
7
FileSys: The File System

7.1 Chapter Objective

The objective of the FileSys project is to teach students about file-system
design and organization and about the management of logical, file-based I/O
in a modern operating system. To this end, students will be asked to imple-
ment the five public classes of the FileSys package: MountTable, which maps
files to physical devices; INode, which keeps track of space allocation to files;
DirectoryEntry, which defines the directory structures; OpenFile, which pro-
vides methods for manipulating open files via open-file handles (including the
read() and write() operations); and FileSys, which provides a set of opera-
tions, such as create() and delete(), on non-open files.

7.2 File System Design Objectives

We briefly consider some of the main design issues in modern file systems,
particularly those pertinent to the FileSys project, and then discuss how these
are addressed in OSP 2 .

Naming. In a modern file system, users are able to refer to a file by a sym-
bolic file name. Typically such a name is in the form of a pathname, a sequence
of directory names ending in a target file, which can also be a directory. For



120 7. FileSys: The File System

example, consider the pathname /home/fac/sas/osp/filesystem.tex. This
pathname starts at the root of the hierarchical file system directory structure
(see discussion of directories below) indicated by the / character. The direc-
tory separator character / is also used to delimit names in the sequence.
The target file in this case is filesystem.tex. OSP 2 supports a hierarchical
directory structure and pathnames for symbolic file naming. Pathnames can
also commence from the working directory such as in osp/filesystem.tex,
assuming the working directory is /home/fac/sas. The working directory can
be manipulated interactively within the command shell.

The process of following the sequence of directory entries along a pathname
to reach the target file is known as pathname dereferencing. Pathname
dereferencing becomes more complicated by the presence of mountable file sys-
tems, discussed below.

Directory structures. Early MS-DOS file systems supported flat file direc-
tory structures where all files resided at the same, single level. Today’s directory
structures are multi-level and hierarchical where directories may contain sub-
directories and so on. Such hierarchies start at the root directory /. This does
not necessarily impose a tree structure on directories as files can be linked to
from any directory, as discussed below.

Links. Modern file systems, Unix-style ones in particular, provide a link()

system call that allows one to create a new link (directory entry) for an existing
file and increment its link count by one. The pathname of the existing file is
given as the argument to link(). If successful, link() returns the pathname
of the new directory entry.

Such a directory entry is a hard link to the existing file, and requires
that both files reside on the same file system (see discussion of mountable file
systems below). Both the old and the new link share equal access and rights to
the underlying object. A hard link can thus be viewed as a pointer to a file and
is indistinguishable from the original directory entry. Any changes to a file are
effective independent of the name used to reference the file. A hard link may
not refer to directories.

A symbolic link is an indirect pointer to a file; its directory entry contains
the name of the file to which it is linked. Symbolic links may span file systems
and may refer to directories.

Mountable file systems. Another feature of modern file systems is
the mount() system call, which requests that a removable file system be
mounted on a specified directory. Subsequent references to this directory



7.3 Overview of the OSP 2 File System 121

will access the root directory (by default) of the mounted file system. The
file system keeps track of mounted file systems and the directories on which
they are mounted via a mount table. For example, suppose the root di-
rectory of a disk volume is mounted on /home/fac/sas. Then the path-
name /home/fac/sas/osp/filesystem.tex ultimately references the target
file named filesystem.tex on that mounted volume. Pathname dereferencing
in the presence of mount tables is discussed more extensively in Section 7.4.

File storage allocation methods. How does the file system keep track
of the disk blocks allocated to a particular file? Possibilities include contiguous
allocation, where a single contiguous set of blocks is allocated to the file at the
time of file creation; chained allocation, where each block allocated to the file
contains a pointer to the next block in the chain; and indexed allocation, which
associates a (multi-level) index structure with the file indicating the blocks
that have been allocated to the file. Indexed allocation addresses many of the
problems of contiguous and chained allocation, and is used in modern operating
systems such as Unix, Windows, and OSP 2 .

Free space management. How does the file system keep track of the
free space on a disk, that is those disk blocks that can be allocated to a file
whenever the need arises? Possibilities include bit tables which use a bit vector
containing one bit for each block on the disk. An entry of 0 corresponds to
a free block and an entry of 1 corresponds to a block in use. In the chaining
method, each free portion of disk space contains a length field and a pointer
to the next free portion in the chain. The indexing approach treats free space
as a file and uses an index table as described under file allocation. The free
block list method numbers each block sequentially and a list of all free blocks
is maintained in a reserved portion of the disk.

