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Memory: Virtual Memory Management

5.1 Chapter Objective

The objective of project Memory is to teach students about virtual mem-
ory and other modern memory-management techniques and to provide them
with a well-structured programming environment in which to implement these
techniques. To this end, students will be asked to implement the five public
classes of the Memory package. The main class, MMU, represents the memory-
management unit, the piece of hardware that is responsible for memory access
in a computer. The other classes are FrameTableEntry, PageFaultHandler,
PageTableEntry, and PageTable. All of these classes are described in detail
later on in the chapter, each in its own subsection. We begin with an overview
of memory-management basics.

5.2 Overview of Memory Management

In a modern computer, the portion of the circuitry called the memory man-
agement unit (abbr. MMU) is responsible for providing access to main mem-
ory. In OSP 2 , memory access is simulated by calling the method refer() of
the class MMU, which is one of the key methods to be implemented in this project.
It may seem strange at first that you are being asked to implement a piece of
hardware as part of an operating systems programming project. However, the
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MMU is the gateway to memory for executing threads, and it provides you
with a golden opportunity to implement the memory-management technique
your Memory assignment calls for.

Memory management and multiprogramming. Modern memory-
management techniques are aimed at supporting multiprogramming and must
therefore allow multiple processes or threads to be memory-resident simulta-
neously. In this way, when the currently executed thread becomes blocked,
e.g. waiting for an I/O request to complete, control of the CPU can be easily
switched to another memory-resident thread, albeit one that is in the ready
state waiting to resume execution.

Partitioning memory. The basic memory-management technique in
support of multiprogramming is to partition main memory into, shall we say,
partitions or chunks of memory that different processes can occupy. Partitions
can be either fixed-size or variable-size. The former results in internal fragmen-
tation, which occurs when a process does not utilize the entirety of a partition.
The latter results in external fragmentation, which occurs when a partition
is too small to be of use to any process. We shall focus the remainder of our
overview of memory-management basics on the fixed-sized partitions utilized
by a technique known as paging. Segmentation is an alternative to paging that
uses variable-size partitions.

Logical memory. The big advance in memory management came with the
realization that the memory allocated to a process need not be contiguous! In
the case of paging, a partition is called a page and a process’s pages collectively
make up its logical address space. Physical memory is divided into page frames,
each the size of a page so the fit of a page in a page frame is exact. Thus, in
theory, a page of a process can be placed in any available page frame. The point
is that the pages of a process’s logical address space may be dispersed noncon-
tiguously among the page frames of main memory. Page sizes typically range
from 512 bytes to 4K bytes but whatever the page size, it is fixed throughout
system execution.

The primary mechanisms used for implementing logical memory are the
page table base register (abbr. PTBR) and the page table. The key is-
sue here is logical address translation, how to convert a logical address into a
physical address, and this is the responsibility of the MMU. A logical address
is just string of bits (e.g. 32 in the case of a 32-bit machine architecture) that
can be logically viewed as consisting of two parts: a page number and a byte
offset into the page. The number of bits taken up by the first part will depend
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on the page size: 9 for a page size of 512 bytes, 10 for a page size of 1K bytes,
etc. The remainder of the address bits are interpreted as the byte offset into
the logical page being addressed.

Every process has a page table of its own and when a thread is dispatched
on the CPU, the address of the page table of the process to which the thread
belongs is placed in the PTBR. The MMU uses the PTBR to find the location
of the page table and uses the page table to supply the mapping between the
logical memory of processes and the main memory of the computer, represented
by the physical page frames. The overall schema is depicted in Figure 5.1.
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Figure 5.1 Logical/Virtual address translation using page tables.

Virtual memory. The simple memory-addressing mechanism just de-
scribed works well as long as the frames corresponding to the pages of a process
are all in main memory. However, as seen in Figure 5.1, some entries in a page
table do not necessarily have to have frames assigned to them. The key insight
behind virtual memory is that a page table can have more entries than the
number of physical page frames, so a one-to-one assignment of frames to pages
might not be possible. In other words, the size of virtual memory can and nor-
mally does exceed that of physical memory. Note that we use the term virtual
memory now instead of logical memory to emphasize the fact that larger-than-
physical-memory address spaces are supported by this scheme.
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Pagefaults. The key mechanism for implementing virtual memory is that
each page table entry has a validity bit, which indicates whether the page has
a main-memory frame assigned to it. This bit is checked by the MMU hardware
and whenever a running thread makes a reference to a page whose validity bit
is zero, a pagefault occurs: a special kind of interrupt that is used to notify
the operating system of references to frame-less pages. The intended response
from the OS is to assign a suitable frame to the page. The module responsible
for this action is called the pagefault handler. A page whose validity bit is
one (i.e. has a page frame assigned to it) is said to be valid.

Before examing the steps involved in handling a pagefault, let us first look
more carefully at frame-less pages and their relationship to other resources
owned by processes. If no frame is assigned to a page, where is the program
code or data that the running thread is supposedly referencing? The answer is
that a copy of the entire process space is kept in secondary storage on a swap
device. In high-performance systems, a swap device can be a separate disk, but
typically it is just a partition occupying part of a physical disk. Nevertheless,
the operating system assigns a logical device to each such partition and at
that level the swap device can be viewed as a separate device with its own
characteristics and device number. In particular, in OSP 2 , a swap device is
viewed as a real device with a special device number, SwapDeviceID. Thus,
every process (i.e., OSP task) has a corresponding swap file on the swap
device, which contains an exact image of the process memory.

