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Abstract
Our goal in this paper is to discuss our experience with process migration in the

Charlotte distributed operating system.We also draw upon the experience of other oper-
ating systems in which migration has been implemented.A process migration facility in
a distributed operating system dynamically relocates processes among the component
machines. Asuccessful process migration facility is not easy to design and implement.
Foremost, a general-purpose migration mechanism should be able to support a range of
policies to meet various goals, such as load distribution, and improved concurrency, and
reduced communication.We discuss how Charlotte’s migration mechanism detaches a
running process from its source environment, transfers it, and attaches it into a new envi-
ronment on the destination machine.Our mechanism succeeds in handling communica-
tion and machine failures that occur during the transfer. Migration does not affect the
course of execution of the migrant nor that of any process communicating with it.The
migration facility adds negligible overhead to the distributed operating system and pro-
vides fast process transfer.
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1. Intr oduction
Our goal in this paper is to discuss our experience with process migration in the

Charlotte distributed operating system.We identify major design issues and explain our
implementation choices.We also contrast these choices with other migration implemen-
tations in the literature.This paper provides insights both into the specific task of imple-
menting process migration for distributed operating systems and into the more general
task of designing such systems.

A preemptive process migrationfacility dynamically relocates running processes
between peer machines in a distributed system.Such relocation has many advantages.
Studies have shown that it can be used to cope with dynamic fluctuations in loads and ser-
vice needs1, to meet real-time scheduling deadlines, to bring a process to a special device,
or to improve the fault-tolerance of the system.Yet successful process migration facili-
ties are not commonplace in distributed operating systems234567. The reason for this
paucity is the inherent complexity of such a facility and the potential execution penalty if
the migration policy and mechanism are not tuned correctly. It is not surprising that some
operating systems prefer to terminate remote processes rather than rescue them by migra-
tion.

We can identify several reasons why migration is hard to design and implement.
The mechanism for moving processes must be able to detach a migrant process from its
source environment, transfer it with its context (the per-process data structures held in the
kernel) and attach it in a new environment on the destination machine.These actions
should complete reliably and efficiently. Migration may fail in case of machine and com-
munication failures, but it should do so completely. That is, the effect should be as if the
process was never migrated at all, or at worst as if the process had terminated due to
machine failure. A wide range of migration policies might be needed, depending on
whether the main concern is load sharing (avoiding idle time on one machine when
another has a non-trivial work queue), load balancing (such as keeping the work queues
of similar length), or application concurrency (mapping application processes to
machines in order to achieve high parallelism). Policies may need elaborate and timely
state information, since otherwise unnecessary process relocations may inflict perfor-
mance degradation on both the migrant process and the entire system.The mechanisms
to support different policies might differ significantly. If sev eral policies are used under
different circumstances, the migration mechanism must be flexible enough to allow pol-
icy modules to switch policies.The migration mechanism cannot be completely sepa-
rated from process scheduling, memory management, and interprocess communication.
Nevertheless, one would prefer to keep mechanisms for these activities as separate from
each other as possible, to allow more freedom in testing and upgrading them.The fact
that a process has moved should be invisible both to it and its peers, while at the same
time interested users or processes should be able to advise the system about desired pro-
cess distribution.

The process migration facility implemented for Charlotte is a fairly elaborate addi-
tion to the underlying Charlotte kernel and utility-process base.It separates policy (when
to migrate which process to what destination) from mechanism (how to detach, transfer,
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and reattach the migrant process).While the mechanism is fixed in the kernel and one of
the utilities, the policy is relegated to a utility and can be replaced easily. The kernel pro-
vides elaborate state information to that utility. The mechanism allows concurrent multi-
ple migrations and premature cancellation of migration.It leaves no residual dependency
on the source machine for the migrant process.The mechanism copes with all conceiv-
able crash and termination scenarios, rescuing the migrant process in most cases.

The next section presents an overview of Charlotte, and Section 3 presents its pro-
cess migration facility. In Section 4 we discuss the issues encountered in building Char-
lotte’s migration facility that have general application for any such facility. In discussing
each issue, we present alternative design approaches adopted by other process migration
facilities. We leave out the discussion of specific migration policies, as they are beyond
the scope of this paper. We hope this account will give assistance to others contemplating
adding a process migration facility, as well as advice to those designing other operating
system facilities that may interact with later addition of process migration.We conclude
with a brief list of concrete lessons and suggestions.

2. Charlotte overv iew
Charlotte is a message-based distributed operating system developed at the Univer-

sity of Wisconsin for a multicomputer composed of 20 VAX-11/750 computers connected
by a token ring9. Each machine in Charlotte runs a kernel responsible for simple short-
term process scheduling and a message-based inter-process communication (IPC) proto-
col. Processesare not swapped to backing store.A battery of privileged processes (utili-
ties) runs at the user level to provide additional operating systems services and policies.
The kernel and some utilities are multithreaded.