7.3 Overview of the OSP 2 File System

The OSP 2 file system is a node-labeled tree, with support for hard links. The
nodes of the tree represent files. The root node of the tree is labeled with the
1-character constant string, FileSys.DirSeparator, which can be “/” or “\”.
In the ensuing discussion, we shall use “/”, but this should not be assumed in
the student programs. The rest of the labels are strings of arbitrary characters
except FileSys.DirSeparator. The labels are called names of files. A full
name or the pathname of a file (or directory) associated with the current



122 7. FileSys: The File System

node is obtained by concatenating all the labels on the path from the root to
that node while separating the different names with FileSys.DirSeparator.

A file can be a plain file or a directory. A directory is a special file that
contains information about other files. These other files are members of the
directory; they correspond to the nodes that are children of the directory node
in the tree. Thus, internal nodes of the file tree can only be directories. The
leaves of the tree can be either plain files or directories. A directory that appears
as a leaf is said to be empty.

Note that directory names that differ only in DirSeparator at the end are
considered the same; i.e., if DirSeparator is “/” and /foo is a directory then
/foo/ is considered to be the same directory. Also, multiple occurrences of
the separator character can be replaced by just one occurrence. For instance,
/foo/bar and ///foo//bar refer to the same file.

A file (or a directory) can be created and deleted. To work with a file,
a thread must first open it and obtain an open-file handle. This handle
contains run-time information about the file. The read and write operations
are performed on the open-file handle rather than on the name of a file. When
a thread is done working with a file, it can close the file handle and thus destroy
it. An open-file handle is a locus of run-time information about the file. In a
typical operating system it includes (among other things) the inode of the file,
the task, and the current position in the file. OSP 2 does not keep the current
position, but it does maintain the rest of this information.

A pathname identifies a unique file, but a file can have any number of names.
In fact, a file is uniquely represented by its inode (index node), which contains
information about the blocks allocated to the file. Pathnames are associated
with inodes through directory entries, but a file’s inode itself contains no
information about the names associated with the file. To associate another
name with a file, a thread can create a hard link to the file, which creates
another association between a pathname and the file’s inode.

Deleting a file does not necessarily destroy the file’s inode. Instead, it de-
stroys the directory entry that associates the inode with a particular pathname
that was used as a parameter to the delete() operation. Each inode has an
associated hard-link count: the number of hard links to the inode, which
is also the number of distinct names associated with the file. When a delete
operation is executed on a pathname associated with a particular inode, the
hard-link count is decremented by one. The inode is deleted only when both
the hard-link count and the open count (described below) become zero.

A file’s inode not only keeps track of the number of hard links to the file,
but also of the file’s open count, the number of times the file has been opened.
The same inode can be open multiple times because the open() operation can
be executed on different names associated with the file (and, in fact, even on



7.4 Class MountTable 123

the same pathname). When this happens, a new open-file handle is allocated,
and the same file can be accessed through different handles. Threads of the
same task share the open-file handles, so typically they do not need to open
the same file multiple times. However, different tasks might want to access the
same file concurrently in which case they need separate file handles. When a
file is opened through one of its pathnames, its open count is incremented by
one. Closing a file (with the close() operation) decrements the open count by
one.

We will now discuss each of the classes that belong to the package FileSys.
Figures 7.1 and 7.2 place them in the larger context of the OSP 2 system.

7.4 Class MountTable

Mount tables associate files with devices. For example, in Windows, a
file named C:\foo\bar is said to be residing on device C and a file named
D:\abc\cde is on device D. A mount table will then associate the letters C and
D with particular physical devices.1

In Unix systems the association between devices and files is more flexible,
but also more complex. First, Unix does not use letters to represent devices.
Instead, devices are associated with directories. A mount table then is a relation
that consists of a list of pairs of the form 〈pathname, deviceID〉. The pathname
part of such a pair is called a mountpoint.

OSP 2 uses Unix-like mount tables. An example mount table is given in
Figure 7.3. In that figure, we see four directories associated with four physical
devices. The first question is: How does the system decide on which device
any given file should reside? For example, consider the file /foo/bar/abc/cde.
Since this file is a descendant of the root directory, /, and this directory is a
mountpoint residing on device 0, one might think that this is where the file
should live. However, this file is also in a subdirectory of mountpoint /foo,
which lives on device 0. Looking more closely, we see that our file is also a
descendant of mountpoint /foo/bar, which is on device 3. Which device is the
correct one?

The actual mapping of files to devices works as follows. Given a full file
name f , the system finds the longest name of a mountpoint d that matches
f , where “matches” means that d is a prefix of f and f is a descendant of
1 Typically a physical device is further subdivided into partitions and the drive

letters (as well as directories in Unix—see below) are associated with partitions. In
other words, partitions represent an intermediate layer between files and the actual
devices they reside on. This intermediate layer does not exist in OSP 2 , and we
will ignore it here.



