Designing a process migratioacility:
The Charlotte xperience

Yeshayahu Artsy Raphael Fin&l
Digital Equipment Corporation Computer Science Department
550 King Street University of Kentuclky

Littleton, Massachusetts 01460 Lexington, KY 40506-0027

1998 addresses
raphael@cs.ukedu y-artsy@msn.com

This paper s published ilEEE ComputeR2: 9, pp. 47-56, September 1989.

Key words: Operating Systems, Disthited Systems, Process Migration, System Design

Abstract

Our goal in this paper is to discuss owperience with process migration in the
Charlotte distriloted operating systemiVe dso drav upon the gperience of other oper
ating systems in which migration has been implementedrocess migrationafility in
a dstributed operating system dynamically relocates processes among the component
machines. Asuccessful process migratioacility is not easy to design and implement.
Foremost, a general-purpose migration mechanism should be able to support a range of
policies to meet arious goals, such as load disttion, and impreed concurreng, and
reduced communicationWe dscuss hw Charlottes migration mechanism detaches a
running process from its sourcevennment, transfers it, and attaches it into & eavi-
ronment on the destination machin@ur mechanism succeeds in handling communica-
tion and machineailures that occur during the transfeMigration does not &ct the
course of recution of the migrant nor that of ymprocess communicating with ifThe
migration fcility adds ngligible overhead to the distrilted operating system and pro-
vides fast process transfer

Designing a pocess migration facility 1

1. Introduction

Our goal in this paper is to discuss ouperience with process migration in the
Charlotte distriited operating systemie identify major design issues anxpéin our
implementation choicesWe dso contrast these choices with other migration implemen-
tations in the literatureThis paper praides insights both into the specific task of imple-
menting process migration for distuiied operating systems and into the more general
task of designing such systems.

A preemptive process migrationfacility dynamically relocates running processes
between peer machines in a digitdd system.Such relocation has maradvantages.
Studies hae frown that it can be used to cope with dynamic fluctuations in loads and ser
vice need} to meet real-time scheduling deadlines, to bring a process to a spetial, de
or to improre the fault-tolerance of the systen¥et successful process migratioadili-
ties are not commonplace in distited operating systef®°67 The reason for this
paucity is the inherent compiéy of such a &cility and the potentialxecution penalty if
the migration polig and mechanism are not tuned correctlyis not surprising that some
operating systems prefer to terminate remote processes rather than rescue them by migra-
tion.

We a@an identify seeral reasons wh migration is hard to design and implement.
The mechanism for nming processes must be able to detach a migrant process from its
source evironment, transfer it with its conte(the pefprocess data structures held in the
kernel) and attach it in a meenvironment on the destination machin€éhese actions
should complete reliably andfieiently. Migration may &il in case of machine and com-
munication &ilures, It it should do so completelyThat is, the déct should be as if the
process s n&er migrated at all, or at wrst as if the process had terminated due to
machine &ilure. A wide range of migration policies might be needed, depending on
whether the main concern is load sharingoi@ng idle time on one machine when
another has a nonatial work queue), load balancing (such &ejing the wrk queues
of similar length), or application concurrgndmapping application processes to
machines in order to achie high parallelism). Policies may need elaborate and timely
state information, since otherwise unnecessary process relocations may inflict perfor
mance dgradation on both the migrant process and the entire syS§ibenmechanisms
to support difierent policies might diér significantly If seveal policies are used under
different circumstances, the migration mechanism must kibléeenough to all pol-
icy modules to switch policiesThe migration mechanism cannot be completely sepa-
rated from process scheduling, memory management, and interprocess communication.
Nevertheless, one wuld prefer to kep mechanisms for these wities as separate from
each other as possible, to allonore freedom in testing and upgrading theihe fact
that a process has ne should be iwisible both to it and its peers, while at the same
time interested users or processes should be able to advise the system about desired pro-
cess distribtion.

The process migratioraéility implemented for Charlotte is aifly elaborate addi-
tion to the underlying Charlotteesknel and utility-process bas#.separates polic(when
to migrate which process to what destination) from mechanism thadetach, transfer

Designing a pocess migration facility 2

and reattach the migrant procesgJhile the mechanism is &d in the kernel and one of
the utilities, the polig is relegated to a utility and can be replaced easilye kernel pro-
vides elaborate state information to that utilifyne mechanism ales concurrent multi-
ple migrations and premature cancellation of migratibmheaves no residual dependegc
on the source machine for the migrant procdd4s mechanism copes with all concei
able crash and termination scenarios, rescuing the migrant process in most cases.

The net section presents arveview of Charlotte, and Section 3 presents its pro-
cess migrationdcility. In Section 4 we discuss the issues encounteredildibg Char
lotte’s migration facility that hae general application for gsuch facility. In discussing
each issue, we present altermatesign approaches adopted by other process migration
facilities. We leave aut the discussion of specific migration policies, ay e begond
the scope of this papeWe hope this account will ge assistance to others contemplating
adding a process migratioadility, as well as advice to those designing other operating
system &cilities that may interact with later addition of process migratidie. onclude
with a brief list of concrete lessons and suggestions.

2. Charlotte ovaview

Charlotte is a message-based distel operating system ioped at the Umner-
sity of Wisconsin for a multicomputer composed of 28v11/750 computers connected
by a tolen rind. Each machine in Charlotte runs erkel responsible for simple short-
term process scheduling and a message-baseébmtass communication (IPC) proto-
col. Processeare not s\apped to backing storéA battery of prvileged processesiili-
ties) runs at the user Vel to provide additional operating systems services and policies.
The lernel and some utilities are multithreaded.