Processes communicate vialinks, which are capabilities for duplex communication
channels. (Thehigh-level language Lynx10 actually hides this low-level mechanism and
provides a remote procedure call (RPC) interface.) Theprocesses at the two ends of a
link may both send and receive messages by using non-blocking service calls.A process
may post several such requests and await their completion later; it may cancel a pending
request before that request completes.A l ink may be destroyed or given away to another
process even during communication.In particular, a link is automatically destroyed when
the process holding its other end terminates or its machine crashes; the process holding
the local link end is so notified by the kernel. Theprotocol that implements communica-
tion semantics is efficient but quite complex11. It depends on full, up-to-date link infor-
mation in the kernels of both ends of each link.Processes are completely unaware of the
location of their communicating partners.Instead, they establish links to servers by hav-
ing other processes (their parents or a name server utility) provide them.

Utility processes are distributed throughout the multicomputer, cooperating to allo-
cate resources, provide file and connection services, and set policy. In particular, the
KernJob (KJ ) utility runs on each machine to provide a communication path between
the local kernel and non-local processes.The Starter utility creates processes, allocates
memory, and dictates medium-term scheduling policy. Each Starter process controls a
subset of the machines; it communicates with their kernels (directly or via their KJs) to
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receive state information and specify its decisions.

3. Process migration in Charlotte
Charlotte was designed as a platform for experimentation with distributed algo-

rithms and load distribution strategies. We added the process migration facility in order
to better support such experiments. Equallyimportant, we wanted to explore the design
issues that process migration raises in a message-based operating system.Figure 1 shows
the effect of process migration.For convenience, throughout the paper we call the kernel
on the source and destination machinesS andD, respectively, and useP to represent the
migrant process.During transfer, P’s process identifier changes, and the kernel data
structures for it are completely removed from S, but the transfer is invisible to bothP and
its communication partners.
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Figure 1: Example of migration

As shown, P’s links are relocated to the new machine. Allprocesses continue to name
their links the same after migration; they are unaware that link descriptors have moved
sites and that local communication (performed in shared memory) has become remote
communication (sent over the wire) and vice versa, and they see no change in message
flow.

3.1. Policy
Migration policy is dictated by Starter utility processes.They base their decisions

on statistical information provided by the kernels they control and on summary informa-
tion they exchange among themselves. Inaddition, Starters accept advice from privileged
utilities (to allow manual direction of migration and to enable or disable automatic con-
trol). Whenmessages carrying statistics, advice, or notice of process creation or termina-
tion arrive, the Starter executes a policy procedure. (Introducingmigration into the
Starter only required writing that policy procedure and invoking it at the right times.)
The policy procedure may choose to send messages to other Starters or to request some
source kernel to undertake migration. Suchrequests are sent to the KernJob residing on
the source machine to relay to its kernel. As discussed later, this approach adds
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insignificantly to the cost of migration (a few procedure calls and perhaps a round-trip
message), while it allows policies that integrate scheduling and memory allocation as
well as local, clustered, or global policies.

3.2. Mechanism
The migration mechanism has two independent parts: collecting statistics and trans-

ferring processes.Both parts are implemented in the kernel.

Statistics include data on machine load (number of processes, links, CPU and net-
work loads), individual processes (age, state, CPU utilization, communication rate), and
selected active links (packets sent and received). Thesestatistics are intended to be com-
prehensive enough to support most conceivable policies. We collect statistics in the fol-
lowing way.

Condition Action
Significant event:
message sent or received,
data structure freed
process created or terminated

Increment associated count

Sample process states
and CPU, network loads

Interval passes

Summarize data,
Send to starter

Period ofn intervals passes

To balance accuracy with overhead, we used in our tests an interval of 50 to 80 ms and a
period of 100 intervals (5 to 8 seconds).The overhead for collecting statistics was less
than 1% of total cpu time.

Transferring processes occurs in three phases.

(1) Negotiation. After being told by their controlling Starter processes to migrateP,
S andD agree to the transfer and reserve required resources.If agreement cannot
be reached, for example because resources are not available, migration is aborted
and the Starter that requested it is notified.

(2) Tr ansfer. P’s address space is moved from the source to the destination
machine. Meanwhile,separate messages are sent to each kernel controlling a
process with a link toP informing that kernel of the link’s new address.

(3) Establishment. Kernel data structures pertaining to the migrant process are mar-
shaled, transferred, and demarshaled.(Marshaling requires copying the structure
to a byte-stream buffer, and converting some data types, particularly pointer
types.) Noinformation related to the migrant is retained at the source machine.

