3

TASKS: Management of Tasks (a.k.a.
Processes)

3.1 Chapter Objective

The objective of the TASKS project is to teach students about task manage-
ment in a modern-day operating system and to provide them with a well-
structured programming environment in which to implement task-management
techniques. To this end, students will be asked to implement the OSP 2 class
TaskCB, the only class of package TASKS. TaskCB stands for Task Control Block,
the OSP 2 object used to represent tasks.

3.2 Conceptual Background

Like other modern operating systems, OSP 2 distinguishes between program
execution and resource ownership. The former is captured through the concept
of a thread, which represents a running program, and the latter is captured
using the concept of a task. In older operating systems, like traditional Unix,
the process filled both of these roles; actually, we sometimes use the term
“process” as a synonym for task. In OSP 2, a task serves as a “container” for
one or more threads, all executing the same code and sharing the same memory
address space. Also associated with a task is a swap file containing an image of

46 3. Tasks: Management of Tasks (a.k.a. Processes)

the task’s address space, other files opened by the task’s constituent threads,
and the communication ports created by these threads. We say that these
resources (memory, ports, files, etc.) are owned by the task and shared by the
task’s threads; this explains how the issue of resource ownership is organized
around the concept of a task.

Threads are the schedulable and dispatchable units of execution in OSP 2.
They are sometimes referred to as “lightweight processes” for it is much easier
in a multiprogramming OS to switch the CPU from one thread to another than
from one process to another, due to above-explained separation of program ex-
ecution and resource ownership in an OS supporting the task/thread doctrine.
We will have more to say about threads in the next chapter.

A task can be created or destroyed, newly created threads can be added to
a task, and threads are deleted from the owner task’s thread list after they are
destroyed. There is also a system-wide notion of the current task, which is
the task that owns the currently running thread. This thread is known as the
current thread of the task.

In the rest of this chapter we describe TaskCB, the only class in the TASKS
package. The class diagram of Figure [3] puts TaskCB in context with related
classes.

3.3 Class TaskCB

Tasks are represented by the class TaskCB, which is the only class to be imple-
mented in the TASKS project. It is defined as follows:

¢ public class TaskCB extends If1TaskCB
The following methods are to be implemented as part of this project:

¢ public static void init()
This method is called at the very beginning of simulation and can be used
to initialize static variables of the class, if necessary.

¢ public static TaskCB do create()
This method creates a new task object and then initializes it properly.

In OSP 2, creation of a task involves the creation of a task object, allocation
of resources to the task, and various initializations. The task object is created
using the default task constructor TaskCB (). First, a page table must be cre-
ated using the PageTable () constructor, and associated with the task using
the method setPageTable (). Second, a task must keep track of its threads
(objects of type ThreadCB), communication ports (objects of type PortCB),

3.3 Class TaskCB

Tasks

getiD()
getPageTable()
setPageTable()
getStatus()
setStatus()
getPriority()
setPriority()
getCurrentThread()
setCurrentThread()
getSwapFile()
setSwapFile()

TaskCB builtins

47

do_create()

do_kill()
do_getThreadCount()
do_addThread()
do_removeThread()
do_getPortCount()
do_addPort()
do_removePort()
do_addFile()
do_removeFile()

TaskCB - your part

HClock
ThreadCB

MMU
PageTable
GlobalVariables
FileSys
OpenfFile

Other Classes

Figure 3.1 Overview of the package TASKS.

and files (objects of type OpenFile), which means that the appropriate struc-

tures have to be created. OSP 2 does not have any specific requirements for

these data structures, except that they must correctly maintain the inventory

of threads, ports, and files attached to the task. Lists or variable-size arrays

are good candidates.

Next, the task-creation time should be set equal to the current

3. Tasks: Management of Tasks (a.k.a. Processes)

simulation time (available through the class HClock), the status should be
set to TaskLive, and the task priority should be set to some integer value.
OSP 2 does not prescribe what this value should be; it is determined by the
requirements of the project and might be specified by the instructor (if, for
example, the scheduling strategy implemented in the THREADS project uses
task priorities).

