
8
Ports: Interprocess Communication

8.1 Chapter Objective

The objective of the Ports project is to teach students about interpro-
cess communication and requires that the student implement two public
classes: Message, which describes what OSP 2 messages look like, and Port-

CB, which implements the main communication primitives, such as send() and
receive().

8.2 Interprocess Communication in OSP 2

Interprocess communication in OSP 2 is based on the abstraction of a port
and is modeled after the Mach micro-kernel. In Mach, a process can open a
port, and other processes can then send messages to it which can be received
by the owning process; a message is basically a block of bytes. Mach manages
the ports, and provides guaranteed, in-order delivery, with large messages being
handled efficiently by sharing pages between address spaces. There is a sophis-
ticated permission mechanism which restricts the operations that processes can
perform on ports.

Thus, a port is like your home mailbox. A task can create a port to serve as
a mailbox to which threads from other tasks can send messages.1 Only threads
1 Note that threads of the same task do not need to communicate this way, since



144 8. Ports: Interprocess Communication

of the owner task can read from the ports of that task; other threads only
write to that port. In OSP 2 , reading from a port is done using the receive()

operation and writing is performed via the send() operation.
The OSP 2 model of communication is based on reliable message deliv-

ery, i.e., correctly formed messages never get lost. When threads communicate,
they exchange discrete entities, called messages. A message has length and Id.
When a thread sends a message to a port, the message is delivered to the des-
tination port and is placed in that port’s message buffer. Port buffers are as-
sumed to have finite byte size specified in a global constant PortBufferLength.
If the message is bigger than this amount, the send() operation fails and the
message is not delivered. If the message is smaller than PortBufferLength, it
is considered well-formed and deliverable. However, the destination port might
not have enough room due to other messages that might have been delivered to
that port but not yet consumed. In this case, the send() operation suspends
the sender thread until room becomes available.

When a thread wants to receive a message, it invokes the receive()method
on a port. If a message is available, it is removed from the port message buffer
and the operation succeeds. If, however, the port is empty, then the receiver
thread is suspended until a message arrives.

It is thus clear that a mechanism is needed for threads to suspend themselves
and to be notified. In OSP 2 , this is accomplished through the familiar Event
class. More precisely, PortCB is a subclass of Event, and threads can suspend
themselves on a port when necessary. Likewise, when appropriate conditions
arise (e.g., a port buffer gets more room or a message arrives at an empty port),
threads that are waiting on the port can be notified. (Note that several threads
can be waiting on the same port at the same time.)

The classes comprising the Ports package are described below. The class
diagram of Figure 8.1 places these classes in the overall context of the OSP 2

system.

8.3 The Message Class

The Message class has only one required method, the class constructor, which
takes a length argument and creates a message with a unique Id.

� public Message(int length)

The message constructor. Must call super(length) as its first statement.
Your implementation might also add other fields and methods to this class.

they share virtual address space and thus can communicate much more efficiently
through shared variables.



8.3 The Message Class 145

Figure 8.1 A diagram summarizing the package Ports.

In addition, your implementation of class PortCB can use a number of methods
defined in class Message provided by OSP 2 :

� public int getID()

Returns the Id of the message.

� public int getLength()

Returns the length of the message in bytes.



146 8. Ports: Interprocess Communication

Built-ins and relevant methods defined in other classes. The method
constructor for class Message does not use any methods provided by other
OSP 2 classes.

Summary of Class Message

A message in OSP 2 is a simplified abstraction of messages used in real com-
munication protocols, such as TCP/IP: it includes only these two parameters:

ID: The ID of a message. The value of an ID can be retrieved using the method
getID().

length: The length of a message. This parameter can be queried using the
method getLength().

8.4 The PortCB Class

The methods of PortCB to be implemented as part of the student project
include the class constructor, the initialization method, the methods for creat-
ing/destroying ports and for sending/receiving messages.

