
9
Resources: Resource Management

9.1 Chapter Objective

The objective of the Resources project is to expose students to the concept
of shared resources in a concurrent system, and to provide an environment in
which they can implement various deadlock-handling techniques. OSP 2 simu-
lation supports two approaches to handling deadlock in an operating system:
deadlock avoidance and deadlock detection, discussed further below. To
this end, students will be asked to implement the three public classes of the
Resources package: ResourceCB, the resource control block; RRB, the resource
request block; and ResourceTable.

9.2 Overview of Resource Management

The Resources project focuses on techniques for managing shared resources in
a concurrent system. Examples of such resources include files, printer, disks, and
interprocess-communication messaging buffer space. When processes compete
for access to shared resources, especially when such access is exclusive, deadlock
becomes an issue. Simply put, deadlock arises when there exists a closed chain
of processes such that each process holds at least one resource needed by the
next process in the chain. This phenomenon is known as circular wait.

For circular wait to exist it must be the case that processes require:



154 9. Resources: Resource Management

Mutual Exclusion. Mutually exclusive access to resources;

Hold and Wait. A process may hold allocated resources while awaiting assign-
ment of others; and

No Preemption. No resource can be forcibly removed from a process holding
it.

Clearly deadlock is an undesirable situation since if it is not dealt with prop-
erly the processes involved in the deadlock will wait forever, without furthering
their execution. There are three main techniques for dealing with deadlock in
an operating system:

Deadlock Prevention. Design the system in such a way that the possibility of
deadlock is excluded. This can be accomplished by constraining resource
requests to prevent one of the four conditions of deadlock. For example,
the hold-and-wait condition can be prevented by requiring that a process
request all of its resources at one time and blocking the process until all
requests can be granted simultaneously.

Deadlock Avoidance. With this technique, a decision is made dynamically
whether the current resource request will, if granted, potentially lead to
a deadlock; if so, the request is denied. Deadlock avoidance thus requires
knowledge of future process resource requests. A primary approach to dead-
lock avoidance utilizes the Banker’s algorithm. The idea here is to de-
termine if the current allocation of resources to processes represents a safe
state: one in which there is at least one sequence of process resource re-
quests that does not result in a deadlock; i.e. all of the processes can be
run to completion.

Deadlock Detection. Resource request are granted to processes whenever pos-
sible. Periodically, the operating system executes an algorithm that checks
if deadlock (circular wait) exists. If so, a recovery strategy is undertaken,
namely one of the following.

� Abort all processes.

� Back up each deadlocked process to some previously defined checkpoint
and restart all processes.

� Successively abort deadlocked processes until deadlock no longer exists.

� Successively preempt resources until deadlock no longer exists.



9.3 Overview of Resource Management in OSP 2 155

9.3 Overview of Resource Management in
OSP 2

OSP 2 provides simulation support for deadlock avoidance and deadlock de-
tection. This means that it understands the semantics of each of these two
types of deadlock handling and provides appropriate error-checking facilities.
For instance, in deadlock avoidance, a deadlock created after granting a re-
source allocation request to a process is considered an error, while in deadlock
detection it is not.

The class ResourceCB does the bulk of the work. It represents the resource
control block, where much of the information about the available resources is
maintained. Resources are divided into resource types, where each resource
type can have several resource instances. Each resource type is represented
by a distinct resource control block.

A thread might issue a request to acquire a given number of instances of a
particular resource type, but it does not care which particular resource instances
are given to it as long as the instances are of the requested type. When such
a request arrives, the operating system (which is part of the student code in
class ResourceCB) must decide whether to grant the request, abort (kill) the
requesting thread, or block the thread until its request is granted at some future
time. This decision depends on the current state of resource allocation and on
the deadlock-handling method (detection or avoidance) in use.

The class RRB represents resource request blocks. An RRB contains in-
formation about one outstanding request for one particular resource type issued
by a particular thread. An RRB object is also an Event object (Section 1.6).
When a thread issues a request that cannot be granted, the thread is suspended
on the RRB associated with this request. Subsequently, when the needed re-
sources become available, a notifyThreads() operation issued on that RRB
will eventually wake up the thread.

