
2
Putting it All Together: An Example

Session with OSP 2

2.1 Chapter Objective

Your instructor has assigned you the Threads project to implement; see Chap-
ter 4. You are new to OSP 2 . What do you do? In this chapter, we present an
example session with OSP 2 that is intended to give you the guidance and
confidence you need to successfully complete your assignment.

2.2 Overview of Thread Management in OSP 2

The Threads project, as the name implies, deals with thread management
and scheduling, where threads are the executable and dispatchable units in
OSP 2 . Our example will focus on thread management, in particular, the re-
sumption of a thread from a waiting state. This activity is the responsibility of
the method do resume(), one of the methods you are to implement as part of
your implementation of the class ThreadCB.

Thread management involves the notions of thread creation, destruction,
suspension, resumption and dispatching; maintaining thread status; and mov-
ing threads between different (ready and waiting) queues. Underlying all
of this is the notion of a thread state, which can be one of ThreadReady,
ThreadWaiting, ThreadKill, etc.

40 2. Putting it All Together: An Example Session with OSP 2

An OSP 2 thread assumes the ThreadWaiting state when it enters the
pagefault handler or when it executes a blocking system call (e.g., write()).
The ThreadWaiting state is also known as the “level-0 waiting state”. While in
this state, a thread can again enter the pagefault handler or execute a blocking
system call, causing it to enter the level-1 waiting state, represented by the
constant ThreadWaiting+1. This process can continue indefinitely, leading to
arbitrarily nested depths of waiting.

When a thread completes the execution of the pagefault handler or blocking
system call, it should be moved up to the next highest waiting level by decre-
menting its waiting status; in the case of level 0 (ThreadWaiting, it should
transit to the ThreadReady state.

2.3 The Student Method do resume()

As mentioned previously, we will focus our attention during this example session
on the method do resume() of class ThreadCB. Its code is given in Figure 2.1.
Notice the use of the MyOut utility to insert student output in the file OSP.log.
For example, the statement

MyOut.print(this, "Resuming " + this);

will result in output such as

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

appearing in the log file, indicating that at simulation time 63, thread 0 of
task 1 is at waiting-level 2 (W2). The tag “Mod:” identifies this output as being
from a student module, making it easy for you to distinguish your output from
OSP 2 ’s in the log file.

Do resume() is one of the simplest methods in OSP 2 . All it needs to do
is decrement the thread’s waiting-level, place it on the ready queue if its new
status is ThreadReady, and call dispatch() so that some thread can be dis-
patched onto the CPU for execution.

Assuming that you have completed your design and coding of the Threads

project, let us proceed in a step-by-step fashion with the example session.

2.4 Step 1: Compiling and Running the Project 41

/** Resumes the thread.

Only a thread with status ThreadWaiting or higher can
be resumed. The status must be set to ThreadReady or
decremented, respectively. A ready thread should be

placed on the ready queue.

@OSPProject Threads
*/
public void do_resume()
{

if(getStatus() < ThreadWaiting) {
MyOut.print(this,

"Attempt to resume "
+ this + ", which wasn’t waiting");

return;
}

MyOut.print(this, "Resuming " + this);

// Set thread’s status.
if (getStatus() == ThreadWaiting) {

setStatus(ThreadReady);
} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()-1);

// Put the thread on the ready queue, if appropriate
if (getStatus() == ThreadReady)

readyQueue.append(this);

dispatch();
}

Figure 2.1 Code for student method do resume().

2.4 Step 1: Compiling and Running the Project

� You have a directory with all the necessary files in it for the Threads project:
ThreadCB.java, TimerInterruptHandler.java, OSP.jar, Makefile, etc.

� You have set the environment variable PATH appropriately so that the proper
version of JDK (1.5 or newer) will be invoked.

� On Unix-based systems, you can use the make command to compile the
project. For this example session, we will compile OSP 2 to run without the
GUI by issuing the command:

make runnogui

� Problems in compiling? If you think this could be due to stale .class files,

42 2. Putting it All Together: An Example Session with OSP 2

type make clean and then make to force recompilation of the entire project.