124 7. FileSys: The File System

Figure 7.1 An overview of the package FileSys, I.

d in the file-tree hierarchy. For example, the longest mountpoint in the table
of Figure 7.3 that matches /foo/bar/abc/cde is /foo/bar and thus the file
/foo/bar/abc/cde resides on device 3. Note that if the mount table had a
pair 〈/foo/bar/ab, 4〉 then the mountpoint /foo/bar/ab would not match
/foo/bar/abc/cde because the latter file does not reside in a subdirectory of



7.4 Class MountTable 125

Figure 7.2 An overview of the package FileSys, II.

/foo/bar/ab (but rather in /foo/bar/abc).2

The MountTable class in OSP 2 is intended to provide the correct mapping
2 Another way to describe the matching criterion is to standardize all file names.

A standardized file name is a full file name such that multiple occurrences of
DirSeparator are replaced with one occurrence and if the file is a directory then
DirSeparator is added at the end of the name. Given a file name f , the matching
mountpoint is the one whose standardized name is the longest prefix of f .



126 7. FileSys: The File System

Directory name Device ID

/foo 0
/swap 2
/foo/bar 3
/ 1

Figure 7.3 A mount table.

of files to devices. The mount table itself is encapsulated in a superclass of
MountTable. What is visible, however, is the static method getMountPoint(),
which takes a device number and returns the corresponding mountpoint. An-
other method, getTableSize(), tells the number of available physical devices
(which can be different for different parameter files). Device numbers range
from 0 to getTableSize()-1. Thus, together these methods make it possible
to access all mountpoints. To provide the file-to-device mapping, the student
needs to implement the following methods of class MountTable:

� public static boolean do isMountPoint(String dirname)

This method tells if dirname is a mountpoint of one of the devices. It uses
the method getMountPoint() internally.

� public static int do getDeviceID(String pathname)

This method checks the mount table and returns the Id of the device that
hosts the file with the given pathname. The method for determining the
device was described earlier.

As you can see, there are no methods for creating or deleting mountpoints.
In OSP 2 all mountpoints are created by the system at startup and none gets
destroyed during the execution of the system.

Built-ins and relevant methods from other classes. The implemen-
tation of these methods might need to use the following methods:

� public static String getMountPoint(int deviceID) MountTable

Returns the mountpoint associated with device deviceID. This method
is an OSP 2 built-in.

� public static int getDeviceID(String pathname) MountTable

Returns the device Id that hosts pathname. Note that this method even-
tually calls your method do getDeviceID() described above. You have
to use getDeviceID() here instead of do getDeviceID() because of
the convention explained in Section 1.9.2 that prohibits student mod-
ules from calling the do methods.



7.5 Class INode 127

� final static public int getTableSize() Device

Tells how many devices there are. The number of devices is specified in
the parameter file and can vary from one simulation run to another.

� final static public Device get(int deviceID) Device

Returns the device object with the given Id. In conjunction with
getTableSize(), this method can be used in a loop to examine each
device in turn, as device IDs range from 0 to getTableSize()-1. Note
that all devices are mounted by OSP 2 at the beginning of the simu-
lation and no devices are added or removed during a simulation run.
Therefore the number of devices remains constant and the device table
has no “holes”.

Summary of the class MountTable

This class maintains the mount table data structure, which maintains the cor-
respondence between devices and directories through which these devices are
accessed by the programs. Other modules of the file system layer access the
mount table mainly using the methods getMountPoint() and getDeviceID().

7.5 Class INode

An OSP 2 inode represents a concrete file. An inode records information about
the device where the file lives, and it keeps track of the blocks occupied by the
file, the hard link count, and the open count.

The most important information here is the set of blocks occupied by the
file. The actual data structure to be used to capture this information is up to
the student implementation, although the course instructor may have specific
requirements for this data structure.

The following methods of class INode are to be implemented as part of the
FileSys project:

� public INode(int deviceID)

The constructor. It should call super(deviceID) and then initialize the in-
stance variables of the inode (if necessary).

� public static boolean do isFreeBlock(int block, int deviceID)

Tells whether block on device with Id deviceID is free.3

3 Note that from an object-oriented design perspective, this method better fits
in class Device. However, space management is not a function of the basic I/O



128 7. FileSys: The File System

� public int do allocateFreeBlock()

When applied to an inode object, allocates a free block to that inode
and returns the block number of that block. Marks the block as used.
Make sure that the INode block count is set correctly (see the method
setBlockCount()). Returns NONE if the device has no free blocks.

� public void do releaseBlocks()

Releases all disk blocks occupied by the inode. Make sure that the INode
block count is set correctly (setBlockCount()).

