
4
Threads: Management and Scheduling

of Threads

4.1 Chapter Objective

Threads are the schedulable and dispatchable units of execution in OSP 2 .
The objective of the Threads project is to teach students about thread man-
agement and scheduling in a modern-day operating system and to provide
them with a well-structured programming environment in which to implement
thread-management and scheduling techniques. To this end, students will be
asked to implement the two public classes of the Threads package: ThreadCB
and TimerInterruptHandler. The former implements the most common op-
erations on a thread, while the latter is a timer interrupt handler that can be
used to implement time-quantum-based scheduling algorithms for threads. We
begin this chapter with an overview of thread basics.

4.2 Overview of Threads

Multi-threading refers to the ability of an OS to support multiple threads of
execution within a single task. There are at least four reasons why it is desirable
to structure applications as multi-threaded ones:

Parallel Processing: A multi-threaded application can process one batch of



58 4. Threads: Management and Scheduling of Threads

data while another is being input from a device. On a multiprocessor archi-
tecture, threads may be able to execute in parallel, leading to more work
getting done in less time.

Program Structuring: Threads represent a modular means of structuring an
application that needs to perform multiple, independent activities.

Interactive Applications: In an interactive application, one thread can be used
to carry out the current command while, at the same time, another thread
prompts the user for the next command. This pipelining effect can lead to
a perceived increase in the speed of the application.

Asynchronous Activity: A thread can be created whose sole job is to schedule
itself to perform periodic backups in support of the main thread of control
in a given application.

Concurrency: Threads can execute concurrently. Thus, for example, a server
process can service a number of clients concurrently: each client request
triggers the creation of a new thread within the server.

We thus see that there is considerable incentive from an application program-
ming perspective for an OS to support multi-threading.

Threads as Independent Entities. As explained in Chapter 3, the re-
sources available to a thread, such as memory, open files and communication
ports, are those belonging to the task to which the thread is affiliated. That
is, a task is a container for one or more threads and each of these threads has
shared access to the resources owned by the task. There is, however, certain
information associated with a thread that allows it to execute as a more or less
independent entity:

� A thread execution state (Running, Ready, Blocked, etc.).

� A saved thread context when not running. This context includes the contents
of the machine registers when it was last running; in particular, every thread
has its own, independent program counter.

� An execution stack.

� A certain amount of per-thread static1 storage for local variables.

� Access to the memory and resources of its container task; it shares these
resources with the other threads in that task.

1 Not to be confused with the Java keyword static used to define a variable as a
class variable or a method as a class method.



4.2 Overview of Threads 59

It is worth taking time to emphasize the implications of this last item. All
the threads of a given task reside in the same address space and have access
to the same data. Consequently, when one thread modifies a piece of data, the
effect of this change is visible to the other threads should they subsequently
decide to read this data item. If one thread opens a file with read access, the
other threads in the same task will also be able to read from this file. It is thus
imperative that when programming a multi-threaded application, the actions
of the threads be carefully coordinated; otherwise conflicts could easily arise
that could hinder the threads from performing their desired computation.

Scheduling Algorithms for Threads. As previously noted, threads are
the schedulable units of execution in OSP 2 and any other OS that supports
threads. This represents a shift from older operating systems like traditional
Unix in which processes played this role.2 Thread scheduling is an integral part
of multiprogramming: when the currently executing thread becomes blocked
waiting for some event to occur, this represents a golden opportunity for the
OS to perform a context switch so that a ready-to-run thread can be given
control of the CPU. In this way, the CPU is kept busy most of the time,
thereby increasing its utilization.

So what are the kinds of events that threads may block on? These include
I/O interrupts and software signals. It should be noted, however, that an OS
can decide to perform a context switch any time it is convenient, again for
the purpose of improving system performance. Convenient in this case means
any time control resides within the OS, and include occasions such as timer
interrupts and system call invocations.

The question you must now ask yourself is which thread should the OS
schedule next when a context switch is to take place? The decision taken here
is critical; it can significantly impact a variety of performance-related measures,
such as:

CPU utilization: the percentage of time the CPU is kept busy (not idle).