Process-kernel interface
We added four kernel calls to the process-kernel interface.
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Statistics(What : action; Where : address)
The KernJob invokes this call (on behalf of a Starter) so that the kernel will start col-
lecting statistics and placing them in the given address (in the KernJob virtual
space). Thecall can also be used to stop statistics collection.

MigrateOut(Which : process; WhereTo : machine)
This call enables the Starter (or its KernJob proxy, if the Starter resides on another
machine) to initiate a migration episode.

Boolean; Memory : list of physical regions)
MigrateIn(Which : process; WhereFrom : machine; Accept :

The Starter (or its KernJob proxy) uses this call to approve or refuse a migration
from the given machine to the machine on which the call is performed.If Starters
have negotiated among themselves, the Starter controlling the destination machine
may approve a migration even before the one controlling the source machine calls
MigrateOut. The Memory parameter tells the kernel where in physical store to
place the segments that constitute the new process. (TheStarter learns the segment
sizes either through negotiation with its peer or fromD’s request to approve a migra-
tion offer received fromS.)

CancelMigration(Which : process; Where : machine)
The Starter invokes this call to abort an active MigrateIn or MigrateOut
request. Thiscall is rejected if the migration has already reached a commit point.

None of these calls blocks the caller. The kernel reports the eventual success or failure of
the request by a message back to the caller.

Mechanism details
Three new modules were created in the kernel to implement the migration mecha-

nism. Themigration interface module deals with the new service calls from processes.
The migration protocol module performs the three phases listed above. The statistics
module collects and reports statistics.These modules are invoked by two new kernel
threads. Thestatistician thread awakens at each interval to sample, or average and report
statistics to the Starter. A process-receiver thread starts inD for each incoming migrant
process. Ituses a simpler and faster communication protocol than that used by ordinary
IPC.* However, negotiation and other control messages use the ordinary communication
protocol and are funneled through the IPC queues in order to synchronize process and
link activities.

Figure 2 shows both high- and low- level negotiation messages.In our example, the
left Starter process controls machine 1, and its peer controls machine 3.The first two
messages represent a Starter-to-Starter negotiation that results in deciding to migrate pro-
cessP from machine 1 to 3.Their decision is communicated toS in message 3, which is

*The standard protocol must expect extremely complex scenarios that cannot arise in this conversation and must employ link
data structures that are not germane here.The cost of introducing a streamlined protocol was slight in comparison to the speed it
achieved.
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Figure 2: Negotiation phase

either a direct service call (if the Starter runs on machine 1) or a message to the KernJob
on machine 1 to be translated into a service call.S then offers to send the process toD.
The offer includesP’s memory requirements, its age, its recent CPU and network use,
and information about its links.If D is short of the resources needed forP, or if too many
migrations are in progress, it may reject the offer outright. Otherwise,D relays the offer
to its controlling Starter (message 5).The relay includes the same information as the
offer from S. We relay the offer to let the policy module reject a migrant at this point.
Although that Starter may have already agreed to acceptP (in message 2), it may now
need to reject the offer due to an increase in actual or anticipated load or lack of memory.
Furthermore, the Starter must be asked because the kernel has no way to know if i t has
ev en been consulted by its peer Starter, and the Starter must allocate memory for the
migrant. TheStarter’s decision is communicated toD by aMigrateIn call (message
6). No relay occurs if the Starter has already calledMigrateIn to preapprove the
migration. Beforeresponding toS (message 7),D reserves necessary resources to avoid
deadlock and flow-control problems.Preallocation is conservative; it guarantees success-
ful completion of multiple migrations at the expense of reducing the number of concur-
rent incoming migrations.

After message 7 is sent,D has committed itself to the migration.If P fails to arrive
and the migration has not been cancelled byS (see next), then the machine ofS must be
down or unreachable.D discovers this condition through the standard mechanism by
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which kernels exchange “heart-beat” messages and reclaims resources and cleans up its
state.

When message 7 is received, S is also committed and starts the transfer. Before
each kernel commits itself, its Starter can successfully cancel the migration, in which
caseD repliesRejectedto S (in message 7), orS sendsRegrettedto D (not shown). The
latter also occurs ifP dies abruptly during negotiation. To separate policy from mecha-
nism,S does not retry a rejected migration unless so ordered by its Starter.

Figure 3 shows the transfer phase.S concurrently sendsP’s virtual space toD (mes-
sage 8) and link update messages (9) to the kernels controlling all ofP’s peers. Message
8 is broken into packets as required by the network. D has already reserved physical
store for them, so the packets are copied directly into the correct place.Message 9 indi-
cates the new address of the link; it is acknowledged (not shown) for synchronization pur-
poses. Afterthis point, messages sent toP will be directed to the new address and
buffered there untilP is reattached.Kernels that have not received message 9 yet may
still continue to send messages forP to S. Failure of either the source or the destination
machine during this interval leaves the state ofP very unclear. Since it would require a
very complex protocol (sensitive to further machine failures) to recover P’s state, we
opted to terminateP if one of these machines crashes at this stage.

