.id = “ED” and begin(valid(s))
precedes
min(select valid(n)
from valid e.name as n
where n = “Edward”))

Result: Query type is integer
Class 01.S8 (Other, Interval, Other)

Query Q 2.8.1: Find the name and skill pairs sometime possessed by people who
worked in the Book or Toy department last year.

select ns.name, ns.skill
from Employees as e,
tstruct(name: valid e.name,
skill: valid e.hasSkills) as ns
where exists d in (valid e.belongsinDept)[period(now() -
interval “2” granularity Year, now() -
interval “1” granularity Year)]:
d.value.name = “Book” or d.value.name = “Toy”

Result: Query type is bag<struct {name: string, skill:
set<Skill>}>

Query Q 2.8.2: Find the current name and skills of all people who worked for the
Book or Toy department last year.

select e.name, e.hasSkills
from Employees as e
where exists d in (valid e.belongsinDept)[period(now() -
interval “2” granularity Year, now() -
interval “1” granularity Year)] :
d.value.name = “Toy” or d.value.name = “Book”

Result: Query type is bag<struct {name: string, hasSkills:
set<Skill>}>

Query Q 2.8.3: Find their names (when they reported to DI) for all people who
reported to DI before last year.

select (valid e.name)[valid at mgr.VT]
from Employees as e,
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as mgr
where mgr.value.id = “DI” and
mgr.VT precedes now() - interval “2”
granularity Year

Result: Query type is bag<list struct {value: string, VT:
period}>

16 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.8.4: Find the current manager of anyone who acquired a skill between
1983 and 1987 inclusive.

select e.belongsinDept.hasManager

from Employees as e

where count(valid e.hasSkills) > 1 and

exists iin 2 .. count(valid e.hasSkills) :
(period “[1983-1-1, 1988-1-1)"
granularity Day contains begin(valid(
(valid e.hasSkills)[i])) and
count((valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1]) > 0)

Result: Query type is bag<Employee>

Query Q 2.8.5: Find the name current of anyone who lost a skill in the last four
years.

select e.name
from Employees as e
where count(valid e.hasSkills) > 1 and
exists iin 2 .. count(valid e.hasSkills) :
(period(now() - interval “4” granularity
Year, now()) granularity Year contains
begin(valid((valid e.hasSkills)[i])) and
count((valid e.hasSkills)[i-1] except
(valid e.hasSkills)[i]) > 0)

Result: Query type is bag<string>

Query Q 2.8.6: Find the current name and department of anyone who changed their
name or salary between July 1987 and June 1988 inclusive.

select e.name, e.belongsinDept
from Employees as e
where exists (select *
from (valid e.salary)
[period “[1987-07, 1988-08)"] as s1,
(valid e.salary)
[period “[1987-07, 1988-08)"] as s2
where sl.value != s2.value)
or exists (select *
from (valid e.name)
[period “[1987-07, 1988-08)"] as n1,
(valid e.name)
[period “[1987-07, 1988-08)"] as n2
where nl.value != n2.value)

Result: Query type is bag<struct {name: string,
belongsinDept: Department}>

Benchmarks for Temporal Databases 17 of 82

TSQL2 Benchmark

129

Query Q 2.8.7: Which employees stayed at their first salary for less than one year?

select e.name

from Employees as e

where duration(valid((valid e.salary)[0])) <
interval “1” granularity Year

Result: Query type is bag<string>

Query Q 2.8.8: List the names and current managers and budgets of all depart-
ments with budgets of less than 200K during any period between January 1, 1985
and December 31, 1989.

select d.name as name, d.hasManager as manager,
d.budget

from Departments as d

where exists b in ((valid d.budget)
[period “[1985-01-01,1990-01-01)")):
b.value < 200000

Result: Query type is bag<struct {name: string, manager:
Employee, budget: integer}>

Query Q 2.8.9: Who worked in the Toy department at some point and earned at
least 40K throughout the last two years?

select e.name
from Employees as e,
shapshot e.belongsinDept as dep_name
where (“Toy” = dep_name.name) and
(for all s'in (valid e.salary)
[period(now()-interval “2” granularity Year,
now())] : s.value >= 40000)

Result: Query type is bag<string>
Class 01.S9 (Other, Element, Computed)

Query Q 2.9.1: Find the names of departments that always had a budget greater
than $90K during the times when managed by someone named Di.

select d.name
from Departments as d
where for all bm in tstruct(budget: valid d.budget,
manager: valid d.hasManager):
(bm.budget > 90000 or
bm.manager.name = “Di")

Result: Query type is bag<string>

18 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 2.9.2: Find ED'’s salaries when he worked in the same department as DI.

select s.value as salary
from flatten(select (valid el.salary)[commonPeriod.VT]
from Employees as el,
Employees as e2,
tstruct(EdDept: valid el.belongsinDept,
DiDept: valid e2.belongsinDept)
as commonPeriod
where el.id = “ED” and e2.id =“DI”") as s

Result: Query type is bag<struct {salary: integer}>

Query Q 2.9.3: Find the names of the departments that ED worked in while earning
$40K.

select d.value.name as DeptName

from flatten(select (valid e.belongsinDept)[valid(s)]
from Employees as e, valid e.salary as s
where e.id = “ED” and s = 40000) as d

Result: Query type is bag<struct {DeptName: string}>

Query Q 2.9.4: Find ED’s names after he left the Toy department.

select n.value as name
from flatten (select (valid e.name)
[period(end(valid(d)), now())]
from Employees as e,
valid e.belongsinDept as d
where e.id = “ED” and
d.name = “Toy”) as n

Result: Query type is bag<struct {name: string}>

Query Q 2.9.5: Find the skills that ED possessed sometime when he worked in the
Toy department.

flatten(select sd.skills
from Employees as e,
tstruct(skills: valid e.hasSkills,
dept: valid e.belongsinDept) as sd
where e.id = “ED”
and sd.dept.name = “Toy")

Result: Query type is set<Skill>

Benchmarks for Temporal Databases 19 of 82

TSQL2 Benchmark

Query Q 2.9.6: What new skills did ED obtain after he changed his name to
Edward?

select (select ns.name
from valid e.hasSkills as nsk, nsk as ns
where cp precedes valid(nsk)) except
(select os.name
from valid e.hasSkills as osk, osk as os
where begin(valid(osk)) precedes cp)
from (select e
from Employees as e
where e.id = “ED”) as e,
(select begin(valid(n))
from valid e.name as n
where n = “Edward”) as cp

Result: Query type is bag<string>

Query Q 2.9.7: What where Toy’s departmental budgets when it had a manager
named Di?

select bm.budget as budget, n.VT as when
from Departments as d,
tstruct(budget: valid d.budget,
manager: valid d.hasManager) as bm,
(valid bm.manager.name)[bm.VT] as n
where d.name = “Toy” and n.value = “Di”

Result: Query type is bag<struct {budget: integer, when:
instant granularity Second calendar Gregorian}>

1.2.10 Class 01.510 (Other, Element, Other)

Query Q 2.10.1: Which managers managed which departments between January 1,
1982 and December 31, 1989?

select d.name as DeptName, m as Manager
from Departments as d, valid d.hasManager as m
where valid(m) overlaps period “[1982-1-1, 1990-1-1)"

Result: Query type is bag<struct {DeptName: string,
Manager: Employee}>

20 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

1.3

131

Queries - Valid-time Output
Class 02.S1 (Duration, Interval, Computed)

Query Q 3.1.1: Find the times when persons with a shorter employment in the Toy
department than DI were employed in the Book department.

select valid(d)
from Employees as e,
valid e.belongsinDept as d
where sum(select duration(valid(d1))
from valid e.belongsinDept as d1
where dl.name = “Toy”) <
sum(select duration(valid(d2))
from Employees as el,
valid el.belongsinDept as d2
where el.id = “DI” and
d2.name = “Toy”) and
d.name = “Book”

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.2: Find the employment periods of persons that made 40K for a
longer time than DI made 40K.

select valid(d)
from Employees as e, valid e.belongsinDept as d
where sum(select duration(valid(s))
from valid e.salary as s
where s >=40000) >
sum(select duration(valid(sl1))
from Employees as el,
valid el.salary as s1
where el.id = “DI” and s1 >= 40000)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.3: Find the starting times in the Book department of persons which
possessed the Filing skill for a longer time than DI.

select begin(valid(inBook))
from Employees as e, valid e.belongsinDept as inBook
where inBook.name = “Book” and
sum(select duration(valid(s))
from valid e.hasSkills as s
where exists aSkill in s:
aSkill.name = “Filling”) >
sum(select duration(valid(sl1))
from Employees as el,
valid el.hasSkills as s1
where el.id = “DI” and
exists aSkill in s1:
aSkill.name = “Filling”)

Benchmarks for Temporal Databases 21 of 82

TSQL2 Benchmark

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.1.4: Return the times when persons employed a shorter time than DI
acquired a skill.

select (begin(valid(newsSkill)))
from Employees as e,
1 .. (count(valid e.hasSkills) - 1) as i,
(valid e.hasSkills) as newSkill
where count((valid e.hasSkills)[i+1] except
(valid e.hasSkills)[i]) > 0 and
sum(select duration(valid(d))
from valid e.belongsinDept as d) >
sum(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI")

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.1.5: Find the employment periods of persons employed shorter time
than DI.

select valid(d)
from Employees as e, valid e.belongsinDept as d
where sum(select duration(valid(d))
from valid e.belongsinDept as d1) <
sum(select duration(valid(d2))
from Employees as e2,
valid e2.belongsinDept as d2
where e2.id = “DI")

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.1.6: When did someone get a raise more quickly than DI got her first
raise?

select begin(valid((valid e.salary)[i]))
from Employees as e,
2 .. (count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and
(valid e.salary)[i] > (valid e.salary)[i-1]
and (begin(valid((valid e.salary)[i])) -
begin(valid((valid e.salary)[i-1]))) <
(select begin(valid((valid el.salary)[il])) -
begin(valid((valid el.salary)[i1-1]))
from Employees as el,
2 .. (count(valid el.salary) -1) as il
where el.name = “DI" and
(valid el.salary)[il] >
(valid el.salary)[il-1]
order by i)[1]

22 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Result: Query type is bag<instant granularity Month
calendar Gregorian>

Query Q 3.1.7: What was the longest period when no one was hired or left unem-
ployed?

max(select duration(p)
from periods(period_set(period(instant “1970-01-01",
now())) granularity Day -
period_set(select begin(valid (e))
from Departments as d,
valid d.hasEmployee as €)
granularity Day) as p)

Result: Query type is interval granularity Day calendar
Gregorian

Note: We suppose that we are interested in time periods after the year 1970.