Processes communicate Vilaks, which are capabilities for dupleeommunication
channels. (Théigh-level language ynx10 actually hides this lo-level mechanism and
provides a remote procedure call (RPC) irded.) Theprocesses at the twends of a
link may both send and regeinessages by using non-blocking service callgprocess
may post seeral such requests anevait their completion later; it may cancel a pending
request before that request completadink may be destiged or gven avay to another
process en during communicationln particular a link is automatically destyed when
the process holding its other end terminates or its machine crashes; the process holding
the local link end is so notified by therkel. Theprotocol that implements communica-
tion semantics is &€ient kut quite complell. It depends on full, up-to-date link infor
mation in the krnels of both ends of each linRrocesses are completely wee of the
location of their communicating partnerfistead, thg establish links to seers by ha-
ing other processes (their parents or a namesatiity) provide them.

Utility processes are distuibed throughout the multicomputeooperating to allo-
cate resources, priole file and connection services, and set golim particulat the
KernJob (KJ) utility runs on each machine to pide a communication path between
the local lkernel and non-local processeBhe Starter utility creates processes, allocates
memory and dictates medium-term scheduling pplidtach Starter process controls a
subset of the machines; it communicates with theindéls (directly or via their KJs) to

Designing a pocess migration facility 3

receve date information and specify its decisions.

3. Process migration in Charlotte

Charlotte vas designed as a platform faxperimentation with distrilted algo-
rithms and load distrilttion stratgies. W added the process migratioacility in order
to better support suchxgeriments. Equallymportant, we vanted to gplore the design
issues that process migration raises in a message-based operating Bigtieenl shas
the efect of process migrationf-or corvenience, throughout the paper we call tieenel
on the source and destination machiS8esdD, respectrely, and useP to represent the
migrant process.During transfer P’'s process identifier changes, and therriel data
structures for it are completely rewed from S, but the transfer is insible to bothP and
its communication partners.

source destination source destination
KJ x& KJ KJ
S D S D
before after

Figure 1: Example of migration

As shavn, P’s links are relocated to the weanachine. Allprocesses continue to name
their links the same after migration; yhare unavare that link descriptors ka nmoved

sites and that local communication (performed in shared memory) has become remote
communication (sentver the wire) and vice ersa, and thesee no change in message
flow.

3.1. Rolicy

Migration poligy is dctated by Starter utility processe$hey base their decisions
on statistical information pvided by the krnels thg control and on summary informa-
tion they exchange among themseb: Inaddition, Starters accept advice fromvpeiged
utilities (to allov manual direction of migration and to enable or disable automatic con-
trol). Whenmessages carrying statistics, advice, or notice of process creation or termina-
tion arrve, the Starter xeecutes a polig procedure. (Introducingnigration into the
Starter only required writing that pojigorocedure and woking it at the right times.)
The poliy procedure may choose to send messages to other Starters or to request some
source krnel to undertak mgration. Suclhrequests are sent to thendJob residing on
the source machine to relay to iterkel. As discussed laterthis approach adds

Designing a pocess migration facility 4

insignificantly to the cost of migration (aweprocedure calls and perhaps a round-trip
message), while it ales policies that inigrate scheduling and memory allocation as
well as local, clustered, or global policies.

3.2. Mechanism

The migration mechanism hasawdependent parts: collecting statistics and trans-
ferring processesBoth parts are implemented in therkel.

Statistics include data on machine load (number of processes, links, CPU and net-
work loads), indvidual processes (age, state, CPU utilization, communication rate), and
selected acte links (paclets sent and recexd). Thesestatistics are intended to be com-
prehensie enough to support most coneable policies. We mllect statistics in the fol-
lowing way.

Condition Action
Significant eent:

message sent or reeed,

data structure freed

process created or terminated

Increment associated count

Sample process states
and CPU, neterk loads
Summarize data,

Send to starter

Interval passes

Period ofnintervals passes

To balance accurgcwith overhead, we used in our tests an in&mf 50 to 80 ms and a
period of 100 interals (5 to 8 seconds)The averhead for collecting statisticsas less
than 1% of total cpu time.

Transferring processes occurs in three phases.

(1) Negotiation. After being told by their controlling Starter processes to midtate
SandD agree to the transfer and resergquired resourcedf agreement cannot
be reached, forxample because resources are nail@ble, migration is aborted
and the Starter that requested it is notified.

(2) Transfer. P's address space is med from the source to the destination
machine. Meanwhileseparate messages are sent to eachek controlling a
process with a link t® informing that lkernel of the links rew address.

(3) Establishment Kernel data structures pertaining to the migrant process are mar
shaled, transferred, and demarshal@darshaling requires cemg the structure
to a byte-stream uffer, and corverting some data types, particularly pointer
types.) Nanformation related to the migrant is retained at the source machine.

Process-lkernel interface
We alded four lernel calls to the proceseikel interfice.

Designing a pocess migration facility 5

Statistics(Wat : action; Where : address)
The KernJob imokes this call (on behalf of a Starter) so that tleeriel will start col-
lecting statistics and placing them in thevegi address (in the &rnJob virtual
space). Theall can also be used to stop statistics collection.

M grat eQut (Whi ch : process; WereTo : machine)
This call enables the Starter (or iteridJob proxyif the Starter resides on another
machine) to initiate a migration episode.