� To now run the project, type:

java -classpath .: osp.OSP -noGUI

2.5 Step 2: Examining the OSP.log File

Assuming for the moment that you have correctly implemented the Threads

project and OSP 2 ran successfully to completion without errors, let us now
take a look at a relevant snippet from the OSP.log file:

Sim: 63 [Memory.PageTableEntry]

Unlocking Page(12:1/0). New lock count: 0

Sim: 63 [Threads.ThreadCB]

Entering resume(Thread(0:1/W2))

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

Sim: 63 [Threads.ThreadCB]

Leaving resume(Thread(0:1/W1))

Mod: 63 [Hardware.Disk]

Device(0) has no pending IORBs to dequeue

At simulation time 63, thread 0 of task 1 has exited the pagefault handler
and is “resumed” by the student method do resume(). In this case, this means
the thread moves from waiting-level 2 to waiting-level 1.

The log file also contains statistics about tasks and threads generated during
our successful run of the Threads project. It is a good idea to have a look
at these too, both to see how well your implementation is performing and to
simply get a better understanding of how threads behave in OSP 2 .

TASKS and THREADS:

CPU Utilization: 61.382%

Average service time per thread: 36180.812

Average normalized service time per thread: 0.047044374

Total number of tasks: 4

Running thread(s): none

Threads summary: 18 alive

Among live threads: 0 running
6 suspended

0 ready

2.6 Step 3: Introducing an Error into do resume() 43

ready queue = ()

running thread(s) = ()

waiting thread(s) = (97:12,107:13,110:15,111:15,112:15,113:15)

thread(s) in pagefault = (110:15,115:13,124:13)

killed thread(s) = (7:1,15:1,13:1,12:1,10:1,9:1)

2.6 Step 3: Introducing an Error into
do resume()

Unfortunately, not all of your runs of OSP 2 will be as successful as the one
above: we all make programming mistakes, whether they be logical errors or
simply typographical errors. Let us consider what happens when the latter
occurs. In particular, suppose that in do resume(), instead of typing:

} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()-1);

you type:

} else if (getStatus() > ThreadWaiting)

setStatus(getStatus()+1);

This is not an uncommon mistake: typing a plus sign when indeed you
meant to type a minus sign. What are the consequences of this typo? Well, for
one, OSP 2 will terminate unsuccessfully at simulation time 63 and place the
following output in the log file:

Sim: 63

[Threads.ThreadCB]

Entering resume(Thread(0:1/W2))

Mod: 63 [Threads.ThreadCB]

Resuming Thread(0:1/W2)

Sim: 63 <<Error!>> [Threads.ThreadCB]

After do_resume(Thread(0:1/W3)): Thread status is

ThreadWaiting3; should be ThreadWaiting1

at osp.IFLModules.IflThreadCB.resume(IflThreadCB.java:1101)

at osp.IFLModules.Event.notifyThreads(Event.java:130)

at osp.Devices.DiskInterruptHandler.do_handleInterrupt

(DiskInterruptHandler.java:114)

at osp.IFLModules.IflDiskInterruptHandler.handleInterrupt

(IflDiskInterruptHandler.java:107)

44 2. Putting it All Together: An Example Session with OSP 2

at osp.Interrupts.Interrupts.interrupt(Interrupts.java:48)

at osp.Hardware.CPU.interrupt(CPU.java:54)

at osp.IFLModules.IflIORB.voidCallback(IflIORB.java:238)

at osp.IFLModules.CallbackDiskInterrupt.voidCallback

(IflDevice.java:604)

at osp.EventEngine.EventCallback.Activate(EventCallback.

java:48)

at osp.EventEngine.EventDriver.go(EventDriver.java:119)

at osp.EventEngine.EngineThread.run(EngineThread.java:60)

As you can see, the simulator has detected our error! What follows the
error message is a dump of the system-call stack which indicates the sequence
of method calls that led to the problem. Not surprisingly, OSP 2 ’s IFL version
of do resume is at the top of the stack, as it was in this “wrapper method”
where the error was detected. In an actual debugging situation, you would use
this information to isolate and repair the problem in your implementation of
the do resume() method.

To complete our example session, here are the statistics for tasks and threads
that can be found in the log file at the end of our unsuccessful run.

TASKS and THREADS:

CPU Utilization: 28.57143%

Average service time per thread: 63.0
Average normalized service time per thread: 0.28125

Total number of tasks: 1

Running thread(s): none

Threads summary: 1 alive

Among live threads: 0 running

1 suspended

0 ready

ready queue = ()

running thread(s) = ()

waiting thread(s) = (0:1)

thread(s) in pagefault = (0:1)

killed thread(s) = ()

	Putting it All Together: An Example