Finally, S collects all ofP’s context into a single message and sends it toD (message
10). Thismessage includes control information, the state of all ofP’s links, and details of
communication requests that have arrived for P since transfer began. Pointersin S’s data
structures are tracked down, and all relevant data are marshaled together. D demarshals

43210

DS
KJKJKJKJ KJ

P
A B

8: P’s vir tual space

9: Link update 9: Link update

10: P’s context

Figure 3: Transfer phase
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the message into its own data structures.

Although it is conceptually simple, the transfer stage is actually quite complex and
time-consuming, mainly because Charlotte IPC is rich in context. Luckily, our design
saves the migration mechanism from dealing with messages in transit to or fromP. Since
the kernel provides message caching but no buffering, a message remains in its sender’s
virtual address space until the receiver is ready to accept it or until the send is cancelled.
Hence,S does not need to be concerned withP’s outgoing messages; likewise, it may
drop from its cache any message received for P thatP has not yet received. Sucha mes-
sage will be requested byD from the sender’s kernel whenP requests to receive it. The
link structures sent in message 9 clearly indicate which links have pending sent or
received messages. Anotheradvantage in our design is that we do not have to alter or
transfer P’s context maintained by distributed utilites, such as open files, which are
accessed via location-independent links.

The establishment phase is interleaved with transfer. Data structures are deallocated
as part of marshaling, and the reserved ones are filled during demarshaling.After transfer
has finished,D adjustsP’s links and pending events and insertsP into the appropriate
scheduling queue.Those communication requests that were postponed whileP was mov-
ing have been buffered byS andD; they are now directed to the IPC kernel thread inD in
their order of arrival. (For each link, all those buffered atS precede those buffered atD.)
Their effect onP is not influenced by the fact that it has moved. Finally, the Starter and
KernJob processes for both the source and destination machine are informed that migra-
tion has completed so they can update their data structures appropriately. A failure of
either of the two machines at the transfer phase is detected by the remaining one, which
will abort the migration, terminate the migrant, and clean up its state.

3.3. Performance
We measured performance of migration in Charlotte on our VAX/11-750 machines

connected by a Pronet token ring. The underlying mechanisms have the following costs.
It takes 11 ms to send a 2 KB packet to another machine reliably via the general-purpose
inter-machine communication package that Charlotte uses, 0.4 ms to switch context
between kernel and process, 10 ms to transfer a single packet between processes residing
on the same machine, and 23 ms to transfer a packet between processes residing on dif-
ferent machines.

We measured the average elapsed time to migrate a small (32 KB), linkless process
as 242 ms (standard deviation � = 2 ms), provided the Starter controllingD has preap-
proved the migration.Each additional 2 KB of image adds 12.2 ms to the migration time.
The following formula fits our measurements of the average elapsed time spent in migra-
tion.

Charlotte time= 45 + 78p + 12. 2s + 9. 9r + 1. 7q
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p = 0 if D’s Starter has approved migration in advance;
else 1 ifD’s Starter is not on the destination machine;
else about 0.2.

s = size of the virtual space in 2-KB blocks
r = 0 if all links are local; 1 otherwise
q = number of non-local links (1 if none).

These measures deviate by about 5% with different locations of the Starter and the overall
load. This formula shows that it takes about 750ms to migrate a typical process of
100KB and 6 links (or 670ms ifD’s Starter is local), and about 6 seconds for a large pro-
cess of 1MB.Actual CPU time spent on the migration effort for a 32 KB process with no
links is about 60 ms forS and about 32 ms forD. Table 1 shows how this time is spent.

S D
5.0 Handlean offer 5.4Handle an offer
2.6 Prepare2 KB image to transfer 1.2 Install 2 KB of image
1.8 Marshalcontext 1.2Demarshal context
6.9 Other(mostly kernel context switching) 4.7 Other

Table 1: Kernel time spent migrating a linkless 32 KB process
Each link costsS an additional 1.6 to 2.8 ms of CPU time to prepare link-update mes-
sages and to marshal relevant data structures.Collecting statistics requires about 1% of
overall elapsed time, and another 2% of all time is spent delivering the statistics to the
Starter. A production version of Charlotte, optimized and stripped of debugging code,
could exhibit a significant speed improvement.