When a pagefault on page P of task T occurs, the pagefault handler has to
do several things:

1. Suspend the thread that caused the interrupt until the situation that
gave rise to the pagefault is rectified. This is done by creating a new
event, pfEvent, of type SystemEvent and then executing suspend() on
the thread using pfEvent as a parameter. A new system event is created
using the constructor SystemEvent() of class SystemEvent. This event
must be kept around until the end of pagefault processing, as it is needed
to resume the thread before returning from the pagefault handler.

2. Find a suitable frame to assign to page P .
An obvious choice would be a free frame, i.e., a frame that is not assigned
to any other page (of this or any other task). But there might not be such a
frame at the moment (remember that there are fewer frames than pages!).
In this case, page replacement must be performed, as described below.
The result of a successful page-replacement action is that a free frame
becomes available and is assigned to page P .

3. Perform a swap-in.
Once a frame is assigned to the faulty page, you need to make sure that it
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contains the exact image of the page, which is available in the task’s swap
file. To do this, the pagefault handler must initiate a swap-in: a file read
operation that would input the requisite page from the swap device and
store it in the frame.

4. Suspend the pagefault handler.
An I/O operation takes time, so the pagefault handler must suspend itself
until it is woken up by the disk interrupt coming from the swap device.1

Suspension of the pagefault handler actually happens as part of the file read
operation that swaps the page in—you do not need to do this explicitly.

5. Finish up.
Once the image of the right page is copied into the frame, the pagefault
handler should update the page table to make sure that the page entry is
pointing to the right frame, and set the validity bit of the page appropri-
ately. Next, the thread that caused the pagefault should be resumed and
placed on the queue of the ready-to-run threads. This is done by executing
the method notifyThreads() on the event pfEvent, which was created in
Step 1. Finally, as with any other interrupt handler, the dispatcher should
be called to give control of the CPU to some ready-to-run thread.

Page replacement. In describing the actions of the pagefault handler, we
deliberately omitted a saga of its own: What should you do if, in Step 2, the
pagefault handler cannot find a free frame? In this case, it becomes necessary
to choose a frame F ′ occupied by some other page P ′ and use F ′ to satisfy the
pagefault. The page P ′ is often called a victim page and it is said that the
pagefault handler evicts this page from its frame.

The algorithm deployed by the pagefault handler for choosing such a frame
is called the page-replacement algorithm, and the most well-known algorithm of
this kind is LRU (Least Recently Used). LRU replaces the page in memory that
has not been referenced for the longest time. Assuming that threads exhibit
the principle of locality, meaning that they cluster memory references around
a certain subset of their pages over a given window of time, then the LRU
page should be the least likely page to be referenced in the near future and its
replacement is a good bet.

The problem with the LRU policy is that it can be difficult to implement
and for this reason other algorithms have been developed to approximate the
performance of LRU while imposing little overhead. Many of these algorithms
1 Handling disk interrupts is part of another project, module Devices. In the present

project, one should assume that the disk interrupt handler functions according to
the specifications given below.
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are variants of a scheme known as the clock policy, which associates one or
more use bits with each frame and organizes the frames as a circular buffer.
Consider for simplicity the case of a single use bit added to each frame. A
frame’s use bit is set to 1 when a page is first loaded in the frame and whenever
the page in the frame is referenced. When it comes time to replace a page, the
clock algorithm scans the buffer looking for a frame with a use bit of zero; the
page occupying the first such frame is chosen for replacement. Each time it
encounters a frame with a use bit of 1, it resets that bit to zero and moves
on to the next frame in the buffer. The use of multiple use bits per frame
increases the algorithm’s precision: the more use bits per frame deployed, the
more closely the algorithm is able to approximate LRU.

From a performance perspective, a good page-replacement algorithm is
characterized by a low pagefault rate. However, as far as the operating sys-
tem is concerned, the only requirement of a page-replacement algorithm is that
there should be no “undesirable side effects”. One such side effect is due to
the nature of the I/O subsystem. Suppose that a page-replacement algorithm
chooses a frame F ′ that is involved in an active I/O operation. In some cases, a
device that started an I/O cannot be stopped. So if you reuse the corresponding
frame for some other purpose then the data in the frame may become corrupted
(in case of a file-read operation) or, in case of a write operation, the data being
written out might become corrupted if you change the content of the frame
before the I/O is finished. Even if the device can be stopped immediately, it
might still not be a good idea because stopping the device now might mean
that the same I/O operation would have to be re-issued later.

Locking and unlocking of frames. How can an OS protect the frames
associated with active I/O operations? A typical mechanism is to keep, for each
frame, a count of the active or outstanding I/O operations that involve that
frame. There are a variety of ways to maintain such a count. Here is an expla-
nation of how it is done in OSP 2 . When an I/O operation is to be performed
on a certain I/O device, an I/O request block (abbr. IORB) is enqueued on the
device’s device queue. An IORB does not refer to frames directly. Instead, it
references the page that is involved in the I/O. The thread that requested the
I/O must perform a lock() operation (which is a method of class PageTable-
Entry) on the page involved. If no frame is assigned to the page, a pagefault
occurs, and the IORB will not be enqueued on the device until the pagefault
processing is over. The lock() operation increments the lock count of the
frame associated with the page and the unlock() operation decrements it. A
page is considered to be locked in a frame if the lock count of the associated
frame is a positive number.

Thus, by the time the IORB makes it to the device queue, the page involved
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is locked and has an associated frame. The page-replacement mechanism is
prohibited from taking frames that have positive lock counts.