The next important step is the creation of the swap file for the task. A swap
file contains the image of the task’s virtual memory space and thus is equal
to the maximal number of bytes in the virtual address space of the task. In
OSP 2 this number is determined by the number of bits needed to specify an
address in the virtual address space of a task, and is obtained using the fol-
lowing method: MMU. getVirtualAddressBits (). The name of the swap file
is, by convention, the same as the task ID number, and the file itself resides
in the directory specified by the global constant SwapDeviceMountPoint. To
create the swap file, you should use the static method create() of class
FileSys. Then the file has to be opened using the static method open() of
OpenFile. The open() method takes a string that represents a full path name
of a file and returns a run-time file handle that is used in the read, write,
and close file operations. The resulting open-file handle should be saved in
the task data structure using the method setSwapFile ().

An open() operation can fail due to lack of space on the swap device. In this
case the do create() method of TaskCB should dispatch a new thread and
return null.

A task in OSP 2 must have at least one live thread, so you need to create the
first thread for the task using the static method create() of class Thread-
CB. Finally, the TaskCB object created and initialized by your do create()
method should be returnedEl

public void do kill()

This method is called to destroy a task. First, it should iterate through the
list of all live threads of the task and ki11() them. (Recall that maintenance
of this list is entirely the responsibility of your implementation.) Each time
a thread is killed, the do removeThread () method is called by the THREADS
package. The do ki11 () method should then iterate over the ports attached
to the task and destroy() them as well. Each request to destroy a port
will eventually result in a call to your do removePort () method. The status

There is no need to invoke the dispatch() method of ThreadCB in order to schedule
a thread to run after the do create() system call is complete. Since a new thread
is created as part of the process of task creation, dispatch() will be called by
the create() method of ThreadCB. However, calling dispatch() before leaving
do create() is harmless.

3.3 Class TaskCB 49

N

of the task should be set to TaskTerm (terminated task) and the memory
previously allocated to the task should be released. The latter is accomplished
by invoking the method deallocateMemory () of class PageTable on the page
table of the task.

The last resource left to be released by the task is the set of files opened
by the various threads of the task and the swap file of the task. The open
files table of a task is a data structure that should be maintained as part
of the implementation of class TaskCB and should include all files opened by
the threads of the task (which are objects of class OpenFile); OSP 2 does
not prescribe how this should be done. To free up this resource, you must
close() every file in the open files table.

You should keep in mind that each call to close () eventually results in a call
to your method do removeFile (). However, this might not happen immedi-
ately. When you close a file that is the target of an active I/O operation, i.e.,
an operation that is currently being processed by an external device such as
a disk, the file is not closed immediately. Rather, the system will remember
that the file needs to be closed and will re-issue the close () command when
the I/O operation completes. Because of this possible delay, some files of
the task can remain open for a period of time even after you perform the
close() operation on every open file. This means, of course, that calls to
your method do removeFile () might be similarly delayed.

Finally, the swap file of the task must be destroyed using method delete ()
of FileSyslq The argument to this method is the name of the swap file (see
the discussion of do create()).

public int do getThreadCount ()
This method must return a correct thread count, which must be maintained
as part of the implementation of the do create() and do kill() methods.

public int do addThread(ThreadCB thread)

This method is called by other parts of OSP 2 whenever a new thread is
created. The purpose of these calls is to notify TaskCB of the creation of
a new thread so that the inventory of threads owned by the task can be
properly updated. SUCCESS is to be returned unless the maximum number
of threads for this task has been reached, in which case, FAILURE should be
returned.

public int do removeThread(ThreadCB thread)
This method is called when a thread is destroyed. The thread should be
Closing a file does not deallocate the space; it merely removes the file handle and

flushes the data on disk. Deleting a file removes a hard link to the file, and when
the number of such links becomes zero, the file space is freed.