Bool ean; Menory : |ist of physical regions)

M grateln(Wiich : process; WereFrom : machine; Accept
The Starter (or its &nJob proxy) uses this call to apgpgoa refuse a migration
from the gven machine to the machine on which the call is performiédbtarters
have regotiated among themsals, the Starter controlling the destination machine
may apprge a mgration e/en before the one controlling the source machine calls
M gr at eQut. The Memory parameter tells therkel where in pysical store to
place the sgments that constitute thewm@rocess. (Thétarter learns the gment
sizes either through getiation with its peer or fror®’s request to appke a nmgra-
tion offer receved from S.)

Cancel M gration(Wich : process; Were : machine)
The Starter imokes this call to abort an aee M grat el n or M gr at eQut
request. Thigall is rejected if the migration has already reached a commit point.

None of these calls blocks the call@he kernel reports theventual success oailure of
the request by a message back to the caller

Mechanism details

Three n&v modules were created in therkel to implement the migration mecha-
nism. Themigration interhce module deals with theweservice calls from processes.
The migration protocol module performs the three phases listege.alite statistics
module collects and reports statisticBhese modules arevioked by two new kernel
threads. Thetatistician threadveekens at each inteal to sample, orvaerage and report
statistics to the StarterA process-receer thread starts i for each incoming migrant
process. luses a simpler ana@dter communication protocol than that used by ordinary
IPC. However, negotiation and other control messages use the ordinary communication
protocol and are funneled through the IPC queues in order to synchronize process and
link actities.

Figure 2 shars both high- and lg- level negotiation messagedn our exkample, the
left Starter process controls machine 1, and its peer controls machifteeJirst two
messages represent a StatteStarter ngotiation that results in deciding to migrate pro-
cessP from machine 1 to 3Their decision is communicated &in message 3, which is

*
The standard protocol mustpect etremely complg scenarios that cannot arise in this wesation and must empidink
data structures that are not germane hé@iee cost of introducing a streamlined protocalswslight in comparison to the speed it
achieved.

Designing a pocess migration facility 6

1: Will you take P?
Stay ‘

2: Yes, migrate to machine 3 A

3: MigrateOut P 5: Offer P 6: Migrateln P

CHA o -® i
(o «

K £;KJ —1 m
S ' D

1 2 3T 4

4: Offer P

/
§>

7: Accept offer
Figure 2: Ngotiation phase

either a direct service call (if the Starter runs on machine 1) or a message &ribebk
on machine 1 to be translated into a service ¢then ofers to send the processio
The ofer includesP’s memory requirements, its age, its recent CPU and arktwse,
and information about its linkdf D is short of the resources neededRpor if too mary
migrations are in progress, it may reject thierobutright. Otherwise D relays the der

to its controlling Starter (message 5)he relay includes the same information as the
offer from S. We relay the dfer to let the polig module reject a migrant at this point.
Although that Starter may e dready agreed to accept(in message 2), it may wno
need to reject the fafr due to an increase in actual or anticipated load or lack of memory
Furthermore, the Starter must be eslbecause thesknel has no ay to knav if it has
even been consulted by its peer Startamd the Starter must allocate memory for the
migrant. TheStarters decision is communicated © by aM gr at el n call (message
6). Norelay occurs if the Starter has already calMddyr at el n to preappree the
migration. Beforeesponding t& (message 7)) reseres necessary resources woid
deadlock and fl@-control problems.Preallocation is conseative; it guarantees success-
ful completion of multiple migrations at th&pmense of reducing the number of concur
rent incoming migrations.

After message 7 is serd,has committed itself to the migratioif. P fails to arrve
and the migration has not been cancelle®ljgee ngt), then the machine & must be
down or unreachableD discovers this condition through the standard mechanism by

Designing a pocess migration facility 7

which kernels &change “heart-beat” messages and reclaims resources and cleans up its
state.

When message 7 is reeed, S is also committed and starts the transfBefore
each lernel commits itself, its Starter can successfully cancel the migration, in which
caseD repliesRejectedo S (in message 7), d sendsReyrettedto D (not shavn). The
latter also occurs iP dies abruptly during mtiation. © separate polig from mecha-
nism,S does not retry a rejected migration unless so ordered by its Starter

Figure 3 shws the transfer phasé& concurrently sendB’s virtual space t® (mes-
sage 8) and link update messages (9) to ¢hnedts controlling all oP’s peers. Message
8 is broken into packts as required by the net. D has already resesd plysical
store for them, so the pastk are copied directly into the correct plabdessage 9 indi-
cates the ne address of the link; it is ackmdedged (not shen) for synchronization pur
poses. Afterthis point, messages sent Rowill be directed to the me address and
buffered there untiP is reattached.Kernels that hee rot receved message 9 yet may
still continue to send messages Boto S. Failure of either the source or the destination
machine during this inteaV leaves the state oP very unclear Since it would require a
very complex protocol (sensitie © further machinedilures) to receer P's gate, we
opted to terminat® if one of these machines crashes at this stage.

Finally, S collects all ofP’s context into a single message and sends @ {mnessage
10). Thismessage includes control information, the state of alllinks, and details of
communication requests thatveaarived for P since transfer lggn. Pointersn S's data
structures are traekl davn, and all releant data are marshaled togeth& demarshals

K

’ [k [k (i

Ao
o |

9: Link update 9: Link update

8: P’s virtual space

10: P’s context

Figure 3: Tansfer phase

Designing a pocess migration facility 8

the message into itsvm data structures.