Query Q 3.1.8: What was the longest period when no one received a raise?

max(select duration(p)
from periods(period_set(period(instant “1970-01-01",
now())) granularity day -
period_set(select begin(valid((valid
e.salary)l[i]))
from Employees as e,
2 .. count(valid e.salary) as i
where count(valid e.salary) > 1
and (valid e.salary)[i] >
(valid e.salary)[i-1])
granularity day) as p)

Result: Query type is interval granularity day calendar
Gregorian

Query Q 3.1.9: When was the longest period when a department was without a
manager?

max(select duration(valid(m))
from Departments as d,
valid d.hasManager as m
where m = nil)

Result: Query type is interval granularity Day calendar
Gregorian

Benchmarks for Temporal Databases 23 of 82

TSQL2 Benchmark

1.3.2 Class 02.S2 (Duration, Element, Other)

Query Q 3.2.1: Find employment periods in the Toy department for persons that
have worked there for at least 8 years.

select valid(dept)
from Employees as e,
valid e.belongsinDept as dept
where dept.name = “Toy” and
sum(select duration(valid(d))
from valid e.belongsinDept as d
where d.name = “Toy”) >=
interval “8” granularity Year

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.2: Find the starting times of managers which managed a department
for at least 5 years.

select begin(valid(mgr))
from Departments as d, valid hasManager as mgr
where sum(select duration(valid(m))
from valid d.hasManager as m
where m.id = mgr.id) > interval “5”
granularity Year

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.2.3: Find the rehiring dates of employees with a gap in employment that
exceeds 1 month.

select begin(valid((valid e.belongsinDept)[i]))
from Employees as e,
2 .. (count(valid e.belongsIinDept)-1) as i
where count(valid e.belongsinDept) >= 2 and
(begin(valid((valid e.belongsinDept)[i])) -
end(valid((valid e.belongsinDept)[i-1]))) >
interval “1” granularity Month

Result: Query type is bag<instant granularity Day calendar
Gregorian>

24 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

133

Query Q 3.2.4: Find the times when persons possessed skills that they lost and
regained more than 1 year later.

select valid(s)
from Employees as e, valid e.hasSkills as s
where exists aSkill in s:
(exists sl in valid e.hasSkills:
(begin(valid(s1)) > (end(valid(s)) +
interval “1” granularity Year) and
aSkill in s1 and
not (exists s2 in valid e.hasSkills:
(begin(valid(s2)) < end(valid(s)) and
begin(valid(s1)) > end(valid(s2)) and
aSkill in s2))))

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.5: Find budget periods that exceed 2 years.

select valid(budgets)
from Departments as d,

(valid d.budget) as budgets
where duration(valid(budgets)) >

interval “2” granularity Year

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.2.6: When did no one’s salary change for at least six months?

select p
from periods(period(instant “1970-01-01" granularity
Day,

now()) granularity Day -

period_set(select begin(valid(s))

from Employees as e,
valid e.salary as s)
granularity Day) as p

where duration(p) > interval “6” granularity Month

Result: Query type is bag<period granularity Day calendar
Gregorian>

Class 02.S3 (Duration, Element, Computed)

Query Q 3.3.1: When did somebody have the same salary for the longest continu-
ous period?

select valid(sal)
from Employees as e,
(valid e.salary) as sal
where duration(valid(sal)) =
max(select duration(valid(sall))
from Employees as el,
valid el.salary as sall)

Benchmarks for Temporal Databases 25 of 82

TSQL2 Benchmark

Result: Query type is bag<period granularity Month
calendar Gregorian>

Query Q 3.3.2: When did anybody work for a manager in a department for as long
as that manager managed that department?

select valid(d)
from Employees as e, valid e.belongsinDept as d
where exists m in (valid d.hasManager)[valid(d)]:
not exists (select *
from valid d.hasManager as m1
where m1 = m.value and
not exists (select *
from valid e.belongsinDept as d1
where d1 =d and
(valid(d1) contains m.VT)))

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.3.3: When did someone manage the Toy department for longer than DI
did?

select valid(ToyMgr)
from Departments as d, valid d.hasManager as ToyMgr
where d.name = “Toy” and
sum(select duration(valid(m1))
from valid d.hasManager as m1
where ml.id = ToyMgr.id) >
sum(select duration(valid(m2))
from valid d.hasManager as m2
where m2.id = “DI”)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Query Q 3.3.4: When did anyone have a skill longer than ED had Driving?

select valid(skills)
from Employees as e, valid e.hasSkills as skills,
Skills as s
where sum(select duration(valid(skills1))
from valid e.hasSkills as skills1
where s in skills1) >
sum(select duration(valid(skills2))
from Employees as el,
valid el.hasSkills as skills2
where el.id = “ED” and
exists s2 in skills2:
s2.name = “Driving”)

Result: Query type is bag<period granularity Day calendar
Gregorian>

26 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

1.3.4 Class 02.54 (Duration, Element, Other)
1.3.5 Class 02.S5 (Other, Event, Computed)
1.3.6 Class 02.S6 (Other, Event, Other)

Query Q 3.6.1: When did anybody have at least the skills that DI currently has?

select valid(s)
from Employees as e, valid e.hasSkills as s
where count(element(select el.hasSkills

from Employees as el

where el.id = “DI”) excepts) =0

Result: Query type is bag<period granularity Day calendar
Gregorian>

1.3.7 Class 02.S7 (Other, Interval, Computed)

Query Q 3.7.1: When did the Toy budget decrease?

select begin(valid((valid d.budget)[i]))
from Departments as d,

1 .. (count(valid d.budget) - 1) as i
where d.name = “Toy” and

count(valid d.budget) >= 2 and

(valid d.budget)[i-1] > (valid d.budget)[i]

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.7.2: When did an employee change name?

select begin(valid((valid e.name)[i]))
from Employees as e,

1 .. (count(valid e.name) - 1) asi
where count(valid e.name) >= 2 and

(valid e.name)[i-1] != (valid e.name)[i]

Result: Query type is bag<instant granularity Second
calendar Gregorian>

Query Q 3.7.3: When did the salary of an employee increase while the employee
was a manager?

select begin(valid((valid e.salary)[i]))
from Employees as e, 1 .. (count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and
(valid e.salary)[i-1] < (valid e.salary)[i]
and exists d in Departments:
((valid d.hasManager)
[begin(valid((valid e.salary)[i]))]).id
=e.id

Result: Query type is bag<instant granularity Month
calendar Gregorian>

Benchmarks for Temporal Databases 27 of 82

TSQL2 Benchmark

Query Q 3.7.4: Find the periods during which DI earned $40K and was manager of
the Toy department.

select valid(s) intersect valid(m)
from Employees as e, Departments as d,
valid e.salary as s, valid d.hasManager as m
where e.id = “DI” and d.name = “Toy” and
s = 40000 and valid(s) overlaps valid(m)
and m.id = e.id

Result: Query type is bag<period granularity Month
calendar Gregorian>

Query Q 3.7.5: Find the acquisition dates of the skills ED acquired before or dur-
ing the year he joined the Toy department.

select distinct begin(valid((valid e.hasSkills)[i]))
from Employees as e,
1 .. (count(valid e.hasSkills)-1) as i
where e.id = “ED” and
count(valid e.hasSkills) >= 2 and
year(begin(valid((valid e.hasSkills)[i]))) <=
min(select year(begin(valid(d)))
from Employees as el,
valid el.belongsinDept as d
where el.id = “ED” and
d.name = “Toy”) and
count((valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1]) > 0

Result: Query type is set<instant granularity Day calendar
Gregorian>

1.3.8 Class 02.S8 (Other, Interval, Other)

Query Q 3.8.1: Find the beginning of a continuous period in which ED was named
Edward, in which he had a constant salary, and which includes the year 1989.

select begin(valid(n) intersect valid(s))

from Employees as e, valid e.name as n,
valid e.salary as s

where e.id = “ED” and n = “Edward” and
(valid(n) intersect valid(s)) contains
period “[1989-01-01, 1990-01-01)"
granularity Year

Result: Query type is bag<instant granularity Second
calendar Gregorian>

28 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 3.8.2: Find the dates, before or after the years 1984 and 1985, when ED
acquired a skill.

select begin(valid((valid e.hasSkills)[i]))

from Employees as e,
1 .. (count(valid e.hasSkills)-1) as i

where e.id = “ED” and
count(valid e.hasSkills) >= 2 and
begin(valid((valid e.hasSkills)[i])) precedes
instant “1984-01-01" granularity Day and
instant “1985-12-31" granularity Day precedes
begin(valid((valid e.hasSkills)[i])) and
count(((valid e.hasSkills)[i]) except

((valid e.hasSkills)[i-1])) > 0

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.8.3: Find ED’s unemployment periods when he was not exactly 30
years old.

period_set(element(select
period(begin(valid(first(valid e.belongsinDept))),
max(set(now(), end(valid(last(valid
e.belongsinDept))))))
from Employees as e
where e.id = “ED”))
except period_set(select valid(d)
from Employees as el,
valid el.belongsinDept as d
where el.id = “ED")
except period_set(element(select period(e2.d_birth +
interval “30” granularity Year, e2.d_birth+
interval “31” granularity Year)
from Employees as e2
where e2.id = “ED"))

Result: Query type is period set granularity Second
calendar Gregorian

Query Q 3.8.4: Find the time periods when DI worked in the department in which
she has been working during all of 1987.

select valid(d)
from Employees as e, valid e.belongsinDept as d
where e.id = “DI” and
din (select d1
from valid e.belongsinDept as d1
where valid(d1) contains
period “[1987-01-01, 1988-01-01)"
granularity Day)

Result: Query type is bag<period granularity Day calendar
Gregorian>

Benchmarks for Temporal Databases 29 of 82

TSQL2 Benchmark

Query Q 3.8.5: Find all the dates, between 1/1/83 and 12/31/85, when the Toy
department budget changed.

select begin(valid((valid d.budget)[i]))
from Departments as d,
1 .. (count(valid d.budget)-1) as i
where count(valid d.budget) >= 2 and
(valid d.budget)[i] '=
(valid d.budget)[i-1] and
period “[1983-01-01, 1986-01-01)"
granularity Day contains
begin(valid((valid d.budget)[i]))

Result: Query type is bag<instant granularity Day calendar
Gregorian>

1.3.9 Class 02.59 (Other, Element, Computed)

Query Q 3.9.1: At what times did an employee simultaneously possess at least the
same skills that DI possessed?

select joinedSkills.VT
from Employees as e,
tstruct(someSkills: valid e.hasSkKills,
DISkills: element(select
valid el.hasSkills
from Employees as el
where el.id = “DI")) as joinedSkills
where count(joinedSkills.DISkills except
joinedSkills.someSkills) = 0 and
e.id !=“DI"

Result: Query type is bag<period granularity Gregorian
calendar Day>

Query Q 3.9.2: When was the budget for Toy department more than 100K?

select valid(budg)
from Departments as d,

(valid d.budget) as budg
where d.name = “Toy” and budg > 100000

Result: Query type is bag<period granularity Day calendar
Gregorian>

30 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 3.9.3: What was the last continuous period when ED was nhamed Edward
and had Driving, Filing and Typing as skills simultaneously?

(select ns.VT
from Employees as e,
tstruct(name: valid e.name,
skills: valid e.hasSkills) as ns
where e.id = “ED” and ns.name = “Edward” and
count(set(“Filing”, “Driving”, “Typing”)
except
(select s.name from ns.skills as s)) =0
order by begin(ns.VT) desc)[0]

Result: Query type is period granularity Gregorian
calendar Second

Query Q 3.9.4: When did DI earn less than ED?

select joinedSalary.VT
from Employees as el, Employees as €2,
tstruct(DISal: valid el.salary,
EDSal: valid e2.salary) as joinedSalary
where el.id = “DI” and e2.id = “ED” and
joinedSalary.DISal < joinedSalary.EDSal

Result: Query type is bag<period granularity Gregorian
calendar Month>

Query Q 3.9.5: When did ED work in Toy department while the department was
managed by DI?

select mgr.VT
from Employees as e,

valid e.belongsinDept as d,

(valid d.hasManager)[valid(d)] as mgr
where e.id = “ED” and

d.name = “Toy” and

mgr.value.id = “DI”

Result: Query type is bag<instant granularity Day calendar
Gregorian>

Query Q 3.9.6: When did an employee currently named Edward have driving
skills?

select valid(skills)

from Employees as e, valid e.hasSkills as skills

where e.name = “Edward” and exists s in skills :
s.name = “Driving”

Result: Query type is bag<period granularity Day calendar
Gregorian>

Benchmarks for Temporal Databases 31 of 82

TSQL2 Benchmark

1.3.10

14

141

Class 02.510 (Other, Element, Other)

Queries - Explicit-attribute and Valid-time output

Class 03.S1 (Duration, Interval, Computed)

Query Q 4.1.1: Who, and when, were continuously employed in the Toy depart-
ment shorter than DI was continuously employed in the Toy department?

select e.id, valid(d) as dx
from Employees as e, valid e.belongsinDept as d
where d.name = “Toy” and duration(valid(d)) < any
(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy")

Result: Query type is bag<struct {id: string, dx: period
granularity Day calendar Gregorian}>

Query Q 4.1.2: Who, and when, were continuously employed in the Toy depart-
ment shorter than DI was continuously employed in the Toy department, and what
their gender and date of birth?

select e.id, valid(d) as dt, e.gender, e.d_birth
from Employees as e, valid e.belongsinDept as d
where d.name = “Toy” and duration(valid(d)) < any
(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy")

Result: Query type is bag<struct {id: string, dt: period
granularity Day calendar Gregorian, gender: integer,
d_birth: instant granularity day calendar Gregorian}>

Query Q 4.1.3: Who were continuously employed in the Toy department shorter
than DI was continuously employed in the Toy department, and when did this
employment start?

select e.id, begin(valid(d)) as dt
from Employees as e, valid e.belongsinDept as d
where d.name = “Toy” and duration(valid(d)) < any
(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy")

Result: Query type is bag<struct {id: string, dt: instant
granularity Day calendar Gregorian}>

32 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

1.4.2

Query Q 4.1.4: Return the name on 01-Jan.-1984 along with the date 01-Jan.-1984
for each employee who was continuously employed in the Toy department shorter
than Di was continuously employed in that department.

select (valid e.name)[instant “1984-1-1"
granularity Day] as name, instant “1984-1-1"
granularity Day as when
from Employees as e, valid e.belongsinDept as d
where d.name = “Toy” and duration(valid(d)) < any
(select duration(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “DI” and d1.name = “Toy")

Result: Query type is bag<struct {name: string, when:
instant granularity Day calendar Gregorian}>

Class 03.S2 (Duration, Interval, Other)

Query Q 4.2.1: When was the Toy department’s budget constant and greater than
$175K for more than one year, and what was the budget?

select valid(b) as vb, b
from Departments as d, valid d.budget as b
where d.name = “Toy” and
duration(valid(b)) > interval “1”
granularity Year and
b > 175000

Result: Query type is bag<struct {vb: period granularity
Day calendar Gregorian, b: integer}>

Query Q 4.2.2: When was the Toy department’s budget constant and greater than
$175K for more than one year, and who was the manager for that time?

select valid(b) as vb, (select m.value.id as mvi
from (valid d.hasManager)[valid(b)]
as m)
as vbs
from Departments as d, valid d.budget as b
where d.name = “Toy” and b > 175000 and
duration(valid(b)) > interval “1”
granularity Year

Result: Query type is bag<struct {vb: period granularity
Day calendar Gregorian, vbs: bag<struct {mvi: string}>}>

Note: The result schema of this query is bag<struct<period, set<string>>> i.e. each
period is associated withsat of id, since during the 1-year period, the department
may have changed its manager.