50

3. Tasks: Management of Tasks (a.k.a. Processes)

removed from the list of threads owned by the task. SUCCESS should be
returned if the thread belongs to the task and FAILURE otherwise.

public int do getPortCount ()
Returns the number of ports owned by the task.

public int do addPort(PortCB newPort)

This method is called when a new communication port is created by one of
the task’s constituent threads. It enables TaskCB to maintain the inventory
of ports that belong to the task. If the maximum number of ports for this
task has been reached, FAILURE should be returned. Otherwise, SUCCESS is
returned.

public int do removePort (PortCB oldPort)

This method is called when one of the task’s communication ports is de-
stroyed. The method should remove the port from the list of ports main-
tained by TaskCB. SUCCESS is to be returned if the port belongs to the task;
FAILURE otherwise.

public void do addFile(OpenFile file)

Adds file to the table of open files of the task. The implementation of
the table is entirely up to the student. This method is typically called
by the method open() of class OpenFile (indirectly, through the wrapper
addFile()).

public int do removeFile(OpenFile file)

Removes file from the table of open files of the task. This method is typi-
cally called by the method close() of class OpenFile. It returns SUCCESS if
the file belongs to the task; FAILURE otherwise.

Relevant methods and fields defined in this and other packages.
The following public methods and fields of other classes are useful for imple-
menting the methods of the TASKS project.

&

public final static float get() HClock
Returns the current simulation time.

static public int MaxThreadsPerTask ThreadCB
Maximum allowed number of threads per task.

final static public void dispatch() ThreadCB
Dispatches a new thread.

public static int MaxPortsPerTask PortCB
Maximum allowed number of ports per task.

3.3 Class TaskCB 51

© final public int destroy() PortCB
Destroys the port on which it is called.

© static public int getVirtualAddressBits() MMU
Returns the number of bits needed to specify a virtual address. Can be used
to determine the size of the swap file.

© final public PageTable getPageTable() TaskCB
Returns the page table of the task.

¢ final public void deallocateMemory() PageTable
Deallocates (frees) the memory used by the task. Called when a task is
terminated. Is invoked on the task’s page table.

© public PageTable(TaskCB ownerTask) PageTable
Page table constructor (should be used with the new operator). Used to
create a page table object for a newly created task. This object must then
be associated with the task using the setPageTable () method.

¢ public final static String SwapDeviceMountPoint GlobalVariables
The mount point for the swap device in the file system. It is the name of
the directory where all swap files live, and is terminated with a slash or
a backslash. The name of the task’s swap file is SwapDeviceMountPoint
concatenated with the task ID.

¢ final public static int create(String name, int size) FileSys
Here name is the full path name of the file and size is the desired initial
size in bytes. The size of a file is assumed to always be a multiple of the
disk block size (which is identical to the virtual memory page/frame size).
This method returns SUCCESS if the file is successfully created and FAILURE
otherwise. A create() operation can fail if, for example, the device does
not have enough space.

© final public static void delete(String name) FileSys
Deletes the file. (See the description of class FileSys for more details about
this method.)

o final public static OpenFile open(String name,TaskCB task)
OpenFile

Opens the file name and returns a file handle for use at run time to read
and write the file.

¢ final public int close() OpenFile
When invoked on an open file handle, closes the file. Returns SUCCESS if
the file is successfully closed and FAILURE otherwise. A close () operation
might fail, for example, if the file has outstanding I/O operations.

¢ final static public ThreadCB create(TaskCB task) ThreadCB

Creates an active thread for the task supplied as an argument. Returns the
created thread.

52 3. Tasks: Management of Tasks (a.k.a. Processes)

¢ final public void kill() ThreadCB
Destroys the thread. Notice that this method calls your implementation of
do removeThread () to disassociate the thread from the task.

Summary of Class TaskCB

The following table summarizes the attributes of class TaskCB and the methods
for manipulating them. These attributes and methods are provided by the class
If1TaskCB and are inherited. The methods appearing in the table are more fully
described in Section B4

Identity: The identity of a task is set by the system, but it can be queried with
the method getID().

Page table: The page table of a task is set with the method setPageTable ()
and can be retrieved using getPageTable().

Status: The status of a task is handled using the methods setStatus() and
getStatus().

Priority: The status of a task is handled using the methods setPriority()
and getPriority(Q).

Current thread: Indicates which thread of a task is currently running. The
methods to query and modify this attribute are getCurrentThread () and
setCurrentThread().

Creation time: The creation time of a task is handled using the methods
getCreationTime () and setCreationTime().

Swap file: A task’s swap file is set and retrieved using the methods
getSwapFile() and setSwapFile().