Note that a page involved in an I/O is locked into a frame when the cor-
responding IORB is enqueued on the device queue of the device in question (a
device might be busy and have a queue of outstanding I/O’s), not when the
IORB is selected for processing by the device. The reason should be obvious:
To perform an I/O, the page referenced by the IORB must be in some frame in
main memory. If not, it would have to be swapped in. But this requires another
I/O and takes time. So, the selected IORB cannot be processed and the device
would remain idle. In contrast, if pages are locked just before the IORB is en-
queued, the corresponding frames would remain protected for the entire period
while the IORB remains on the device queue (and until the device finishes the
corresponding I/O). If the page being locked is frame-less, a pagefault occurs
and the page is brought in before the IORB is selected for processing.

Dirty frames. Locking is not the only constraint that a page-replacement
mechanism must abide by. Another issue has to do with so-called dirty frames.
A dirty frame is one whose contents has been changed since the last time a
page was swapped into the frame. If such a frame is chosen for replacement,
the current contents of the frame must be saved in the swap file of the task that
owns the page that currently occupies the frame. Otherwise, all changes made to
the page will be lost. Thus, each frame needs another bit, the dirty bit, which
indicates whether the contents of the frame has been changed. The actions that
change the contents of a frame are the memory operation (MemoryWrite) and
the I/O operation read(), which transfers data from a file to main memory.

Thus, we see that finding a victim page and evicting it is no simple mat-
ter: It may require an extra I/O operation to swap-out the victim page and
synchronize its contents with the contents of that page in the swap file.

Frame table. Information about physical, main-memory frames is kept in
the frame table: an array that has one entry per frame. Each entry is an
object of the class FrameTableEntry. In fact, an OSP 2 frame table contains
more information than that. For instance, each frame entry contains a back
reference to the page that occupies that frame (or null). Every frame entry
also has a so-called reference bit, which indicates whether the frame has been
referenced (as the result of executing refer() or due to I/O into or out of the
frame). The reference bit often plays a role (as a use bit) in page-replacement
algorithms.

In real computers, the reference and dirty bits are set in hardware but they
are unset by software using special instructions. In contrast the lock count and
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the page reference in the frame table are manipulated entirely in software. In
OSP 2 you have to set and unset all of these items in software. In this sense, part
of what you will do to implement the refer() method is really a simulation of
various hardware functions. This includes setting the dirty and the reference
bits, and also causing the pagefault interrupt itself. We describe these issues in
more detail in Section 5.6.

Reserved frames. In OSP 2 , frames have yet another bit, the reserved
bit. Like the lock count, a reserved bit protects frames from the page-
replacement mechanism, but it is used for a different reason. Suppose a thread
Th causes a pagefault on page P and control is transferred to the pagefault han-
dler after blocking Th. The pagefault handler may go through several distinct
phases:

1. Finding a suitable frame F . Suppose F is dirty and is currently occupied
by page P ′.

2. Evicting P ′ by issuing an I/O operation that swaps P ′ out.

3. Waiting for the I/O to finish.

4. Initiating an I/O to swap page P into frame F .

5. Waiting for the I/O to finish.

6. Putting Th on the ready queue and quitting.

The problem is that while locking will prevent F from being grabbed by other
threads during phases 3 and 5, nothing prevents it from being grabbed to
satisfy other pagefaults between phases 1 and 2, between phases 3 and 5, and
after phase 5. Thus, it might well happen that after trying so hard to assign a
suitable frame to page P , the pagefault handler will find the frame stolen from
under its nose before it gets a chance to assign F to P . To prevent this kind of
unproductive behavior, the pagefault handler must reserve frame F in phase 1
and un-reserve it in phase 6.

Prepaging. Some pagefault handling algorithms perform prepaging, i.e.,
the swapping in of invalid pages that did not cause the pagefault. These al-
gorithms are trying to guess which pages might be referenced by the thread
in the near future and swap them in proactively. To implement prepaging, the
pagefault handler can issue additional read() operations, which might require
write() operations to swap some other pages out.

Prepaging a page is similar to bringing a page in as part of regular page-
fault processing. However, selecting a frame for prepaging should be done with
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caution. In particular, make sure that it is not the frame that was selected for
the original faulty page. Otherwise, you will end up evicting the page that the
pagefault handler was supposed to make valid!

Since prepaging involves I/O, it is possible that the thread that initiated the
pagefault will be killed by the time prepaging is finished. When this happens,
prepaging should stop. One special case arises when prepaging is done from
within the pagefault handler. The question then is what should be the return
code for do handlePageFault():SUCCESS or FAILURE? OSP 2 expects FAILURE
in this case. In particular, if the page that caused the pagefault became valid
before the thread was killed, the page should be made invalid again prior to
returning from the pagefault handler. However, you should realize that a more
optimized operating system might make a different decision and keep such a
page valid, because it might be used by other threads of the same task.

Proactive page cleaning. Some memory-management algorithms perform
proactive page cleaning by periodically swapping them out on disk (but not
invalidating them). The idea is to utilize the times when the swap device is idle
and reduce the time needed to handle pagefaults by increasing the supply of
clean pages.

Technically, this is done by setting up daemons: special system threads
that are set to wake up periodically, perform the job assigned to them, and go
back to sleep. We discussed the OSP 2 support for daemons in Section 1.7.

In order to set up a cleaning daemon, one creates a class that implements
DaemonInterface (see Section 1.7). The required method unleash() can then
be made to execute the proactive cleaning algorithm. An essential part of this
algorithm is a series of write() operations that write dirty frames out to the
swap device (but keeps these pages valid). This daemon must be registered
with the system at startup, as explained in Section 1.7.

Having surveyed the major issues involved in pagefault handling, we are
now ready to discuss the actual OSP 2 classes and methods that constitute the
Memory module. The class diagrams of Figure 5.2 and Figure 5.3 place these
classes in a larger context.