Benchmarks for Temporal Databases 33 0f 82

TSQL2 Benchmark

Query Q 4.2.3: Who managed a department with a budget that exceeded $175K
and then held constant for one year, and when did that occur?

select m.id, valid(m) as when
from Departments as d, (valid d.hasManager) as m
where exists b in (valid d.budget):
(b > 175000 and
period(begin(valid(m)),
begin(valid(m))+interval “1”
granularity Year) contains valid(b))

Result: Query type is bag<struct {id: string, when: period
granularity Day calendar Gregorian>

Query Q 4.2.4: What departments were in continuous operation (and when) longer
than the duration between ED’s and DI's birth dates?

Note: We consider that a department is operational if it has at least one employee.

select d.name, valid(e) as when

from Departments as d, valid d.hasEmployee as e

where count(e) > 0 and

duration(valid(e)) >
abs(element(select el.d_birth

from Employees as el
where el.id = “ED") -
element(select e2.d_birth
from Employees as e2
where e2.id = “DI"))

Result: Query type is bag<struct {name: string, when:
period granularity Day calendar Gregorian}>

Query Q 4.2.5: Who worked in one department for at least two years continuously
and what were the periods of employment in that department?

select e.id, valid(d) as vd
from Employees as e, valid e.belongsinDept as d
where (exists d1 in valid e.belongsinDept:
((duration(valid(dl)) >
interval “2” granularity Year)
and d1.name = d.name))

Result: Query type is bag<struct {id: string, vd: period
granularity Day calendar Gregorian}>

34 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

1.4.3 Class 03.S3 (Duration, Element, Computed)

Query Q 4.3.1: Who, when, and for which department did anybody work for as
long as the length of time that department’s budget was below 200K?

select e.id, d.name, valid(d) as vd
from Employees as e, valid e.belongsinDept as d
where sum(select duration(valid(d1))
from valid e.belongsinDept as d1
where d1.name = d.name) >
sum(select duration(valid(b))
from valid d.budget as b
where b < 200000)

Result: Query type is bag<struct {id: string, name:
string, vd: period granularity Day calendar Gregorian}>

Query Q 4.3.2: Who and when did anybody work in a department longer than their
current manager worked in that department?

select e.id, valid(d) as vd
from Employees as e, valid e.belongsinDept as d
where sum(select duration(valid(d1))
from valid e.belongsinDept as d1
where d1.name = d.name) >
sum(select duration(valid(d2))
from Employees as el,
valid el.belongsinDept as d2
where el.id =
e.belongsinDept.hasManager.id
and d2.name = d.name)

Result: Query type is bag<struct {id: string, vd: period
granularity Day calendar Gregorian}>

Query Q 4.3.3: For all employees who managed any departments at least as long as
DI managed the Toy department, list their names, their gender, their departments
and their salary histories during that time.

select (valid e.name)[valid(m)] as vname, e.gender,
(valid e.belongsinDept)[valid(m)] as vdept,
(valid e.salary)[valid(m)] as vsal
from Employees as e, valid e.managerinDept as m
where sum(select duration(valid(m1))
from valid e.managerinDept as m1
where ml.name = m.name) >
sum(select duration(valid(m2))
from Employees as el,
valid e.managerinDept as m2
where el.id = “DI” and
m2.name = “Toy")

Result: Query type is bag<struct {vname: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, gender: integer, vdept: list struct {value:

Benchmarks for Temporal Databases 35 of 82

TSQL2 Benchmark

Department, VT: period granularity Day calendar
Gregorian}, vsal: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.3.4: For departments that had a manager that served for the shortest
total time, list the department name, the shortest-serving manager(s) and the times
when those managers served the department.

select d.name, m.id, valid(m) as vm
from Departments as d, valid d.hasManager as m
where sum(select duration(valid(m1))
from valid d.hasManager as m1
where ml.id = m.id) =
min(select sum(select duration(valid
(x.mgrl))
from partition as x)
from Departments as d1,
valid d1.hasManager as mgrl
group by mgrl.id, d1.name)

Result: Query type is bag<struct {name: string, id:
string, vm: period granularity Day calendar Gregorian}>

Query Q 4.3.5: For all departments which had budgets of at least 200K for a longer
total time than budgets of less than 200K, list their names, budgets and times when
the budgets were not below 200K.

select d.name, (valid d.budget)[valid(b)] as vbb,
valid(b) as vb
from Departments as d, valid d.budget as b
where b >= 200000 and
sum(select duration(valid(b1))
from valid d.budget as bl
where bl >= 200000) >
sum(select duration(valid(b2))
from valid d.budget as b2
where b2 < 200000)

Result: Query type is bag<struct {name: string, vbb: list
struct {value: integer, VT: period granularity Day
calendar Gregorian}, vb: period granularity Day calendar
Gregorian}>

36 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 4.3.6: What skills did ED hold for at least as long as the total time during
his employment that he did not have the Driving skill, and when did he have those
skills?

select longSkill, (select x.aSkill.skillPeriod
from partition as x) as longSkillPeriod
from Employees as e,
(select s.name as skillName,
valid(sl) as skillPeriod
from valid e.hasSkills as s1, s1 as s)
as askill
where e.id = “ED”
group by aSkill.skillName as longSkill
having sum(select duration(x.aSkill.skillPeriod)
from partition as x) >
(element(select
end(valid((valid
el.belongsinDept)[count
(valid el.belongsinDept)-1])) -
begin(valid((valid
el.belongsinDept)[0]))
from Employees as el
where el.id = “ED")) -
sum(select duration(valid(s2))
from Employees as e2,
valid e2.hasSkills as s2
where not exists someSkill in s2:
someSkill.name = “Driving”)

Result: Query type is bag<struct {longSkill: string,
longSkillPeriod: bag<period granularity Day calendar
Gregorian>}>

1.4.4 Class 03.54 (Duration, Element, Other)

Query Q 4.4.1: Find the oldest employee who was a Typist on 12/31/85, and the
times when that employee had been a Typist so far.

(select e.id, (select valid(s1)
from valid e.hasSkills as s1
where exists oneSkill in s1:
oneSkill.name = “Typist”) as when
from Employees as e
where “Typist” in (select s.name
from (valid e.hasSkills)
[instant “1985-12-31"] as s)
order by e.d_birth asc)[0]

Result: Query type is struct {id: string, when: bag<period
granularity Day calendar Gregorian>}

Benchmarks for Temporal Databases 37 of 82

TSQL2 Benchmark

Query Q 4.4.2: For employees in the Toy department who had worked less than DI
in that department as of 1/1/85, find their names on 1/1/85 and the time difference
on 1/1/85.

select (valid e.name)[instant “1985-1-1"] as name,
EmpDuration - DIDuration as TimeDiff
from Employees as e,
set(sum(select duration(d.VT)
from (valid e.belongsinDept)
[period(instant “beginning”,
instant “1985-1-1")] as d
where d.value.name = “Toy”))
as EmpDuration,
set(sum(select duration(d1.VT)
from Employees as el,
(valid el.belongsinDept)
[period(instant “beginning”,
instant “1985-1-1")] as d1
where el.id = “DI” and
dl.value.name = “Toy"))
as DIDuration
where DIDuration > EmpDuration

Result: Query type is bag<struct {name: string, TimeDiff:
interval granularity Day calendar Gregorian}>

Query Q 4.4.3: Find the current employees who worked at least during 1987, and
the times in 1987 during which they worked.

select e.id, (select d.VT
from (valid e.belongsinDept)[period
“[1987-01-01, 1988-01-01)"] as d)
as times
from Employees as e
where period_set(select d1.VT
from (valid e.belongsinDept)
[period “[1987-01-01, 1988-01-01)"
granularity Day] as d1)
granularity Day =
period_set(period “[1987-01-01, 1988-01-01)")
granularity Day

Result: Query type is bag<struct {id: string, times:
bag<period granularity Day calendar Gregorian>}>

38 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

145

Class 03.S5 (Other, Event, Computed)

Query Q 4.5.1: List the names and ages of all employees at the time they received
their first salary increment.

select (valid e.name)([firstinc] as Name,
firstinc - e.d_birth as Age
from Employees as e,
(set(min(select begin(valid((valid
e.salary)[i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and
(valid e.salary)[i-1] <
(valid e.salary)[i]))
union set(instant "forever”)) as firstinc
where firstinc != instant “forever”

Result: Query type is bag<struct {Name: string, Age:
interval granularity Month calendar Gregorian}>

Query Q 4.5.2: List the name and salary histories up until their 25th birthday of all
female employees.

select (valid e.name)[period (e.d_birth, e.d_birth +
interval “25” granularity Year)] as name,
(valid e.salary)[period (e.d_birth, e.d_birth
+ interval “25” granularity Year)]
as salary
from Employees as e
where e.gender =0

Result: Query type is bag<struct {name: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, salary: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.5.3: When and who ever changed their names?

select e.id, (select begin(valid((valid e.name)[i]))
asb
from 1..(count(valid e.name)-1) as i
where count(valid e.name) >=2 and
(valid e.name)[i] =
(valid e.name)[i-1]) as s1
from Employees as e
where count(distinct(snapshot e.name)) > 1

Result: Query type is bag<struct {id: string, s1:
bag<struct {b: instant granularity Second calendar
Gregorian}>}>

Benchmarks for Temporal Databases 39 of 82

TSQL2 Benchmark

146

Query Q 4.5.4: How old was ED and what skills did he have at the time he changed
his name to Edward?

select changeDate - e.d_birth as age,
(valid e.hasSkills)[changeDate] as skills
from Employees as e,
(select begin(valid((valid e.name)[i]))
from 1..(count(valid e.name)-1) as i
where count(valid e.name) >=2 and
(valid e.name)[i] = “Edward” and
(valid e.name)[i-1] != “Edward”)
as changeDate
where e.id = “ED”

Result: Query type is bag<struct {age: interval
granularity Second calendar Gregorian, skills:
set<Skill>}>

Query Q 4.5.5: When did ED acquire the Driving skill, and what other skills did he
have at the time?

select beginDriving, (valid e.hasSkills)[beginDriving]
as skills
from Employees as e,
set(min(select begin(valid(s))
from valid e.hasSkills as s
where exists aSkill in s:
aSkill.name = “Driving”))
as beginDriving
where e.id = “ED”

Result:
Query type is bag<struct {beginDriving: instant
granularity Day calendar Gregorian, skills: set<Skill>}>

Query Q 4.5.6: Who was the first female manager of the Toy department, and when
did she become manager of that department for the first time?