It is clear from the above that you have to keep track of the free space on
the device. For some representations, such as bitmaps, it is useful to know
the size of each device in blocks. The size can be obtained using the method
getNumberOfBlocks() of the class Device.

Since you have to keep track of the valid inodes, you might also need to
implement the file allocation table (or a master file table) thats hold these
inodes.

Relevant methods defined in other classes.

� final public int getNumberOfBlocks() Device
Returns the total number of blocks on the device.

� final static public int getTableSize() Device

Returns the total number of devices in the device table (i.e., in the
current simulation of the OSP 2 system).

� public final int getBlockCount() INode

Returns the number of blocks allocated to this inode. This method is
inherited from a superclass of INode.

� public final void setBlockCount(int blockCount) INode

Sets the number of blocks allocated to this inode. This method is inher-
ited from a superclass.

� public final int getDeviceID() INode

Returns the device ID of this inode.

� public static String getMountPoint(int deviceID) MountTable

Returns the mountpoint of the given device.

supervisor that Device implements. This is an example of the tension between the
layered architecture of an OS and the object-oriented design.



7.6 Class DirectoryEntry 129

Summary of the class INode

The INode class has methods (implemented as built-ins) and variables which
provide access to the various components of that class, as listed below:

openCount: The count of active open-file handles associated with the inode,
obtained using getOpenCount() and changed via incrementOpenCount()

and decrementOpenCount().

hardLinkCount: The number of pathnames associated with the inode. This
count is obtained via getLinkCount() and changed using the methods
incrementLinkCount() and decrementLinkCount().

blockCount: The number of blocks allocated to the file (the file size). This item
is obtained using getBlockCount() and set using setBlockCount().

device ID: The device Id of the inode. It can be obtained using the method
getDeviceID().

7.6 Class DirectoryEntry

If you were wondering how pathnames are associated with inodes, the suspense
is over: this is done through directory entries defined by the class Directory-
Entry. A directory entry includes a pathname, an inode, and a type (FileEntry
or DirEntry). The type indicates whether the particular directory entry rep-
resents a plain file or a directory.

The methods of this class to be implemented as part of the FileSys project
are listed below.

� public DirectoryEntry(String pathname, int type, INode inode)

The class constructor. Calls super(), as usual, and initializes instance vari-
ables, if necessary.

� public static INode do getINodeOf(String pathname)

Given a pathname, returns the corresponding inode. In order to make this
possible, the class DirectoryEntry must maintain the collection of all direc-
tory entries.

In addition, you need to implement a number of supporting methods that
other classes in your package might need to use to insert directory entries into
the directories, delete the entries, etc.



130 7. FileSys: The File System

Relevant builtins and methods defined in other classes. This
class does not use any standard methods defined in other classes of OSP 2 .
Some standard classes provided by Java itself might be useful. For instance,
Hashtable and the associated methods can be used to maintain the Directory-
Entry data structure. This would closely correspond to how directories are
implemented in real operating systems.

Summary of Class DirectoryEntry

This class does not provide any methods, but there are several variables:

pathname: This property is accessible through the method

final public String getPathname()

This is the pathname represented by this directory entry.

INode: This property is accessible through the method

final public INode getINode()

It is the inode that this directory entry associates with the pathname of
the directory entry. A related method in this class is getINodeOf(), which
takes a pathname parameter and returns the corresponding INode:

final public static INode getINodeOf(String pathname)

Unlike getINode(), this method is static.

type: This property is accessible through the method

final public int getType()

It specifies the type of the directory entry, i.e., whether the entry represents
a regular plain file (FileEntry) or a directory (DirEntry).



7.7 Class OpenFile 131

7.7 Class OpenFile

Class OpenFile provides methods for creating open-file handles, accessing the
components of an open-file handle, and using open-file handles to perform I/O
operations.

� public OpenFile(INode inode, TaskCB task)

This is a constructor for open-file handles. It must call super() with the
same set of parameters and then, possibly, initialize the various variables
that you might have added to the class.

� static public OpenFile do open(String filename, TaskCB task)

This method create an open-file handle. It receives a file name (which must
correspond to a previously created file) and a task object, creates an open-
file handle for the file, and adds the handle to the task’s table of open files.
(Recall from Chapter 3 that the open-files table is one of the resources owned
by a task.)

First, the file must already exist before it can be opened. Existence should be
checked using a method that you implement in class FileSys. Note that this
method will be unknown to the OSP 2 IFL layer, i.e. it will not have a wrap-
per method in the IFL, and therefore its implementation and name are com-
pletely up to you. Second, opening a mountpoint is a violation, so you must
check that the argument is not a mountpoint. (The method isMountPoint()
of class MountTable can be used to check this.)