Although it is conceptually simple, the transfer stage is actually quite compde
time-consuming, mainly because Charlotte IPC is rich in &anteuckily, our design
saves the migration mechanism from dealing with messages in transit to oPfrdimce
the kernel proides message cachingtino huffering, a message remains in its serger’
virtual address space until the reeeiis ready to accept it or until the send is cancelled.
Hence,S does not need to be concerned with outgoing messages; kkise, it may
drop from its cache gmmessage recegd for P thatP has not yet receed. Sucha mes-
sage will be requested Iy from the sendes kernel whenP requests to reces it. The
link structures sent in message 9 clearly indicate which link® Ipanding sent or
receved messages. Anothexdvantage in our design is that we do notéh# dter or
transfer P’'s context maintained by distrilted utilites, such as open files, which are
accessed via location-independent links.

The establishment phase is intevihwith transfer Data structures are deallocated
as part of marshaling, and the reselones are filled during demarshaligter transfer
has finishedD adjustsP’s links and pendingvents and insert® into the appropriate
scheduling queueThose communication requests that were postponed ks mov-
ing have keen huffered byS andD; they are nav directed to the IPCdenel thread i in
their order of arial. (For each link, all thoseuffered atS precede thoseuffered atD.)
Their efect onP is not influenced by the€t that it has mad. Finally, the Starter and
KernJob processes for both the source and destination machine are informed that migra-
tion has completed so thean update their data structures appropriatéyfailure of
either of the tw machines at the transfer phase is detected by the remaining one, which
will abort the migration, terminate the migrant, and clean up its state.

3.3. Rerformance

We neasured performance of migration in Charlotte on AX/¥1-750 machines
connected by a Pronet &k ring. The underlying mechanismsveathe folloving costs.
It takes 11 ms to send a 2 KB patko another machine reliably via the general-purpose
intermachine communication package that Charlotte uses, 0.4 ms to switcltconte
between krnel and process, 10 ms to transfer a singlegtdmween processes residing
on the same machine, and 23 ms to transfer aepaetween processes residing on dif-
ferent machines.

We measured thevarage elapsed time to migrate a small (32 KB), linkless process
as 242 ms (standard\dation o = 2 ms), pravzided the Starter controllin® has preap-
proved the migration.Each additional 2 KB of image adds 12.2 ms to the migration time.
The following formula fits our measurements of tiverage elapsed time spent in migra-
tion.

Charlotte time= 45+ 78p + 12. X5+ 9. +1.7q

Designing a pocess migration facility 9

p =0 if D’s Starter has appxed migration in adance;
else 1 ifD’s Starter is not on the destination machine;
else about 0.2.

s=gze of the virtual space in 2-KB blocks

r =0 if all links are local; 1 otherwise

g = number of non-local links (1 if none).

These measures\date by about 5% with diérent locations of the Starter and thverall
load. Thisformula shavs that it taks about 750ms to migrate a typical process of
100KB and 6 links (or 670ms ib’'s Starter is local), and about 6 seconds for gdgsro-
cess of 1MB.Actual CPU time spent on the migratiorioef for a 32 KB process with no
links is about 60 ms fd and about 32 ms fad. Table 1 shws haw this time is spent.

S D
5.0 Handlean ofer 5.4Handle an dér
2.6 Prepar@ KB image to transfer 1.2 Install 2 KB of image
1.8 Marshatontet 1.2Demarshal conte
6.9 Other(mostly kernel contgt switching) | 4.7 Other

Table 1: Kernel time spent migrating a linkless 32 KB process
Each link costsS an additional 1.6 to 2.8 ms of CPU time to prepare link-update mes-
sages and to marshal nedat data structuresCollecting statistics requires about 1% of
oveall elapsed time, and another 2% of all time is spenvatelg the statistics to the
Starter A production ersion of Charlotte, optimized and stripped of wgpbng code,
could ehibit a significant speed imprement.

It is hard to compare Charlotsefmigration performance with results published for
other implementations, because each usegaetit underlying computeand each oper
ating system dictates itsva process structureNonetheless, to ge the reader some
form of comparison, we present formulas for migration speed under Sprite (Sark-3 w
stations, about 4 timesdter than our AX-11/750 machines), V (Sun-2, about 2 times
faster than our machines), and Accent (Peogkatations). Thesrmulas are xrapola-
tions from a fev measurement points reported etbere*6’.

Sprite time= 200+ 3. 6s + 14f
V time =80+ 6s
Accent time= 1180+ 115s

s = gze of the virtual space in KB
f = number of open files

In particular a “typical” 100KB process wuld be transferred in about 560ms in Sprite,
680ms in Vand perhaps 12.7 seconds in Accenb. migrate a lage, 1MB process auld
take & least 3.8 seconds in Sprite, 6 seconds ian¥ 116 seconds in Accenin Accent,
sending the cont of a process occupies about 1 full secomtle virtual space is sent
later on demand, so the full cost of transfer is spreadadlong period, bt part of this

Designing a pocess migration facility 10

cost is seed if not all the pages are referenced precopies the address space while the
process is still running, so the lost timefetgd by the process is quite short.