5.3 Class FrameTableEntry

This class implements the entries in the frame table, the main repository of in-
formation about the status of the main-memory frames. It is defined as follows:

� public class FrameTableEntry extends IflFrameTableEntry
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Figure 5.2 Overview of the package Memory, I.

The class constructor is the only method of this class that needs to be imple-
mented as part of the project:

� public FrameTableEntry(int frameID)

Calls super(frameID) and might perform other initializations if the student
implementation defines additional fields in this class.
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Figure 5.3 Overview of the package Memory, II.

However, this class inherits a number of methods from its superclasses, and
these methods are used by other classes in this project:

� public final int getLockCount()

Returns the lock count of the frame.

� final public void incrementLockCount()

Increments the lock count of the frame by 1.
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� final public void decrementLockCount()

Decrements the lock count of the frame by 1.

Summary of Class FrameTableEntry

The following table summarizes the attributes of the class FrameTableEntry

and the methods for setting and querying them. These attributes and methods
are all inherited from class IflFrameTableEntry and are described in more
detail in Section 5.8.

Reserved flag: Indicates if a thread has reserved this frame. The correspond-
ing methods are isReserved(), getReserved(), setReserved(), and
setUnreserved().

Dirty flag: The methods for manipulating the dirtiness of a frame are isDirty()
and setDirty().

Reference flag: Indicates if the frame has been referenced. The methods that
handle this attribute are getreferenced() and setreferenced().

Lock count: This attribute represents the number of times the frame has been
locked minus the number of unlock operations performed on the frame, and
is accessed using the methods getLockCount(), incrementLockCount(),
and decrementLockCount().

Identity: The identity of a frame is its sequence number in the system-wide
array of all main-memory frames. It can be queried using the method
getID().

Page: This is the page that occupies the frame (null, if the frame is free). This
attribute can be set using setPage() and retrieved using getPage().

It should be noted that some information (such as page information and iden-
tity) in the OSP 2 frame table entries is redundant and is not present in the
frame table of a typical operating system. In fact, the OSP 2 frame table can
be seen as a cross between a normal frame table and what is known as an
inverted page table.

5.4 Class PageTableEntry

This class implements the data structure that describes each entry in the page
table. It is defined as follows:
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� public class PageTableEntry extends IflPageTableEntry

For this project, the student must implement the following methods of this
class:

� public int do lock(IORB iorb)

The ultimate goal of this method is to increment the lock count of the frame
associated with the page. However, the details are not as simple as one might
think, because the page might be invalid at the time the lock operation is
performed.

Thus, this method must first check if the page is in main memory by testing
the validity bit of the page (using the method isValid()). If the page is
invalid, a pagefault must be initiated.

To initiate a pagefault, the do lock() method calls the static method
handlePageFault() of class PageFaultHandler, i.e., it calls the pagefault
handler directly, without initiating an interrupt. Note that page locking is
performed as part of an I/O request, when the CPU is already in kernel
mode, so there is no need to cause an interrupt.

We have already seen that page locking involves considerably more than sim-
ply incrementing the lock count. Yet, there is still much more to do. Consider
the following situation. Suppose thread Th1 of task T makes a reference to
page P either via the refer() operation or through locking. If the page is
invalid, a pagefault is initiated. Suppose now that thread Th2 of the same
task comes along and also wants to lock the same page P . Should this cause
a pagefault as well? The answer, of course, is no. The pagefault handler must
already have found a suitable frame for P and the corresponding I/O requests
must already be in the pipeline. Another pagefault would only confuse the
system.

To help identify the pages that are involved in a pagefault, OSP 2 provides
the method getValidatingThread(). When applied to a page, this method
returns the thread that caused a pagefault on that page (or null, if the page
is not involved in a pagefault). In our case, this method would return Th1.

The proper action for Th2 depends on whether Th2 = Th1. If Th2 = Th1,
then the proper action is to return right after incrementing the lock count.2

2 You might be wondering how a thread that caused a pagefault can come back and
request a lock on the page. The answer is simple: The lock can be requested by
the swap-in I/O operation that must be performed as part of pagefault handling.
This swap-in operation is performed on behalf of the same thread that caused the
pagefault, so the locking thread and the validating thread would be one and the
same.
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If Th2 �= Th1, then the proper action is to wait until P becomes valid. This
is easy to accomplish because the class PageTableEntry happens to be a
subclass of Event (see Section 4.3 for the description of this class). Thus, we
can execute the suspend() method on Th2 and pass page P as a parameter.

When the page becomes valid (or if the pagefault handler fails to make the
page valid, say, because the original thread, Th1, that caused the pagefault
was killed during the wait), the threads waiting on the page will be un-
blocked by the pagefault handler (which is another class in this project)
and will be able to continue. When such threads become unblocked inside
the do lock() method, control falls through the call to suspend() and the
do lock() method must exit and return the appropriate value: SUCCESS if
the page became valid as a result of the pagefault and FAILURE otherwise.

In general, do lock() returns SUCCESS if the page was locked successfully
(which does not necessarily involve a pagefault) or FAILURE if the page was
not locked. The latter can happen if either the pagefault (which might occur
due to locking) fails or if the thread that created iorbwas killed while waiting
for the lock operation to complete.

Finally, in the case of a successful return, you should remember to increment
the lock count of the frame associated with the page, i.e., to do the actual
locking. (Note that the focus of the previous discussion was on ensuring that
the page is associated with a frame.) Incrementing the lock count of a frame
is accomplished using method incrementLockCount() of class FrameTable-
Entry.

� public void do unlock()

Unlocking is, fortunately, much simpler than locking. All that is needed is
to decrement the lock count via a call to decrementLockCount() of class
FrameTableEntry. Make sure that the lock count does not become negative,
which is a sign of a problem.

