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Abstract Since its introduction, frequent-pattern mining has been the subject
of numerous studies, including incremental updating. Many existing incremental
mining algorithms are Apriori-based, which are not easily adoptable to FP-tree-
based frequent-pattern mining. In this paper, we propose a novel tree structure,
called CanTree (canonical-order tree), that captures the content of the transaction
database and orders tree nodes according to some canonical order. By exploiting
its nice properties, the CanTree can be easily maintained when database trans-
actions are inserted, deleted, and/or modified. For example, the CanTree does
not require adjustment, merging, and/or splitting of tree nodes during mainte-
nance. No rescan of the entire updated database or reconstruction of a new tree
is needed for incremental updating. Experimental results show the effectiveness
of our CanTree in the incremental mining of frequent patterns. Moreover, the ap-
plicability of CanTrees is not confined to incremental mining; CanTrees can also
be applicable to other frequent-pattern mining tasks including constrained mining
and interactive mining.

Keywords Knowledge discovery and data mining · Tree structure · Frequent
sets · Incremental mining · Constrained mining · Interactive mining

1 Introduction

Since its introduction [1], the problem of mining association rules–and the more
general problem of finding frequent patterns–from large databases has been
the subject of numerous studies. These studies can be broadly divided into the
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following two categories:

(a) Functionality: The central question considered is what (kind of rules or pat-
terns) to compute. While some studies [4, 8, 13, 14, 34, 36, 37] in this cate-
gory considered the data mining exercise in isolation, some others explored
how data mining can best interact with (i) the database management sys-
tem [33, 35] or (ii) the human user. Examples of the latter include constrained
mining [6, 7, 9, 15, 22, 25, 27, 30] as well as interactive and online mining
[12, 19, 22].

(b) Performance: The central question considered is how to compute the associa-
tion rules or frequent patterns as efficiently as possible. Studies in this category
can be further classified into several subgroups. The first subgroup consists of
fast algorithms based on the level-wise Apriori framework [2]. The second
subgroup focuses on performance enhancement techniques like hashing and
segmentation [26, 29] for speeding up Apriori-based algorithms. The third
subgroup is on incremental updating.

With advances in technology, one could easily collect a large amount of data.
This, in turn, poses a maintenance problem. Specifically, when new transactions
are inserted into an existing database DB and/or when some old transactions
are deleted from DB, one may need to update the collection of frequent pat-
terns (e.g., add to the collection those patterns that were previously infrequent
in the old database DB but are frequent in the updated database DB ′). Algo-
rithms such as FUP [10], FUP2 [11], and UWEP [3] were developed to solve this
problem.

In general, the above-mentioned algorithms are Apriori-based, that is,
they depend on a generate-and-test paradigm. They compute frequent pat-
terns by generating candidates and checking their frequencies (i.e., support
counts) against the transaction database. To improve efficiency of the min-
ing process, Han et al. [17, 18] proposed an alternative framework, namely
a tree-based framework. The algorithm they proposed in this framework con-
structs an extended prefix-tree structure, called Frequent Pattern tree (FP-
tree), to capture the content of the transaction database. Rather than employ-
ing the generate-and-test strategy of Apriori-based algorithms, such a tree-
based algorithm focuses on frequent pattern growth–which is a restricted
test-only approach (i.e., does not generate candidates, and only tests for
frequency).

Since the introduction of such an FP-tree-based framework, some studies have
been proposed to improve functionality (e.g., interactive FP-tree-based mining
[23]) and performance (e.g., FP-tree-based segmentation techniques [28]). So,
how about FP-tree-based incremental mining? Recall that algorithms such as FUP
[10], FUP2 [11], and UWEP [3] were developed to handle incremental mining in
the Apriori-based framework. They cannot be easily adoptable to FP-tree-based
incremental mining. Fortunately, some tree-based incremental mining algorithms
were recently developed. For example, Cheung and Zaı̈ane [12] proposed the FE-
LINE algorithm with the CATS tree, whereas Koh and Shieh [21] proposed the
AFPIM algorithm. The former aims to make the CATS tree (a variant of the FP-
tree) compact, and the FELINE algorithm is well suited for interactive mining
where the database remains unchanged and only the minimum support threshold
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gets changed. So, it works well in situations that follow the “build once, mine
many” principle (e.g., interactive mining), but its efficiency for incremental min-
ing (where the database is changed frequently) is unclear. Unlike the FELINE al-
gorithm, the AFPIM algorithm was proposed for incremental mining. Specifically,
it was designed to produce an FP-tree for the updated database, in some cases, by
adjusting the old FP-tree via the bubble sort. However, in many other cases, it re-
quires rescanning the entire updated database in order to build the corresponding
FP-tree.

To summarize, those existing Apriori-based incremental mining algorithms
cannot be easily adoptable to FP-tree-based incremental mining. Among those
FP-tree-based algorithms, the FELINE algorithm with the CATS tree was
mainly designed for interactive mining, where the “build once, mine many”
principle holds. However, such a principle does not necessarily hold for in-
cremental mining. The AFPIM algorithm was proposed to reduce–but not to
eliminate–the possibility of rescanning the updated database. Is there any al-
gorithm that aims for incremental mining? Is there any tree structure that
is simpler but yet more powerful than the CATS tree? Can we do better
than the AFPIM algorithm (e.g., can we avoid rescanning the entire updated
database)?

The key contribution of this work is the development of a simple, but yet pow-
erful, novel tree structure that aims for incremental mining. More specifically, our
proposed tree structure, called CanTree (canonical-order tree), captures the con-
tent of the transaction database (e.g., the original database, updated databases).
When the database is updated (i.e., transactions are inserted, deleted, and/or mod-
ified), our algorithm does not need to rescan the entire updated database. Exper-
imental results in Sect. 6 show that frequent-pattern mining with our CanTree is
more efficient than that with existing algorithms or structures. Figure 1 summa-
rizes the salient differences between our proposed CanTree and its most relevant
work.

In addition to showing the efficiency of our CanTrees for incremental
mining, we also discuss the applicability of CanTrees for other frequent-
pattern mining tasks such as constrained mining and interactive mining.
Moreover, we develop a variant of CanTree to reduce its memory space
requirement.