Throughput: the number of jobs or tasks processed per unit of time.

Response time: the amount of time needed to process an interactive command.
Typically one is interested in the average response time over all commands.

Turnaround time: The amount of time needed to process a given task. Includes
actual execution time plus time spent waiting for resources, including the
CPU.

2 Modern Unix implementations, like SUN’s Solaris, IBM’s AIX, and Linux, do, of
course, support threads.



60 4. Threads: Management and Scheduling of Threads

The answer to the question as to which thread to schedule next lies in
the CPU scheduling algorithm the OS implements. A variety of scheduling
algorithms have been proposed in the literature and they can be classified along
the following lines:

Emphasis on response time vs. CPU utilization. Algorithms of the former kind
can be thought of as user-oriented and those of the latter kind as system-
oriented.

Preemptive vs. nonpreemptive. A preemptive algorithm may interrupt a thread
and move it to the ready-to-run queue, while in the nonpreemptive case,
a thread continues to execute until it terminates or blocks on some event.
Several preemptive algorithms preempt a thread after it has finished up its
“slice” or quantum of CPU time.

Fair vs. unfair. In a fair algorithm, every thread that requires access to the
CPU eventually gets time on the CPU. In the absence of fairness, starva-
tion is possible and the algorithm is said to be unfair in this case.

Choice of selection function. The selection function determines which thread,
among the ready-to-run threads, is selected next for execution. The choice
can be based on priority, resource requirements, or execution characteristics
of the thread such as the amount of elapsed time since the thread last got
to execute on the CPU.

We now briefly describe some of the more common scheduling algorithms
that have been proposed. In describing these algorithms, we assume the exis-
tence of a ready queue where ready-to-run threads lie in wait for the CPU.

First-Come-First-Served (FCFS) As the name indicates, threads are serviced
in the order they entered the ready queue. This is probably the simplest
scheduling algorithm that has been proposed and has the tendency to favor
long, CPU-intensive threads over short, I/O-bound threads.

Round Robin. Like FCFS but each thread gets to execute for a length of time
known as the time slice or time quantum before it is preempted and
placed back on the ready queue. Time slicing can be used to allow short-
lived threads, corresponding to interactive commands, to get through the
system quickly, thereby improving the system’s response time.

Shortest Thread Next (STN). This is a nonpreemptive policy in which the
thread with the shortest expected processing time is selected next. Like
round robin, it tends to favor I/O-bound threads. The scheduler must have
an estimate of processing time to perform the selection function.



4.3 The Class ThreadCB 61

Shortest Remaining Time (SRT). This is a preemptive version of STN in which
the thread with the shortest expected remaining processing time is selected
next. SRT tends to yield superior turnaround time performance compared
with STN.

Highest Response Ratio Next (HRRN). A nonpreemptive algorithm that
chooses the thread with the highest value of the ratio of R = w+s

s , where R

is called the response ratio, w is the time spent waiting for the CPU, and
s is the expected service time. Favors short threads but also gives priority
to aging threads with high values for w.

Feedback. This algorithm, sometimes referred to as “multi-level round robin”
utilizes a series of queues, each with their own time quantum. Threads enter
the system at the top-level queue. If a thread gains control of the CPU
and exhausts its time quantum, it is demoted to the next lower queue.
The lowest queue implements pure round robin. The selection function
chooses the thread at the head of the highest non-empty queue. Thus this
algorithm penalizes long-running threads since each time they use up their
time quantum, they are demoted to the next lower queue.

Priority-Driven Preemptive Scheduling. The basic idea of this scheme is that
when a thread becomes ready to execute whose priority is higher than the
currently executing thread, the lower-priority thread is preempted and the
processor is given to the higher-priority thread. Thread priorities may be
computed statically (threads have a fixed priority that never changes) or
adjusted dynamically (a thread’s priority begins at some initial assigned
value and then may change, up or down, during the thread’s lifetime). The
priority-driven preemptive approach to thread scheduling is especially im-
portant in operating systems that support real-time threads or processes,
such as Linux, Unix SVR4, and Windows 2000/XP/Vista.