It is hard to compare Charlotte’s migration performance with results published for
other implementations, because each uses a different underlying computer, and each oper-
ating system dictates its own process structure.Nonetheless, to give the reader some
form of comparison, we present formulas for migration speed under Sprite (Sun-3 work-
stations, about 4 times faster than our VAX-11/750 machines), V (Sun-2, about 2 times
faster than our machines), and Accent (Perq workstations). Theseformulas are extrapola-
tions from a few measurement points reported elsewhere467.

Sprite time= 200+ 3. 6s + 14 f

V time = 80 + 6s

Accent time= 1180+ 115s

s = size of the virtual space in KB
f = number of open files

In particular, a “typical” 100KB process would be transferred in about 560ms in Sprite,
680ms in V, and perhaps 12.7 seconds in Accent.To migrate a large, 1MB process would
take at least 3.8 seconds in Sprite, 6 seconds in V, and 116 seconds in Accent.In Accent,
sending the context of a process occupies about 1 full second.The virtual space is sent
later on demand, so the full cost of transfer is spread over a long period, but part of this
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cost is saved if not all the pages are referenced.V precopies the address space while the
process is still running, so the lost time suffered by the process is quite short.

4. Designissues
Designing a process migration facility requires that one consider many complex

issues. We will discuss the separation of policy and mechanism, the interplay between
migration and other mechanisms, reliability, concurrency, the nature of context transfer,
and to what extent processes should be independent of their location.These issues inter-
relate to one another, so the following discussion will occasionally need to postpone
details until later sections.Moreover, the approaches that we and others adopt to various
problems depend somewhat on the design of other components of the operating system.
Due to space limitations, we do not discuss these dependencies in detail.

4.1. Structure
The first step in designing a process migration facility is to decide where the policy-

making and mechanism modules should reside.We believe that this decision is of major
importance since it cannot be easily reversed, unlike most of the design of the migration
protocol. Communication-kernel operating systems tend to put mechanism in the kernel
and policy in trusted utility processes.In the case of process migration, mechanism is
intertwined with both short-term scheduling and IPC, so it fits best in the kernel. Policy,
on the other hand, is associated with long-term scheduling and resource management, so
it fits well in a utility process.Several considerations affect the success of separation:
how efficient the result is, how adequately it provides the needed function, and how con-
ceptually simple are the interfaces and the implementation.

Efficiency and Simplicity
The principal reason one might place policy in the kernel instead of in a utility is to

simplify and speed up the interface between policy and mechanism.Any reasonable pol-
icy depends on statistics that are maintained primarily in the kernel. Highquality deci-
sions may well require large amounts of accurate and comprehensive data. Placingpolicy
outside the kernel incurs execution overhead and latency in passing these statistics in one
direction and decisions in the other.

Our experience with Charlotte, however, shows that placing the policy in a utility
results in a net efficiency gain. Although separation incurs the extra cost of one message
for statistics reporting and one kernel call (and perhaps another message round-trip) for
decision reporting, it allows reduction of communication and more global policy due to
the fact that each Starter process decides policy for a set of machines.As to the latency
in passing statistics and decisions, studies have found that good policies tend to depend
mostly on aggregate and medium-term conditions, ignoring short-term conditions or
small delays.

The designer may choose to support only simple policies, in which case they may
well be put in the kernel. For example, the migration policy in V6 and Sprite4 is mostly
manual, choosing a remote idle workstation for a process or evicting it when the station’s
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owner so requires.In systems where migration is used to meet real-time scheduling
deadlines, policy tends to be simple or very sensitive to even small delays, and hence
could or should be placed in the kernel. Integrating the policy in the kernel, however,
might obstruct later expansion or generalization.

We can achieve conceptual separation of policy and mechanism without incurring a
large interface cost by assigning them to separate layers that share memory. MOS2

adopts this approach by dividing the kernel to two layers, one to implement migration
mechanism and other low-level functions, and the other layer to provide policy. These
layers share data structures and communicate by procedure calls.Although such sharing
improves efficiency, it becomes harder to modify policy, since changes require kernel
recompilation, and inadvertent errors are more serious.

Function and flexibility
Placing policy outside the kernel facilitates testing diverse policies and choosing

among policies tuned for different goals, such as load sharing, load balancing, improving
responsiveness, communication-load reduction, and placing processes close to special
devices. Beingable to modify policy is especially important in an experimental environ-
ment. Ourstudents needed only a few hours to learn the interface and major components
of the Starter in order to start trying different policies; they did not need to learn peculiar-
ities of the kernel or of the migration mechanism.This flexibility would be impossible if
policy were embedded in the kernel.

In various distributed systems, such as Demos/MP5, Accent12, and Charlotte,
resource-management policies are often relegated to utilities. Putting migration policy in
those same processes can allow more integration and coordination of the policies govern-
ing the system.