This paper is a revised and expanded version of our ICDM paper [24]. New
materials include a discussion on how our proposed CanTree deals with incremen-
tal updates involving deletions of transactions (Sect. 3.2), a proposal on a variant
of CanTrees–called CanTries–for reducing the amount of required memory space
(Sect. 4.1), descriptions on additional applicability of our CanTree in constrained
mining (Sect. 5.1) and interactive mining (Sects. 5.3 and 5.4), as well as additional
experimental results (Sect. 6).

This paper is organized as follows. In the next section, related work
is described. Section 3 introduces our CanTree for incremental mining. In
Sect. 4, we discuss efficiency and memory issues regarding our CanTrees
and propose a variant of CanTrees called CanTries; in Sect. 5, we describe
the additional benefits of CanTrees (e.g., for constrained mining, incremen-
tal constrained mining, interactive mining, and incremental interactive min-
ing). Section 6 shows experimental results. Finally, conclusions are presented in
Sect. 7.
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FELINE/
CATS tree:

One scan on the incremental database
portion db (i.e., inserted, deleted, and/or
updated transactions) is required to
maintain the CATS tree

AFPIM/
FP-tree:

In the worst case, the AFPIM algo-
rithm requires two scans on the up-
dated database DB′ = DB ∪ db to up-
date/rebuild the FP-tree

Our proposed
CanTree:

Only one scan on the incremental
database portion db is required to main-
tain the CanTree

FELINE/
CATS tree:

Items are arranged in descending order of
local frequency in each path of the CATS
tree

AFPIM/
FP-tree:

In the FP-tree, items are arranged in de-
scending order of (global) frequency of
the updated database DB′

Our proposed
CanTree:

In the CanTree, items are arranged ac-
cording to some canonical order, which
is unaffected by frequency changes

FELINE/
CATS tree:

Updates to the original database DB
may cause swapping and/or merging of
tree nodes

AFPIM/
FP-tree:

Updates may cause swapping (via the
bubble sort), splitting, and/or merging
of tree nodes

Our proposed
CanTree:

Updates to the original database DB
does not lead to any swapping of tree
nodes

Fig. 1 Our proposed CanTree vs. the most relevant work

2 Related work

In this section, we discuss two existing FP-tree-based algorithms that handle in-
cremental mining, namely (i) the FELINE algorithm with the CATS tree [12] and
(ii) the AFPIM algorithm [21].

2.1 The FELINE algorithm with the CATS tree

Cheung and Zaı̈ane [12] designed the CATS tree (compressed and arranged trans-
action sequences tree) mainly for interactive mining. The CATS tree extends the
idea of the FP-tree to improve storage compression, and allows frequent-pattern
mining without the generation of candidate itemsets. The aim is to build a CATS
tree as compact as possible.

The idea of tree construction is as follows. It requires one database scan to
build the tree. New transactions are added at the root level. At each level, items
of the new transaction are compared with children (or descendant) nodes. If the
same items exist in both the new transaction and the children (or descendant)
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nodes, the transaction is merged with the node at the highest frequency level. The
remainder of the transaction is then added to the merged nodes, and this process
is repeated recursively until all common items are found. Any remaining items of
the transaction are added as a new branch to the last merged node. If the frequency
of a node becomes higher than the frequencies of its ancestors, then it has to swap
with the ancestors so as to ensure that its frequency is lower than or equal to the
frequencies of its ancestors. Let us consider the following example to gain a better
understanding of how the CATS tree is constructed.

Example 2.1 Consider the following database:

TID Contents
Original database (DB) t1 {a, d, b, g, e, c}

t2 {d, f, b, a, e}
t3 {a}
t4 {d, a, b}

The first group of insertions (db1) t5 {a, c, b}
t6 {c, b, a, e}

The second group of insertions (db2) t7 {a, b, c}
t8 {a, b, c}

Figure 2 shows the resulting CATS tree after each transaction is added. Some
important steps are highlighted as follows. Initially, the CATS tree is empty.
Transaction t1 = {a, d, b, g, e, c} is then added as it is. When transaction t2 =
{d, f, b, a, e} is added, common items (i.e., a, d, b, e) are merged with the exist-
ing tree. To do so, node e is swapped with its ancestor g (i.e., e is “moved up”).
Since there is no other common items, the remaining item of t2 (namely, f ) is
added as a new branch to e. Transactions t3 and t4 are added in a similar fashion.
When transaction t5 is added, it finds and merges with common items a and b.
Node b is swapped with d , and “moved up”. For another common item c, it can-
not be swapped and merged. Otherwise, the tree property–the frequency of a node
is at least as high as the sum of frequencies of all its children–would be violated.
Consequently, item c is added as a new branch (the right branch) to b. Transac-
tions t6, t7, and t8 are added in a similar fashion.

It is interesting to note the following. First, CATS trees keep all items in every
transaction. This is different from FP-trees, which keep only those frequent items.
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Fig. 2 The CATS tree after each transaction is added (for the FELINE algorithm)
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Second, nodes in CATS trees are ordered according to local frequency (which may
be different from global frequency) in the paths. For example, after transaction t6
is added, item e is above c on the left branch while the opposite holds on the right
branch.

Given that the above tree construction step takes only a single data scan (i.e.,
constructing the tree without prior knowledge of data), Cheung and Zaı̈ane admit-
ted that their CATS tree is not guaranteed to have the maximal compression. More-
over, the tree compression is sensitive to (a) the ordering of transactions within the
database and (b) the ordering of items within each transaction.

In addition, when handling incremental updates, their FELINE algo-
rithm (frequent/large patterns mining with CATS tree) suffers from the prob-
lems/weaknesses described below. First, tree construction could be computation-
ally expensive, because it searches for common items and tries to merge the new
transaction (the entire one or a portion of it) into an existing tree path when each
transaction is added. It checks existing tree paths one by one until a mergeable one
is found. Since items are arranged according to their local frequency in the path in
the CATS tree, an item may appear above another item on one branch but below it
on another branch (e.g., item e appears above item c on the left branch but below c
on the right branch in the final tree in Fig. 2). This makes such a search-and-merge
costly.