The rest of this chapter describes each class in the package Threads in
detail. These classes are placed in a larger context in the class diagram given
in Figure 4.1.

4.3 The Class ThreadCB

ThreadCB stands for thread control block; it is a class that contains all
the structures necessary for maintaining the information about each particular
thread. This class is defined as follows:

� public class ThreadCB extends IflThreadCB



62 4. Threads: Management and Scheduling of Threads

Figure 4.1 Overview of the package Threads.

Like other classes that belong to student projects, this class defines methods
that start with do_ and that are wrapped with similarly named methods in
class IflThreadCB. Before discussing the required functionality of the methods
in ThreadCB we need to look deeper into the nature of OSP 2 threads.



4.3 The Class ThreadCB 63

Figure 4.2 The state transition diagram for OSP 2 threads.

State transitions. Thread management is concerned with two main issues:
the life cycle of a thread (i.e., creation and destruction of threads) and
maintaining thread status and moving threads between different queues and
CPU (suspension, resumption, and dispatching). Therefore, to understand
thread management in OSP 2 it is important to understand the different states
a thread can be in and how state transitions take place. Figure 4.2 illustrates
this issue.

When a thread is first created, it enters the ready state (ThreadReady),
which means it must be placed on the queue of ready-to-run threads. OSP 2

does not prescribe how this queue is supposed to be organized and it is entirely
up to the student implementation, unless the instructor has specific require-
ments.

From then on, two things can happen: a ready-to-run thread can be sched-
uled to run (and dispatched) and gain control of the CPU (and thus change
its status to ThreadRunning), or it can be destroyed (or killed) and change
its status to ThreadKill.

A thread can be dispatched only if it has the status ThreadReady, but a
live thread (i.e., one that has status other than ThreadKill) can be killed in
any state, not only in the ready state. One sad thing about OSP 2 threads
is that they never die of natural causes: they either get destroyed by some-
body else or self-destroy. In other words, there is no separate system call to



64 4. Threads: Management and Scheduling of Threads

terminate a thread normally and there is no special state to denote normal
thread termination.

A running thread can be preempted and placed back into the ready queue
or it can be suspended to the waiting state. The latter can happen due to
a pagefault or when the thread executes a blocking system call, such as an
I/O operation or a communication (sending or receiving a message). OSP 2

does not place any restrictions on the way the ready queue is implemented, so
you should use your own design. However, your instructor may have specific
requirements to how scheduling is to be done. In this case, some designs might
be much better than others.

An OSP 2 thread can be at several levels of waiting. When a running thread
enters the pagefault handler or when it executes a blocking system call (e.g.,
write()), it enters the level 0 waiting state represented by the integer con-
stant ThreadWaiting. Level 1 waiting state is represented by the constant
ThreadWaiting+1, etc.

A thread is not always blocked when it enters a waiting state. For instance,
when a thread causes a pagefault or executes a write() operation on a file, its
waiting state signifies that in order to continue execution of the user program
the thread needs to wait until the pagefault or the system call is finished. In
other words, the thread switches hats: it leaves the user program and becomes
a system thread. A system thread might do some work needed to process the
request and then it might execute another system call. At this point, it would
enter the waiting state at level 1, which signifies that the original thread has
to wait for two system calls to complete. If the second system call is blocking
(e.g., involves I/O), the execution of the thread will block until the appropriate
event happens (e.g., the I/O completes).

To illustrate this process, consider processing of a pagefault (Chapter 5).
When a pagefault occurs, the thread enters the level 0 waiting state, executes
a page replacement algorithm and then makes a system call to write(). When
the write() call starts execution, the thread’s waiting level is bumped up to
1. After assembling a proper I/O request to the swap device, the thread will
suspend itself on a blocking event, to wait for the I/O. At this point, the thread
will be in state ThreadWaiting+2. When the I/O is finished, the resume()

method is executed on the thread and it drops into the level 1 waiting state.
When the write() system call is about to exit, another resume() is executed
and the thread’s wait level drops to 0 (i.e., its state becomes ThreadWaiting

again). Next, while still in the pagefault handler, the thread would execute the
read() system call and go into the waiting state at levels 1 and 2, similar to
the write() call. When the read() operation is finished, the ensuing resume()

operations will drop the thread to level 0 again. At this point, the pagefault
handler performs some record-keeping operations (see Chapter 5), executes a



4.3 The Class ThreadCB 65

resume() operation and exits. This causes the thread to change its status from
ThreadWaiting to ThreadReady.