4. Designissues

Designing a process migratioacility requires that one consider nyacomplex
issues. W will discuss the separation of pgti@nd mechanism, the interplay between
migration and other mechanisms, reliabjlitgncurreny, the nature of coni transfey
and to what etent processes should be independent of their localibese issues inter
relate to one anotheso the folloving discussion will occasionally need to postpone
details until later sectiondMoreover, the approaches that we and others adopatows
problems depend somvbat on the design of other components of the operating system.
Due to space limitations, we do not discuss these dependencies in detalil.

4.1. Structure

The first step in designing a process migratamility is to decide where the pojic
making and mechanism modules should resitfe. kelieve that this decision is of major
importance since it cannot be easilyarsed, unlile nost of the design of the migration
protocol. Communicationéenel operating systems tend to put mechanism inehsek
and poliy in trusted utility processesin the case of process migration, mechanism is
intertwined with both short-term scheduling and IPC, so it fits best inettmelk Polig,
on the other hand, is associated with long-term scheduling and resource management, so
it fits well in a utility process.Several considerations &dct the success of separation:
how efficient the result is, wo adequately it preides the needed function, andahoon-
ceptually simple are the intades and the implementation.

Efficiency and Simplicity

The principal reason one might place pyiic the kernel instead of in a utility is to
simplify and speed up the intade between poljcand mechanismAny reasonable pol-
icy depends on statistics that are maintained primarily in émeek. Highquality deci-
sions may well require lge amounts of accurate and comprehendata. Placingolicy
outside the &rnel incurs eecution averhead and lateryan passing these statistics in one
direction and decisions in the other

Our eperience with Charlotte, a@ver, shows that placing the polcin a uility
results in a net &€iency gain. Although separation incurs thetea cost of one message
for statistics reporting and onerkel call (and perhaps another message round-trip) for
decision reporting, it alles reduction of communication and more global potice to
the fact that each Starter process decides yp&lic a set of machinesAs to the lateng
in passing statistics and decisions, studies Haund that good policies tend to depend
mostly on aggrgate and medium-term conditions, ignoring short-term conditions or
small delays.

The designer may choose to support only simple policies, in which casmadlye
well be put in the &rnel. For example, the migration poljcin V6 and Sprité is mostly
manual, choosing a remote idl@rkstation for a process ovieting it when the statios’

Designing a pocess migration facility 11

owner so requires.In systems where migration is used to meet real-time scheduling
deadlines, polig tends to be simple orewy sensiirte © even gmall delays, and hence
could or should be placed in therkel. Intgrating the polig in the kernel, hovever,
might obstruct latengyansion or generalization.

We @an achige mnceptual separation of pafi@and mechanism without incurring a
large interbice cost by assigning them to separate layers that share mekhoS?
adopts this approach byviling the lernel to tvo layers, one to implement migration
mechanism and othervlelevel functions, and the other layer to pide polig.. These
layers share data structures and communicate by procedureAitilsugh such sharing
improves dficieng, it becomes harder to modify poficance changes requiresinel
recompilation, and inadvtent errors are more serious.

Function and flexibility

Placing polig outside the krnel fcilitates testing d@erse policies and choosing
among policies tuned for d@i&rent goals, such as load sharing, load balancing, wimgro
responsieness, communication-load reduction, and placing processes close to special
devices. Beingable to modify polig is especially important in anxperimental ewiron-
ment. Ourstudents needed only andwours to learn the inteate and major components
of the Starter in order to start tryingfeifent policies; thgdid not need to learn peculiar
ities of the lernel or of the migration mechanisihhis flexibility would be impossible if
policy were embedded in theeknel.

In various distriited systems, such as DemosAVIRccent? and Charlotte,
resource-management policies are oftengatdel to utilities. Putting migration polig in
those same processes canvalioore intgration and coordination of the policiesvgm-
ing the system.

The designer of process migration should Wwera of the danger of separating pol-
icy and mechanism toaf. Letting poligy escape from trusted utility sesxs into applica-
tion programs may result in performancey@da&ation or wen thrashing. Thigproblem
occurs, for gample, if applications may decide the initial placement and later relocation
of their processes, as in Locus, without getting assistance from theeknel in the form
of timely state and load information.

4.2. Interplay between migration and other mechanisms

The process migration mechanism can be designed independently of other mecha-
nisms, such as IPC and memory managemeéné actual implementation is &ky to see
interactions among these mechanisidAswever, design separation means that the migra-
tion protocol should not change when the IPC protocol dbeSharlotte, for gample,
we did not change the IPC to add process migration, nor did migration change when we
later modified the semantics of adWwPC primitves. In contrast, we had to change the
marshaling routines when an IPC data structure changed.

We feel that ease of implementation is a dominantvaioin for separating mecha-
nisms from each other when process migration is added teistin@ operating system,
such as ws the case in Demos/MEharlotte, V and Accent. A secondary motiation is

Designing a pocess migration facility 12

that the migration code can be deaatad without interfering with other parts of therk
nel. InCharlotte, for instance, we can easily remall the code and structures of pro-
cess migration at compile time or dynamically turn the mechanism on anthafon-
trast, eficiengy arguments wuld favar integrating all mechanismsAccent, for gample,
uses a transfayn-reference approach to transmitting the virtual space of the migrant pro-
cess that is based on its gegn-write memory managementf process migration is
intended from the start, as in MOS and Sprite,girstgon can reduce redundsnof
mechanisms. Inetrospect, Charlotteauld hare wised a difierent implementation for IPC
if the two mechanisms had been igtated from the startWe would hare usedhints for
link addresses, which are inaccuratg tan be readily cheeld and ingpensvely main-
tained, rather than usirapsolutes whose complete accunacs achieved a a high main-
tenance cost.