The resource table is represented by the class ResourceTable; it is repre-
sented as an array of ResourceCB objects and lists all resource types available
in the system. In OSP 2 , all resource types are created at the beginning of
simulation and no new resources are added or deleted afterwards. The total
number of instances of each resource type remains constant as well. However,
the number of available resource instances changes as processes acquire and
release them.

Resource types are identified by a resource ID, a number between 0 and the
resource table size, which is determined using the static method getSize() of
class ResourceTable.

We will now describe the classes of package Resources in detail. Figure 9.1



156 9. Resources: Resource Management

depicts the relationship these classes have with the other classes in the OSP 2

system.

9.4 Class ResourceTable

This class is the simplest of them all: only a constructor is required. You can
add other methods and variables to support your implementation of the project,
but these would be specific to your particular design.

� public ResourceTable()

Calls super() and might do additional initialization, if the student imple-
mentation defines additional fields in this class.

OSP 2 provides the following built-ins that you will use to implement other
classes in this project:

� public static final ResourceCB getResourceCB(int resourceID)

Since resource types are identified using their numeric IDs, this method lets
you visit, in a loop, the resource control block of every resource type in the
system.

� public static final void getSize(int size)

Returns the size of the resource table, which is also the number of resource
types available in the system.

Built-ins and relevant methods defined in other classes. Since this
class has only its constructor, your implementation will not use any methods
provided by other OSP 2 classes.

Summary of Class ResourceTable

This class is intended to maintain the resource table of the system. A resource
table is simply a fixed-size array of resource objects. This size can be queried
using the method getSize(). In addition, resource objects can be retrieved
from the table using the getResourceCB() method, as described earlier.



9.5 Class RRB 157

Figure 9.1 A diagram summarizing the package Resources.

9.5 Class RRB

This class represents the resource request block, which threads use to specify
their requests to the system. It is declared as follows:

� public class RRB extends IflRRB



158 9. Resources: Resource Management

Note that IflRRB extends class Event, which makes it possible to treat RRB
objects as events. In particular, threads can be suspended on an RRB object
and later resumed.

An RRB object includes the following information:

� The ID, which can be obtained with the help of the method getID().

� The thread that issued the request; it can be obtained using the method
getThread().

� The resource type involved in the request. Its control block can be obtained
using the method getResource(). Only one resource type can be requested
using an RRB.

� The quantity of the requested resource. It is obtained by calling the method
getQuantity().

� The status of the RRB. The status can be one of these constants defined by
OSP 2 : Denied, Suspended, Granted. The status is Denied when the system
denies the request (because, for instance, the thread wants more resource
instances than the total that the system has); it is Suspended if the system
decides that the resource request cannot or should not be granted now, but
can be in the future; when the request is granted, the status is set to Granted.
Two methods are used to manipulate the status of an RRB: getStatus()
and setStatus().

The class RRB contains only two methods that need to be implemented by
the student:

� public RRB(ThreadCB thread,ResourceCB resource,int quantity)

This is the class constructor. The first statement in this constructor must
be super(thread, resource, quantity), but the rest depends on your
program design.

� public void do grant()

This method is used to grant the RRB on which it is invoked. Note that
do grant() does not make any decision on whether to grant or not. This
decision is made elsewhere, as described later in this chapter. Thus, this
method does bookkeeping only. In particular, it decrements the number of
available instances of the requested resource by the requested quantity and
increments the number of allocated instances of this resource by that same
quantity. The current number of available instances of a resource is given
by the method getAvailable() and is set by the method setAvailable().
Similarly, the number of allocated resources is obtained and changed using
the methods getAllocated() and setAllocated(), respectively.



9.5 Class RRB 159

To finish granting the request, the status of the RRB must be set to Granted

and the thread that was waiting on this RRB should be resumed. The latter
is done by invoking the method notifyThreads() of class Event (recall that
a RRB is also an Event object).

Built-ins and relevant methods defined in other classes. The im-
plementation of the methods in the RRB class relies on the following methods
provided by other classes (or inherited from the superclasses of RRB):

� final public int getStatus() RRB
Returns the status of the RRB: Denied, Suspended, or Granted.

� final public void setStatus(int value) RRB

Sets the status of the RRB to Denied, Suspended, or Granted.