In sum, an OSP 2 thread can be suspended to several levels of depth by exe-
cuting a sequence of nested suspend() operations. When all the corresponding
events happen, the resume() method is called on the thread, which decreases
the wait level by 1. When all the events on which the thread is suspended occur,
the thread goes back into the ThreadReady state.

Context switching. Passing control of the CPU from one thread to an-
other is called context switching. This has two distinct phases: preempting
the currently running thread and dispatching another thread. Preempting a
thread involves the following steps:

1. Changing of the state of the currently running thread from ThreadRunning

to whatever is appropriate in the particular case. For instance, if a thread
loses control of the CPU because it has to wait for I/O, then its status might
become ThreadWaiting. If the thread has used up its time quantum, then
the new status should become ThreadReady. Changing the status is done
using the method setStatus() described later.

This step requires knowing the currently running thread. The call MMU.
getPTBR() (described below) lets you find the page table of the currently
scheduled task. The task itself can be obtained by applying the method
getTask() to this page table. The currently running thread is then deter-
mined using the method getCurrentThread().

2. Setting the page table base register (PTBR) to null. PTBR is a reg-
ister of the memory management unit (a piece of hardware that controls
memory access), or MMU, which always points to the page table of the run-
ning thread. This is how MMU knows which page table to use for address
translation. In OSP 2 , PTBR can be accessed using the static methods
getPTBR() and setPTBR() of class MMU.

3. Changing the current thread of the previously running task to null. The
current thread of a task can be set using the method setCurrentThread().

When a thread, t, is selected to run, it must be given control of the CPU. This
is called dispatching a thread and involves a sequence of steps similar to the
steps for preempting threads:

1. The status of t is changed from ThreadReady to ThreadRunning.

2. PTBR is set to point to the page table of the task that owns t. The page
table of a task can be obtained via the method getPageTable(), and the
PTBR is set using the method setPTBR() of class MMU.



66 4. Threads: Management and Scheduling of Threads

3. The current thread of the above task must be set to t using the method
setCurrentThread().

In practice, context switch is performed as part of the dispatch() operation,
and steps 2 and 3 in the first list above can be combined with steps 2 and 3 of
the second list.

In the degenerate case, when the running thread t is suspended and no other
thread takes control of the CPU, consider it as a context switch from t to the
imaginary “null thread”. Likewise, if no process is running and the dispatcher
chooses some ready-to-run thread for execution, you can view it as a context
switch from the null thread to t.

Events. Before going on you must revisit Section 1.6, which describes the
Event class.

The state transition diagram shows that to a large extent thread manage-
ment is driven by two operations: suspend() and resume(). The suspend op-
eration places a thread into a waiting queue of the event passed as an argument
(and increases the wait level) and the resume operation decreases the wait level
and, if appropriate, places it into the queue of ready-to-run threads (in which
all threads are in the ThreadReady state). All this is accomplished using the
Event class discussed in Section 1.6. Note that, as described earlier, a thread
can execute several suspend operations on different events, so it might find itself
in different waiting queues. The thread will be notified about the completion of
these events in the order opposite to that in which the suspend() operations
were performed. After all the relevant events have occurred, the thread is free
to execute again and is placed on the ready queue.

Only the first method in class Event, addThread(), is really necessary for
the Threads project, but other methods might be useful for debugging (and,
of course, they are necessary for other OSP 2 projects).

