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Process Migration is the ability of a system (operating system or user-space program) to transfer 
processes between different nodes in a network. The motivations behind process migration are to 
balance load, improve availability, enhance communication performance and ease system 
administration[13]. However, since a process involves and interacts with many different 
components of an operating system, migration of a process is technically complicated and 
demands a great deal of researches. 
 
This paper presents key concepts of process migration, design and implementation issues, and 
illustrates these concepts by several case studies on the typical implementations – MOSIX, 
Sprite, Condor and V.  
 
 
1. Introduction 
Process Migration has been in the computer science literature for more than two 
decades. One of the earliest concept papers introduces programs that can span 
machine boundaries in search of free machine for executions as “worms”[3]. Subsequent 
papers refine the concept of process migration as a potential mean to share processing 
power and other resources among multiple processors. Numerous papers and 
implementations have been proposed to introduce process migration on different 
architectures such as symmetric multiprocessors, Non-Uniform Memory Access (NUMA) 
multiprocessor, Massively Parallel Processors (MPP) and Local Area Network (LAN) of 
computers. 
 
A process is an operating system (OS) entity of a program in execution. Associated with 
it are address space and other OS internal attributes such as home directory, open file 
descriptors, user id, program counter and so on. Process migration is defined as the 
transfer of a process between different nodes connected by a network. 
 
The motivations for process migration are [1,4,13]: 
• Dynamic Load Balancing. It allows processes to take advantage of less loaded 
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nodes by migrating from overloaded ones. 
• Availability. Processes reside on a failure node can be migrated to other healthy 

nodes. 
• System Administration. Processes that reside on a node that is to be undergone 

system maintenance can be migrated to other nodes.  
• Data Locality. Processes can take advantage of locality of data or other special 

capabilities of a particular node. 
• Mobility. Processes can be migrated from a handheld device or laptop computer to 

a more powerful server computer before the device get disconnected from the 
network.  

• Fault Recovery. The mechanism to halt, transport and resume a process is 
technically useful to support fault recovery in mission-critical or transaction-based 
applications[11,12]. 

  
Various works have been done on the realization of process migration, including 
MOSIX[5], Sprite[6,7], Charlotte[8], V[9], Condor[11,12] and Mach[10]. Although process 
migration is useful in many contexts, it is not widely deployed nowadays. One of the 
problems is the complexity to support process migration on top of a system that does not 
have supporting facilities in design[1]. These facilities include network transparency, 
naming transparency, location transparency and others. Implementing process migration 
on systems that do not have relevant facilities may lead to degradation in performance 
and security, complicated implementation and poor reliability. 
 
This paper is organized as follows. Section 2 presents the key concepts and 
characteristics of process migration as a basis for discussion thereafter. Section 3 
presents case studies of important process migration works. Section 4 provides a brief 
comparison between different approaches and implementations of process migration. 
The final section gives the status of current works, future direction and a brief summary 
of process migration. 
 
2. Overview of Process Migration 
In this section, we present an overview of process migration. 
 
2.1 System Support 
Although process migration can be classified into different implementation categories, 
such as UNIX (or variant) transparent migration, microkernel, message-passing kernel 
and user-space migration, based on the level of operating system it is built upon, all 
implementations tend to provide a common subset of system functionalities in order to 
support process migration effectively. 
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1. Network and Naming Transparencies[1]. Process migrated to the destination node 

should be able to execute as if it is on the source node. The communication 
channels, I/O devices, file systems should be readily accessible to the migrated 
process. In order to provide the execution context, certain degree of network and 
naming transparencies are supported. For example, MOSIX uses a super-root, “/…”, 
as a network-wide root to provide a uniform mechanism to access objects[5]. 

2. Interfaces to Export and Import Process States[1]. In order to guarantee the migrated 
process can execute correctly at the remote node, certain process states needs to be 
extracted from the source node and imported to the remote node. These states 
include program counter (PC), files handles, CPU registers and others. 
Heterogeneous process migration may need another level of abstraction or 
translation to be meaningful to the target architecture. 

3. Process Transfer Mechanism. Different implementations use different process 
transfer approaches. The choices include remote procedure calls (RPC), message 
passing (MP). 