Relevant methods defined in other classes. The following is a list of
methods from other classes that can be useful in implementing the methods of
class PageTableEntry:

� public final int getLockCount() FrameTableEntry

Returns the lock count of the frame.

� final public void incrementLockCount() FrameTableEntry

Increments the lock count of the frame by 1.

� final public void decrementLockCount() FrameTableEntry

Decrements the lock count of the frame by 1.
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� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page, i.e., the thread that caused
the pagefault on this page. If the page is not in pagefault or its validating
thread was killed before the page became valid, then this method returns
null.
This method is inherited from a superclasses of PageTableEntry.

� final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts the thread
on the waiting queue of event.

� final public int getStatus() TaskCB

Returns the task’s status.

� final public int getStatus() ThreadCB

Returns the status of this thread.

� public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

� public final boolean isReserved() FrameTableEntry

Tests if the frame is reserved.

� public final ThreadCB getThread() IORB

Returns the thread that requested the I/O.

� final public int getDeviceID() IORB

Returns the device involved in the I/O operation.

� final public int getIOType() IORB

Returns the I/O type represented by the IORB. OSP 2 supports two types:
FileRead and FileWrite.

Summary of Class PageTableEntry

The following is a summary of the main attributes of class PageTableEntry

and the methods for manipulating them. See Section 5.8 for a description of
these methods.

Validity flag: The validity flag is handled by the methods isValid() and
setValid().

Frame: If the page is valid, there must be a frame associated with it, which
is described by this attribute. The corresponding methods are getFrame()
and setFrame().
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Identity: The identity of a page is its sequence number in the corresponding
page table. It is set automatically by the system and can be queried using
getID().

Owner task: Points to the task that owns the page and is queried using method
getTask() of PageTableEntry. This attribute is not really stored with the
page; it is rather an attribute of the table to which the page belongs. Thus,
this method simply queries the corresponding attribute of the page table.

Validating thread: If the page is currently in pagefault processing, this is the
thread that caused the pagefault. This thread can be obtained using the
method getValidatingThread()and is set using setValidatingThread().

5.5 Class PageTable

The class PageTable represents page tables and is defined as follows:

� public class PageTable extends IflPageTable

The only mandatory method to be implemented here is the class constructor:

� public PageTable(TaskCB ownerTask)

This constructor gets as a parameter the task for which the table is to be
created. It first calls super(ownerTask), as all OSP 2 constructors must
do, and then constructs the page table. The page table is assumed to be
an array of size equal to the maximum number of pages allowed, and is
accessible through the variable pages inherited from the superclass Ifl-

PageTable. The maximal number of pages allowed is calculated using the
method MMU.getPageAddressBits(), which represents the number of bits
dedicated to representing a page number out of the total number of bits in
an address.

After calling super(), the variable pages must be initialized to a new array
of PageTableEntry whose size is determined as described above. Then each
page must be initialized with a suitable PageTableEntry object using the
constructor of that class. Make sure that you use correct page id numbers
and the correct page table in the PageTableEntry constructor when creating
these page objects.

� public void do deallocateMemory()

This method is typically invoked by a terminating task on its page table ob-
ject to unset the various flags for the frames allocated to the task. Specifically,
it uses setPage() to nullify the page field that points to the page that oc-
cupies the frame (thereby freeing the frame), setDirty() to clean the page,
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and setReferenced() to unset the reference bit. It also un-reserves each
frame that was reserved by that task. To find out which task has reserved a
given frame, use the method getReserved() of class FrameTableEntry.

Note that this method does not need to (and should not) set the frame
attribute of the deallocated pages to null. It is possible that some of these
pages are being used by ongoing I/O operations that pump data into or out of
the frames that are currently allocated to the killed task. The disk interrupt
handler (which will be called each time an I/O is finished) needs to know
both the frame and the page objects involved in the finished operation, and
it gets the former from the latter.

Note that if a page of a killed task is locked, it can be unlocked only by the
device interrupt handler. Unlocking inside the memory-management module
can lead to inconsistencies. Try to analyze what might happen in this case
in order to understand why this is dangerous.

Summary of Class PageTable

Here is a summary of the attributes and methods of class PageTable. All of
these attributes are provided by class IflPageTable and are inherited from
there.

Page table: This is an array referenced by the variable pages. This array is
created in the PageTable() constructor.

Owner task: Describes the task to which the page table belongs, which can be
obtained via the method getTask().

5.6 Class MMU

This class represents the memory-management unit of the simulated computer,
and defines three methods: the initialization method that exist in every student
module and do refer(), which represents memory references made by the CPU
while executing computer instructions. A detailed explanation is given below.

� public static void init()

This method is called once, at the beginning, to initialize the data structures.
Typically, it is used to initialize the frame table.

Since the total number of frames is known (MMU.getFrameTableSize()),
each frame in the frame table can be initialized in a for-loop. Initially, all



92 5. Memory: Virtual Memory Management

entries in the frame table are just null-objects and must be set to real frame
table objects using the FrameTableEntry() constructor. To set a frame entry,
use the method setFrame() in class MMU.

Another use of the init() method is for the initialization of private static
variables defined in other classes of the Memory package. For example, one
can define an init() method in class PageFaultHandler which would be
able to access any variable defined in that class. Then MMU.init() can call
PageFaultHandler.init(). Since MMU.init() is called at the very begin-
ning of the simulation, PageFaultHandler.init() is also going to be called
at the beginning of the simulation.