The designer of process migration should be aware of the danger of separating pol-
icy and mechanism too far. Letting policy escape from trusted utility servers into applica-
tion programs may result in performance degradation or even thrashing. Thisproblem
occurs, for example, if applications may decide the initial placement and later relocation
of their processes, as in Locus, without getting any assistance from the kernel in the form
of timely state and load information.

4.2. Interplay between migration and other mechanisms
The process migration mechanism can be designed independently of other mecha-

nisms, such as IPC and memory management.The actual implementation is likely to see
interactions among these mechanisms.However, design separation means that the migra-
tion protocol should not change when the IPC protocol does.In Charlotte, for example,
we did not change the IPC to add process migration, nor did migration change when we
later modified the semantics of two IPC primitives. In contrast, we had to change the
marshaling routines when an IPC data structure changed.

We feel that ease of implementation is a dominant motivation for separating mecha-
nisms from each other when process migration is added to an existing operating system,
such as was the case in Demos/MP, Charlotte, V, and Accent. A secondary motivation is
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that the migration code can be deactivated without interfering with other parts of the ker-
nel. In Charlotte, for instance, we can easily remove all the code and structures of pro-
cess migration at compile time or dynamically turn the mechanism on and off. In con-
trast, efficiency arguments would favor integrating all mechanisms.Accent, for example,
uses a transfer-on-reference approach to transmitting the virtual space of the migrant pro-
cess that is based on its copy-on-write memory management.If process migration is
intended from the start, as in MOS and Sprite, integration can reduce redundancy of
mechanisms. Inretrospect, Charlotte would have used a different implementation for IPC
if the two mechanisms had been integrated from the start.We would have usedhints for
link addresses, which are inaccurate but can be readily checked and inexpensively main-
tained, rather than usingabsolutes, whose complete accuracy is achieved at a high main-
tenance cost.

Some interactions seem to be necessary. In Charlotte, for instance, we chose to sim-
plify the migration protocol by refusing to migrate a process engaged in multi-packet
message transfer. We therefore depend slightly on knowledge of the IPC mechanism to
avoid complex protocols. Similarly, both MOS and Sprite refuse to migrate a process
engaged in RPC until it reaches a convenient point, which may not happen for a long
time. Otherinteractions make sense in order for process migration to take advantage of
existing facilities. For example, Locus uses existing process-creation code to assist in
process migration.

4.3. Reliability
Migration failures can occur due to network or machine failure. Themigration

mechanism can simply ignore these possibilities (as does Demos/MP) in order to stream-
line protocols. The Charlotte implementation is able to rescue the migrant from many
failures by several means.First, it transfers responsibility for the migrant as late as possi-
ble, to survive failure of the destination or the network. Second,it detaches the migrant
completely from its source, to survive later failures there.Third, the migrant is protected
from failures of other machines; at most, some of its links are automatically destroyed if
the machine where their other ends reside has crashed.Rescuing migrating processes
under all failure circumstances requires complex recovery protocols, and most likely
large overhead for maintaining process replicas, checkpoints, or communication logs.We
were unwilling to pay that cost in Charlotte.Instead, we terminate the migrant if either
the source or destination machine crashes during the sensitive time of transfer when mes-
sages for the migrant may have arrived at either machine, as discussed earlier. Modifying
our IPC to use hints for link addresses, as mentioned above, would have made this step
less fragile.

4.4. Concurrency
Various levels of concurrency are conceivable:

• Only one migration in the network at a time

• Only one migration affecting a given machine at a time
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• No constraints on the number of simultaneous migrations

The Charlotte mechanism puts no constraint on concurrency. Restricting process migra-
tion can make the mechanism simpler, especially in operating systems using a connec-
tion-based IPC.The most restrictive alternative guarantees that the peers of the migrant
process are stationary, so redirection of messages is straightforward. Italso tends to miti-
gate policy problems of migration thrashing, flooding a lightly-loaded machine with
immigrants, and completely emptying a loaded machine.

Enforcing such a constraint, on the other hand, requires arbitrating contention,
which can be expensive. In addition, limiting concurrency constrains policies that other-
wise would be able to evacuate a failing machine quickly or react immediately to a severe
load imbalance.We therefore believe that the policy problems alluded to above should be
solved by policy algorithms, not by a limitation imposed by the mechanism.