� final public int getID() RRB

Returns the ID of the RRB.

� final public int getQuantity() RRB
Returns the quantity of the resource requested by the thread that issued
the request.

� final public ThreadCB getThread() RRB

The thread that issued the request.

� final public ResourceCB getResource() RRB

The resource for which the request was issued.

� public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

� public final void setAvailable(int value) ResourceCB

Sets the number of free instances of this resource type.

� public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

� public final void setAllocated(ThreadCB thread,int value)

ResourceCB

Sets the number of allocated instances of this resource type.

Summary of Class RRB

The class RRB is intended to maintain the information about requests that were
issued by the various threads for the non-shareable resources that are provided



160 9. Resources: Resource Management

by the system. As mentioned earlier, an RRB object has the following attributes:
ID, thread, resource type, the quantity of the requested resource type, and the
status of the request. These attributes can be queried and manipulated using
the methods described earlier in the section.

9.6 Class ResourceCB

This class does most of the work. In particular, this is where the deadlock
detection and avoidance algorithms are implemented. The deadlock-avoidance
algorithm is invoked by the do acquire() method, while deadlock detection
is the responsibility of the method deadlockDetection(), which is invoked
periodically by OSP 2 . The ResourceCB class is declared as follows:

� public class ResourceCB extends IflResourceCB

Most textbooks describe deadlock avoidance and detection algorithms in
terms of the various resource allocation and resource request matrices, which
are used for keeping track of the current state of system resources. This all looks
simple enough, except for one important point: textbook algorithms all assume
that all the threads and resource types are known in advance, so they represent
the matrices as two-dimensional arrays. In a real system, neither resources, nor
threads are static: they come and go and their total number cannot be assumed
to be bounded by a known constant. Therefore, matrices used by the real-life
deadlock-handling algorithms cannot be represented as two-dimensional arrays.

In OSP 2 , the number of resource types is fixed, which simplifies things a
bit. However, the number of threads that can potentially request resources is
not known and cannot be estimated. Thus, using two-dimensional arrays for
representing resource allocation and request matrices is also out of the question:
you must come up with another suitable data structure. Since most operations
in deadlock-detection and -avoidance algorithms reference the matrix elements
via a specific resource and/or thread, your data structure must provide efficient
access to the matrix elements using either of these keys. For instance, if you
have to scan arrays and compare their entries to a particular thread ID or
resource, it is a sure sign that you have chosen a bad data structure.

One good data structure in this case would be an array of hash tables,
where each hash table represents all requests made by the various threads for
a particular resource type. Since Java hash tables are dynamic, they provide
exactly what the doctor ordered for this particular problem.

� public ResourceCB(int qty)

This is the required class constructor. It must have super(qty) as its first



9.6 Class ResourceCB 161

statement, but the rest depends on your program design.

� public static void init()

As in other student modules, this method is called by the simulator at the
beginning of simulation. It can be used to initialize the static variables and
structures that you might use in your implementation.

� public RRB do acquire(int quantity)

This method is typically invoked by an OSP 2 thread on a given resource
type (represented by a ResourceCB object) in order to obtain quantity

instances of that resource type. To determine which OSP 2 thread has issued
the request, the following method can be used. First, the current task can be
found from the page table base register, or PTBR; see Section 5.2 for more
information on this subject. The value of the PTBR is the page table of
the currently running task. In OSP 2 , the value of the PTBR is obtained
using the static method getPTBR() of class MMU, and the current task can be
obtained from a page table via the method getTask().

Next, you have to create an RRB that describes the request. What follows
depends on whether the simulator is in deadlock-avoidance or deadlock-
detection mode (which is determined by an input simulation parameter that
you might have spotted in the GUI window). To find out which mode is in
effect, use the method getDeadlockMethod().

If the deadlock-handling method is Detection, there are three possibilities.
If the system has enough available instances of the requested resource, the
request is granted immediately by executing the method grant() on the
RRB. If the requested number of instances cannot be granted under any
circumstances (e.g., because the total number of instances of the requested
resource type that are either held or requested by the given thread exceeds
what the system has), then null is returned. If the requested number of
instances cannot be granted immediately (but might be in the future, if all
other threads release their resources) then the requesting thread must be
suspended on the RRB and the RRB’s status should be set to Suspended.
The RRB status is set using the method setStatus(), while threads are
suspended using the suspend() method of class ThreadCB. Recall that an
RRB is an Event object as well, so in order to suspend a thread on an RRB,
the RRB must be passed as a parameter to suspend(). Read more about
thread suspension and resumption in Section 4.3.