� public PageTableEntry do refer(int memoryAddress,

int referenceType,ThreadCB thread)

This method takes an address of a byte in the logical memory of the thread,
a type of the memory reference (MemoryRead, MemoryWrite, or MemoryLock)
and a thread that made the reference. The method then needs to determine
the page of the thread’s logical memory to which the reference was made.
The methods getVirtualAddressBits() and getPageAddressBits(), both
inherited from the superclass IflMMU, can be used to determine the number
of bits allocated to represent the offset within the page. This number can then
be used to compute the page size and then the page to which memoryAddress

belongs.

Next, the method must check if the page is valid (the method isValid()).
If so, you only need to appropriately set the referenced and the dirty bits of
the page, and quit.

If the page is invalid, things are more interesting. There are two possibilities:

1. Some other thread of the same task has already caused a pagefault and
the page is already on its way to main memory.

2. No other thread caused a pagefault on this invalid page.

As before, you can tell one case from the other with the help of the method
getValidatingThread().

In the first case, the thread (that was passed as a parameter to do refer())
should simply suspend itself on the page and wait until the page becomes
valid. When the page eventually becomes valid, the method should set the
referenced and dirty bits appropriately and quit. A thread is suspended by
an invocation of the method suspend() in class ThreadCB. When the page
becomes valid, execution continues past the suspend() statement. Keep in
mind that since a long time may pass between the initial pagefault and the
time the faulty page becomes valid, the simulator might decide to destroy
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the waiting thread. In this case, the dirty and referenced bit settings must
not be changed. Thus, always use the getStatus() method to verify that
the thread does not have status ThreadKill.

In the second case, the method must initiate a pagefault. Unlike in the
do lock() method, a pagefault interrupt must be caused. It is not enough
to just invoke the method handlePagefault() because at the time when
the thread executes refer(), the machine is in the user mode executing a
user thread. In contrast, when pagefault is caused by the lock() operation,
the machine must already be in kernel mode, since lock() is called by the
operating system itself.

To cause an interrupt, one must suitably set the various static fields of the
class InterruptVector. This is done using the static methods setPage(),
setReferenceType(), and setThread(). Then one must call the interrupt()
method of class CPU and pass it the the type of the interrupt (i.e., PageFault).
Eventually, this will invoke the method do handlePageFault() in class
PageFaultHandler. Thus, when the interrupt() method returns, the page
will be in the main memory and the thread will be in the ready queue.

Before exiting, do refer() must set the reference and the dirty bits.

In both cases, it must be kept in mind that any thread might get killed while
waiting for completion of I/O. Such is the wicked nature of the simulator. If
a thread is killed, neither the dirty nor the reference bits should be changed.
OSP 2 is checking these conditions vigilantly. The method getStatus()

should be used to determine the status of a thread.

On exit, do refer() must return the referenced page.

Relevant methods defined in other classes. Here is a summary of the
methods defined in other classes, which might be used in the implementation
of the methods of class MMU:

� final static public void setInterruptType(int inter)

InterruptVector
Sets the type of the interrupt in the interrupt vector. The valid values
are PageFault, DiskInterrupt, and TimerInterrupt.

� final static public int getInterruptType() InterruptVector

Extracts the interrupt type from the interrupt vector.

� final static public void setThread(ThreadCB thread)

InterruptVector

Sets the thread field in the interrupt vector so that pagefault handlers
can find out who has caused the interrupt.
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� final static public ThreadCB getThread() InterruptVector

Tells which thread has caused the interrupt.

� final static public void setReferenceType(int ref)

InterruptVector

Sets the memory reference type in the interrupt vector. The valid types
are MemoryRead, MemoryWrite, and MemoryLock. Applicable to page-
faults only.

� final static public int getReferenceType() InterruptVector

Tells what the reference type was that caused the interrupt. Applicable
to pagefaults only.

� final public void suspend(Event event) ThreadCB
Suspends the thread on which this method is called and puts the thread
on the waiting queue of event.

� final static public FrameTableEntry getFrame(int frameNumber)

MMU

Returns the frame entry with the given frame number. This method is
defined in the superclass of MMU, and is inherited.

� final static public void setFrame(int index,

FrameTableEntry entry) MMU

Sets the frame with the given index to a non-null FrameTableEntry-
object. This method is defined in the superclass of MMU, and is inherited.

� final static public int getFrameTableSize() MMU

Returns the number of frames in the simulated machine. This method
is defined in the superclass of MMU, and is inherited.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page.

Summary of Class MMU

The memory-management unit defines the hardware characteristics of the sim-
ulated computer. These characteristics and their access methods are described
below.

Frame table: The table whose entries describe the individual main memory
frames in OSP 2 . The methods provided for accessing this table are:
getFrame(), which returns a frame object at a given index in the frame
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table; setFrame(), which sets a frame table entry with the given index;
getFrameTableSize(), which returns the number of entries in the frame
table (i.e., the number of main-memory frames in the system). These meth-
ods can be used to traverse the frame table in a for-loop.

Number of bits in a virtual address: The number of bits determines the max-
imum addressable space in the simulated computer. For instance, 16 bits
yield 216 bytes of addressable space (64Kb). The method to find out this
value is getVirtualAddressBits().

Number of bits used to represent the offset within pages: This property directly
affects the size of the pages (and frames) in the computer. For instance, 10
bits lead to 1Kb pages, while 12 bits mean that the pages are 4Kb large.
The method to find out this value is getPageAddressBits().

Page table base register: This register points to the page table of the running
task. It is available through the methods getPTBR() and setPTBR().

5.7 Class PageFaultHandler

This class contains only one method that you are required to implement as
part of the project. However, you might want to define additional methods to
make the implementation more modular.