Second, a lot of computation is spent on tree construction with an expectation
that the tree is “built once, mined many” (e.g., in interactive mining where the
database remains unchanged and only the minimum support threshold minsup is
changed interactively). However, such a “build once, mine many” principle does
not necessarily hold for incremental mining. Specifically, for incremental min-
ing, the database can be changed by insertions, deletions, and/or modifications of
transactions. Hence, after a tree is built, it may be mined only once.

Third, extra cost is required for the swapping and/or merging of nodes. See
Example 2.1.

Fourth, since items are arranged in descending local frequency order in the
CATS tree, the FELINE algorithm needs to traverse both upwards and downwards
in order to include frequent items when forming projected databases (during the
mining process). This is different from usual FP-tree-based mining (e.g., using the
FP-growth algorithm [17]) where only upward traversal is needed. Specifically,
the CATS tree uses the local-frequency ordering (e.g., item e is above item c on
the left branch but is below c on the right branch in the final tree in Fig. 2), the
downward traversal is needed for completeness (e.g., to avoid missing item c at the
leaf of the left branch). Consequently, it costs more to traverse both upwards and
downwards! Due to the additional downward traversal, extra work is needed for
additional checking to ensure that infrequent items are excluded and those mined
items are not doubly counted when forming projected databases!

2.2 The AFPIM algorithm

Koh and Shieh [21] developed the AFPIM algorithm (adjusting FP-tree for in-
cremental mining). The key idea of their algorithm can be described as follows.
It uses the original notion of FP-trees, in which only “frequent” items are kept
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in the tree. Here, an item is “frequent” if its frequency is no less than a thresh-
old called preMinsup, which is lower than the usual user-support threshold min-
sup. As usual, all the “frequent” items are arranged in descending order of their
global frequency. So, insertions, deletions, and/or modifications of transactions
may affect the frequency of items. This, in turn, affects the ordering of items in
the tree. More specifically, when the ordering is changed, items in the tree need
to be adjusted. The AFPIM algorithm does so by swapping items via the bubble
sort, which recursively exchanges adjacent items. This can be computationally in-
tensive because the bubble sort needs to apply to all the branches affected by the
change in item frequency.

In addition to changes in the item ordering, incremental updating may also
lead to the introduction of new items in the tree. This occurs when a previously
infrequent item becomes “frequent” in the updated database. When facing this sit-
uation, the AFPIM algorithm can no longer produce an updated FP-tree by just ad-
justing items in the old tree. Instead, it needs to rescan the entire updated database
to build a new FP-tree. This can be costly, especially for large databases. To gain
a better understanding of the AFPIM algorithm, let us consider the following ex-
ample.

Example 2.2 Consider the same database as in Example 2.1. Here, we set the
threshold preMinsup be 35% (and the minimum support threshold minsup be
55%). Figure 3 shows the original FP-tree and trees after the first and second
groups of insertions. Some important steps are highlighted as follows. The AF-
PIM algorithm first scans the original database DB once to obtain the global fre-
quency of each item (i.e., 〈a:4, b:3, d:3, e:2〉). It then scans DB the second time for
building an FP-tree, in which only “frequent” items are kept. Here, items having
frequency at least minsup must be “frequent” (because minsup ≥ preMinsup),
but the converse does not hold.

Note that the FP-tree for DB contains only items a, b, d , and e. After transac-
tions t5 and t6 are inserted, item c (which had a frequency of 1–i.e., infrequent–in
DB) becomes “frequent” with a frequency of 3 in DB ∪ db1. Since not all “fre-
quent” items in DB∪db1 are covered by the FP-tree for DB, the AFPIM algorithm
needs to rescan the entire updated database (i.e., DB ∪ db1) twice for building a
new FP-tree. This could involve a lot of I/Os, especially when the database is large.
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Fig. 3 The FP-trees for DB, DB ∪ db1, and DB ∪ db1 ∪ db2 (for the AFPIM algorithm)
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After the second group of insertions (where transactions t7 and t8 are added),
the frequency of items changes from 〈a:6, b:5, d:3, e:3, c:3〉 in DB ∪ db1 to
〈a:8, b:7, c:5, d:3, e:3〉 in DB ∪ db1 ∪ db2. Consequently, items d, e, and c in
the middle FP-tree in Fig. 3 (i.e., the FP-tree for DB ∪ db1) need to be swapped
using the bubble sort. Besides the swapping of nodes, the AFPIM algorithm may
also require the merging and/or splitting of nodes (e.g., after the second group of
insertions, c nodes are merged, but d and e nodes are split).

Like the FELINE algorithm, the AFPIM algorithm also suffers from sev-
eral problems/weaknesses when handling incremental updates. A problem is the
amount of computation spent on swapping, merging, and splitting tree nodes.
Swapping is required because items are arranged according to a frequency-
dependent ordering (specifically, descending order of global frequency). So, when
the database is updated (e.g., by inserting and/or deleting transactions), frequen-
cies of items may be changed. As a result, the ordering of items needs to be ad-
justed. This problem is more serious (than FELINE) because AFPIM uses the
bubble sort to recursively exchange adjacent tree nodes. The bubble sort is known
to be of O(h2) computation, where h is the number of tree nodes involved in a
tree branch. There are many branches in a tree! Furthermore, the swapping of tree
nodes often leads to the merging and splitting of nodes. For instance, the insertion
of transactions t7 and t8 in Example 2.2 changes the frequency order of items in
the tree. Nodes d and e need to swap with c. After swapping, nodes d and e in
the path 〈d, e, c〉 are split into two (i.e., 〈c, d, e〉 and 〈d, e〉 as branches of b). At
the same time, three descendants of b (i.e., c in paths 〈c〉, 〈d, e, c〉, and 〈e, c〉)
are in common, and hence these c nodes are merged and resulted in the rightmost
FP-tree in Fig. 3. To summarize, incremental updates to database often result in a
lot of swapping, merging, and splitting of tree nodes.

Another problem of the AFPIM algorithm is its requirement for an additional
mining parameter preMinsup, which is set to a value lower than the usual mining
parameter minsup (the minimum support threshold). With this additional param-
eter, only the items whose frequency meets preMinsup are kept in the tree. How-
ever, it is well known that finding an appropriate value for minsup is challenging,
which explains the call for interactive mining where the user can interactively
adjust or refine minsup. So, finding appropriate values for both minsup and pre-
Minsup can be even more challenging!