Once you pass these checks, a new open-file handle can be created. The
OpenFile() constructor takes an inode and a task as parameters, so you must
obtain the inode corresponding to filename (using the method getINodeOf()

discussed earlier). After constructing the handle, you should add it to the
task with the method addFile() of class TaskCB. Finally, the count of open
files for the inode should be incremented (incrementOpenCount()) and the
newly created file handle returned.

� public int do close()

A file is closed when its open-file handle is no longer needed. However, closing
a file is trickier than it might seem.

First, the file might still have outstanding (unprocessed) IORBs. As discussed
in Chapter 6, such a file cannot be closed immediately. Instead, you should
mark the file as needing to be closed later and leave it alone. Marking is
performed by setting the closePending flag to true, where closePending

is a field of the context OpenFile object. The disk interrupt handler will
close the file (by issuing another close operation) after the last outstanding
IORB has been processed.



132 7. FileSys: The File System

If the file cannot be closed due to outstanding IORBs, as described above,
do close() should just exit and return FAILURE. If the file can be closed
immediately, then you should do so, adjusting the relevant structures. One
thing that needs to be done here is to decrement the open file count of
the inode associated with the file handle. The inode is obtained using the
getINode() method and the count is changed using decrementOpenCount()

of class INode.

Next, you should check whether you can destroy the inode associated with the
file handle and release the disk blocks owned by that inode. As discussed ear-
lier, an inode can be deleted when both its open file count (getOpenCount())
and its hard-link count (getLinkCount()) are zero. The inode’s disk blocks
are released with the method releaseBlocks() of class INode. The method
to remove an inode from the disk master file table should reside in class
INode and its name (and, of course, its implementation) are left for you to
decide.

Finally, the closePending field is reset to false, the file handle is removed
from the open-files table of the task associated with that handle, and SUCCESS

is returned.

� public int do read(int fileBlockNumber,

PageTableEntry memoryPage, ThreadCB thread)

The do read() method is executed on a file-handle object. It creates a read
request to the device associated with the file handle, enqueues the request to
the device, and waits until the I/O is complete — I/O operations in OSP 2

are synchronous at the thread level. That is, the thread that issues an I/O
operation is eventually blocked until the operation is finished.4

It is recommended that you make sure that the parameters passed to open()

are consistent. For example, the fileBlockNumber parameter must be within
the appropriate range (non-negative and not exceed the file size). If it is not,
FAILURE should be returned. Likewise, it is wise to check whether memoryPage
and thread are not null.

In the next step, a new system event is created using the constructor
SystemEvent() and the current thread is suspended on that event. At this
point it is recommended that you refresh your memory about thread suspen-
sion and resumption by (re-)reading Section 4.3. A thread that is suspended
on a system event is not really blocked, but instead can be thought of as

4 However, I/O is asynchronous at the task level: a thread that does not wish to
wait for I/O can spawn another thread that performs the I/O. Meanwhile, the first
thread can go about its business while the second thread would wait. When the
I/O is done, the two threads can merge.



7.7 Class OpenFile 133

having changed status from user thread to system thread. When the read op-
eration is complete, the event will “happen” and the thread will be resumed.
To be able to resume the thread after the I/O is complete, you should save
the SystemEvent object in a variable.

You are now ready to construct an IORB for the request. The inode and
device Id can be extracted from the open-file handle using the appropriate
methods. The I/O type (one of the parameters in the IORB constructor)
is, naturally, FileRead. The only thing that requires care is the disk block
number parameter to the constructor.

Note that the fileBlockNumber parameter to do read() is the number of
the logical block within a file. It must be mapped to the physical block of
the disk. Information about the disk blocks allocated to the file is stored in
the inode, which is implemented in your INode class. It is recommended that
you implement a method in INode that, when applied to an inode with a
logical file block number as a parameter, returns the corresponding physical
block.

After collecting all the needed components, you use the IORB() constructor
to create an IORB for the read request.

Next, you must enqueue the request to the appropriate device using the
method enqueueIORB() of class Device. Note that enqueueIORB() locks the
target memory buffer page, which can cause some swapping activity, and the
thread must wait until swapping is finished. As usual in OSP 2 , a waiting
thread might get killed, so it is necessary to ascertain that the thread is
still alive after enqueueIORB() returns. If the thread was killed, do read()

should return FAILURE.

If enqueueIORB() finished successfully, thread must be suspended on iorb.
When this I/O completes, thread will be notified and control will get past
the suspend() operation. At this point, again, you must check if the thread
is still alive. If it is dead, FAILURE is returned; if it is alive, you execute
notifyThreads() on the previously created SystemEvent object and return
SUCCESS.5

� public int do write(int fileBlockNumber,

PageTableEntry memoryPage, ThreadCB thread)

Writing is similar to reading in many respects. One important difference (in
OSP 2 , anyway) is that a file block is considered out of range only if it is

5 Note that the logic of your implementation should be such that each suspend()
is matched by a notifyThreads() system call.