If the deadlock-handling method is Avoidance, then you must use a deadlock-
avoidance algorithm, such as the Banker’s algorithm. If this algorithm says
that it is safe to grant the request, the RRB is granted. Otherwise, the thread
is suspended and the RRB status is set to Suspended as well.



162 9. Resources: Resource Management

When a thread is suspended inside do acquire(), its execution is paused
until the request is granted (possibly as a result of a release() operation
on the same resource or of giveupResources() operation, which is invoked
when a thread is killed), and the thread is resumed. Whether the RRB is
granted immediately or the thread is suspended, do acquire() returns the
RRB that was created earlier in order to represent the request.

� public void do release(int quantity)

This method might be invoked by an OSP 2 thread on a given resource type
(represented by a ResourceCB object) in order to release quantity instances
of that resource type.

As with do acquire(), you first must find the thread that issued the
release() request. Then the state of the resource allocation should be up-
dated appropriately in order to reflect the new number of free resources and
the new allocation of the given resource to the thread. Note that the thread
might release some, but not all, instances held for this resource type. The ex-
act details depend on your representation of the resource-allocation state, but
this would typically involve the methods setAllocated(), setAvailable(),
getAvailable(), etc.

This is not all, however. Since new resources became available after the re-
lease operation, it is possible that some of the previously suspended requests
can now be granted. In order to be able to determine whether this is the
case, one needs to keep track of the RRBs that were previously suspended
in do acquire(). Once a grantable RRB is found, it should be granted (us-
ing the grant() method) and the thread waiting on that RRB is resumed
(resumption is done by method grant()).

� public static Vector do deadlockDetection()
If the simulation method is Detection, this method will be periodically

called by OSP 2 in order to test your implementation of the deadlock-
detection algorithm. This method should first check if a deadlock exists and,
if so, remove it. Your instructor might have imposed specific requirements
on your implementation of deadlock detection and recovery, and OSP 2 adds
its own.

First, there should be no deadlocks left after do deadlockDetection() re-
turns. The result returned by this method should be a vector of ThreadCB

objects that were found to be involved in a deadlock. OSP 2 will compare this
list with its own and will issue an error if the two lists differ. If no deadlock
exists, null should be returned.

You can use any textbook deadlock-detection algorithm that can detect dead-
locks in the presence of multiple instances per resource type. (For instance,



9.6 Class ResourceCB 163

cycle detection in a wait-for graph would not be a suitable algorithm for this
purpose.)

Deadlock recovery is done by killing some or all of the threads involved in
the deadlock. However, OSP 2 insists that threads must not be killed unnec-
essarily. This means that no thread should be killed unless it is deadlocked
and, in addition, if the deadlock is gone after killing of some deadlocked
threads, then no further thread destruction should occur.1

Threads are killed using the kill() method of class ThreadCB. Note that
when a thread is killed, it releases its resources by calling do giveupResources()

(described next). As in the case of the do release() method, this creates
an opportunity for granting a previously suspended RRB and resuming the
associated thread. See the description of do release() to learn how to do
this.

� public static void do giveupResources(ThreadCB thread)

This method is called in order to release all resources previously allo-
cated to thread, and it happens when thread is terminated. You will never
need to call this method in this project. Instead, your implementation of
this method is made available to other OSP 2 modules, which will call
do giveupResources() when necessary. This method should go over the re-
sources allocated to the given thread and update the number of the available
instances of such resources accordingly. The number of resources allocated
to the thread should also be adjusted (to 0).

Since the thread releases its resources, the system might have enough free
resources to unblock some suspended RRBs. Therefore, as in the case of
do release(), it is necessary to check the suspended RRBs and grant those
that are grantable.

Built-ins and relevant methods defined in other classes. The follow-
ing methods and fields, which are defined in other classes or are provided by
the superclasses of ResourceCB, might be used in the implementation of the
class ResourceCB.