3 Our canonical-order tree (CanTree)

Recall from the previous section that, when handling incremental updates, the
aforementioned tree-based algorithms–both the FELINE algorithm (with the
CATS tree) and the AFPIM algorithm (with the FP-tree)–suffer from several prob-
lems/weaknesses. These can be summarized as follows:

1. The FELINE algorithm requires a large amount of computation for searching
common items and mergeable paths during the construction of CATS trees. In
addition, it needs extra downward traversals during the mining process.

2. The AFPIM algorithm requires an additional mining parameter (namely, pre-
Minsup). Finding an appropriate value for this parameter is not easy; it is as
challenging as finding an appropriate value for minsup.
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3. Both FELINE and AFPIM algorithms need lots of swapping, merging, and
splitting of tree nodes, because items in the trees are arranged according to
a frequency-dependent ordering. So, when the database is updated, item fre-
quencies may have changed. This may result in changes in the ordering.

3.1 An overview of our CanTree

In this section, let us describe our proposed CanTree (canonical-order tree) and
show how it solves the above-mentioned problems. In general, the CanTree is
designed for incremental mining. The tree captures the content of the database.
In the tree, items are arranged according to some canonical order, which can be
determined by the user prior to the mining process or at runtime during the min-
ing process. So, the construction of the CanTree requires only one database scan.
This is different from the construction of an FP-tree where two database scans are
required (one scan for obtaining item frequencies and another one for arranging
items in descending frequency order).

Specifically, items in our CanTree can be consistently arranged in lexico-
graphic order or alphabetical order (as in Example 3.1). Alternatively, items can
be arranged according to some specific order depending on the item properties
(e.g., their price values, their validity of some constraints). For example, items
can be arranged according to prefix function order R or membership order M
for constrained mining. (See Sect. 5.1 for more details on incremental constrained
mining.) While the above orderings are frequency-independent, items can also be
arranged according to some fixed frequency-related ordering (e.g., in descend-
ing order of the global frequency of the “original” database DB). Notice that,
in this case, once the ordering is determined (say, for DB), items will follow
this ordering in our CanTrees for subsequent updated databases (e.g., DB ∪ db1,
DB ∪ db1 ∪ db2, . . .) even if the frequency ordering of items in these updated
databases is different from DB. With this setting (the canonical ordering of items),
there are some nice properties, as described below.

Property 3.1 Items are arranged according to a canonical order, which is a fixed
global ordering.

Property 3.2 The ordering of items is unaffected by the changes in frequency
caused by incremental updating.

Property 3.3 The frequency of a node in the CanTree is at least as high as the sum
of frequencies of all its children.

By exploiting properties of our CanTree, we note the following. Although
items are arranged according to a fixed global ordering, our CanTree maintains
its structural integrity–for example, the frequency of a node in our CanTree is at
least as high as the sum of frequencies of all its children. Due to this canonical
order of items, transactions can be easily added to the CanTree without any ex-
tensive searches for mergeable paths (as those required by the FELINE algorithm
with the CATS tree). As canonical order is fixed, any changes in frequency caused
by incremental updating (e.g., insertions, deletions, and/or modifications of trans-
actions) do not affect the ordering of items in the CanTree at all. Consequently,
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swapping of tree nodes–which often leads to merging and splitting of tree nodes–is
not needed.

Once the CanTree is constructed, we can mine frequent patterns from the tree
in a fashion similar to the FP-growth algorithm. In other words, we can employ
a divide-and-conquer approach. Projected databases can be formed by traversing
the paths upwards only. Since items are consistently arranged according to some
canonical order (e.g., lexicographic order, prefix function order R, global fre-
quency order of DB), one can guarantee the inclusion of all frequent items using
just upward traversals. There is no worry about possible omission or doubly count-
ing of items. Hence, for CanTrees, there is no need for having both upward and
downward traversals. This significantly reduces computation by half! For exam-
ple, forming {X}-projected databases (where X is a, b, c, . . . , g) requires traver-
sals of 62 nodes in the rightmost CATS tree in Fig. 2; it needs to traverse only
27 nodes in our CanTree!

To summarize, our proposed CanTree solves the problems/weaknesses of the
FELINE or AFPIM algorithms as follows:

1. For our CanTree, items are arranged according to some canonical order that is
unaffected by the item frequency. Hence, searching for common items and
mergeable paths during the tree construction is easy. No extra downward
traversals are needed during the mining process.

2. The construction of our proposed CanTree is independent of the threshold val-
ues. Thus, it does not require such user thresholds as preMinsup.

3. Since items are consistently ordered in our CanTree, any insertions, deletions,
and/or modifications of transactions have no effect on the ordering of items in
the tree. As a result, swapping of tree nodes–which may lead to merging and
splitting of tree nodes–is not needed.

This shows how we use our CanTree to solve the problems/weaknesses of the
CATS tree/FELINE algorithm and the AFPIM algorithm. To gain a better under-
standing, let us consider the following example.

Example 3.1 Consider the same database as in Example 2.1. Figure 4 shows the
original CanTree and the trees after the first and second groups of insertions. The
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Fig. 4 The CanTree after each group of transactions is added
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construction of the original CanTree only requires one database scan. This is dif-
ferent from the construction of an FP-tree where two database scans are required.
Like the CATS tree, our CanTree also keeps all items in every transaction. In the
CanTree, items are arranged according to some canonical order (say, lexicograph-
ical/alphabetical order in this example). Hence, transactions t1–t4 can be easily
added to the tree, without any extensive searches for mergeable paths (like those
in FELINE). As canonical order is unaffected by the frequency order of items at
runtime, any changes in frequency caused by incremental updates do not affect
the ordering of items in the CanTree at all. Consequently, swapping of tree nodes–
which often leads to merging and splitting of tree nodes–is not needed.

Once the CanTree is constructed, we can mine frequent patterns from the
tree in a divide-and-conquer fashion (similar to FP-growth). We form projected
databases (solely for frequent items) by traversing the tree paths upwards only
(i.e., no need for having both upward and downward traversals). During the traver-
sals, we only include frequent items. Determination of whether an item is frequent
can be easily done by a simple look-up (an O(1) operation) at the header table.
There is no worry about possible omission or doubly counting of items.