(select m.id, begin(valid(m)) as when

from Departments as d, valid d.hasManager as m
where d.name = “Toy” and m.gender = 0

order by begin(valid(m)) asc)[0]

Result: Query type is struct {id: string, when: instant
granularity Day calendar Gregorian}

Class 03.S6 (Other, Event, Other)

Query Q 4.6.1: Find the name and salary histories of employees whose date-of-
birth was after 1/1/56.

select valid e.name, valid e.salary
from Employees as e
where instant “1956-01-01" precedes e.d_birth

40 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.2: Find the name and salary histories of employees who were called
“Ed” after 1/1/88

select valid e.name, valid e.salary
from Employees as e
where exists n in (valid e.name)[period(instant
“1988-01-01", instant “forever”)]:
n.value = “Ed”

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.3: Find the name and salary histories since their latest pay raise of
employees whose latest pay raise was in 1985.

select (valid e.name)[period(latestRaise, now())] as n1,
(valid e.salary)[period(latestRaise, now())]
as sall
from Employees as e,
set(max(select begin(valid(
(valid e.salary)[i]))
from 2..count(valid e.salary) as i
where (valid e.salary)[i] >
(valid e.salary)[i-1]))
as latestRaise
where count(valid e.salary) > 2 and
year(latestRaise) = 1985

Result:

Query type is bag<struct {n1: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, sall: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.6.4: Find the name and salary histories of employees whose latest pay
raise occurred after the date-of-birth of every other employee.

select valid e.name, valid e.salary
from Employees as e
where max(select el.d_birth from Employees as el)
precedes
max(select begin(valid((valid e.salary)][i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >= 2 and
(valid e.salary)[i] >
(valid e.salary)[i-1])

Benchmarks for Temporal Databases 41 of 82

TSQL2 Benchmark

147

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.5: Find the name and salary histories of employees whose latest pay
raise occurred on the date-of-birth of some other employee.

select valid e.name, valid e.salary
from Employees as e
where max(select begin(valid((valid e.salary)[i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >=2 and
(valid e.salary)[i] >
(valid e.salary)[i-1]) =
any(select el.d_birth from Employees as el)

Result: Query type is bag<struct {name: attribute string
valid granularity Second calendar Gregorian, salary:
attribute integer valid granularity Month calendar
Gregorian}>

Query Q 4.6.6: Who and when had at least the skills that DI currently has?

select e.id, (valid(s)) as when
from Employees as e, valid e.hasSkills as s
where count(element(select el.hasSkills
from Employees as el
where el.id = “DI")
excepts) =0

Result: Query type is bag<struct {id: string, when: period
granularity Day calendar Gregorian}>

Class 03.S7 (Other, Interval, Computed)

Query Q 4.7.1: For the time before ED first worked in the Toy department, find the
salary paid, and the time it was paid, of any employee who was in the Toy depart-
ment at a time before Ed worked there.

select e.id, (valid e.salary)[period(instant
“beginning”,
EdJoinToy - interval “1” granularity Day)] as
sal
from Employees as e,
set(min(select begin(valid(d1))
from Employees as el,
valid el.belongsinDept as d1
where el.id = “ED” and
dl.name = “Toy")) as EdJoinToy
where exists d in valid e.belongsinDept:
(d.name = “Toy” and
begin(valid(d)) precedes EdJoinToy)

42 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Result:

Query type is bag<struct {id: string, sal: list struct
{value: integer, VT: period granularity Month calendar
Gregorian}}>

Query Q 4.7.2: Find the greatest salary under $50K paid to ED and the times dur-
ing which it was paid.

(select targetSal, (select valid(x.s) as vxs from
partition as x) as when
from Employees as e,
valid e.salary as s
where e.id = “ED” and s < 50000
group by s as targetSal
order by targetSal desc)[0]

Result: Query type is struct {targetSal: integer, when:
bag<struct {vxs: period granularity Month calendar
Gregorian}>}

Query Q 4.7.3: Find ED’s salary history.

select valid e.salary
from Employees as e
where e.id = “ED”

Result: Query type is bag<attribute integer valid
granularity Month calendar Gregorian>

Query Q 4.7.4: For employees that were drivers and simultaneously made less than
$40K, find the names, salaries and times during which this occurred.

select (valid e.name)[sal_skill.VT] as name,
(valid e.salary)[sal_skill.VT] as sal,
sal_skillLvVT
from Employees as e,
tstruct(aSal: valid e.salary,
Skills: valid e.hasSkills) as sal_skill
where sal_skill.aSal < 40000 and
(exists aSkill in sal_skill.Skills :
aSkill.name = “Driving”)

Result: Query type is bag<struct {name: list struct
{value: string, VT: period granularity Second calendar
Gregorian}, sal: list struct {value: integer, VT: period
granularity Month calendar Gregorian}, VT: period
granularity Gregorian calendar Month}>

Benchmarks for Temporal Databases 43 of 82

TSQL2 Benchmark

Query Q 4.7.5: For the Toy department when ED worked there, find the budgets
and associated times.

select (valid d.budget)[EdsLabour] as vbudg, EdsLabour
from Departments as d,
(select valid(es)
from valid d.hasEmployee as es
where exists e in es:
e.id = “ED") as EdsLabour
where d.name = “Toy”

Result: Query type is bag<struct {vbudg: list struct
{value: integer, VT: period granularity Day calendar
Gregorian}, EdsLabour: period granularity Day calendar
Gregorian}>

1.4.8 Class 03.S8 (Other, Interval, Other)

Query Q 4.8.1: For all employees that have been in the Book or Toy departments
sometime during the last two years, find their current names and their skills together
with the times when they were valid.

select e.name, valid e.hasSkills

from Employees as e

where exists d in (valid e.belongsinDept) [period(now()-
interval “2” granularity Year, now())]:
d.value.name = “Book” or d.value.name = “Toy”

Result: Query type is bag<struct {name: string, hasSkills:
relationship set<Skill> valid granularity Day calendar
Gregorian}>

Query Q 4.8.2: Find the current names of all people who reported to DI before last
year along with the time when they reported to her.

select e.name, mgr.VT
from Employees as e,
valid e.belongsinDept as d,
(valid d.hasManager)[valid(d)] as mgr
where mgr.value.id = “DI” and
begin(mgr.VT) precedes
now() - interval “1” granularity Year

Result: Query type is bag<struct {name: string, VT: period
granularity Day calendar Gregorian}>

44 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

1.4.9

Query Q 4.8.3: Find the manager and time when a skill was acquired between 1983
and 1987 (inclusive) by anyone who acquired a skill between these times.

select (valid(valid e.belongsinDept)[acquireSkill].
hasManager)[acquireSkill] as manager,
acquireSkill
from Employees as e,
(select begin(valid((valid e.hasSkills)[i]))
from 2..count(valid e.hasSkills) as i
where count((valid e.hasSkills)[i] except
(valid e.hasSkills)[i-1]) > 0)
as acquireSkKill
where count(valid e.hasSkills) > 1 and
acquireSkill overlaps period
“[1983-01-01,1988-01-01)" granularity Day

Result: Query type is bag<struct {manager: Employee,
acquireSkill: instant granularity Day calendar
Gregorian}>

Query Q 4.8.4: For anyone who had two raises in the period March 1982 and
March 1985 (inclusive), find the current name and the dates when raises occurred
during the aforementioned times.

select e.name, raiseDates
from Employees as e,
set(select begin(valid((valid e.salary)[i]))
from 1..(count(valid e.salary)-1) as i
where count(valid e.salary) >=2 and
(valid e.salary)[i] >
(valid e.salary)[i-1] and
begin(valid((valid e.salary)[i]))
overlaps period(“1982-3", “1985-4")
granularity Month)
as raiseDates
where count(raiseDates) = 2

Result: Query type is bag<struct {name: string,
raiseDates: bag<instant granularity Month calendar
Gregorian>}>

Class 03.S9 (Other, Element, Computed)

Query Q 4.9.1: Find the salary history associated with the name Ed when it was
associated with a person that had the Driving skill.

flatten(select (valid e.salary)[ns.VT]
from Employees as e,
tstruct(name: valid e.name,
skills: valid e.hasSkills) as ns
where ns.name = “Ed” and
exists aSkill in ns.skills :
aSkill.name = “Driving”)

Benchmarks for Temporal Databases 45 of 82

TSQL2 Benchmark

Result: Query type is set<struct {value: integer, VT:
period granularity Month calendar Gregorian}>

Query Q 4.9.2: Find the salary history, during the periods in which ED had a driv-
ing skill, of the employees who earned less than $50K throughout 1989.

select e.id, (valid e.salary)[EdDriving] as salary
from Employees as e,
(select valid(s)
from Employees as el,
valid el.hasSkills as s
where el.id = “ED” and
exists aSkill in s:
aSkill.name = “Driving”) as EdDriving
where not exists aSal in (valid e.salary)[period
“[1989-01-01, 1990-01-01)” granularity Year]:
aSal.value > 50000

Result: Query type is bag<struct {id: string, when: list
struct {value: integer, VT: period granularity Month
calendar Gregorian}}>

Query Q 4.9.3: Find the name and salary histories of male employees when they
were directed by a woman.

select (valid e.name)[femaleMgr] as fname,

(valid e.salary)[femaleMgr] as fsalary
from Employees as e,

(select m.VT

from valid e.belongsIinDept as d,

(valid d.hasManager)[valid(d)] as m

where m.value.gender = 0) as femaleMgr

where e.gender =1

Result:

Query type is bag<struct {{fname: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, fsalary: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query Q 4.9.4: Find the department, the current manager name, and the periods
when a department manager earned more than one third of the departmental budget.

select d.name as dept, d.hasManager.name as manager,
(select sal.vVT
from tstruct(mgr: valid d.hasManager,
budg: valid d.budget) as mb,
(valid mb.mgr.salary)[mb.VT] as sal
where sal.value > (mb.budg/3)) as
highPaidManagerPeriods
from Departments as d

46 of 82 Benchmarks for Temporal Databases

TSQL2 Benchmark

Result:

Query type is bag<struct {name: string, manager: string,
highPaidManagerPeriods: bag<period granularity Month
calendar Gregorian>}>

Note: This query returns a tuple for each department; for some departments the field
highlyPaidManagerPeriods may be an empty set.

Query Q 4.9.5: Find the name and the salary history of the employees in the peri-
ods they earned as much as their managers (distinct from themselves).

select (valid e.name)[bigSal] as name,
(valid e.salary)[bigSal] as sal
from Employees as e,
(select ms.VT
from tstruct(dept: valid e.belongsinDept,
sal: valid e.salary) as ds,
(valid ds.dept.hasManager)[ds.VT] as m,
(valid m.value.salary)[m.VT] as ms
where ms.value <= ds.sal and
m.value.id != e.id) as bigSal

Result:

Query type is bag<struct {name: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, sal: list struct {value: integer, VT: period
granularity Month calendar Gregorian}}>

Query Q 4.9.6: When did one person earn a lower salary than another younger per-
son, and who were those persons?

select el.id as younger, e2.id as older, joinedSal.vT
from Employees as el, Employees as e2,
tstruct(sall: valid el.salary,
sal2: valid e2.salary) as joinedSal
where e2.d_birth precedes el.d_birth and
joinedSal.sal2 < joinedSal.sall

Result:

Query type is bag<struct {younger: string, older:
string, VT: period granularity Gregorian calendar
Month}>

Query Q 4.9.7: When and who had the same salary for the longest continuous
period of time?

select e.id, valid(s) as when
from Employees as e, valid e.salary as s
where duration(valid(s)) =
max(select duration(valid(s1))
from Employees as el,
valid el.salary as sl)

Result: Query type is bag<struct {id: string, when: period
granularity Month calendar Gregorian}>

Benchmarks for Temporal Databases 47 of 82

TSQL2 Benchmark

1.4.10

Query Q 4.9.8: List DI's skill and salary histories during the time she was a man-
ager.

select (valid e.hasSkills)[DIMgr] as skills,

(valid e.salary)[DIMgr] as salaries
from Employees as e,

(select valid(m)

from Departments as d,

valid d.hasManager as m

where m.id = “DI”) as DIMgr

where e.id = “DI”

Result: Query type is bag<struct {skills: list struct
{value: set<Skill>, VT: period granularity Day calendar
Gregorian}, salaries: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Query 4.9.9: List the names and salary histories of all employees when they were
managers and earned at least 36K.

select (valid e.name)[targetPeriod] as mname,
(valid e.salary)[targetPeriod] as msal
from Employees as e,
(select valid(m) intersect valid(s)
from Departments as d,
valid d.hasManager as m,
valid e.salary as s
where s >= 36000 and m.id = e.id and
valid(m) overlaps valid(s))
as targetPeriod