� public static int do handlePageFault(ThreadCB thread,

int referenceType, PageTableEntry page)

This is the actual pagefault handler. The thread and the page arguments
are the thread and the page that caused the pagefault. The referenceType

argument can be MemoryRead, MemoryWrite, or MemoryLock; it represents
the type of memory reference that caused the pagefault. Knowing the type of
memory reference is needed to set the dirty bit correctly. If the pagefault was
caused by locking (in method do lock() of PageTableEntry), the reference
type must be MemoryLock. Note that locking does not modify the contents of
a page, so the page should not be marked dirty due to this type of memory
reference.

The implementation of this method follows the general outline of pagefault
processing described earlier. However, it is also necessary to check several
exception conditions. First, the pagefault handler might be called incorrectly
by the other methods in this project. So, always check if the page that is
passed as a parameter is valid (already has a page frame assigned to it) and
return FAILURE if it is. Second, it is possible that all frames are either locked
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or reserved and so it is not possible to find a victim page to evict and free up
a frame. Return NotEnoughMemory if this is the case. Third, the thread that
caused the pagefault can be killed by the simulator at any moment after
the thread goes to sleep waiting for the swap-out or swap-in to complete.
FAILURE should be returned in these cases.

The first two exceptional conditions must be checked at the beginning of
pagefault processing, and the tests for destroyed threads must be done right
after each swap-out and swap-in. In any case, before exiting, all threads that
might be waiting on the page (see the explanations for lock() and refer())
must be notified using the notifyThreads()method of class Event. Finally,
dispatch() must be called.

In case of an exception, you should always think of the appropriate ways to
handle the various bits associated with pages and frames. For instance, if the
thread that caused the pagefault was killed while waiting for a swap-out, we
cannot be sure whether the frame has become clean or not. So, the dirty bit
should not be changed in such a case.

The normal processing of a pagefault goes as follows. First, the thread
must be suspended on a SystemEvent object created with the help of the
SystemEvent() constructor. This event object must be saved in a variable,
because when pagefault handling is finished you must resume the thread by
executing notifyThreads() on that event.

Next, a suitable frame must be found and reserved to protect it from theft
by other invocations of the pagefault handler (on behalf of other threads). If
the frame is free, the page’s frame attribute can be updated and a swap-in
operation can be performed right away. If the frame contains a clean page,
the frame should be freed (explained below) and then a swap-in operation
should be performed. If the frame contains a dirty page, then swap-out must
be performed, followed by freeing the frame, followed by a swap-in. If all is
well and the thread was not killed while waiting for the two I/O operations,
you update the page table (explained below) to indicate that page is now
valid and the frame table to indicate that the newly freed frame is now
occupied by page. Finally, the following actions must be performed:

– the frame used to satisfy the pagefault should be un-reserved

– the threads that might be waiting on page should be notified using
notifyThreads()

– the thread that caused the pagefault must be resumed by executing
notifyThreads() on the system event that you used to suspend the thread
just after the entry into the pagefault handler
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– dispatch() must be called

– SUCCESS should be returned.

Freeing frames : To free a frame, one should indicate that the frame does not
hold any page (i.e., it holds the null page) using the setPage() method.
The dirty and the reference bits should be set to false.

Updating a page table: To indicate that a page P is no longer valid, one must
set its frame to null (using the setFrame() method) and the validity bit
to false (using the setValid() method). To indicate that the page P has
become valid and is now occupying a main memory frame F , you do the
following:

– use setFrame() to set the frame of P to F

– use setPage() to set F ’s page to P

– set the P ’s validity flag correctly

– set the dirty and reference flags in F appropriately.

Performing a swap-in: This is done by issuing a read command on the swap
file of the task that owns the page.

Performing a swap-out : This is done with the write command on the swap
file of the task that owns the page.3

read() is a method of class OpenFile that is invoked on an OpenFile-object
(which in our case is an open-file handle of a swap file) and takes three
arguments: the block number in the file that is to be read, the page into
which the file block is to be placed, and the thread that initiated the I/O.
All these parameters can be obtained using the methods listed below. The
only peculiarity is that a swap file contains an exact image of the task’s
memory, so there is a one-to-one correspondence between the pages and the
blocks in the swap file. In other words, the block number should be equal to
the page id.

write() is also a method in class OpenFile that is invoked on an open-file
handle and takes the same arguments as read().

Both read() and write() are blocking operations, i.e., they block the exe-
cution of the current thread until the I/O is finished.

Earlier we mentioned the method getValidatingThread(), which can be
used to find out if a particular page is in the middle of a pagefault. It should
3 Note: It must be the task of the page, not of the thread. Indeed, in case of a swap

out, the thread and the page might belong to different tasks. Think why.
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be emphasized, however, that it is the responsibility of the pagefault handler
(i.e., your implementation) to maintain the validating threads correctly. In
particular, when a pagefault occurs you must set the validating thread to be
the thread that caused the pagefault and set it to null when the pagefault is
over. All this is done with the help of the method setValidatingThread() of
the class PageTableEntry. It should also be mentioned that OSP 2 monitors
the validating thread field in every page and issues error messages when it is
incorrect. In particular, if a pagefault must occur and the validating thread
of a page stays null, it might complain that your implementation missed the
interrupt.

Relevant methods defined in other classes. In addition to the relevant
methods listed earlier, the following methods are used in handling pagefaults:

� public final boolean isReserved() FrameTableEntry

Tests if the frame is reserved.

� public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the frame.

� public final void isReferenced() FrameTableEntry

Checks the reference bit and tells if the frame has been referenced.