3.2 Advantages of CanTrees in handling deletions of transactions

So far, we have described in detail how our proposed CanTree solves the prob-
lems/weaknesses of the FELINE or AFPIM algorithms. We have shown that trans-
actions can be easily inserted into the CanTree (especially, during incremental
updating). In general, when a database is updated, some existing transactions are
deleted from the database DB–while some new transactions are inserted into DB–
to form an updated database DB ′. Hence, in the remaining of this section, we ex-
plain in detail how our CanTrees (and its most relevant work) handle deletions of
transactions during incremental updating.

First, let us compare our CanTree with the CATS tree/FELINE algorithm. Re-
call from Sect. 2.1 that the CATS tree keeps items in local frequency order in
each tree path. So, it may be quite costly and difficult for the corresponding FE-
LINE algorithm to locate those transactions to be removed, due to a large number
of possible arrangements of items in tree paths. For instance, items in transac-
tion t4 = {d, a, b} (in Example 2.1) can be arranged in one the following six
orderings in the CATS tree: 〈a, b, d〉, 〈a, d, b〉, 〈b, a, d〉, 〈b, d, a〉, 〈d, a, b〉, or
〈d, b, a〉. For transaction t6 = {c, b, a, e}, there are 24 possible orderings. In gen-
eral, there are h! possible orderings for arranging h items contained in the trans-
action to be removed. Moreover, once the transactions are located and removed
from the CATS tree, the FELINE algorithm may need to swap, merge, or split
some tree nodes as the local frequency of some tree paths may have changed due
to the deletion.

In contrast, our proposed CanTree keeps items in a canonical order. Thus, one
can easily locate those transactions to be removed (because items in each tree
path follow the same canonical order). Moreover, swapping of nodes–which may
in turn lead to merging and splitting of nodes–is not needed for our proposed
CanTree.

Next, let us compare our CanTree with the AFPIM algorithm. Recall from
Sect. 2.2 that the AFPIM algorithm arranges items in the FP-tree according to
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descending (global) frequency. So, it needs to adjust the tree node via bubble
sort if the frequency order of items gets changed. It may also need to rescan the
entire updated database to build a new FP-tree if new items are introduced. It is
not uncommon that deletions of transactions during incremental updating change
the frequency of tree nodes (and thus the ordering). Deletions may also make
some previously infrequent items “frequent” in the updated database (due to the
decrease in the number of transactions). When facing these situations, the AFPIM
algorithm requires lots of swapping, merging, and splitting of tree nodes (and
even rebuilding of trees).

In contrast, the ordering of items in our proposed CanTree is unaffected by
changes in frequency caused by incremental updates. As a result, no swapping is
needed for updating the database!

To summarize, the key success of our proposed CanTree over the CATS
tree/FELINE algorithm and the AFPIM algorithm is that the ordering of items
in the CanTree is unaffected by any changes in frequency due to deletions (or
insertions) of transactions.

4 Discussion on efficiency and memory issues

In this section, we discuss efficiency and memory issues of our proposed
CanTrees. On the surface, it appears that our CanTree may take a large amount
of memory. For instance, our CanTree may not be as compact as the CATS tree.
However, it is important to note that CATS trees do not necessarily reduce compu-
tation or time (e.g., a lot of computation spent on finding mergeable paths as well
as traversing paths both upwards and downwards). In contrast, our CanTrees sig-
nificantly reduce computation and time, because they easily find mergeable paths
and require only upward path traversals. As a result, our proposed CanTrees pro-
vide users with efficient incremental mining. Moreover, with modern technology,
main memory space is no longer a big concern. This explains why, in this paper,
we made the same realistic assumption as in many studies [12, 20, 31, 38] that
we have enough main memory space (in the sense that the trees can fit into the
memory).

Regarding the tree size, our CanTree–like FP-trees and CATS trees–is an ex-
tended prefix-tree structure that captures the content of the transaction database.
With the path sharing, the number of tree nodes is no more than the total number
of items in all transactions in the database.

4.1 CanTries: a variant of CanTrees

Although the number of tree nodes is no more than the total number of items in the
database, can we reduce the size of our CanTree? The answer is yes, by incorpo-
rating the idea of Patricia tries [32] into our CanTree. Here, we propose a variant
of CanTrees called CanTries. The key idea is as follows. Like FP-trees, CanTrees
work well for dense datasets–where there is higher probability for tree nodes to
share common paths. However, when datasets are sparse, such probability drops.
As a result, the number of tree nodes can get as large as, but not exceeding, the
total number of items in the database. When facing this situation, we can use a
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Fig. 5 The CanTries after each group of transactions is added

variant of CanTrees, called CanTries, to capture the content of transactions. The
structure of a CanTrie is quite similar to that of the CanTree, except that nodes
along the same path are coalesced into a mega-node if they have the same fre-
quency. Figure 5 shows how CanTries capture the content of databases (cf. Fig. 4).
By coalescing nodes that have the same frequency in the same path, we reduce the
memory requirement. For instance, we reduce the number of nodes from 10 nodes
in the rightmost CanTree in Fig. 4 to 7 nodes (i.e., 5 regular nodes plus 2 mega-
nodes) in the rightmost CanTrie in Fig. 5. Both CanTrees and CanTries capture the
same content of the updated database, but the latter require less memory space. For
a large (dense or sparse) database, CanTries can substantially reduce the amount
of memory required.

While reducing the amount of memory space, we do not sacrifice the runtime.
Given that we incorporated the idea of Patricia tries into our CanTries and that
the structures of both Patricia tries and CanTries are quite similar, we adopt the
PatriciaMine algorithm [32]–which was designed to mine frequent patterns from
Patricia tries–to mine frequent patterns from our proposed CanTries. It was known
that, for both dense and sparse datasets, mining from Patricia tries (e.g., using the
PatriciaMine algorithm) is more efficient than mining from FP-trees [16]. Hence,
mining from CanTries can be more efficient than mining from CanTrees.

While CanTries reduce the space requirement without sacrificing efficiency,
there could be situations even CanTries representing the databases do not fit into
memory. In these situations, recursive projections and partitioning are required
to break the CanTries into smaller pieces. As a result, additional performance
overhead may incur.