Result:

Query type is bag<struct {mname: list struct {value:
string, VT: period granularity Second calendar
Gregorian}, msal: list struct {value: integer, VT:
period granularity Month calendar Gregorian}}>

Class 03.510 (Other, Element, Other)

Query Q 4.10.1: Find the budget history in the period from 1/1/82 to 12/31/84 and
from 1/1/87 till now of all departments ED ever worked in.

select (valid d.budget)[period
“[1982-01-01, 1985-01-01)"] as budgl,
(valid d.budget)[period
“[1987-01-01, now())"] as budg2
from Departments as d
where exists es in valid d.hasEmployee:
(exists e in es: e.id = “ED")

Result: Query type is bag<struct {budgl.: list struct
{value: integer, VT: period granularity Day calendar
Gregorian}, budg?2: list struct {value: integer, VT:
period granularity Day calendar Gregorian}}>

48 of 82

Benchmarks for Temporal Databases

TSQL2 Benchmark

Query Q 4.10.2: Find the name and the budget history in 1984 and 1987 of the
department being directed by Di.

select d.name, (valid d.budget)[period
“[1984-01-01, 1985-01-01)"]
as budgl,
(valid d.budget)[period
“1987-01-01, 1988-01-01)"] as budg2
from Departments as d
where d.hasManager.name = “Di”

Result:

Query type is bag<struct {name: string, budg1: list
struct {value: integer, VT: period granularity Day
calendar Gregorian}, budg2: list struct {value: integer,
VT: period granularity Day calendar Gregorian}}>

Query Q 4.10.3: Find the name of the department where ED working at the begin-
ning of both of the years 1986 and 1987 and the periods ED worked there.

select d.name,
(select valid(d1)
from valid e.belongsinDept as d1
where d.name = d1.name) as EDPeriod
from Employees as e,
(select (valid e.belongsinDept)
[instant “1986-01-01"]
from set(1) as dummy
where ((valid e.belongsinDept)
[instant “1986-01-01"]).name =
((valid e.belongsinDept)
[instant “1986-01-01"]).name) as d
where e.id = “ED”

Result: Query type is bag<struct {name: string, EDPeriod:
bag<period granularity Day calendar Gregorian>}>

Benchmarks for Temporal Databases 49 of 82

TSQL2 Benchmark

Query Q 4.10.4: Find the current name of the manager ED had on both 1984’s
Christmas and his ﬁ‘?birthday, and the dates the manager started as a manager.

select mgr.name,
(select begin(valid(m))
from Departments as d,
valid d.hasManager as m
where m.id = mgr.id) as beginMgr
from Employees as e,
(select (valid(valid e.belongsinDept)
[instant “1984-12-25"].hasManager)
[instant “1984-12-25"]
from set(1) as dummy
where (valid(valid e.belongsinDept)
[instant “1984-12-25"].hasManager)
[instant “1984-12-25"].id =
(valid(valid e.belongsinDept)
[e.d_birth+interval “27” granularity
Year].hasManager)
[e.d_birth+interval “27” granularity
Year].id) as mgr
where e.id = “ED”

Result: Query type is bag<struct {name: string, beginMgr:
bag<instant granularity Day calendar Gregorian>}>

Query Q 4.10.5: Find the department name, the then manager, the modification
dates and the new values of the budget for every budget change that occurred in
1984, 1986 and 1988.

select d.name, (valid d.hasManager)[changeDate]
as Manager,
(valid d.budget)[changeDate] as Budget,
changeDate
from Departments as d,
(select begin(valid((valid d.budget)[i]))
from 1..(count(valid d.budget)-1) as i
where count(valid d.budget) >= 2 and
(valid d.budget)[i] !=
(valid d.budget)[i-1] and
year(begin(valid((valid d.budget)[i])))
in set(1984, 1986, 1988))
as changeDate

Result: Query type is bag<struct {name: string, Manager:
Employee, Budget: integer, changeDate: instant
granularity Day calendar Gregorian}>

50 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

2.0 Kalua and Robertson benchmark

2.1 The Event History database

As described in the Kalua and Robertson paper, the Event History database is used
for social sciences. As described in the paper under question there is one “relation”
- this paper too deals with temporal query languages based on relational databases -
Employment that contains all the needed information. This relation can be one

class in our model and can be defined as:

enum sex_enum {female, male};
interface Employement
(extent Employements,
key name)
{
attribute String name;
attribute Instant graularity day dob;
attribute sex_enum sex;
attribute String mstatus
valid granularity day;
attribute String occupation
valid granularity day;
attribute String residence
valid granularity day;

}

2.1.1 Queries on the Event History Database

QA1: What were the names and marital statuses of managers during the periods
when they were managers?

select e.name as name,
flatten(select (valid e.mstatus)[valid(m)]
from valid e.occupation as m
where m = “Manager”) as mstatus
from Employements as e
where “Manager” in (valid e.occupation)

Result: Query type is bag<struct {name: string, mstatus:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

QAZ2: What were the marital statuses of those who lived with their parents?

select e.name as name,
flatten(select (valid e.mstatus)[valid(wp)]
from valid e.residence as wp
where wp = “with parents”) as mstatus
from Employements as e
where “with parents” in (valid e.residence)

Result: Query type is bag<struct {name: string, mstatus:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

Benchmarks for Temporal Databases 51 of 82

Kalua and Robertson benchmark

QAZ3: List the names and sex of all employees who have ever been divorced.

select e.name as name, e.sex as sex
from Employements as e
where “Divorced” in (valid e.mstatus)

Result: Query type is bag<struct {name: string, sex:
char}>

QAA4: List the names, marital status histories and residence histories of all managers
before they became managers.

select e.name as name, (valid e.mstatus)[beforeMgr]
as mstatus, (valid e.residence)[beforeMgr]
as residence
from Employements as e,
set(period(instant “beginning”,
min(select begin(valid(occup))
from valid e.occupation as occup
where occup = “Manager”))) as
beforeMgr
where “Manager” in (valid e.occupation)

Result: Query type is bag<struct {name: string, mstatus:
list struct {value: string, VT: period granularity Month
calendar Gregorian}, residence: list struct {value:

string, VT: period granularity Month calendar
Gregorian}}>

QADG: List all people who lived with their parents along with their jobs during those
periods.

select e.name as name,
flatten(select (valid
e.occupation)[valid(wp)]
from valid e.residence as wp
where wp = “With parents”) as occupation
from Employements as e
where “With parents” in (valid e.residence)

Result: Query type is bag<struct {name: string,
occupation: set<struct {value: string, VT: period
granularity Month calendar Gregorian}>}>

QAG: List all people who never lived with their parents along with their sex and
their residence histories.

select e.name as name, e.sex as sex,

valid e.residence as residence
from Employements as e
where not(“With parents” in (valid e.residence))

Result: Query type is bag<struct {name: string, sex: char,
residence: attribute string valid granularity Month
calendar Gregorian}>

52 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QA7: What jobs did the widows do?

select e.name as name,
flatten(select (valid e.occupation)[valid(w)]
from valid e.mstatus as w
where w = “widow”) as occupation
from Employements as e
where “widow” in (valid e.mstatus)

Result: Query type is bag<struct {name: string,
occupation: set<struct {value: string, VT: period
granularity Month calendar Gregorian}>}>

QAS8: List all people who ever worked as programmers and who lived with their
parents at some time, along with their employment and residence histories.

select e.name as name, valid e.occupation as occupation,
valid e.residence as residence

from Employements as e

where “Programmer” in (valid e.occupation) and
“With parents” in (valid e.residence)

Result:

Query type is bag<struct {name: string, occupation:
attribute string valid granularity Month calendar
Gregorian, residence: attribute string valid granularity
Month calendar Gregorian}>

QA9: What jobs did the divorced men do?

select e.name as name,
flatten(select (valid e.occupation)[valid(m)]
from valid e.mstatus as m
where m = “divorced”) as occupation
from Employements as e
where “divorced” in (valid e.mstatus)

Result:

Query type is bag<struct {name: string, occupation:
set<struct {value: string, VT: period granularity Month
calendar Gregorian}>}>

Benchmarks for Temporal Databases 53 of 82

Kalua and Robertson benchmark

QA10: List all people who lived with their parents while married or divorced, giv-
ing the times when this occurred.

select e.name as name,
(struct(mstatus: mr.mstatus,
VT: mr.VT))
as mstatus
from Employements as e,
(select struct(mstatus: mrs.mstatus,
VT: mrs.VT)
from tstruct(mstatus: valid e.mstatus,
residence: valid e.residence)
as mrs
where mrs.mstatus in (“married”, “divorced”)
and mrs.residence = “with parents”)
as mr

Result:

Query type is bag<struct {name: string, mstatus: struct
{mstatus: string, VT: period granularity Gregorian
calendar Month}}>

Note This query yields the more “reasonable” result:

Ken Wits |

The described result is returned by the following query:

select e.name as name,
(select struct(mstatus: ms, VT: valid(ms)) as
mstatus_str
from valid e.mstatus as ms
where ms in (“divorced”, “married”)
and exists r in valid e.residence:
(valid(r) overlaps valid(ms)
and r = “with parents”)) as mstatus,
(select struct(residence: r1, VT: valid(rl))
as residence_str
from valid e.residence as r1
where r1 = “with parents” and
exists msl in valid e.mstatus:
(valid (r1) overlaps valid(ms1) and
ms1 in (“divorced”, “married”)))
as res_str
from Employements as e
where exists mr in tstruct(mstatus: valid e.mstatus,
residence: valid e.residence):
(mr.mstatus in (“married”, “divorced”)
and mr.residence = “with parents”)

Result:

Query type is bag<struct {name: string, mstatus:
bag<struct {mstatus_str: struct {mstatus: string, VT:
period granularity Month calendar Gregorian}}>, res_str:

54 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

bag<struct {residence_str: struct {residence: string,
VT: period granularity Month calendar Gregorian}}>}>

QA11L: Retrieve all spells defined by Marital Status and Residence for Kim Bruce
and Ken Witts.

select e.name as name,
(select struct(spell: mr.VT,
mstatus: mr.mstatus,
residence: mr.residence)
from tstruct(mstatus: valid e.mstatus,
residence: valid e.residence)
as mr) as spells
from Employements as e
where e.name in (“Kim Bruce”, “Ken Witts”)

Result:

Query type is bag<struct {name: string, spells:
bag<struct {spell: period granularity Gregorian calendar
Month, mstatus: string, residence: string}>}>

QA12: List the names and sex of all those who ever lived with their parents during
the period of survey, along with their residence histories during the periods that they
did not live with their parents.

select e.name as name, e.sex as sex,
(select r as residence,valid(r) as VT
from valid e.residence as r
where r = “with parents”) as residence
from Employements as e
where “with parents” in (valid e.residence)

Result:

Query type is bag<struct {name: string, sex: char,
residence: bag<struct {residence: string, VT: period
granularity Month calendar Gregorian}>}>

QA13: List all women who re-married within a year after a divorce, along with
their marital histories.

select e.name as name, valid e.mstatus as mstatus
from Employements as e
where e.sex = ‘F" and
exists msl in valid e.mstatus:
(ms1 = “divorce”
and exists ms2 in (valid e.mstatus)
[valid(msl) + interval “1”
granularity Year]:
ms2.value = “married”)

Result: Query type is bag<struct {name: string, mstatus:
attribute string valid granularity Month calendar
Gregorian}>

Benchmarks for Temporal Databases 55 of 82

Kalua and Robertson benchmark

QA14: List all people who re-married after they were divorced, along with their
marital histories.

select e.name as name, valid e.mstatus as mstatus
from Employements as e
where exists msl in valid e.mstatus:
(ms1 = “divorced” and
exists ms2 in valid e.mstatus:
(ms2 = “married” and
(valid(ms1)) precedes
begin(valid(ms2))))

Result: Query type is bag<struct {name: string, mstatus:
attribute string valid granularity Month calendar
Gregorian}>

QA15: List all people who changed jobs within a year after divorcing, along with
their new jobs.