134 7. FileSys: The File System

negative. If fileBlockNumber is higher than the number of blocks in the file,
the file is extended with the necessary number of blocks. For example, if the
current size of the file is 2 blocks and fileBlockNumber is 5, then 4 new
blocks must be allocated to the file. (Note that blocks are counted from 0,
so 5 refers to the 6th block of the file.) Additional disk blocks are allocated
to an inode as a result of the allocateFreeBlock() system call (and not by
any other means !).

Another important difference is that the device might not have enough free
space to accommodate the file expansion. In this case, FAILURE should be
returned. Note that free disk space management is done in class INode and
is the student’s responsibility.

Relevant methods defined in other classes.

� public static boolean isMountPoint(String dir) MountTable

Tells if dir is a mountpoint.

� final public void addFile(OpenFile file) TaskCB

Adds file to the open-files table of the task.

� final public void removeFile(OpenFile file) TaskCB

Removes the file handle from the task’s open files table.

� final public void suspend(Event event) ThreadCB

Suspends thread on the event.

� public void notifyThreads() Event

Notifies threads that are waiting on the event.

� final public int getIORBCount() OpenFile

Returns the IORB count of the open-file handle.

� final public void incrementIORBCount() OpenFile

Increments the IORB count of the open-file handle by 1.

� final public void decrementIORBCount() OpenFile

Decrements the IORB count of the open-file handle by 1.

� final public INode getINode() OpenFile

Returns the inode of the open-file handle.

� final public void setINode(INode inode) OpenFile

Sets the inode of the open file handle.

� final public TaskCB getTask() OpenFile

Returns the task of the open-file handle.



7.7 Class OpenFile 135

� public final int getOpenCount() INode

Returns the open file count of inode.

� public final void incrementOpenCount() INode

Increments the open-file count of the inode by 1.

� public final void decrementOpenCount() INode

Decrements the open file count of inode by 1.

� final public void releaseBlocks() INode

Frees up disk blocks held by the inode.

� public SystemEvent(String type) SystemEvent

The constructor for system events. The type parameter is used to pro-
vide a tag with which the event will be displayed in the log file. This
tag can be useful for debugging when you need to trace the execution
of your project. When a thread is suspended on a SystemEvent, it can
be thought of as having changed status from user thread to system
thread. See Section 4.3 for more details on suspension and resumption
of threads.

� public IORB(ThreadCB thread, PageTableEntry page,

int blockNumber, int deviceID, int ioType, OpenFile openFile)

Creates an IORB with the given parameters.

� final public int enqueueIORB(IORB iorb) Device

Enqueues iorb to its associated device. This operation is block-
ing and can cause a pagefault (and the ensuing swapping) because
enqueueIORB() needs to lock the target memory page in order to shield
it from page replacement. See Chapters 5 and 6 for a more thorough
explanation of page locking. This method returns SUCCESS if iorb has
been successfully enqueued. A failure is returned when enqueuing fails
(for example, if the original thread has died).

� final public int allocateFreeBlock() INode

Allocates a free block to the inode. The block becomes occupied.

Summary of the class OpenFile

The class OpenFile maintains the following important variables, which are
affected using the various methods of that class.

IORB count: The number of outstanding IORBs for the handle. Obtained
using getIORBCount() and changed using incrementIORBCount() and
decrementIORBCount().



136 7. FileSys: The File System

INode: The inode of the open-file handle. Obtained using getINode() and set
using setINode().

Task: The task that owns the open-file handle. Obtained using the getTask()

method.

closePending: This field is set to true by do close() if the OpenFile object
has outstanding IORBs and cannot be closed immediately. When the last
IORB for this OpenFile object is processed, do close() will close the file.

7.8 Class FileSys

You are to implement the following methods of class FileSys as part of this
project.

� public static void init()

As usual in OSP 2 , this method is called at the beginning of every simulation
run. It can be used to initialize static variables that your implementation
might use (for example, the variables used in the implementation of the
mount table, in the open-files table, in the list of free blocks on the various
devices, etc.).

� final static public int do create(String pathname, int size)

This method creates a file with a given pathname and size (in bytes). In
one sentence, this means making the necessary checks and then creating
the corresponding inode and the directory entry that relates pathname with
that inode. The devil is in the details, however, and this is what we will be
discussing next.