Table of open files: Keeps track of all of the open files of a task, which are
instances of class OpenFile. OSP 2 does not impose any requirements to
how this table is maintained as long as it properly keeps inventory of a
task’s open files. Two methods are used in conjunction with this table:
addFile() and removeFile(). Calls to these methods by other packages
are intended to notify a task as to which files it owns. In addition, when
a task is destroyed, all its files must be closed. This is performed as part
of the do k111 () method, which must iterate through this table and close
all the files in it. The do -versions of the addFile() and removeFile()
methods are part of the TASKS project. Note that TaskCB never calls these
methods—it implements them.

3.4 Methods Exported by the TASKS Package 53

Table of ports: Keeps track of all of the communication ports owned by a task.
OSP 2 does not define a specific variable by which to refer to this table,
and the internal data structure used to implement it is entirely up to the
student. However, the following methods are defined to manipulate this
table: getPortCount (), addPort (), and removePort (). The first indicates
how many open ports the task has; the second is used to attach a new port
to the task; and the last is used to remove destroyed ports. The do -versions
of these methods are part of the TASKS project. TaskCB implements these
methods—it never calls them.

Table of live threads: As with ports, OSP 2 does not prescribe how this table is
to be implemented. However, the following methods are defined to manip-
ulate this table: getThreadCount (), addThread (), and removeThread() .
The first method counts the number of live threads owned by the task, the
second adds newly created threads to tasks, and the third method removes
killed threads. The do -versions of these methods are implemented by the
student. These methods are implemented by TaskCB— they are never called
by this class.

3.4 Methods Exported by the TAsks Package

The following is a summary of the public methods defined in the classes of
the TASKS package or in its superclasses. These methods can be used in the
implementation of this or other student packages. To the right of each method
we list the class of the objects to which the method applies. In the case of the
TAskS package, all exported methods belong to a single class, TaskCB, which
inherits them from the superclass If1TaskCB. In general, the public methods
exported by a student package may belong to more than one class; see, for
example, package MEMORY (Section [1.8]).

o final public void setPageTable(PageTable table) TaskCB
Sets the page table of the task.

o final public PageTable getPageTable() TaskCB
Returns the page table of the task.

o final public int getStatus() TaskCB
Returns the status of the task. Allowed values are TaskLive, for live tasks,
and TaskTerm, for terminated tasks.

o final public void setStatus(int s) TaskCB
Sets the status of the task.

3. Tasks: Management of Tasks (a.k.a. Processes)

final public int getPriority() TaskCB
Returns the priority of the task.

final public void setPriority(int p) TaskCB
Sets the priority of the task.

public ThreadCB getCurrentThread() TaskCB
Returns the current thread of the task. The current thread is the thread
that will run when the task is made current by the dispatcher.

public void setCurrentThread(ThreadCB t) TaskCB
Sets the current thread of the task.

final public int getID() TaskCB
Returns the ID of the task.

final public double getCreationTime () TaskCB
Returns the task creation time.

final public void setCreationTime(double time) TaskCB
Sets the task creation time to time.

public final OpenFile getSwapFile() TaskCB
Returns the swap file of the task.

public final void setSwapFile(OpenFile file) TaskCB
Sets the swap file of task to file.

final public int addThread(ThreadCB thread) TaskCB
Adds the specified thread to the list of threads of the given task.

final public int removeThread(ThreadCB thread) TaskCB
Removes the specified thread from the list of threads of the given task.

final public int getThreadCount () TaskCB
Returns the number of threads in the task.

public final void addFile(OpenFile file) TaskCB
Adds file to the table of open files of the task. The implementation of the
table is entirely up to the student.

public final void removeFile(OpenFile file) TaskCB
Removes file from the table of open files of the task.

final public int addPort(PortCB newPort) TaskCB
Adds newPort to the list of ports associated with the task.

final public int removePort (PortCB oldPort) TaskCB
Removes oldPort from the list of ports owned by the task.

3.4 Methods Exported by the TASKS Package 55

o final public int getPortCount() TaskCB
Returns the number of ports owned by the task.

	Tasks: Management of Tasks (a.k.a.Processes)