select e.name as name,
(select struct(mstatus: ms,
VT: valid(ms)) as mstatus,
struct(occupation: occup,
VT: valid(occup)) as occupation
from valid e.mstatus as ms,
valid e.occupation as occup
where ms = “divorced” and
(begin(valid(occup)) - begin(valid(ms)))
< interval “1” granularity Year)
as shortChange
from Employements as e
where exists (select *
from valid e.mstatus as ms1,
valid e.occupation as occupl
where ms1 = “divorced” and
((begin(valid(occupl)) -
begin(valid(ms1))) < interval
“1” granularity Year))

Result: Query type is bag<struct {name: string,
shortChange: bag<struct {mstatus: struct {mstatus:
string, VT: period granularity Month calendar
Gregorian}, occupation: struct {occupation: string, VT:
period granularity Month calendar Gregorian}}>}>

Note: The result schema for this query is such that it can accomodate for people
with more than one divorces, followed closely by job changes

56 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QA16: Calculate the number of divorces per year for the four years preceding Janu-
ary 1988.

select Year as Year, count(partition) as divorced
from Employements as e, valid e.mstatus as ms
where ms = “divorced” and

year(begin(valid(ms))) in (1984 .. 1987)
group by year(begin(valid(ms))) as Year

Result: Query type is bag<struct {Year: integer, divorced:
integer}>

Note: This query returns data only for the years in which at least one divorce was
issued. Data for all the years are returned by the following query:

select year as year,
count(select *
from Employements as e,
valid e.mstatus as ms
where year(begin(valid(ms))) = year)
as divorced
from 1984 .. 1987 as year

Result: Query type is bag<struct {year: integer, divorced:
integer}>

QA17: Calculate the total work-months of employment per calendar year for men
from 1982 through 1984.

select begin(year) as year,
sum(select duration(x.VT intersect year)
from partition as x
where x.value != “None”)
from (select e.occupation
from Employements as e
where e.sex = ‘M’)
group by (partition valid as interval “1”
granularity Year) as
year
having year(begin(year)) in (1982 .. 1984)

Result:
Error: Syntax error: syntax error|as

QA18: Calculate the total work-months of unemployment per calendar year from
1982 through 1984.

select year as year,
sum(select duration(x.VT intersect year)
from partition as x
where x.value = “None”)
from (select e.occupation from Employees as e)
group by partition valid as interval “1” granularity
year calendar
as year
having year(begin(year)) in (1982 .. 1984)

Benchmarks for Temporal Databases 57 of 82

Kalua and Robertson benchmark

Result:
Error: Syntax error: syntax error|as

2.2 The University Database

This database keeps personal and professional data for faculty members and the
departments they work for. There following objects are defined:

enum sex {male, female};
interface FDepartment
(extent FDepartments

key FDept)
{
attribute String FDept;
relationship Person Secretary valid
inverse Person::isSecretary;
relationship Person Head valid
inverse Person::isHead;
}

interface Faculty
(extent Faculties
key FName)
{
attribute String FName;
attribute sex FSex;
attribute String MStatus valid;
attribute short no_dependents valid;
relationship Department inDept valid;
attribute String Rank valid;
attribute long Salary valid;
state relationship Set<Publication>
publications
inverse Publication::written_by;
relationship Department isSecretary valid
inverse Department::Secretary;
relationship Department::isHead valid
inverse Department::Head

}

interface Publication
(extent Publications)
{
attribute String journal;
attribute String issue;
attribute Instant granularity month
effective_time;
relationship Person written_by
inverse Person::publications;

}

Three issues are worth noting about the University database:

58 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

1. The database schema consists of the three extents, rather than four; more specifi-
cally, the “Pers_Data” and “Professional” extents (relations) have been merged
into a single extent named “Persons”

2. Although the Temporal Object Data Model (TODM) provides inverse relation-
ships for valid time data and these relationships could be used in some queries,
we prefered not to use them, so that the functionality of the language could be
evaluated, rather than the richness of the data model. However, we have used the
ability to use path expressions so as to access properties of the objects pointed to
by relationships.

We consider as “forward” direction of the relationship the traversal path from the
extent using the object as a foreign key, while the other direction is the “inverse”
one.

For instance, the relationship

Department::relationship Person Secretary valid

is considered to be the “forward” direction, while the relationship
Per son::relationship Department isSecretary valid

is considered to be the “inverse” direction

3. Some queries have been rendered more complex than they could actually be,
while trying to match the result schema proposed in the paper for queries. For
example, query B1 could have been formulated as follows:

select p.fname, s as salary, valid(s) as when
from Persons as p, valid p.salary as s
where s >= 50000

This formulation is quite simpler than the one used in the answers section but the
resulting schema depicted in the following table is more “relational-like”, instead
of the more “object-oriented” result suggested in the paper:

Fname Salary When

Bob Grass 51000 [1991-8, NOW)
Don Irsay 51000 [1989-08, 1991-01
Don Irsay 56000 [1991-01, NOW)

2.2.1 Queries on the University Database

QBL1.: List all faculty who have ever earned a salary of at least 50000

select pd.fname as fname, pd.salary as salary
from (select p.FName as fname,
(select s as Salary,
valid(s) as salary_period
from valid p.Salary as s
where s >= 50000) as salary
from Faculties as p) as pd
where count(pd.salary) > 0

Result: Query type is bag<struct {fname: string, salary:
bag<struct {Salary: integer, salary_period: period
granularity Month calendar Gregorian}>}>

Benchmarks for Temporal Databases 59 of 82

Kalua and Robertson benchmark

QB2: Which secretaries have worked in more than one department, where and
when?

select secretary,
(select x.ds.department as dept, x.ds.VT as VT
from partition as x) as department
from (select d.FDept as department,
s as secretary, valid(s) as VT
from FDepartments as d,
valid d.Secretary as s) as ds
group by secretary
having count(select distinct x1.ds.department
from partition as x1) > 1

Result: Query type is bag<struct {secretary: Faculty,
department: bag<struct {dept: string, VT: period
granularity Month calendar Gregorian}>}>

QB3: What departments were headed by Dick Bond and Tim Young and who were
their secretaries?

select head as head,
(select x.hd.department as department,
x.hd.VT as when,
x.hd.secretary as secretary
from partition as x) as HeadData
from (select h.FName as head,
d.FDept as department,
valid(h) as VT,
(valid d.Secretary)[valid(h)] as secretary
from FDepartments as d, valid d.Head as h
where h.FName in (“Dick Bond”, “Tim Young”))
as hd
group by hd.head as head

Result: Query type is bag<struct {head: string, HeadData:
bag<struct {department: string, when: period granularity
Month calendar Gregorian, secretary: list struct {value:
Faculty, VT: period granularity Month calendar
Gregorian}}>}>

Note: The result schema of the query associates with each head name a set of
departments and with each department a set of pairs <secretary, when>. This allows
for persons who were in head of more than one departments and each department
may have changed secretary.

60 of 82

Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QB4: Which departments have been headed by the same person during two or more
distinct periods, who and when?

select x.fdept as fdept, x.headData as Head
from (select d.FDept as fdept,
(select h.FName as head, valid(h) as when
from valid d.Head as h
where exists d1 in valid d.Head:
(((d1.inDept).FDept = d.FDept) and
(begin(valid(h)) precedes
begin(valid(dl))))) as headData
from FDepartments as d)
as x
where count(x.headData) > 0

Result: Query type is bag<struct {fdept: string, Head:
bag<struct {head: string, when: period granularity Month
calendar Gregorian}>}>

QB5: When, and of which department was Ann Byron head?

select h.FName as head, d.FDept as dept,
valid(h) as when

from FDepartments as d, valid d.Head as h

where h.FName = “Ann Byron”

Result: Query type is bag<struct {head: string, dept:
string, when: period granularity Month calendar
Gregorian}>

Note: The result schema of this query is:

Head Dept When

i.e. the name “Ann Byron” is not associated with a set of pairs <dept, when>, but
occurs in each result tuple. This can be easily fixed by using the “group by” clause
and adding an exterior level query, just as in query B3.

Benchmarks for Temporal Databases 61 of 82

Kalua and Robertson benchmark

QB6: Which secretaries have worked in the same department during two or more
distinct periods? Where, when and under whom?

select s.FName as secretary, d.FDept as dept,
(select h.FName as HeadName, valid(h) as when
from valid d.Head as h
where exists sl in valid d.Secretary:
(s.FName = s1.FName and
valid(s1) overlaps valid(h))) as Head
from FDepartments as d,
valid d.Secretary as s
where begin(valid(s)) = min(select begin(valid(s2))
from valid d.Secretary as s2
where s2.FName = s.FName)
and begin(valid(s)) '= max(select
begin(valid(s3))
from valid d.Secretary as s3
where s3.FName = s.FName)

Result: Query type is bag<struct {secretary: string, dept:
string, Head: bag<struct {HeadName: string, when: period
granularity Month calendar Gregorian}>}>

QB7: List all faculty who published in the same journal at least twice, along with
the journal issues and publication dates.

select FName as fname, journal as journal,
(select x.issue as issue,
x.effective_time as effective_time
from Publications as x)
as Publication_Data
from Publications as p
group by written_by as FName, journal as journal
having count(partition) > 1

Result: Query type is bag<struct {fnrame: Faculty, journal:
string, Publication_Data: bag<struct {issue: string,
effective_time: instant granularity month calendar
Gregorian}>}>

QB8: When did the associate professors attain this rank?

select p.FName as assoc_name,
begin(valid(r)) as date_promoted

from Faculties as p, valid p.FRank as r

where r = “Assoc.”

Result: Query type is bag<struct {assoc_name: string,
date_promoted: instant granularity Month calendar
Gregorian}>

62 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QBO9: List all assistant professors who got promoted in the last three years, along
with their department and salary immediately before their promotion.

select p.FName as promoted_assist,

begin(valid(r)) as date_of promotion,

((valid p.inDept)[begin(valid(r)) -
interval “1” granularity Month]).FDept

as Dept,

(valid p.Salary)[begin(valid(r)) -
interval “1” granularity Month]
as salary

from Faculties as p,

valid p.FRank as r

where r = “Assoc.” and

now() - interval “3” granularity Year
precedes begin(valid(r))

Result: Query type is bag<struct {promoted_assist: string,
date_of promotion: instant granularity Month calendar
Gregorian, Dept: string, salary: integer}>

QB10: List the names, departments and salaries of all associate professors at the
time Bob Gross got promoted from associate to full.

select p.FName,
(valid p.inDept)[promotionDate] as dept,
(valid p.Salary)[promotionDate] as salary
from Faculties as p,
(select begin(valid(r))
from Faculties as p1,
valid pl.FRank as r
where pl.FName = “Bob Gross” and r = “Full”)
as promotionDate
where (valid p.FRank)[promotionDate] = “Assoc.”