First, you have to check if the file with the same name already exists. If so,
FAILURE is returned. If a file is a mountpoint (is listed in the mount table),
then it is presumed to exist right from the start and, since mountpoints
cannot be created or destroyed, FAILURE should be returned in this case as
well. If the file does not exist, check if pathname refers to a directory or
a plain file. A pathname refers to a directory if it ends with the filename
separator, DirSeparator, but is not a mountpoint. It refers to a plain file
otherwise.

Note, however, that the convention that a directory name must end with
DirSeparator is used in the create() call only (just in order to avoid in-
troducing yet another system call). In all other contexts, pathnames such
as /foo/bar and /foo/bar/ refer to the same directory. Also, if a plain
file by the name /foo/bar already exists and do create() is called with



7.8 Class FileSys 137

/foo/bar/ as a parameter, the call should fail and FAILURE returned, be-
cause there cannot be a file and a directory with the same name. Likewise, if
do create("/foo/bar/",...)was earlier called to create a directory, then a
subsequent call do create("/foo/bar",...) should fail, because otherwise
we would have a file and a directory with the same name.

In view of the above, it is generally a good idea to normalize file names
before doing any file-name comparisons. A normalized pathname is a full
pathname such that it does not have repeated occurrences of DirSeparator
(pathnames /foo///bar// and /foo/bar/ are considered the same, but only
the latter is normalized). It may be convenient to also remove the trailing
DirSeparator in normalized directory names (except for the root of the file
system, /), but this depends on the particular algorithms that you are using.

Next, you must check if the caller intended to create a file or a directory by
checking the last character of pathname. The appropriate file-type indicator
(FileEntry or DirEntry) will later go into the directory entry for the file.
Also, for plain files, the size parameter indicates the size of the file in bytes.
However, for directories this parameter is ignored, since directories are as-
sumed to occupy exactly one disk block. The correct size parameter should
be used when constructing the corresponding inode.

It is common in programming to attempt to create a file in a non-existent di-
rectory with the intent that the system would create all the intermediate sub-
directories automatically. For instance, suppose that the directory /foo ex-
ists, but /foo/bar does not. In OSP 2 , the call do create("/foo/bar/moo/

abc.html",...) should then create the intermediate directories, /foo/bar
and /foo/bar/moo, before creating /foo/bar/moo/abc.html. Note that this
means that while creating the intermediate directories, do create() will call
create() (its OSP 2 wrapper), which in turn will call do create() recur-
sively.

Next you should check the mount table to determine the device where the file
is to be created. Recall from Section 7.4 that determining the device is the job
of method getDeviceID() of class MountTable. You need to make sure that
the device has enough free space. Recall that space management is the job of
the INode class. You might want to implement a method in that class which
returns the number of free blocks. If this number is less than the number
of blocks needed to accommodate our file, FAILURE should be returned. It
is therefore important to correctly calculate the number of blocks needed to
accommodate a file-creation request. Recall that do create() gets the size
of the file in bytes, and this has to be converted into disk blocks. The block
size equals the size of a virtual memory page, which can be obtained using
the two methods provided by the class MMU: getVirtualAddressBits() and



138 7. FileSys: The File System

getPageAddressBits().6

Note, however, that OSP 2 assumes that directories occupy exactly one block
and the file-size parameter in do create() should be ignored in this case.

After all these checks, nothing (but a computer crash) can stop us from
creating the file. You can use the constructor for the class INode to create
a new inode. Next, you should use methods incrementLinkCount() and
allocateFreeBlock() of INode to update the count of hard links to the
inode and to allocate the right number of disk blocks to it. The inode should
also be inserted into the device’s file allocation table for safekeeping.

To complete the process, you must create a directory entry for pathname

and insert it into the appropriate directory. This is accomplished using the
constructor of DirectoryEntry and other methods that depend on your
implementation of directories.

When all is done, SUCCESS is returned.

� final static public int do link(String pathname, String linkname)

This method creates a new hard link, with name linkname, to the inode
associated with pathname. The process is similar to creating a file: you need
to check if a directory entry for linkname already exists and return FAILURE

if it does. Otherwise (if there is no file named linkname), you must create
an appropriate directory entry. However, there also are significant differences
between linking and creating files.

First, no new inode need be created. Instead, the inode associated with
pathname is used. Therefore, no additional space need be allocated. Sec-
ond, hard links to directories are not allowed (as in Unix). Third, unlike
the case of file creation, no intermediate directories are created. So, if the
directory /foo exists but /foo/bar does not, then creation of a hard link
/foo/bar/abc.html to another file should fail.

Other than that, creation of a new directory entry to associate linknamewith
the inode of pathname proceeds as in the case of do create(). In particular,
do not forget to increment the hard-link count.