Allowing simultaneous migrations introduces the peculiar problem of name and
address consistency: ensuring that all processes and kernels have a consistent view of the
world. Theproblem is manifest in operating systems like Charlotte, in which communi-
cation is carried out over established channels and kernels require up-to-date location
information. If two processes connected by a channel migrate at the same time, their ker-
nels may have false conception of the remote channel ends.The problem is not critical in
operating systems that treat communication addresses as hints, such as V, because com-
munication encountering a hint fault will restore the hint by invoking a process-finding
algorithm. Thissolution incurs execution and latency costs as messages are transmitted.
Where absolutes are used, forwarding pointers, such as those used in Demos/MP, may
solve the problem, but they introduce long-lived residual dependencies.In Charlotte, we
send link-address updates before migration completes, and we buffer notifications for
messages arriving during the transfer. The immediate acknowledgement of the updates,
ev en when the other link end is simultaneously given away or migrating, prevents dead-
lock. Whenmigration completes,D processes the notifications buffered by the two ker-
nels and regains a consistent view of P’s links, even if their remote ends have moved
meanwhile.

Within a single source or destination, we could restrict concurrency to one migration
attempt at a time.This restriction simplifies the kernel state and again reduces risks of
thrashing. However, complexity can be reduced by creating a new kernel thread for each
migration in progress, executing a finite-state protocol independently of other migration
efforts. Usingthese techniques, we found that allowing concurrent migrations in the
same machine incurs only a small space overhead and minor execution costs.

4.5. Contexttransfer and residual dependency
At some point during migration, the process must be frozen to ensure a consistent

transfer.

What and when to freeze
Three activities need to be frozen: (1) process execution, (2) outgoing communica-

tion, and (3) incoming communication.The first two activities are trivial to freeze.
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Freezing incoming communication can be accomplished by (a) telling all peers to stop
sending, (b) delaying incoming messages, or (c) rejecting incoming messages.Option (a)
requires a complex protocol if concurrent migrations are supported or if crashes must be
tolerated. Option(c) requires that the IPC be able to resend rejected messages, as in V.
In Charlotte, we chose option (b) because it seems the simplest and because it does not
interfere with other mechanisms.

Very early freezing (for example, when a process is considered as a migration candi-
date) has the advantage that the process does not change state between the decision and
migration. Otherwise,the migration decision may be worthless, since the process could
terminate or start using resources differently. Howev er, freezing a process hurts its
response time, which flies in the face of one of the goals of migration.Less conserva-
tively, we can freeze a process when it is selected as a candidate, but before the destina-
tion machine has accepted the offer. Even less conservative alternatives include freezing
at the point migration is agreed upon, or even when it is completed.Each more liberal
choice increases the process’ responsiveness at the cost of protocol complexity.

In Charlotte, we chose to balance responsiveness and protocol simplicity by freezing
both execution and communication only when context is marshaled and transferred.We
delay incoming communication by buffering input notifications atS and both notifica-
tions and data atD until P is established.We verified (by exhaustive enumeration of
states in our automata that drive the IPC protocol) that the ensuing delays could not cause
deadlock or flow control problems11. In this way, a minimal context is transferred during
negotiation (such as how many links P has and where their ends are); the final transfer
reflects any change inP’s state during migration.

MOS and Locus freeze the migrant earlier, when it is selected for migration.V, in
contrast, freezes a process for a minuscule interval near the end of transfer. While trans-
fer is in progress, the migrant continues to execute; pages dirtied during that episode are
sent again in another transfer pass, and so forth until a final pass.Incoming messages are
rejected during the short freeze, with the understanding that the IPC mechanism will
timeout and retransmit them.The result is that the migrant suffers a delay comparable to
that required to load a process into memory6.

Redirecting communication
Redirecting communication requires that state information relevant to the communi-

cation channels be updated and that peer kernels discover the migrant’s new location. In
a connectionless IPC mechanism, a process holds the names of its communication peers.
For example, V processes use process identifiers as destinations13. To redirect communi-
cations in such an environment, a kernel may broadcast the new location. Broadcastcan
be expensive for large networks with frequent migrations.Alternatively, peers can be left
with incorrect data that can be resolved on hint faults. Anotheralternative is to assign a
home machine to each process; the home machine always knows where the process is.
Locus uses this method to find the target of a signal.Sprite is similar; the home machine
manages signals and other location-dependent operations on behalf of the migrant.Of
course, resorting to a home machine makes communication failures more likely and
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sharply increases the cost of certain kernel calls.

In a connection-based IPC environment with simplex connections, such as Accent
and Demos/MP, the kernel of the receiving end of a connection does not know where the
senders are.That means thatS cannot tell which kernels to inform aboutP’s migration.
Instead, a forwarding pointer may be left onS to redirect new messages as they arrive.
Demos/MP uses this strategy. Another approach is to introduce a stationary “middleman”
between two or more mobile ends of a connection.In Locus, cross-machine pipes may
have sev eral readers and writers, but they hav eonly one fixed storage site.When a reader
or writer migrates, the kernel managing the storage site is informed.In Charlotte, the
duplex nature of links suggests maintaining information at both ends about each other, so
S can tell all peers thatP has moved. Transferring these link data along withP, though,
incurs marshaling, transmission, and demarshaling overhead.