Some interactions seem to be necesshryharlotte, for instance, we chose to sim-
plify the migration protocol by refusing to migrate a processaged in multi-packt
message transfeiVe therefore depend slightly on kntedge of the IPC mechanism to
avad comple protocols. Similarly both MOS and Sprite refuse to migrate a process
encaged in RPC until it reaches a wenient point, which may not happen for a long
time. Otherinteractions ma& £nse in order for process migration toetakvantage of
existing facilities. For example, Locus usesxisting process-creation code to assist in
process migration.

4.3. Reliability

Migration failures can occur due to neiwk or machine dilure. Themigration
mechanism can simply ignore these possibilities (as does Demos/MP) in order to stream-
line protocols. The Charlotte implementation is able to rescue the migrant frony man
failures by seeral means.First, it transfers responsibility for the migrant as late as possi-
ble, to surwe failure of the destination or the netxk. Secondit detaches the migrant
completely from its source, to suei later filures there.Third, the migrant is protected
from failures of other machines; at most, some of its links are automaticallyyaeisiro
the machine where their other ends reside has crafRescuing migrating processes
under all &ilure circumstances requires complecovery protocols, and most ldty
large averhead for maintaining process replicas, checkpoints, or communicationitgs.
were unwilling to pay that cost in Charlottistead, we terminate the migrant if either
the source or destination machine crashes during the gerisite of transfer when mes-
sages for the migrant mayveaarived a either machine, as discussed earligtodifying
our IPC to use hints for link addresses, as mentionedeatould hare made this step
less fragile.

4.4. Concurrency
Various levels of concurreng are concerable:
* Only one migration in the netwk at a time
* Only one migration décting a gven machine at a time

Designing a pocess migration facility 13

* No constraints on the number of simultaneous migrations

The Charlotte mechanism puts no constraint on concytreRestricting process migra-
tion can mak the mechanism simpleespecially in operating systems using a connec-
tion-based IPC.The most restricte dternatve guarantees that the peers of the migrant
process are stationay redirection of messages is straightfard. Italso tends to miti-
gae polioy problems of migration thrashing, flooding a lightly-loaded machine with
immigrants, and completely emptying a loaded machine.

Enforcing such a constraint, on the other hand, requires arbitrating contention,
which can bexgensve. In addition, limiting concurreng constrains policies that other
wise would be able tovacuate adiling machine quickly or react immediately to aese
load imbalance We therefore beliee that the polig problems alluded to alve iould be
solved by polig algorithms, not by a limitation imposed by the mechanism.

Allowing simultaneous migrations introduces the peculiar problem of name and
address consisteyicensuring that all processes aradriels hae a onsistent viev of the
world. Theproblem is manifest in operating systeme lharlotte, in which communi-
cation is carried outver established channels anerkels require up-to-date location
information. Iftwo processes connected by a channel migrate at the same timeetheir k
nels may hee false conception of the remote channel efidge problem is not critical in
operating systems that treat communication addresses as hints, sydieesusge com-
munication encountering a hiradlt will restore the hint by woking a process-finding
algorithm. Thissolution incurs ecution and latenccosts as messages are transmitted.
Where absolutes are used, farding pointers, such as those used in DemosHviy
solve the problem, bt they introduce long-ired residual dependencie$n Charlotte, we
send link-address updates before migration completes, andufiez hotifications for
messages awing during the transferThe immediate ackmdedgement of the updates,
even when the other link end is simultaneouslyepgi avay or migrating, preents dead-
lock. Whenmigration completed) processes the notificationsffered by the tw ker
nels and rgans a consistent we of P’s links, esen if their remote ends ka noved
meanwhile.

Within a single source or destination, we could restrict concyrterae migration
attempt at a timeThis restriction simplifies theeknel state and ag reduces risks of
thrashing. Hwever, complexity can be reduced by creating awieernel thread for each
migration in progress,xecuting a finite-state protocol independently of other migration
efforts. Usingthese techniques, we found that ailog concurrent migrations in the
same machine incurs only a small spageltead and minon@cution costs.

4.5. Contexttransfer and residual dependency

At some point during migration, the process must be frozen to ensure a consistent
transfer

What and when to freeze

Three actiities need to be frozen: (1) proceseaution, (2) outgoing communica-
tion, and (3) incoming communicationlhe first tw activities are twial to freeze.

Designing a pocess migration facility 14

Freezing incoming communication can be accomplished by (a) telling all peers to stop
sending, (b) delaying incoming messages, or (c) rejecting incoming mes&xyeEs (a)

requires a compleprotocol if concurrent migrations are supported or if crashes must be
tolerated. Optior{c) requires that the IPC be able to resend rejected messages,.as in V
In Charlotte, we chose option (b) because it seems the simplest and because it does not
interfere with other mechanisms.

Very early freezing (forxample, when a process is considered as a migration candi-
date) has the adntage that the process does not change state between the decision and
migration. Otherwisethe migration decision may beowthless, since the process could
terminate or start using resourcesfaténtly Howeve, freezing a process hurts its
response time, which flies in thack of one of the goals of migratiohess consem+
tively, we can freeze a process when it is selected as a candidategfbre the destina-
tion machine has accepted théeof Even less conseative dternatves include freezing
at the point migration is agreed upon, gerewhen it is completedEach more liberal
choice increases the process’ respamass at the cost of protocol comytg.