A port has an Id, the owner task, a status (PortLive or PortDestroyed),
and a message buffer. OSP 2 provides methods for manipulating the message
buffer of a port (appendMessage(), removeMessage(), isEmpty()), but the
student implementation must keep track of the free space left in the buffer in
order to be able to correctly decide when a message can be sent to the port.

� public PortCB()

This is a class constructor whose only required statement is super(), the
usual call to the corresponding constructor in the superclass.

� public static void init()

This is the usual initialization method, which is called at the very beginning
of the simulation run. It is a place where your implementation can initialize
static variables.

� public static PortCB do create()

This method creates and returns a new port. After a new PortCB object
is created, it needs to be assigned to the current task, i.e., the task that
owns the currently running thread. Recall from Chapter 5 that PTBR, the
page table base register, always points to the page table of the current



8.4 The PortCB Class 147

task. Thus, the current task can be retrieved using the following idiom:
MMU.getPTBR().getTask().

To assign the port to the task, use the method addPort() of TaskCB. How-
ever, keep in mind that there is a limit of how many ports a task can have,
which is defined by the global constant MaxPortsPerTask. If the task al-
ready has that many ports, addPort() will return FAILURE and do create()

should then return the null object.

If all is well, the owner task of the port should be set (using setTask()), and
the status set to PortLive using the method setStatus() of class PortCB,
which is provided by OSP 2 . In addition, you have to initialize the variables
that you might have introduced to keep track of the state of the message
buffer. Finally, the newly created PortCB object is returned.

� public void do destroy()

Ports are destroyed by the owner task when they are no longer needed for the
task’s operation or when the task itself is killed. To destroy a port, the port’s
status should be set to PortDestroyed, and the port should be removed from
the task’s table of active ports. The latter is accomplished using the method
removePort() of TaskCB. Next, the port’s owner task should be set to null
using the method setTask() of PortCB.

You must also notify the threads that might be waiting for an event as-
sociated with this port. As usual, this is accomplished using the method
notifyThreads() applied to the appropriate event.

� public int do send(Message msg)

Prior to sending a message, you must first check that the message is well-
formed. In OSP 2 , this means that the parameter msg is not null and that
the message length is not greater than the length of the port message buffer.
If the message is not well-formed, FAILURE should be returned.

In the next step, a new system event must be created using the constructor
SystemEvent() and the current thread must be suspended on that event. You
already saw how to find the current task from the page table base register.
The current thread is obtained using the method getCurrentThread() of
that task.

At this point it is recommended that you refresh your memory about thread
suspension and resumption as described in Section 4.3. A thread that is
suspended on a system event is not really blocked, but instead can be thought
of as having changed status from user thread to system thread. When the
send operation is complete, the event will “happen” and the thread will be
resumed. To be able to resume the thread before leaving do send(), you



148 8. Ports: Interprocess Communication

should save the SystemEvent object in a variable.

Now you are ready to attempt to send the message. Recall that if the des-
tination port (i.e., the port on which the send() method is executed) does
not have enough room in the message buffer, the sender thread must be sus-
pended on that port. (Recall that you have saved the information about that
thread before suspending it on a SystemEvent.) A thread T suspended on
a port can be woken up when the port gets more room in its buffer. This
happens when one of the threads that owns the port executes a receive()

operation on that port. However, the sending thread T might discover that
the port still does not have enough room for the message because either
too little space was freed up or because some other thread managed to send
a message to the port before T had a chance. In this case, T has to be
suspended again (on the same port).

Another possibility is that the newly awakened thread was killed while wait-
ing to send the message. FAILURE should be returned in this case. The
third possibility is that the thread might have been awakened because the
owner task decided to destroy the port on which the thread was suspended
(or, maybe, the task itself was killed). Again, FAILURE should be returned.
In addition, you should notify the threads that were suspended on the
SystemEvent associated with the current send operation. (Recall that the
current thread was suspended on this event at the beginning of the do send()
method.)

If none of the above problems are detected, you know that send should
succeed. Thus, you should update the message buffer of the port (using
appendMessage()) and, if the buffer was previously empty, notify the threads
that may be waiting on that port in the receive mode.2 Finally, you should
execute notifyThreads() on the previously created SystemEvent object and
return SUCCESS.