5 Applications of CanTrees

So far, we have shown how efficient our proposed CanTrees are for incremen-
tal mining. However, it is important to note that CanTrees also provide us with
additional functionalities. For example, CanTrees can be used for (i) constrained
mining, (ii) incremental constrained mining, (iii) interactive mining, as well as
(iv) incremental interactive mining.
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5.1 Applicability for constrained mining

Besides incremental mining, frequent-pattern mining has been generalized to
many forms since its introduction. These include constrained mining. The use
of constraints permits user focus and guidance, enables user exploration and con-
trol, and leads to effective pruning of the search space and efficient discovery
of frequent patterns satisfying the user-specified constraints. Over the past few
years, several FP-tree-based constrained mining algorithms have been developed
to handle various classes of constraints. For example, the FIC algorithms [30]
handle the so-called convertible constraints (e.g., Cconv ≡ avg(S.Price) ≤ 7
which finds frequent itemsets whose average item price is at most $7). As an-
other example, the FPS algorithm [25] supports the succinct constraints (e.g.,
Csucc ≡ max(S.Price) ≥ 30 which finds frequent itemsets whose maximum item
price is at least $30). The success of these algorithms partly depends on their abil-
ity to arrange the items according to some specific order in the FP-trees. More
specifically, FIC arranges items according to prefix function order R (e.g., ar-
ranges the items in ascending order of the price values for the above Cconv). Simi-
larly, FPS arranges items according to order M specifying their membership (e.g.,
arranges the items in such a way that mandatory items below optional items in the
tree for the aforementioned Csucc). For lack of space, we do not describe these
algorithms further; please refer to the work of Pei et al. [30] and Leung et al. [25]
for more details.

These constrained mining algorithms can use CanTrees (instead of FP-trees),
and arrange tree items according to some canonical order (e.g., order R for the
FIC algorithm, order M for the FPS algorithm). By mining from the CanTree,
constrained frequent patterns can be found. Hence, the CanTree can be considered
as an alternative tree structure (to the FP-tree) for capturing the content of the
database in constrained mining.

5.2 Applicability for incremental constrained mining

To a further extent, our proposed CanTree provides the user with additional func-
tionality to these algorithms, namely incremental constrained mining. More pre-
cisely, these algorithms can use CanTrees, and arrange tree items according to
some canonical order (e.g., order R for the FIC algorithm, order M for the FPS
algorithm). By doing so, when transactions are inserted into or deleted from the
original database, the algorithms no longer need to rescan the updated database
nor do they need to rebuild a new tree from scratch. In addition, no merging or
splitting of tree nodes is needed.

5.3 Applicability for interactive mining

In addition to incremental mining and constrained mining, frequent-pattern min-
ing has also been generalized to many other forms, which include interactive min-
ing. It is well known that finding an appropriate value for the minimum support
threshold minsup is challenging. On the one hand, setting minsup too low may
result in too many frequent patterns. On the other hand, setting minsup too high
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may result in too few frequent patterns. Interactive mining provides the user an
opportunity to interactively adjust or refine minsup. For interactive mining, the
database usually remains unchanged and only minsup gets changed. So, it fits the
“build once, mine many” principle, where the tree capturing the database content
is built once and used in mining with various minsup values. By doing so, the tree
construction cost can be amortized over several runs of the mining process.

Like CATS trees (used in the FELINE algorithm), our proposed CanTrees also
keep all items (regardless whether they are frequent or not). So, once a CanTree
is built, it can be mined repeatedly for frequent patterns using different minsup
values without the need to rebuild the tree. Given that the FELINE algorithm
with CATS trees can also handle interactive mining, why would users consider
CanTrees? What are advantages of CanTrees? The answers are as follows. First,
the CanTree can be considered as an alternative structure (other than the CATS
tree) for interactive mining. Second, in terms of tree construction, our proposed
CanTree requires less time to build than does the CATS tree. This is because items
in the CanTree are arranged in canonical order (which is a fixed global ordering),
whereas items in the CATS tree are arranged in descending local frequency or-
der. With the aim of making the tree compact, the tree construction process of
CATS trees requires extensive search for common items and mergeable paths dur-
ing the construction step. This, in turn, leads to lots of node swapping, merging,
and splitting. Third, in terms of mining, frequent patterns can be found more ef-
ficiently with our proposed CanTree than with the CATS tree. On the surface, it
may appear to be contradictory to some readers’ expectation. To elaborate, know-
ing that the CATS trees are usually more compact than are the CanTrees, one
would normally expect mining with CATS trees be more efficient than that with
CanTrees. However, a close examination reveals the secret. Although CATS trees
are usually smaller than the CanTrees, both upward and downward traversals on
CATS trees are needed to form projected databases during the mining process.
Conversely, although CanTrees are usually slightly bigger, there is no need for
having both upward and downward traversals on CanTrees–only upward traver-
sals are needed–to form projected databases during the mining process. This sig-
nificantly reduces computation! Let us give a concrete example. The formation of
all projected databases for the rightmost CATS tree in Fig. 2 requires traversals of
62 nodes, whereas that for the rightmost CanTrees in Fig. 4 (which captures the
same database contents) requires traversals of only 27 nodes!

To summarize, the runtime of interactive mining algorithms mainly depends
on the tree construction time and the actual mining time. As shown above (and
by our experimental results in Sect. 6), interactive mining with CanTrees requires
less time (to construct the tree structure for capturing content of the database and
to find frequent patterns with various minsup values) than using interactive mining
algorithm FELINE with the CATS tree. Thus, the CanTree is a good alternative
structure for interactive mining (where the CanTree is built once and mined many
times with different minsup values).

Along this direction, the mining time using CanTrees can be further reduced as
follows. We could cache the frequent patterns mined from the previous round, and
reuse them for the current round (when a different minsup is used). For example,
if the new minsup is higher than the old one used in the previous round, we could
find frequent patterns satisfying the new minsup by using those cached patterns.
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Otherwise (i.e., when the new minsup is lower than the old one), we could com-
bine the cached patterns together with “delta” patterns to form a complete set of
frequent patterns satisfying the new minsup. We would not need to traverse the en-
tire CanTree, but only relevant portion of the tree, to mine those “delta” patterns.
For lack of space, we do not describe this optimization technique further.