In Charlotte, we chose to balance respamass and protocol simplicity by freezing
both eecution and communication only when cofites marshaled and transferred/e
delay incoming communication byufbering input notifications af and both notifica-
tions and data daD until P is established.We \erified (by ehaustve enumeration of
states in our automata thatwdrithe IPC protocol) that the ensuing delays could not cause
deadlock or flov control problem&l. In this way, a minimal contet is transferred during
negotiation (such as o mary links P has and where their ends are); the final transfer
reflects ay change inP’s state during migration.

MOS and Locus freeze the migrant earlignen it is selected for migratiorV, in
contrast, freezes a process for a minuscule iaterar the end of transfewhile trans-
fer is in progress, the migrant continues xeceite; pages dirtied during that episode are
sent agin in another transfer pass, and so forth until a final gaseming messages are
rejected during the short freeze, with the understanding that the IPC mechanism will
timeout and retransmit thenThe result is that the migrant gerfs a delay comparable to
that required to load a process into merfiory

Redirecting communication

Redirecting communication requires that state informatiowvaed¢o the communi-
cation channels be updated and that peemeds disceer the migrants new location. In
a onnectionless IPC mechanism, a process holds the names of its communication peers.
For example, V processes use process identifiers as destidatidiosredirect communi-
cations in such an emonment, a krnel may broadcast thewmdocation. Broadcastan
be expensve for lage netvorks with frequent migrationsAlternatively, peers can be left
with incorrect data that can be resamtvon hint &ults. Anothemlternatve is to assign a
home machine to each process; the home machivaysaknavs where the process is.
Locus uses this method to find thegttrof a signal.Sprite is similar; the home machine
manages signals and other location-dependent operations on behalf of the n@jrant.
course, resorting to a home machine esakommunicationaflures more likly and

Designing a pocess migration facility 15

sharply increases the cost of certagnriel calls.

In a connection-based IPCweronment with simplg connections, such as Accent
and Demos/MPhe lkernel of the recging end of a connection does not Wnahere the
senders areThat means thab cannot tell which &rnels to inform abou®’s migration.
Instead, a forarding pointer may be left 08 to redirect n& messages as tharrive.
Demos/MP uses this strgie Another approach is to introduce a stationary “middleman”
between tw or more mobile ends of a connectiom Locus, cross-machine pipes may
have sveaal readers and writersubthey haveonly one fixed storage siteWhen a reader
or writer migrates, theeknel managing the storage site is informéa.Charlotte, the
duplex nature of links suggests maintaining information at both ends about eachsother
S can tell all peers th&® has mweed. Transferring these link data along wRhthough,
incurs marshaling, transmission, and demarshaklethead.

Residual dependency

The migrant process can starorking on the destination machinaster if it can
leave mMe of its state temporarily on the source machiiben it needs to refer to that
state, it can access it with some penallg reduce the penalty@ate can be gradually
transferred during idle moments$tate can also be pulled upon demaiithe choice
between muaing the entire address space or only a part is reminiscent of theveosyro
in network file systems whether entire files should be transferred or only pages for remote
file access.Locality of execution suggests transferring at least trorking set ofP dur-
ing migration, and the rest when needéh the other hand, the objeaid residual
independence suggests ranmg ary trace ofP from the source machine.

In MOS, virtually the entire state & could remain in the source machine, sibce
can mak remote calls ors for arything it needs.For efficieng/ reasons, hoever, MOS
transfers most oP’s context when it migrates.In Sprite, part ofP’s context always
resides in its home machineytmone is left on the source machine when itvisted.
This approach costs about 15 ms to demand-load a page and perhaps 4xengtéo e
some of the &rnel calls remotely (about 9-fold increasé). Accent, processes do not
make kernel calls directlybut rather send messages toeanel port. Therefore, no state
needs to be md with a process; it can all remain wihand be accessed as needed by
kernel calls to the old portln addition, Accent implements a lazy transfer of data pages
on demand.Similarly, in Sprite, S acts as a paging dee forD. These approaches trade
efficiency of address-space transfer for risks of machinevatability, protocol compl&-
ity, and later access penalties.

4.6. Locationindependence

Many distributed operating systems adhere to the principle of location transparenc
In particular process names are independent of their location, processes can request iden-
tical kernel services whever they reside, and thecan communicate with their peers
equally well (except for speed) whever they might be. The principle of location trans-
parengy must be follaved carefully to enable migratioMigration requires that naming
schemes be uniform for local and remote communication and that resource references not

Designing a pocess migration facility 16

depend on the host machinBor example, Charlotte objects are all named by the links
that connect a client to thenwhen a process mes, the names it uses for its links are
unchanged, ven thoughD remaps them to dérent internal namesThe fact that local
communication is treated &Bfently from remote communication is localized in & fe
places in the é&rnel. Processaenay hae pointers or indices todenel data structuresyub
those are maintained by therkel. Theactual data structures, pointers and indices are
remapped misibly during migration. If such \alues were tried inside the processes’
address spaces, migratiomwd be impossible orxéremely complicated.Sprite main-
tains location transparend¢hroughout multiple migrations byekping location-depen-
dent information or?’s home machine and by directing someP kernel calls there.

Transaction management and multithreading also pose transpgrebtems. A
transaction manager must not depend on the location of its clighiithreaded pro-
cesses must be wa in toto. If threads may cross address spaces, the identity of one
thread may be recorded inveeal address spaces, leading to location dependencies.