Result: Query type is bag<struct {FName: string, dept:
FDepartment, salary: integer}>

QB11: List all faculty who were promoted after being in a department for less than
3 years, along with their department and rank while in that department.

select p.FName as fname,
struct(deptName: d.FDept,
when: valid(d)) as fdept,
(select r as rank, valid(r) as when
from valid p.FRank as r
where exists d1 in valid p.inDept:
(valid(r) overlaps valid(d1) and
d1.FDept = d.FDept)) as rank_info
from Faculties as p, valid p.inDept as d
where exists rl in valid p.FRank:
(r1 '=first(valid p.FRank) and
begin(valid(rl)) - begin(valid(d)) <
interval “3” granularity Year)

Benchmarks for Temporal Databases 63 of 82

Kalua and Robertson benchmark

Result: Query type is bag<struct {fnrame: string, fdept:
struct {deptName: string, when: period granularity Month
calendar Gregorian}, rank_info: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

QB12: Which faculty stayed at the associate rank for at least six years?

select p.FName as six_year_assoc, valid(r) as when
from Faculties as p, valid p.FRank as r
where r = “Assoc.” and
duration(valid(r)) >= interval “6”
granularity Year

Result: Query type is bag<struct {six_year_assoc: string,
when: period granularity Month calendar Gregorian}>

QB13: Who have been full professors for the last four years? and what have been
their department and salary histories during this period?

select p.FName as profsLast4Years,
(valid p.inDept)[period(instant “now” -
interval “4” granularity Year, instant
“now”) granularity Month]
as dept,
(valid p.Salary)[period(instant “now” -
interval “4” granularity Year, instant “now”)
granularity Month]
as salary
from Faculties as p
where exists r in valid p.FRank :
(r = “Full” and valid(r) contains
period(instant “now” - interval “4”
granularity Year, instant “now”)
granularity Month)

Result: Query type is bag<struct {profsLast4Years: string,
dept: list struct {value: FDepartment, VT: period
granularity Month calendar Gregorian}, salary: list

struct {value: integer, VT: period granularity Month
calendar Gregorian}}>

QB14: For all current full professors, list their marital status and salary histories
since January 1990.

select p.FName as fname,

(valid p.MStatus)[period(instant “1990-01"
granularity Month, instant “now”)
granularity Month] as mstatus,

(valid p.Salary)[period(instant “1990-01"
granularity Month, instant “now”)
granularity Month] as salary

from Faculties as p
where p.FRank = “Full”

64 of 82

Benchmarks for Temporal Databases

Kalua and Robertson benchmark

Result:

Query type is bag<struct {fname: string, mstatus: list
struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: list struct {value:
integer, VT: period granularity Month calendar
Gregorian}}>

QB15: Who got promoted from assistant to full professor while at least one other
faculty in the university remained at the associate rank? When did this happen and
what departments were they in at the time?

select p.FName as fname,
(select d.FDept as deptName,
valid(d) as when
from valid p.inDept as d
where valid(d) contains promotionDate)
as fdept,
(select r as rank, valid(r) as when
from valid p.FRank as r
where r in set(“Assist.”, “Full”)) as rank
from Faculties as p,
(select begin(valid(r))
from valid p.FRank as r
where count(valid p.FRank) > 2 and
r = “Full”) as promotionDate
where exists(select *
from Faculties as pl
where exists rl in valid p1l.FRank:
(r1 = “Assoc.” and valid(rl) contains
promotionDate))

Result: Query type is bag<struct {fnrame: string, fdept:
bag<struct {deptName: string, when: period granularity
Month calendar Gregorian}>, rank: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

QB16: Which faculty lost their spouses while still employed by the university and
how long did they stay widowed?

select p.FName as widowed_faculty,
duration(valid(m)) as mourning_period
from Faculties as p, valid p.MStatus as m
where m = “Widowed” and
exists d in valid p.inDept:
valid(d) contains begin(valid(m))

Result: Query type is bag<struct {widowed_faculty: string,
mourning_period: interval granularity Month calendar
Gregorian}>

Benchmarks for Temporal Databases 65 of 82

Kalua and Robertson benchmark

QB17: Which faculty have ever served as associate professors and ever earned at
least 40000, along with their rank and salary histories?

select p.FName as fname,
valid p.FRank as rank,
valid p.Salary as salary
from Faculties as p
where “Assoc.” in (valid p.FRank) and
(exists s in valid p.Salary:
s >=40000)

Result: Query type is bag<struct {fname: string, rank:
attribute string valid granularity Month calendar
Gregorian, salary: attribute integer valid granularity
Month calendar Gregorian}>

QB18: Which secretaries have worked under more than one head in the same
department? Where, when and under whom?

select secretary as secretary, dept as dept,
(select x1.dhs.head as head,
x1.dhs.when as when
from partition as x1) as head
from (select d.FDept as dept, hs.head.FName as head,
hs.secretary.FName as secretary,
hs.VT as when
from FDepartments as d,
tstruct(head: valid d.Head,
secretary: valid d.Secretary) as hs)
as dhs
group by dhs.secretary as secretary, dhs.dept as dept
having count(select distinct x.dhs.head
from partition as x) > 1

Result: Query type is bag<struct {secretary: string, dept:
string, head: bag<struct {head: string, when: period
granularity Gregorian calendar Month}>}>

66 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QB19: Which secretaries have worked in the same department and under the same
head during two or more distinct periods? Where, when and under whom?

select Secretary as secretary, dept as dept,
(select x.hsd.headName as headName,
x.hsd.when as when
from partition as x) as Head
from (select d.FDept as dept, hs.Head.FName as headName,
hs.Secretary.FName as Secretary,
hs.VT as when
from FDepartments as d,
tstruct(Head: valid d.Head,
Secretary: valid d.Secretary) as hs)
as hsd
group by hsd.headName as headName,
hsd.Secretary as Secretary,
hsd.dept as dept
having count(partition) > 1

Result: Query type is bag<struct {secretary: string, dept:
string, Head: bag<struct {headName: string, when: period
granularity Gregorian calendar Month}>}>

QB20: Which faculty have earned at least 40000 while serving as an associate pro-
fessor, along with their salaries during that period?

select fs.fname as fname, fs.salary as salary
from (select p.FName as fname,
(select rs.salary as salary,
rs.VT as when
from tstruct(rank: valid p.FRank,
salary: valid p.Salary)
asrs
where rs.rank = “Assoc.” and
rs.salary > 40000) as salary
from Faculties as p) as fs
where count(fs.salary) > 0

Result: Query type is bag<struct {fname: string, salary:
bag<struct {salary: integer, when: period granularity
Gregorian calendar Month}>}>

Benchmarks for Temporal Databases 67 of 82

Kalua and Robertson benchmark

QB21: Which faculty have earned at least 40000 while serving as an associate pro-
fessor, along with their rank and salary histories up to the time they ceased to be
associate professors?

select p.FName as fname,
(valid p.FRank)[period(instant “beginning”,
ceaseDate) granularity Month] as rank,
(valid p.Salary)[period(instant “beginning”,
ceaseDate) granularity Month] as salary
from Faculties as p,
(select end(valid(r))
from valid p.FRank as r
where r = “Assoc.”) as ceaseDate
where exists rs in tstruct(rank: valid p.FRank,
salary: valid p.Salary) :
(rs.rank = “Assoc.” and
rs.salary >= 40000)

Result: Query type is bag<struct {fname: string, rank:
list struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: list struct {value:
integer, VT: period granularity Month calendar
Gregorian}}>

QB22: When and in which department did Cheri Best work under Mike Webb?

select d.FDept as cheri_mike_dept, h.VT as when
from Faculties as p,
valid p.inDept as d,
(valid d.Head)[valid(d)] as h
where p.FName = “Cheri Best” and
h.value.FName = “Mike Webb”

Result: Query type is bag<struct {cheri_mike_dept: string,
when: period granularity Month calendar Gregorian}>

QB23: Which departments have been headed by assistant professors at one point or
another?

select da.dept as dept,
da.assist_prof _head as assist_prof_head
from (select d.FDept as dept,
(select h.FName as headName,
r.VT as when
from valid d.Head as h,
(valid h.FRank)[valid(h)] as r
where r.value = “Assoc.”)
as assist_prof_head
from FDepartments as d) as da
where count(da.assist_prof _head) >0

Result: Query type is bag<struct {dept: string,
assist_prof_head: bag<struct {headName: string, when:
period granularity Month calendar Gregorian}>}>

68 of 82

Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QB24: What were the salaries of assistant professors with exactly one dependent?

select os.one_depend_assists as one_depend_assists,
os.salary as salary
from (select p.FName as one_depend_assists,
(select ds.salary as salary,
ds.VT as when
from tstruct(no_dependents: valid
p.no_dependents,
salary: valid p.Salary) as ds
where ds.no_dependents = 1) as salary
from Faculties as p) as os
where count(os.salary) > 0

Result: Query type is bag<struct {one_depend_assists:
string, salary: bag<struct {salary: integer, when:
period granularity Gregorian calendar Month}>}>

QB25: List all faculty who got promoted while single, along with their department,
rank and salary immediately before their promotion.

select p.FName as fname,
date_of promotion as date_of promotion,
(valid p.inDept)[date_of promotion -
interval “1” granularity Month] as dept,
(valid p.FRank)[date_of promotion -
interval “1” granularity Month] as rank,
(valid p.Salary)[date_of _promotion -
interval “1” granularity Month] as salary
from Faculties as p,
(select begin(valid(r))
from valid p.FRank as r
where
(valid p.MStatus)[begin(valid(r))] =
“Single” and
r 1= (valid p.FRank)[1])
as date_of promotion

Result: Query type is bag<struct {fname: string,
date_of promotion: instant granularity Month calendar
Gregorian, dept: FDepartment, rank: string, salary:
integer}>

QB26: What publication submissions were made by faculty while serving as full
professors?

select p.written_by.FName, p.journal, p.issue,
p.effective_time

from Publications as p

where (valid p.written_by.FRank)
[begin(p.effective_time)] = “Full”

Result: Query type is bag<struct {FName: string, journal:
string, issue: string, effective_time: instant
granularity month calendar Gregorian}>

Benchmarks for Temporal Databases 69 of 82

Kalua and Robertson benchmark

QB27: What were the salaries of the other faculty in Philosophy when Randy Wells
was head of department?

select fs.fname as fname, fs.salary as salary
from (select p.FName as fname,
flatten(select (valid p.Salary)
[valid(d) intersect when]
from valid p.inDept as d,
(select valid(head)
from FDepartments as d1,
valid d1.Head as head
where d1.FDept = “Philosophy”
and Head.FName =

“Randy Wells”)
as when
where d.FDept = “Philosophy”)
as salary

from Faculties as p
where p.FName != “Randy Wells”) as fs
where count(fs.salary) > 0

Result: Query type is bag<struct {fnrame: string, salary:
set<struct{value: integer, VT: period granularity Month
calendar Gregorian}>}>

QB28: What is the publication record of current full professors?

select p.FName,
(select pub
from Publications as pub
where pub.written_by.FName = p.FName)
as publi
from Faculties as p
where p.FRank = “Full”

Result: Query type is bag<struct {FName: string, publi:
bag<Publication>}>

70 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QB29: Which female faculty changed their raahd marital status in the same year
and what rank and marital status information supports this retrieval?

select mr.fname as fname, mr.mstatus as mstatus,
mr.rank as rank
from (select p.FName as fname,
(select m as mstatus, valid(m) as when
from valid p.MStatus as m
where (valid(m) !=
valid((valid p.MStatus)[1]))
and exists rl in valid p.FRank:
((r1 = first(valid p.FRank))
and
year(begin(valid(rl))) =
year(begin(valid(m)))))
as mstatus,
(select r as rank, valid(r) as when
from valid p.FRank as r
where (valid(r) !=
valid((valid p.FRank)[1]))
and exists m1 in valid p.MStatus:
((valid(ml) =
valid((valid p.MStatus)[1]))
and year(begin(valid(ml))) =
year(begin(valid(r)))))
as rank
from Faculties as p
where p.FSex = ‘F’) as mr
where count(mr.mstatus) > 0

Result: Query type is bag<struct {fname: string, mstatus:
bag<struct {mstatus: string, when: period granularity
Month calendar Gregorian}>, rank: bag<struct {rank:
string, when: period granularity Month calendar
Gregorian}>}>

Benchmarks for Temporal Databases 71 of 82

Kalua and Robertson benchmark

QB30: Which faculty got promoted while they had fewer than three publications?
And what were their ranks and publications through the time of their third publica-
tion?

select p.FName as fname,
(select pub.journal as journal,
pub.effective_time as when
from Publications as pub
where pub.written_by.FName = p.FName and
begin(pub.effective_time) precedes
third_pub_time) as journal,
(valid p.FRank)[period(instant “beginning”,
third_pub_time)
granularity Month]
as rank
from Faculties as p,
(select begin(pubs[3])
from set(select
begin(publ.effective_time)
from Publications as publ
where publ.written_by.FName =
p.FName
order by begin
(publ.effective_time))
as pubs
where count(pubs) >= 3) as third_pub_time
where exists r in valid p.FRank:
r 1= first(valid p.FRank) and
count(select *
from publications as pub2
where pub2.written_by.FName = p.FName
and begin(pub2.effective_time) <
third_pub_time) <3

Result: Query type is bag<struct {fnrame: string, journal:
bag<struct {journal: string, when: instant granularity
month calendar Gregorian}>, rank: list struct {value:
string, VT: period granularity Month calendar
Gregorian}}>

72 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QB31: What have been the highest salaries paid by each department? Who earned
these, when and at what rank?

select dept as dept,
(select p.FName,
(valid p.FRank)[x.ds.VT] as rank,
x.ds.salary as salary,
x.ds.VT as when
from partition as x
where x.ds.salary = max(select x1.ds.salary
from partition as x1))
as highest_salary
from Faculties as p,
tstruct(dept: valid p.inDept,
salary: valid p.Salary) as ds
group by ds.dept as dept

Result: Query type is bag<struct {dept: FDepartment,
highest_salary: bag<struct {FName: string, rank: list
struct {value: string, VT: period granularity Month
calendar Gregorian}, salary: integer, when: period
granularity Gregorian calendar Month}>}>

Note: The result schema of the query associates with each dept a set of data describ-
ing the highest salaries. Moreover, within each record describing the highest salary,
the rank is a set, allowing this for changes of the rank, while the person was receiv-
ing a constant salary.