5.4 Applicability for incremental interactive mining

In Sect. 3, we showed how efficient our proposed CanTrees are for incremen-
tal mining. In the previous section (Sect. 5.3), we showed how efficient our
CanTrees are for interactive mining. For both forms of frequent-pattern mining
(i.e., incremental mining and interactive mining), the CanTree solves the prob-
lems/weaknesses of the CATS tree/FELINE algorithm, and requires less time in
finding frequent patterns. Hence, a natural question to ask is, “Can we combine
these two forms of mining and use CanTrees for the resulting form (namely, incre-
mental interactive mining)?” The answer is yes. By using our CanTrees, the user
can find frequent patterns with various minsup values from the current database
in multiple runs. When such a database is updated (e.g., due to insertions and/or
deletions of transactions), the CanTree can efficiently capture the content of the
updated database DB ′ so that new sets of frequent patterns for DB ′ can be found
using the same or a different minsup value.

6 Experimental results

In the experiments, we used different databases including (i) several transaction
databases generated by the program developed at IBM Almaden Research Center
[2], (ii) some real-life databases (e.g., mushroom, connect-4, etc.) from UC Irvine
Machine Learning Depository [5], and (iii) some databases from Frequent Itemset
Mining Dataset Repository [16]. The results produced are consistent. So, for space
consideration, we only show some experimental results in this section.

All experiments were run in a time-sharing environment in a 1 GHz machine.
The reported figures are based on the average of multiple runs. Runtime includes
CPU and I/Os; it includes the time for both tree construction and frequent-pattern
mining steps.

6.1 Effectiveness of CanTrees for incremental mining: comparison with the most
relevant work

Here, we conducted several experiments by mainly comparing the following al-
gorithms that were implemented in C: (i) the FELINE algorithms with the CATS
tree, (ii) the AFPIM algorithm (with the FP-tree), and (iii) the mining algorithm
with our proposed CanTree.



CanTree: a canonical-order tree for incremental frequent-pattern mining 303

0

200

400

600

800

1000

1200

1400

1600

1800

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

R
un

tim
e 

(in
 s

ec
on

ds
)

Minimum support threshold (in percentage)

Runtime vs. minsup (IBM data)

AFPIM
FELINE/CATS tree

CanTree

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90

R
un

tim
e 

(in
 s

ec
on

ds
)

Portion of database be DB (in percentage)

Runtime vs. DB/db percentage (IBM data)

AFPIM
FELINE/CATS tree

CanTree

0

200

400

600

800

1000

1200

0 1 2 3 4 5

R
un

tim
e 

(in
 s

ec
on

ds
)

Number of database updates

Runtime vs. #updates (IBM data)

AFPIM
FELINE/CATS tree

CanTree

0

20

40

60

80

100

120

140

160

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

tim
e 

(in
 s

ec
on

ds
)

Size of database (in million transactions)

Runtime vs. #transactions (IBM data)

CanTree

Fig. 6 Runtime: CanTree vs. the most relevant work for incremental mining (on the IBM trans-
action database)

6.1.1 Results on the IBM synthetic transaction database

We cite below the experimental results based on an IBM transaction database,
which consists of 1M transactions with an average transaction length of 10 items
and a domain of 1,000 distinct items.

In the first experiment, we divided the transaction database DB ′ into the “orig-
inal database” DB and the update portion db (i.e., DB ′ = DB ∪ db). We tested
how the minsup values affect the runtime of the algorithms. The y-axis of Fig. 6a
shows the runtime, and the x-axis shows minsup. When minsup decreases, the
runtime increases. Note that FP-trees for the AFPIM algorithm are usually smaller
than CATS trees and CanTrees, because only “frequent” items are kept in the FP-
trees. When minsup decreases, the corresponding FP-trees become bigger and take
longer to build. Moreover, the lower the minsup, the higher is the probability that
(i) frequencies of items in the tree get changed (which in turn lead to adjustment of
tree nodes) and/or (ii) new items get introduced (which in turn lead to construction
of a new tree). As for both CanTrees and CATS trees, their construction is inde-
pendent of minsup because they both keep all items in every transaction. Among
them, CATS trees take more time to build than do CanTrees due to extra computa-
tion in (i) swapping, merging, and splitting of tree nodes as well as (ii) searching
of common items and mergeable tree paths in CATS trees.

As for mining, both AFPIM and our proposal traverse upwards to form pro-
jected databases (for frequent items). Among the two, the AFPIM algorithm re-
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quires less traversal because the corresponding FP-trees are smaller. As for the
FELINE algorithm, it takes longer because it needs to traverse the correspond-
ing CATS trees both upwards and downwards when forming projected databases!
Hence, although CATS trees are slightly more compact than our CanTrees (e.g.,
CanTrees are 1.2 times bigger than CATS trees), mining with our CanTrees can
be faster (e.g., more than 1.2 times faster) than the FELINE algorithm with CATS
trees.

In the second experiment, we again divided DB ′ into DB and db so that DB
be p% of DB ′ and db be the remaining (100 − p)%. We varied the percentage
p from 10 to 90%. It was observed from Fig. 6b that both CATS trees and our
proposed CanTrees are not affected by the various percentage values. However,
for the AFPIM algorithm, the higher the percentage p (i.e., larger DB and smaller
db), the bigger is the FP-tree for DB. This means a higher probability for the
swapping, merging, and splitting of tree nodes (when the frequency order of items
gets changed due to incremental updating). However, it also means a lower proba-
bility for the introduction of new items (i.e., when some infrequent items become
“frequent” due to incremental updating so that the old tree does not cover these
items and new tree is needed). Hence, for low p% (e.g., p ≤ 40%), updates caused
tree rebuild; for high p% (e.g., p ≥ 50%), updates required node adjustment.

In the third experiment (see Fig. 6c), we divided DB ′ into DB and several
update portions. We tested the number of incremental updates on the runtime. The
larger the number of updates, the longer was the runtime for the AFPIM algo-
rithm. This is because frequent updates lead to a higher probability that (i) the
item-frequency order before and after the update is different (which leads to
swapping, merging, and splitting of tree nodes) and (ii) some new items were in-
troduced after the update (which leads to tree rebuild). This problem can be wors-
ened when using a database with items from a larger domain (e.g., 10,000 distinct
domain items).

In the fourth experiment, we tested scalability with the number of transactions.
The results in Fig. 6d show that mining with our proposed CanTrees has linear
scalability.