Residual dependency
The migrant process can start working on the destination machine faster if it can

leave some of its state temporarily on the source machine.When it needs to refer to that
state, it can access it with some penalty. To reduce the penalty, state can be gradually
transferred during idle moments.State can also be pulled upon demand.The choice
between moving the entire address space or only a part is reminiscent of the controversy
in network file systems whether entire files should be transferred or only pages for remote
file access.Locality of execution suggests transferring at least the working set ofP dur-
ing migration, and the rest when needed.On the other hand, the objective of residual
independence suggests removing any trace ofP from the source machine.

In MOS, virtually the entire state ofP could remain in the source machine, sinceD
can make remote calls onS for anything it needs.For efficiency reasons, however, MOS
transfers most ofP’s context when it migrates.In Sprite, part ofP’s context always
resides in its home machine, but none is left on the source machine when it is evicted.
This approach costs about 15 ms to demand-load a page and perhaps 4 ms to execute
some of the kernel calls remotely (about 9-fold increase).In Accent, processes do not
make kernel calls directly, but rather send messages to a kernel port. Therefore, no state
needs to be moved with a process; it can all remain withS and be accessed as needed by
kernel calls to the old port.In addition, Accent implements a lazy transfer of data pages
on demand.Similarly, in Sprite,S acts as a paging device forD. These approaches trade
efficiency of address-space transfer for risks of machine unavailability, protocol complex-
ity, and later access penalties.

4.6. Locationindependence
Many distributed operating systems adhere to the principle of location transparency.

In particular, process names are independent of their location, processes can request iden-
tical kernel services wherever they reside, and they can communicate with their peers
equally well (except for speed) wherever they might be. The principle of location trans-
parency must be followed carefully to enable migration.Migration requires that naming
schemes be uniform for local and remote communication and that resource references not
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depend on the host machine.For example, Charlotte objects are all named by the links
that connect a client to them.When a process moves, the names it uses for its links are
unchanged, even thoughD remaps them to different internal names.The fact that local
communication is treated differently from remote communication is localized in a few
places in the kernel. Processesmay have pointers or indices to kernel data structures, but
those are maintained by the kernel. Theactual data structures, pointers and indices are
remapped invisibly during migration. If such values were buried inside the processes’
address spaces, migration would be impossible or extremely complicated.Sprite main-
tains location transparency throughout multiple migrations by keeping location-depen-
dent information onP’s home machine and by directing some ofP’s kernel calls there.

Transaction management and multithreading also pose transparency problems. A
transaction manager must not depend on the location of its clients.Multithreaded pro-
cesses must be moved in toto. If threads may cross address spaces, the identity of one
thread may be recorded in several address spaces, leading to location dependencies.

Of course, any policy setter, such as the Charlotte Starter, needs to know the location
of all processes and perhaps the endpoints of their heavily-used links. Making this infor-
mation available need not compromise the principle of transparency. The policy module
does not use this information to send messages, only to inform itself about decisions it
needs to make. Likewise, for the sake of openness, a design may allow processes willing
to participate in migration decisions to receive location information and contribute migra-
tion advice.

5. Conclusions
Our experience with Charlotte and others’ experience with Sprite, V, MOS, and

Demos/MP, show that process migration is possible, if not always pleasant.We found
that separating the modules that implement mechanism from those responsible for policy
allows more efficient and flexible policies and simplifies the design.Migration interact
with other parts of the kernel. Inparticular, the implementation shares structures and
low-level functions with other mechanisms.Nonetheless, we found it possible to keep
the mechanisms fairly independent of each other, gaining high code modularity and ease
of maintenance.

Software and hardware failures are a fact of life. Our migration protocol can rescue
the migrant in most failure situations and restore the state in all of them, despite the fact
that the migrant continues its interaction with other processes at early stages of migration.
In some cases, though, we opt to kill the migrant even if rescue is dimly conceivable. We
chose to postpone committing migration until late during the transfer itself (to deal with
early destination crash), while removing any dependency of the migrant on the source as
soon as migration completes (to deal with late source crash).

Except for potential confusion suffered by policy modules, it is not particularly hard
to achieve simultaneous migrations, even those involving a single machine.The Char-
lotte IPC requires absolute state information, so we could not try to reduce the cost of
migration by sacrificing accuracy. IPC mechanisms that use hints or are connectionless
can shorten the elapsed time for migration but then probably pay more during
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communication. Designsthat require previous hosts to retain forwarding information for
an arbitrary period after migration are overly susceptible to machine failure. Forwarding
data structures, although small, tend to build up over time.
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