� public final OpenFile getSwapFile() TaskCB

Returns the open swap file of the task. This swap file is then used in the
read() and write() statements to perform the swap-in and swap-out
operations. The swap file is represented by the OpenFile class, which is
a handle that contains information about the disk blocks used by the file
and some runtime information about the current status of the file. This
operation blocks the current thread until the I/O operation is finished.

� final public void read(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile

This method is invoked on an open-file handle (which is an instance
of class OpenFile). It reads block blockNumber from the file (speci-
fied by an open-file handle) into page memoryPage on behalf of thread.
The open-file handle mentioned above is an object of class OpenFile.
In our concrete case, it would be a handle of a swap file. Since here
read() is used for swapping pages into the memory, blocks in the swap
file must directly correspond to pages in the main memory. Therefore
blockNumber is determined by the ID of memoryPage. This operation
blocks the current thread until the I/O operation is finished.

� final public void write(int blockNumber,

PageTableEntry memoryPage,ThreadCB thread) OpenFile
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This method is invoked on an open-file handle (which is an instance of
class OpenFile). It writes page memoryPage to block blockNumber of
the file on behalf of thread. As in the case of read(), blockNumber is
determined by the ID of memoryPage.

� public void notifyThreads() Event

Resumes all threads that might be waiting on the event. In pagefault
handling, these are the threads that might be waiting on the page that
has caused a pagefault and is being swapped in.

� final public void suspend(Event event) ThreadCB

Suspends the thread that calls this method, placing it on the waiting
queue of event.

� final static public void dispatch() ThreadCB

Dispatches a thread.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page. Note that you have to make sure
that the validating thread of a page is set correctly by the pagefault
handler. In other words, you must set the page’s validating thread using
setValidatingThread() when a pagefault happens and you must set
it back to null when the pagefault is over.

� final public static int handlePageFault (ThreadCB thread,

int referenceType, PageTableEntry page) PageFaultHandler

Invokes the pagefault handler. Returns SUCCESS if the pagefault has
been handled successfully. Otherwise (for instance, it there is not enough
memory) returns FAILURE.

� public SystemEvent(String name) SystemEvent

Constructor for system events. Used to create an event on which to
suspend a thread at the beginning of pagefault processing. The argu-
ment, name, is a string that will appear in the system log and can help
distinguish this event from other types of SystemEvent.

� static public void create(String name,

DaemonInterface work, int interval) Daemon

Used to register a daemon with the system. See Section 1.7 for details.

In addition most of the methods in class FrameTableEntry (such as getPage(),
setReserved(), etc.) are required for the implementation of the OSP 2 page-
fault handler.
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Summary of Class PageFaultHandler

This class does not maintain important data structures of its own. However, it
plays a central role in memory management by initiating the I/O operations
that swap pages in and out of the system and by maintaining the page tables
of the running processes and the frame table of the entire system.

5.8 Methods Exported by Package Memory

The following public methods are defined in the classes of the Memory package.
They are useful for implementing other student modules and are also used to
implement the methods that are part of the current project. To the right of
each method we list the class of the objects to which the method applies.

� static public PageTable getPTBR() MMU

Returns the page table base register of the MMU, which is supposed to
point to the page table of the currently running thread; or it is null if
no thread is running.

� static public void setPTBR(PageTable table) MMU

This method changes the value of the page table base register.

� static public int getVirtualAddressBits() MMU

Returns the number of bits used to represent an address. This method
is defined in IflMMU and is inherited.

� static public int getPageAddressBits() MMU

Returns the number of bits used to represent the page-number portion
of an address. This method is defined in IflMMU and is inherited.

� public final boolean isValid() PageTableEntry

Tells if the page is valid by checking the validity bit.

� public final void setValid(boolean flag) PageTableEntry

Sets the validity bit of the page to flag.

Notice that there is a difference between setting the valid flag and setting
the frame of a page (using setFrame()). The frame is set just before
the swap-in operation so that the I/O subsystem will know which frame
to load the page into. The method setValid() is used only after this
operation is complete.

� public final FrameTableEntry getFrame() PageTableEntry

Returns the frame of the page (or null).

� public final void setFrame(FrameTableEntry frame)

PageTableEntry
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Sets the frame of the page to frame. If the page is being evicted, then
frame is null.
setFrame()must be called before swapping in a page and after the page
becomes invalid. In the former case, you need to set the frame of the
page to tell the I/O subsystem where to put the page. The validity bit
of the page should be set only after the page is loaded.

� public final int getID() PageTableEntry

Returns the ID of the page.

� public final TaskCB getTask() PageTableEntry
Returns the task that owns the page.

� final public ThreadCB getValidatingThread() PageTableEntry

Returns the validating thread of the page.

� final public void setValidatingThread(ThreadCB thread)

PageTableEntry

Sets the validating thread of the page.

� public final void isReferenced() FrameTableEntry
Checks the reference bit and tells if the frame has been referenced.

� public final void setReferenced(boolean flag) FrameTableEntry

Sets the reference bit to the value of flag.

� public final boolean isDirty() FrameTableEntry

Tells if the frame is dirty by checking the “dirty” bit of the
frame.

� public final void setReserved(TaskCB t) FrameTableEntry

Sets the frame as reserved by task t.

� public final TaskCB getReserved() FrameTableEntry

Returns the task that has reserved this frame or null.

� public final void setUnreserved(TaskCB t) FrameTableEntry

Un-reserves the frame previously reserved by task t; error,
if the frame is not reserved by t.

� public final void setDirty(boolean flag) FrameTableEntry

Sets the dirty bit to flag.

� public PageTableEntry pages[] PageTable

This is the array that represents the page table. It must
be initialized by the page table constructor described in
Section 5.5.

� public final TaskCB getTask() PageTable

Returns the owner task of the page table.
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