6.1.2 Results on the real-life “mushroom” database

As we conducted several experiments on various databases in addition to the
IBM synthetic transaction database, we show here additional results on a different
database–namely, the “mushroom” database [5, 16]. Such a database consists of
8,124 transactions with an average transaction length of 23 items and a domain of
119 distinct items.

As observed from Fig. 7, the results on the “mushroom” database is consistent
with those on the IBM database. So, for lack of space, we use the IBM database
for subsequent experiments.

6.1.3 Effects on the number of distinct items

The previous two sets of experiments were conducted with datasets containing
1,000 and 119 distinct items. Some readers may consider that these datasets are
more manageable; they may wonder how would the results change if the num-
ber of distinct items is larger? Here, we conducted an experiment by varying the
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Fig. 7 Runtime: CanTree vs. the most relevant work for incremental mining (on the “mush-
room” database)

number of distinct items in the database but fixing both the database size (1M
transactions) and minsup (0.05%). When the number of distinct items increases,
the runtime decreases. Why? With the increasing number of distinct items, the
corresponding CanTrees capturing the database become bigger and contain more
tree branches. However, with more distinct items in the database, the frequency
of each item drops. Consequently, the number of frequent patterns decreases. In
terms of runtime, the tree-construction cost slightly increases with a bigger tree,
but the mining cost drops much more with fewer frequent patterns.

6.2 Effectiveness of CanTrees for incremental mining: comparison with other
work

6.2.1 Comparison with rebuild

For any incremental techniques, a natural question to ask is whether incremental
techniques (in this case, incremental mining with CanTrees) are beneficial? Or,
will the use of incremental techniques be worse than without it? More specifi-
cally, our proposed CanTree captures the content of the transaction database; it
can be easily maintained when database transactions are inserted, deleted, and/or
modified during incremental updating. What if one does not use the CanTree?
Then, how to handle incremental mining? A natural, and naı̈ve, approach is to use
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an FP-tree to capture the content of the original database DB. When DB is up-
dated, discard this FP-tree that captures the content of DB, build a new FP-tree
to capture the content of the updated database DB ′, and use tree-based mining al-
gorithms (e.g., the FP-growth algorithm [17]) to find those frequent patterns from
this new FP-tree.

Here, we compared the following techniques that were implemented in C:
(i) incremental mining with our proposed CanTree and (ii) incremental mining
without our proposed CanTree (say, discard the old FP-tree and rebuild a new
one). Figure 8 shows the results where we divided the database into DB and sev-
eral update portions. We tested the effect of varying the number of incremental
updates on the runtime. The y-axis of Fig. 8 shows the runtime, and the x-axis
shows the number of updates. When there is no update on the database DB, min-
ing without CanTrees wins because the FP-tree is smaller (as it only keeps frequent
items). However, when there is an update (e.g., the same database is divided into
DB and an update portion db), CanTrees become the winner. The reason is that
CanTrees can be easily maintained when transactions are inserted or deleted, and
mining can be done using the updated CanTree (for DB ′ = DB ∪ db). So, the
runtime is just the time to construct the original CanTree (where tree construction
requires only one database scan), the time to update/maintain the CanTree (where
the maintenance cost is low), plus the mining time. In contrast, for mining with-
out the CanTree, the runtime is the time to construct two FP-trees (one for DB
and another for DB ′, and two database scans are required for the construction of
each tree) plus the mining time. As expected, when the number of update portions
increases, the gap between the two techniques increases (with our proposed tech-
nique becomes more superior). Therefore, it is beneficial to use CanTrees, which
help incremental mining.
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6.2.2 Comparison with Apriori-based algorithms

So far, we have compared with FP-tree-based algorithms. Next, let us compare
with FUP, FUP2, and UWEP. The results showed that these Apriori-based algo-
rithms take longer than does the AFPIM algorithm, which in turn takes longer
than does mining with CanTrees. This is because Apriori-based algorithms gen-
erate lots of candidate patterns, and FP-tree-based algorithms (e.g., the AFPIM
algorithm with FP-trees, mining with our CanTrees) avoid generation of these
candidates. Moreover, Apriori-based algorithms easily run out of memory when
minsup is small (e.g., 0.02%). Performance of Apriori is sensitive to minsup val-
ues.

6.3 Effectiveness of CanTrees for interactive mining

Recall from Sects. 5.1–5.4 that the applicability of our proposed CanTree is not
confined to incremental mining, CanTrees can be applicable to various forms of
mining including interactive mining. In this section, we show the effectiveness of
our proposed CanTrees for interactive mining. Specifically, in this experiment, we
compared the following two algorithms: (i) interactive mining with our proposed
CanTree and (ii) the FELINE algorithm with the CATS tree.

The runtime of interactive mining algorithms mainly depends on the tree con-
struction time and the actual mining time. The results show that, when comparing
with the FELINE algorithm with CATS trees, interactive mining with CanTrees
requires less time to (i) construct the tree structure for capturing content of the
database and (ii) find frequent patterns using various minsup values (see Fig. 9).

100

200

300

400

500

600

700

800

900

1000

0 1 2 3 4 5

R
un

tim
e 

(in
 s

ec
on

ds
)

Number of tree mining process (where #tree construction = 1) 

Runtime vs. #tree mining process

FELINE/CATS tree
CanTree

Fig. 9 Runtime for interactive mining: CanTree vs. CATS tree



308 C. K.-S. Leung et al.

Hence, the CanTree serves as a good alternative structure for interactive mining
(where the CanTree is built once and mined many).

7 Conclusions

A key contribution of this paper is to provide the user with a simple, but yet
powerful, tree structure for efficient FP-tree-based incremental mining. Specifi-
cally, we proposed and studied the novel structure of CanTree (canonical-order
tree). The tree captures the content of the transaction database, and arranges tree
nodes according to some canonical order that is unaffected by changes in item
frequency. By exploiting its nice properties, the CanTree can be easily maintained
when database transactions are inserted, deleted, and/or modified. Specifically, its
maintenance does not require merging and/or splitting of tree nodes. It avoids the
rescan of the entire updated database or the reconstruction of a new tree for incre-
mental updating. Moreover, our proposed CanTree can also be used for efficient
constrained as well as interactive mining of frequent patterns.
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