Methods of class ThreadCB. These are the methods that have to be
implemented as part of the project. Their implementation requires support
from other parts of OSP in the form of the methods that can be called from
within ThreadCB to accomplish a specific objective. We discuss these methods
as part of the required functionality and then give a summary of these methods
in a separate section.

� public static void init()

This method is called once at the beginning of the simulation. You can use it
to set up static variables that are used in your implementation, if necessary.
If you find no use for this feature, leave the body of the method empty.



4.3 The Class ThreadCB 67

� public static ThreadCB do create(TaskCB task)

The job of this method is to create a thread object using the default con-
structor ThreadCB() and associate this newly created thread with a task
(provided as an argument to the do create() method). To link a thread to
its task, the method addThread() of class IflTaskCB should be used and
the thread’s task must be set using the method setTask() of IflThreadCB.

There is a global constant (in IflThreadCB), called MaxThreadsPerTask. If
this number of threads per task is exceeded, no new thread should be created
for that task, and null should be returned. null should also be returned if
addThread() returns FAILURE. You can find out the number of threads a
task currently has by calling the method getThreadCount() on that task.

If priority scheduling needs to be implemented, the do create() method
must correctly assign the thread’s initial priority. The actual value of the
priority depends on the particular scheduling policy used. OSP 2 provides
methods for setting and querying the priority of both tasks and threads.
The methods are setPriority() and getPriority() in classes TaskCB and
ThreadCB, respectively.

Finally, the status of the new thread should be set to ThreadReady and it
should be placed in the ready queue.

If all is well, the thread object created by this method should be returned.

It is important to keep in mind that each time control is transferred to the
operating system, it is seen as an opportunity to schedule a thread to run.
Therefore, regardless of whether the new thread was created successfully, the
dispatcher must be called (or else a warning will be issued).

� public void do kill()

This method destroys threads. To destroy a thread, its status must be set
to ThreadKill and a number of other actions must be performed depending
on the current status of the thread. (The status of a thread can be obtained
via the method getStatus().)

If the thread is ready, then it must be removed from the ready queue. If a
running thread is being destroyed, then it must be removed from controlling
the CPU, as described earlier.

There is nothing special to do if the killed thread has status ThreadWaiting
(at any level). However, you are not done yet. First, the thread being de-
stroyed might have initiated an I/O operation and thus is suspended on the
corresponding IORB. The I/O request might have been enqueued to some
device and has not been processed because the device may be busy with
other work. What should now happen to the IORB? Should you just let the



68 4. Threads: Management and Scheduling of Threads

device work on a request that came from a dead thread?

The answer is that you should cancel the I/O request by removing the cor-
responding IORB from its device queue. This can be done by scanning all
devices in the device table and executing the method cancelPendingIO()

on each device. The device table is an array of size Device.getTableSize()
(starting with device 0), where device i can be obtained with a call to
Device.get().

During the run, threads may acquire and release shared resources that are
needed for the execution. Therefore, when a thread is killed, those resources
must be released into the common pool so that other threads could use them.
This is done using the static method giveupResources() of class Resource-
CB, which accepts the thread be killed as a parameter.

Two things remain to be done now. First, you must dispatch a new thread,
since you should use every interrupt or a system call as an opportunity to
optimize CPU usage. Second, since you have just killed a thread, you must
check if the corresponding task still has any threads left. A task with no
threads is considered dead and must be destroyed with the kill() method
of class TaskCB. To find out the number of threads a task has, use the method
getThreadCount() of TaskCB.

� public void do suspend(Event event)

To suspend a thread, you must first figure out which state to suspend it
to. As can be seen from Figure 4.2, there are two candidates: If the thread
is running, then it is suspended to ThreadWaiting. If it is already waiting,
then the status is incremented by 1. For instance, if the current status of the
thread is ThreadWaiting then it should become ThreadWaiting+1. You now
must set the new thread status using the method setStatus() and place it
on the waiting queue to the event.

If suspend() is called to suspend the running thread, then the thread must
lose control of the CPU. Switching control of the CPU can also be done in the
dispatcher (as part of the context switch), but it has to be done somewhere
to avert an error.

Finally, a new thread must be dispatched using a call to dispatch().