Of course, appolicy setter such as the Charlotte Starteeeds to kna the location
of all processes and perhaps the endpoints of thertlyresed links. Making this infor
mation &ailable need not compromise the principle of transpateiitie poligy module
does not use this information to send messages, only to inform itself about decisions it
needs to mak Likewise, for the sa& d openness, a design may allprocesses willing
to participate in migration decisions to reeelocation information and contue migra-
tion advice.

5. Conclusions

Our eperience with Charlotte and otherstperience with Sprite, VMOS, and
Demos/MP show that process migration is possible, if novajls pleasant.We found
that separating the modules that implement mechanism from those responsible yor polic
allows more dicient and fl@ible policies and simplifies the desigMigration interact
with other parts of thedtnel. Inparticular the implementation shares structures and
low-level functions with other mechanism$lonetheless, we found it possible teek
the mechanismsirly independent of each othggaining high code modularity and ease
of maintenance.

Software and hardare filures are aatct of life. Our migration protocol can rescue
the migrant in mostafilure situations and restore the state in all of them, despitadhe f
that the migrant continues its interaction with other processes at early stages of migration.
In some cases, though, we opt to kill the migraehef rescue is dimly concesble. We
chose to postpone committing migration until late during the transfer itself (to deal with
early destination crash), while remog ary dependeng of the migrant on the source as
soon as migration completes (to deal with late source crash).

Except for potential confusion $afed by polig modules, it is not particularly hard
to achiwe smultaneous migrations,ven those iwolving a single machineThe Char
lotte IPC requires absolute state information, so we could not try to reduce the cost of
migration by sacrificing accurgc IPC mechanisms that use hints or are connectionless
can shorten the elapsed time for migrationt then probably pay more during

Designing a pocess migration facility 17

communication. Designhat require pnaous hosts to retain formvding information for
an arbitrary period after migration areedy susceptible to machinaifure. Forwarding
data structures, although small, tendwddoup over time.

6. Acknowledgements

The design of process migration in Charlottaswinspired by discussions with
Amnon Barak of the HebweUniversity of Jerusalem in 1984The authors are indebted
to Cui-Qing Yang for modifying Charlotte utilities to support process migration and to
Hung-Yang Chang for manfruitful discussions about the desigAndrenv Black and
Marvin Theimer preided helpful comments on an early draft, and the referees suggested
mary stylistic improvements. TheCharlotte project was supported by NSF grant
MCS-8105904 and BARPA contracts N00014-82-C-2087 and N00014-85-K-0788.

References

1. PR Krugyer and M. Lvny, “When is the best load sharing algorithm a load balancing
algorithm?; Computer Sciencesethnical Report #694, Urersity of Wscon-
sinr-Madison (April 1987).

2. A.B. Barak and A. Litman, “MOS: A Multicomputer Distuited Operating Sys-
tem; Softwae — Ractice and Experiencgx(8) pp. 725-737 (August 1985).

3. D.A. Butterfield and G. J. Popek, “Netwvk tasking in the Locus distubed UNIX
systent, Proc. of the Summer USENIX comfiece pp. 62-71 USENIX Association,
(June 1984).

4. FE Douglis and J. Ousterhout, “Process migration in the Sprite Operating System,
Proc. of the 7th Int'l Confon Distributed Computing Systemgp. 18-25 IEEE
Computer Press, (September 1987).

5. M. L. Pavell and B. P Miller, “Process migration in DEMOS/NPProc. of the
Ninth ACM Symp. on Opating Systems Principlespp. 110-118 £M SIGOPS,
(October 1983).In Opemating Systems Rew 17:5

6. M. M. Theimer K. A. Lantz, and D. R. Cheriton, “Preemptable Remotechion
Fecilities for the \fSystent, Proc. of the &nth Symp. on Opating Systems Princi-
ples pp. 2-12 ACM SIGOPS, (December 1985).

7. E.R. Zayas, Attacking the process migration bottlenécRroc. of the Eleenth
ACM Symp. on Opating Systems Principlegp. 13-24 ACM SIGOPS, (Neember
1987). InOperating Systems Rew 21:5

8. D.A. Nichols, “Using idle wrkstations in a shared computingzrieonment; Proc.
of the Eleenth M Symp. on Opating Systems Principlespp. 5-12 ACM
SIGOPS, (Ngember 1987).In Opermting Systems Rew 21:5

9. Y. Artsy, H-Y. Chang, and R. Fird, “Interprocess communication in Charldtte,
IEEE Softwae 4(1) pp. 22-28 IEEE Computer Socigfyanuary 1987).

Designing a pocess migration facility 18

10. M. L. Scott, “Language support for loosely coupled disted programs,|EEE
Trans. on Softwa Eng. SE-131) pp. 88-103 IEEE, (January 1987).

11. Y. Artsy, H-Y. Chang, and R. Fird, “Charlotte: design and implementation of a
distributed lernel; Computer Sciencesethnical Report #554, Urarsity of Wis-
consin-Madison (August 1984).

12. R.F. Rashid and G. G. Robertsorictent: A communication oriented nedvk
operating systeméknel, Proc. of the Eighth @M Symp. on Opating Systems
Principles pp. 64-75 ACM SIGOPS, (December 1981).

13. D.Cheriton, “The V Krnel: A softvare base for distriied system$,|IEEE Soft-
ware 1(2) pp. 19-42 (April 1984).