� public final int getID() ResourceCB

Returns the ID of the resource.

� public final int getTotal() ResourceCB

Returns the total number of instances (free plus allocated) for this resource
type.

1 Note that if N threads are involved in the deadlock, then killing any N −1 of them
will eliminate the deadlock. But often the deadlock can be eliminated by killing
fewer than N − 1 threads.



164 9. Resources: Resource Management

� public final int getAllocated(ThreadCB thread) ResourceCB

Returns the number of allocated instances of this resource type.

� public final void setAllocated(ThreadCB thread,int value)

ResourceCB
Sets the number of allocated instances for this resource type.

� public final int getAvailable() ResourceCB

Returns the number of free instances of this resource type.

� public final void setAvailable(int value) ResourceCB

Sets the number of free instances for this resource type.

� public final int getMaxClaim(ThreadCB thread) ResourceCB

Returns the maximal number of instances of this resource type that can
ever be acquired by the given thread. Used for deadlock avoidance only.

� public final static int getDeadlockMethod() ResourceCB

Returns the deadlock-handling method currently in effect: Avoidance or
Detection.

� public final static int getSize() ResourceTable

Returns the size of the resource table. This value is also equal to the number
of different resource types in OSP 2 .

� public static final ResourceCB getResourceCB(int resourceID)

Given an index into the resource table, returns the ResourceCB object in
that table cell. This method makes it possible to visit the resource control
block of each resource type in a loop.

� static public PageTable getPTBR() MMU

Returns the value of the page table base register, which is either null or
the page table of the currently running task.

� public final TaskCB getTask() PageTable

Indicates which task owns the given page table. In Resources, this method
is used to determine the thread that issued the request.

� public ThreadCB getCurrentThread() TaskCB

Returns the running thread of the currently running task.

� public RRB(ThreadCB thread, ResourceCB resource, int quantity)

RRB

A constructor for creating resource request blocks with the given parame-
ters.

� public final void grant() RRB

Grants the request represented by this RRB.

� final public void setStatus(int value) RRB

Sets the status of the RRB to Denied, Suspended, or Granted.



9.6 Class ResourceCB 165

� final public ThreadCB getThread() RRB

The thread that issued the request represented by this RRB.

� final public ResourceCB getResource() RRB

The resource for which the request was issued.

� final public int getQuantity() RRB

Returns the quantity of the resource requested by the thread that issued
the request.

� final public void suspend(Event event) ThreadCB

Suspends the thread on which this method is called and puts the thread on
the waiting queue of event.

� final public void kill() ThreadCB

Kills this thread. Note that this will cause the thread to release its resources,
which in turn might make some previously suspended RRBs grantable.

� final public int getStatus() ThreadCB

Returns the status of the thread. See Section 4.3 for more information on
the different states of a thread. In this project you might need to know
that killed threads have status ThreadKill. If such a thread shows up in
a resource-allocation matrix or elsewhere, you might want to delete or skip
it in your algorithms.

� public void notifyThreads() Event
Resumes all threads that might be waiting on this event. In the case of
package Resources, the event would be an RRB and the single resumed
thread would be the thread that issued the corresponding request.

Summary of Class ResourceCB

Instances of this class are used to represent individual non-shareable resources
in the system. An individual resource has the following attributes:

ID: The identity of the resource. This parameter can be retrieved using the
built-in getID().

Total number of instances: This attribute describes the total number of in-
stances of the resource that exist in the system. It can be obtained using
the built-in method getTotal().

Number of allocated instances: The number of instances of the resource that
are currently allocated to a given thread. This parameter can be re-
trieved using the method getAllocated() and changed using the method
setAllocated().



166 9. Resources: Resource Management

Number of free instances: This parameter represents the number of free in-
stances of the resource. It can be obtained by calling the built-in method
getAvailable() and changed using the method setAvailable().

Maximum number of claimable instances: This parameter represents the max-
imal number of instances of a resource that can possibly be acquired by a
single thread.

9.7 Methods Exported by the Resources
Package

Only one method defined in this package is used by other modules:

� public static void giveupResources(ThreadCB thread) ResourceCB
Called by terminating threads in order to release the abstract shared re-

sources held by that thread.


	Resources: Resource Management