� public void do resume()

A waiting thread can be resumed to a waiting state at a lower level
(e.g., ThreadWaiting+2 to ThreadWaiting+1 to ThreadWaiting or from
ThreadWaiting to the status ThreadReady). If the thread becomes ready,
it should be placed on the ready queue for future scheduling. Finally, a new
thread should be dispatched.



4.3 The Class ThreadCB 69

Note that there is no need to take the resumed thread out of the waiting queue
to any event. A typical sequence of actions that leads to a call to resume() is
as follows: When an event happens, the method notifyThreads() is invoked
on the appropriate Event object. This method examines the waiting queue
of the event, removes the threads blocked on this event one by one, and calls
resume() on each such thread. So, by the time do resume() is called, the
corresponding thread is no longer on the waiting queue of the event.

� public static int do dispatch()

This method is where thread scheduling takes place. Scheduling can be as
simple as plain round-robin or as complex as multi-queue scheduling with
feedback. OSP 2 does not impose any restrictions on how scheduling is to be
done, provided that the following conventions are followed.

First, some thread should be chosen from the ready queue (or the currently
running thread can be allowed to continue). If a new thread is chosen, context
switch must be performed, as described earlier, and SUCCESS returned. If no
ready-to-run thread can be found, FAILURE must be returned.

Relevant methods defined in other packages. Apart from the methods
of the Event class listed above, the following methods of other classes should or
can be used to implement the methods in class ThreadCB as described above:

� final public int getDeviceID() IORB

Returns the device Id number that this I/O request is for.

� final static public Device getDevice(int deviceID) Device

Returns the device object corresponding to the given Id number.

� final static public int getTableSize() Device

Tells how many devices there are. The number is specified in the parameter
file and can vary from one simulation run to another.

� final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction with
getTableSize(), this method can be used in a loop to examine each device
in turn. Note that all devices are mounted by OSP 2 at the beginning of
the simulation and no devices are added or removed during a simulation
run. Therefore the number of devices remains constant and the device table
has no “holes”.



70 4. Threads: Management and Scheduling of Threads

� public void cancelPendingIO(ThreadCB th) Device

The context for this method is a device object, and the method cancels
pending IORBs of the thread th on that device. This is done when th is
killed to prevent the servicing of pending I/O’s requested by killed threads.
However, this method does not cancel the IORB that is currently being
serviced by the device. The device is just allowed to finish.

� final static public PageTable getPTBR() MMU

This method returns the value of the page table base register (PTBR) of the
MMU. PTBR holds a reference to the page table of the currently running
task.

� static public void setPTBR(PageTable table) MMU

This method allows one to set the value of PTBR. When no thread is
running, the value should be null; otherwise, it must be the page table of
the task that owns the currently running thread.

� public final TaskCB getTask() PageTable

Returns the task that owns the page table.

� public void kill() TaskCB

Kills the task on which this method is invoked.

� public int getThreadCount() TaskCB

Tells how many threads the task has.

� public int addThread(ThreadCB thread) TaskCB

Attaches a newly created thread to task. Returns SUCCESS or FAILURE.

� public int removeThread(ThreadCB thread) TaskCB

Removes killed thread to task.

� public ThreadCB getCurrentThread() TaskCB
Returns the current thread object of the task.

� public void setCurrentThread(ThreadCB t) TaskCB

Sets the current thread of the task to the given thread.

� final public int getPriority() TaskCB

Tells the priority of the task.

� final public void setPriority(int p) TaskCB
Sets the priority of the task. The setPriority()/getPriority() meth-
ods are provided for convenience, in case priority scheduling is used and
dispatching takes into account the priority of both the task and the thread.

� final public PageTable getPageTable() TaskCB

Returns the page table of the task.



4.4 The Class TimerInterruptHandler 71

� final public int getStatus() TaskCB

Returns the task’s status.

� set() and get() HTimer

These classes can be used to set and query the hardware timer. See Sec-
tion 1.4 for details.

� get() HClock

This method is described in Section 1.4; it is used to query the hardware
clock of the simulated machine.