Note one interesting thing: after a hard link to an inode is created, linkname
and pathname become virtually indistinguishable. That is, linkname is as
much of a “file name” for the corresponding inode as pathname is. The inode

6 Note that a file-creation request might specify size 0, in which case the request
must succeed even if the device has no room.



7.8 Class FileSys 139

itself does not contain any file-name information and all the naming takes
place in directory entries.

� final static public int do delete(String pathname)

Destroying a file is not as simple as it might seem. First, you must check if
a file with the name pathname exists. Note that you cannot always tell from
the name whether it refers to a plain file or a directory, so you must use
normalized names to do the checks. Also, non-empty directories cannot be
deleted and, of course, deletion of mountpoints is not allowed. In all these
cases, FAILURE should be returned.

Once you get past these checks, you must remember that pathname is just one
of the several possible hard links to the inode associated with a file. If after
deleting the directory entry for pathname and decrementing the hard-link
count the number of hard links for the inode (obtained via getLinkCount())
is non-zero, do not delete the inode. Recall that inodes also have an open
count, in addition to a hard-link count, which counts the number of open-
file handles for the inode. If this count is positive, the inode must not be
deleted. In both cases, however, the directory entry for pathname must still
be deleted. If the hard-link count as well as the open count are zero, both the
inode and the directory entry must be deleted. In case the inode is deleted,
all its blocks must be freed up (using releaseBlocks()). Finally, SUCCESS
should be returned.

� final static public Vector do dir(String dirname)

This method returns a vector of normalized file names that reside in directory
dirname. If dirname does not exist or is not a directory, null is returned.

Relevant methods from other classes. The following methods might
be required to implement class FileSys.

� public static boolean isMountPoint(String dir) MountTable

Tells if a given pathname is a mountpoint.

� static final public int getVirtualAddressBits() MMU

Tells how many bits are used to represent a virtual address. This method
and the next method can be used to determine how many bits are needed
to represent an address within a page, from which the page/block size
can be computed.

� static final public int getPageAddressBits() MMU

Tells the number of bits used to represent a page address.

� public final int getLinkCount() INode

Returns the number of hard links to the inode.



140 7. FileSys: The File System

� public final void decrementLinkCount() INode

Decrements the hard-link count for inode.

� public final void incrementLinkCount() INode

Increments the hard-link count for the inode.

� public final int getOpenCount() INode

Returns the count of open-file handles for the inode.

� final public int allocateFreeBlock() INode

Allocates a free block to the inode. The block becomes occupied.

� final public void releaseBlocks() INode

Releases all the blocks held by the inode.

� public final int getDeviceID() INode

Tells the device Id of the inode.

� final public static int create(String name, int size) FileSys

The OSP 2 wrapper for do create()

� final public static INode getINodeOf(String pathname)

DirectoryEntry

Returns the inode associated with pathname. If no direc-
tory entry for pathname exists, returns null.

� final public static void showDirectory(String dirname)

DirectoryEntry

Prints the directory listing for dirname to the log file. This
method can be useful for debugging, since it shows what
OSP 2 believes the correct listing is supposed to be.

Summary of Class FileSys

In OSP 2 , the class FileSys does not typically maintain important data struc-
tures of its own. Instead, it serves as a container for methods that do not
logically belong to any other class in the package. For instance, the method
do delete() for deleting files based on a string that represents the file name
cannot be naturally attached to any other OSP 2 class. Such methods do not
normally maintain complex data of its own. Instead, they operate on the data
structures defined in other classes, such as DirectoryEntry or MountTable,
using the methods provided in those classes.



7.9 Methods Exported by the FileSys Package 141

7.9 Methods Exported by the FileSys Package

The following is a summary of the public methods defined in the classes of the
FileSys package or in the corresponding superclasses, which can be used to
implement this and other student packages. To the right of each method we
list the class of objects to which the method applies.

� final public static int create(String name, int size) FileSys

Creates a file with the specified name and size.

� final public static void delete(String name) FileSys

Deletes the directory entry for the specified file.

� final public static OpenFile open(String filename, TaskCB task)

OpenFile

Opens the specified file filename by task and returns the newly created
open-file handle (or null, if the operation fails).

� final public int close() OpenFile

Closes the file handle on which this operation is invoked.

� final public void read(int fileBlockNumber, OpenFile

PageTableEntry memoryPage, ThreadCB thread)

Performs the read I/O operation using the given open-file handle. Reads
data from logical file block fileBlockNumber into memoryPage on behalf
of thread.

� final public void write(int fileBlockNumber, OpenFile

PageTableEntry memoryPage, ThreadCB thread)

Performs the write I/O operation using the given open-file handle.
Writes data to logical file block fileBlockNumber from memoryPage

on behalf of thread.


	FileSys: The File System