QB32: What have been the highest salaries paid to associate professors by each
department? Who earned these and when?

select dept as dept,
(select x.p.FName as fname,
x.rsd.salary as salary,
x.rsd.VT as when
from partition as x
where x.salary = max(select x1.salary
from partition as x1))
as assoc_high_salary
from Faculties as p, tstruct(salary: valid p.Salary,
rank: valid p.FRank,
dept: valid p.inDept) as rsd
where rs.rank = “Assoc.”
group by rsd.dept

Result:
*:abort

Benchmarks for Temporal Databases 73 of 82

Kalua and Robertson benchmark

QB33: Tabulate the total number of faculty publications by rank.

select rank as rank, count(partition) as no_pubs
from (select (valid p.FRank)[begin(pub.effective_time)]
from Faculties as p,
Publications as pub
where pub.written_by.FName = p.FName)
as pubRank
group by pubRank as rank

Result: Query type is bag<struct {rank: string, no_pubs:
integer}>

QB34: Tabulate the total number of faculty publications by gender.

select sex as sex, count(partition) as no_pubs
from (select p.FSex
from Faculties as p,
Publications as pub
where pub.written_by.FName = p.FName)
as pubSex
group by pubSex as sex

Result: Query type is bag<struct {sex: char, no_pubs:
integer}>

QB35: What was the composition of Computer Science faculty by rank as of Janu-
ary 19927

select rank as rank, count(partition) as no_faculty

from Faculties as p

where ((valid p.inDept)[instant “1992-01" granularity
Month]).FDept = “Computer Science”

group by (valid p.FRank)[instant “1992-01" granularity
Month] as rank

Result: Query type is bag<struct {rank: string,
no_faculty: integer}>

Note: This query will not return data for rank “Assoc.”

2.3 The Clinical Database

Contains information about Manic Depressive patients. There is only one object
used and it is defined as follows:

enum sex_enum {male, female};

74 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

interface manic_depr
(extent ManicDeprs
key patient)

{
attribute String patient;
attribute sex_enum sex;
attribute String episode_phase valid;
attribute String treatment valid;
}

2.3.1 Queries on the Clinical Database

QC1. List all bipolar patients who experienced some form of mania as well as
depression within a month of each other, along with any supporting information.

select p.patient as patient, p.episode as episode
from (select md.patient as patient,
(select e as episode, valid(e) as when
from valid md.episode_phase as e
where (e like “*Mania” or
e like “*Depression”) and
exists el in valid md.episode_phase:
((el like “*Mania” or
el like “*Depression”)
and e[length(e)-5: length(e)]
(=
elflength(el)-
5:length(el)]
and
abs(begin(valid(el)) -
end(valid(e))) < interval
“1” granularity Month or
abs(begin(valid(e)) -
end(valid(el))) < interval
“1” granularity Month))
as episode
from ManicDeprs as md) as p
where count(p.episode) > 0

Result: Query type is bag<struct {patient: string,
episode: bag<struct {episode: string, when: period
granularity Second calendar Gregorian}>}>

Benchmarks for Temporal Databases 75 of 82

Kalua and Robertson benchmark

QC2: List all patients who had the same episode of mania or depression recur
within a month after the last one.

select p.patient as patient, p.episode_phase as episode
from (select md.patient as patient,
(select e as episode_phase,
valid(e) as when
from valid md.episode_phase as e
where exists el in valid
md.episode_phase:
(el=eand
begin(valid(el)) != begin(valid(e))
and (abs(begin(valid(el)) -
(end(valid(e))))) <
interval “1”
granularity Month
or abs(begin(valid(e)) -
(end(valid(el)))) <
interval “1”
granularity Month)) as
episode_phase
from ManicDeprs as md) as p
where count(p.episode_phase) > 0

Result: Query type is bag<struct {patient: string,
episode: bag<struct{episode_phase: string, when: period
granularity Second calendar Gregorian}>}>

QCa3: For those patients who experienced severe mania, what treatment were they
on at the time? And when did they experience this?

select md.patient as patient, valid(e) as when,
(valid md.treatment)[begin(valid(e))]
as treatment
from ManicDeprs as md, valid md.episode_phase as e
where e = “Severe Mania”

Result: Query type is bag<struct {patient: string, when:
period granularity Second calendar Gregorian, treatment:
string}>

76 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QC4: Who experiencedew bouts of mania or depression while on lithium treat-
ment?

select md.patient as p_id,
struct(episode: e, when: valid(e))
as new_episode,
struct(treatment: t, when: valid(t))
as treatment
from ManicDeprs as md,
valid md.episode_phase as e,
valid md.treatment as t
where (valid(e) != valid((valid md.episode_phase)[1]))
and
(e '=“Normal”) and (t = “Lithium”) and
valid(t) contains begin(valid(e))

Result: Query type is bag<struct {p_id: string,
new_episode: struct {episode: string, when: period
granularity Second calendar Gregorian}, treatment:
struct {treatment: string, when: period granularity
Second calendar Gregorian}}>

QCE5: For each patient, tabulate the total number of bouts of mania and the total
number of bouts of depression.

select md.patient as patient,
count(select e from valid md.episode_phase
ase
where e like “*Mania”)
as no_bouts_manic,
count(select el from valid md.episode_phase
asel
where el like “*Depression”)
as no_bouts_depressive
from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
no_bouts_manic: integer, no_bouts_depressive: integer}>

QC6: Tabulate the combined numberrafv bouts of mania or depression by treat-
ment type.

select treatment,
count(partition) as no_new_bouts
from (select t
from ManicDeprs as md,
valid md.episode_phase as e,
valid md.treatment as t
where (valid(e) !=
valid((valid md.episode_phase)[1]))
and (e !'= “Normal”) and
(valid(t) contains begin(valid(e))))
as new_bouts
group by new_bouts as treatment

Benchmarks for Temporal Databases 77 of 82

Kalua and Robertson benchmark

Result: Query type is bag<struct {treatment: string,
no_new_bouts: integer}>

QC7: Tabulate the combined total number of days when the patient had bouts of
mania or depression of any degree by treatment type.

select treatment as treatment,

sum(select duration(x.et.VT)

from partition as x) as days_md_bouts

from ManicDeprs as md,

tstruct(episode: valid md.episode_phase,

treatment: valid md.treatment) as et

where et.episode != “Normal”
group by et.treatment as treatment

Result: Query type is bag<struct {treatment: string,
days_md_bouts: interval granularity Gregorian calendar
Second}>

QC8: What was the total number of days that each patient was “normal” during the
six-month period?

select md.patient as patient,
sum(select duration(e.VT)
from (valid md.episode_phase)
[period(instant “now” -
interval “6” granularity Month,
instant “now”)
granularity Month] as e
where e.value = “Normal”)
as total_days_normal
from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
total_days_normal: interval granularity Second calendar
Gregorian}>

78 of 82 Benchmarks for Temporal Databases

Kalua and Robertson benchmark

QC9: For each patient, tabulate the total number of days when they were manic and
the total number of days when they were depressive during the six-month period.

select md.patient as patient,
sum(select duration(e.VT)
from (valid md.episode_phase)[period(
instant “now” -
interval “6” granularity Month,
instant “now”)
granularity Month] as e
where e.value like “*Mania”)
as tot_day_manic,
sum(select duration(el.VT)
from (valid md.episode_phase)[period(
instant “now” -
interval “6” granularity Month,
instant “now”)
granularity Month] as el
where el.value like “*Depression”)
as tot_days_depressive
from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
tot_day_manic: interval granularity Second calendar
Gregorian, tot_days_depressive: interval granularity
Second calendar Gregorian}>

QC10: What were the longest and shortest periods of “normality” in days for each
patient?

select md.patient as patient,
max(select duration(valid(e))
from valid md.episode_phase as e
where e = “Normal”) as max_normal_period,
min(select duration(valid(el))
from valid md.episode_phase as el
where el = “Normal”) as min_normal_period
from ManicDeprs as md

Result: Query type is bag<struct {patient: string,
max_normal_period: interval granularity Second calendar
Gregorian, min_normal_period: interval granularity
Second calendar Gregorian}>

Benchmarks for Temporal Databases 79 of 82

Glaxo Queries

3.0

Glaxo Queries

GLAXO 1. In the visitl, the inclusion criteria 8 of the VerificationOfEligibility
container cannot be true if the number of corticoid uses is > 10 or < 2 in lllnessHIs-
tory container, and reversely.

select p.name
from patients as p,
(valid (p.on.illnessHistory)) as ill,
(valid p.on.verificationOfEligibility) as elig
where ((ill.value[0]).corticoidsUses4 <= 10 and
(ill.value[Q]).corticoidsUses4 >= 2 and
((elig.value[Q]).oralCorticoid3 = 0 or
(elig.value[Q]).oralCorticoid3 = 1))

Glaxo 2. If an aggravation is detected in the SummaryOfVisit of visit 2, check that
the date of TrialEnd is between visitl and visit2, and that at least one concomitant
treatment has started between visitl and visit2 + 1 day

select p.name
from patients as p, p.on.visiSummary as sum,
p.on.physicalExam as phy,
p.on.trialEnd as tend,
p.on.concomitantTreatment as treat
where ((valid sum.value)[0]).criteriaAggravation = 1 and
period(valid(valid phy.value)[0]),
valid(valid phy.value)[1]))
contains tend.value.dateOfTrialEndO
and exists ct in treat:
period(valid(valid phy.value)[0]),
valid(valid phy.value)[1]) contains
ct.value.beginingDate5

Glaxo 3. What is the time to reach an increase of 10% of VEMS, with regards to
Jo?

select p.name, period(valid(valid
p.on.functionalRespiratoryTest.value)[0]),
min(valid(frt)))

from patients as p,
valid p.on.functionalRespiratoryTest.value

as frt

where frt.theoreticalVems >= 1.1 * ((valid
p.on.functionalRespiratoryTest.value)[0].
theoreticalVems

80 of 82

Benchmarks for Temporal Databases

Delta Queries

Glaxo 4. What is the average value of MaximumExpiratoryDebit (am and pm)
week by week

select p.name, (select n.amMaximumExpiratoryDebit
from weekly.partition as n) as amAvg,
(select n.pmMaximumExpiratoryDebit
from weekly.partition as n) as pmAvg
from patients as p,
(valid p.periodicindividualNotebook.value)
(partition valid as interval “7” day)
as weekly
where p.periodicindividualNotebook != nil

Delta Queries

Contains the following interfaces

interface ProductGroup
(extent ProductGroups)
{
attribute String attName;
relationship ProductGroup relPartOf
inverse ProductGroup::relComposedOf;
relationship Set<ProductGroup> relComposedOf
inverse ProductGroup::relPartOf;
relationship Set<Product> rel[HasProducts
inverse Product::relBelongs;
2
interface Product
(extent Products key attProductCode)
{
attribute String attProductCode;
attribute String attName;
attribute String attType;
attribute String attStatus valid event
granularity Day;
attribute Short attDuration valid state
granularity Day;
attribute Float attPrice valid state
granularity Day;
relationship ProductGroup relBelongs
inverse ProductGroup::relHasProducts;

Queries

Delta 1. Show the name, the price and the period during which this price was valid,
for each product, ordered by name and group

select p.attName as pName, pr as price,
valid(pr) as time

from Products p, valid p.attPrice as pr

order by p.attName, p.relBelongs.attName

Benchmarks for Temporal Databases 81 of 82

Delta Queries

Delta 2. Display the name, the price and the period during which this price was
valid, for each product whose price changed the last X months

select p.attName as pName, pr as price,
valid(pr) as time
from Products p, valid p.attPrice as pr
where begin(valid(pr)) >
now() - interval($1) granularity Month

Delta 3. Display the name, the price and the period during which this price was
valid, for each product whose price changed during the last X months Y times

select p.attName as pName, pr as price,
valid(pr) as time
from Products p, valid p.attPrice as pr
where count(select *
from valid p.attPrice as prl
where valid(prl) >
now() - interval($1) granularity Month) > $2

82 of 82

Benchmarks for Temporal Databases