� public static void giveupResources(ThreadCB thread) ResourceCB

Releases all abstract shared resources held by the thread. Note: these re-
sources do not include concrete resources such as memory or CPU.

Summary of Class ThreadCB

The following table summarizes the attributes of class ThreadCB and the meth-
ods for manipulating them. These attributes and methods are provided by the
class IflThreadCB and are inherited. The methods appearing in the table are
more fully described in Section 4.5.

Task: The task that owns the thread. This property can be set and queried via
the methods setTask() and getTask().

Identity: The identity of a thread can be obtained using the method getID().
This property is set by the system.

Status: The status of the thread. The relevant methods are setStatus() and
getStatus().

Priority: The priority of the thread. The methods to query and change thread’s
priority are setPriority() and getPriority().

Creation time: The value of this property can be obtained using the method
getCreationTime().

CPU time used: The total CPU time used by the thread can be obtained via
the method getTimeOnCPU().

4.4 The Class TimerInterruptHandler

This class is much simpler than ThreadCB. It is defined as



72 4. Threads: Management and Scheduling of Threads

public class TimerInterruptHandler extends IflTimerInterruptHandler

and contains only one method:

� public void do handleInterrupt()

This method is called by the general interrupt handler when the system
timer expires. The timer interrupt handler is the simplest of all interrupt
handlers in OSP 2 . Its main purpose is to schedule the next thread to run
and, possibly, to set the timer to cause an interrupt again after a certain
time interval. Resetting the times can also be done in the dispatch()

method of ThreadCB instead, because the dispatcher might want to have
full control over CPU time slices allocated to threads.

Relevant methods defined in other packages. The following is a list
of methods that belong to other classes and might be useful for implementing
do handleInterrupt():

� final static public void set(int time) HTimer
Sets the hardware timer to time ticks from now. Cancels the previously set
timer, if any.

� final static public int get() HTimer

Returns the time left to the next timer interrupt.

4.5 Methods Exported by the Threads Package

The following is a summary of the public methods defined in the classes of the
Threads package or in the corresponding superclasses, which can be used to
implement this and other student packages. To the right of each method we
list the class of the objects to which the method applies. In the case of the
Threads package, all exported methods belong to the class TaskCB, which
inherits them from the superclass IflTaskCB.

� final public static ThreadCB create() ThreadCB
This method is a wrapper around the method do create() described in
this chapter. It is provided by IflThreadCB and is inherited by ThreadCB.
Returns the created thread.

� final public static void dispatch() ThreadCB

This is a wrapper around the method do dispatch() described in this
chapter. This method is provided by IflThreadCB and is inherited by
ThreadCB.

� final public void suspend(Event event) ThreadCB

This is a wrapper around the method do suspend() described in this chap-
ter. This method is provided by IflThreadCB and is inherited by ThreadCB.



4.5 Methods Exported by the Threads Package 73

� final public void resume() ThreadCB

This is a wrapper around the method do resume() described in this chap-
ter. This method is defined in IflThreadCB, but it is inherited by ThreadCB.

� final public void kill() ThreadCB

This is a wrapper around the method do kill() described in this chapter.
This method is defined in IflThreadCB, but it is inherited by ThreadCB.

� final public TaskCB getTask() ThreadCB

Returns the task this thread belongs to.

� final public void setTask(TaskCB t) ThreadCB
Sets the task of the thread.

� final public int getStatus() ThreadCB

Returns the status of this thread.

� final public void setStatus(int s) ThreadCB

Sets the status of this thread.

� public double getTimeOnCPU() ThreadCB
Tells the total time the thread has been using CPU.

� final public long getCreationTime() ThreadCB

Returns the creation time of the thread.

� final public int getPriority() ThreadCB

Tells the priority of this thread.

� final public void setPriority(int p) ThreadCB

Sets the priority. The setPriority and getPrioritymethods are provided
for convenience, in case the assignment calls for priority scheduling. OSP 2

does not actually care how priority is used, if at all.


	Threads: Management and Scheduling