� public Message do receive()

First, you must check that the receive operation is permitted, i.e., that
the receiving thread’s task owns the port on which do receive() has been
invoked. If this is not the case, null should be returned. Second, when a
thread T executes a receive() operation on a port P, you must create a
SystemEvent object and suspend T on that event. As explained earlier, this
corresponds to T changing its status from user thread to system thread. Note
that the receiving thread T is the currently executing thread, which can be
obtained using the PTBR.

2 Note that other threads may have been waiting to receive a message from this
port only if its message buffer was empty.



8.4 The PortCB Class 149

Next, recall that the receiving thread must be suspended if the message
buffer of the port contains no messages. This thread can be woken up when
some other thread sends a message to that port. However, keep in mind that
although a port can have several threads suspended in receive mode, only
one of them will be awakened and thereby succeed in getting a message. All
other threads would have to be suspended again.

There is a possibility that a woken-up thread was killed or that the port
was destroyed. In both cases, do receive must return the null object. If
none of the above bad things happen, the do receive() method succeeds.
In this case, the method should “consume” a message from the port message
buffer using removeMessage() and notify threads waiting on the port. (This
is needed because consuming a message will probably free up space in the
message buffer of the port and, as a result, some previously suspended send
operation might be able to proceed.) Finally, the message consumed by this
receive operation should be returned.

In all cases (whether the receive operation ended successfully or not), prior
to exiting you must execute notifyThreads() on the previously created
SystemEvent object for this receive operation.

Built-ins and relevant methods from other classes. A typical imple-
mentation of the methods in class PortCB uses the following methods defined
in other classes or methods of PortCB provided by OSP 2 :

� final public int addPort(PortCB newPort) TaskCB

Adds a new port to the task.

� public int removePort(PortCB oldPort)

Removes oldPort from the task.

� public ThreadCB getCurrentThread() TaskCB
Returns the currently running thread of the task. Null, if the task itself is
not current.

� static public PageTable getPTBR() MMU

Returns the value of PTBR.

� public final TaskCB getTask() PageTable

Returns the owner task for the page table.

� final public int getStatus() ThreadCB

Tells the status of the thread.

� final public void suspend(Event event) ThreadCB

Suspends the thread on event.



150 8. Ports: Interprocess Communication

� final public int getStatus() PortCB

Tells the status of the port.

� final public void setStatus() PortCB

Sets the status of the port.

� final public void setTask(TaskCB owner) PortCB

Sets the port owner.

� final public TaskCB getTask() PortCB

Tells who owns the port.

� final public Message removeMessage() PortCB

Removes a message from the port’s message buffer.

� final public void appendMessage(Message msg) PortCB

Appends a new message to the port’s message buffer.

� final public boolean isEmpty() PortCB

Checks if the port’s message buffer is empty.

Summary of the PortCB class

The PortCB class maintains information about the open ports attached to the
various processes. The following list describes the main attributes of a port and
the methods that are used to query these attributes.

Port ID: OSP 2 assigns an ID to each port at creation time. This ID can be
retrieved using the method getPortID() of the PortCB class.

Owner: This is the task that owns the port. This attribute is manipulated using
the methods getTask() and setTask().

Status: PortLive or PortDestroyed. This attribute is manipulated using the
methods getStatus() and setStatus().

Message buffer: This buffer is manipulated using the methods appendMessage(),
removeMessage(), and isEmpty() of class PortCB, and are provided by
OSP 2 . However, your implementation must keep track of the free space
left in the message buffer.



8.5 Methods Exported by Package Ports 151

8.5 Methods Exported by Package Ports

The Ports package exports the following methods that are used by other
packages in the system:

� final static public void create()

Creates a new port.

� final public void destroy()

Destroys an existing port.

� final public void send(Message msg)

Sends a message, msg, to the port on which this method is invoked.

� final public Message receive()

Receives a message from the port on which this method is invoked.


	Ports: Interprocess Communication