4. Load Information Management (Optional)[1]. Load Information Management 
components exist in many implementations (e.g. Condor[11]) to make sensible 
decision on process migration based on the information disseminated from the local 
and remote nodes. 

 
2.2 Migration Mechanism 
Depending on the particular system goals for migration, different systems implement 
migration in slightly different ways. One notable example is LOCUS transfers the entire 
virtual address space for the migrated process in trade of implementation simplicity, 
while Accent takes lazy-copying approach where pages are retrieved from the source 
machine as page faults occur on the target node for minimal initial migration 
performance impact. Despite of the slight derivations of these approaches, all of them 
exhibit a high degree of similarity in the mechanism (See Fig 1). 
 

A description of process migration implementation is summarized as follows[1,5]. 
1. Source node issues a migration request to the destination node. Process-specific 

information is sent alongside with the request. 
2. The to-be-migrated process is removed from its execution context. The to-be-

migrated process is suspended for states extraction as described in step 4. 
3. “Communication is temporarily redirected by queuing up arriving messages 

directed to the migrated process, and by delivering them to the process after 
migration.”[1] 

4. States of the process is extracted. Process states, such as address space, 
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communication channels, processor states and others, are extracted. Some of 
these states may reside on the source node after migration depending on 
implementations. State translation or abstraction may be needed if the target is of 
different architecture (e.g. Tui[13]). 

5. An empty process is instantiated on the destination node. Transferred process 
state is to be imported. The process is not activated until there are enough process 
states. 

6. Process state is imported into the new instance.  
7. Pending messages are forwarded. Messages received since step 3 are forwarded 

to the new instance to maintain the communication channel. Depending on 
implementations, there may exist residual dependencies where some process 
states are intentionally left on the source and/or intermediate nodes involved in the 
transfer process. 

8. The new process instance is activated. The new instance is restarted and starts 
execution. 

 
The following diagram is copied from D. S. Milojicic et al [1]. 

 
Figure 1. Migration Mechanism. 
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2.3 Migration Policy 
As we see from the preceding section, process migration incurs a considerable amount 
of performance overhead and network traffic. Moreover, there exist possibilities that 
some of the message interactions with the migrating process initiated by a migration-
unaware application may experience a timeout and thus pose an adverse effect on the 
semantic transparency of such an application. Therefore, we need some policies to 
guide and justify the process migration decision. 
 
1. Criteria to Choose a Process (What)[6]. Studies in UNIX load patterns show that 

“More than 78% of processes have lifetimes of less than 1 second”[14] and “97% of 
processes have a lifetime of less than 8 seconds” [14] suggest that “costs involved with 
migrating short-lived processes can outweigh the migration benefits”[1].  

2. Time to Initiate a Migration (When)[6]. Two schemes are widely adopted: periodic or 
event-based. In general, the lower the cost of migration, the more frequent the load 
information is disseminated[1]. 

3. Criteria to Choose a Destination Node (Where)[6]. Several schemes are used 
depending of the system goals – heuristic (or random) algorithm, periodic load 
information dissemination, user-specified host and others. 

4. Entity to Make the Decision (Who)[6]. Depending on the distributed scheduling 
policies used, several schemes are possible. For systems like V, user can choose 
any remote machine for execution of a program by specifying the machine name. 
Other systems like Sprite, it has a central migration server that makes the decision 
based on the load information reported by the load-average daemon executing in 
every Sprite machine. 

 
2.4 Characteristics 
In designing a process migration facility, we need to consider numerous characteristics 
of how such a design affect the system as a whole. These characteristics have important 
impacts on the deployment of process migration. 
 
The main ideas of the following descriptions are taken from D S Milojicic et al [1]. 

1. Implementation Complexity. Different levels of implementations yield different degree 
of complexity in implementation. Process migration can be implemented at the user-
space, within the kernel, in a messaging-passing system, in an RPC-based or in a 
UNIX-like environment. Generally, user-space implementation yields a simpler 
design and implementation but leads to poorer performance. User-space 
implementations often exist as a run-time library and require applications to re-
compile and re-link in order to take advantages of the features. However, user-space 
level implementation is at a better position to make decisions on the migration 
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policies than other implementations. Kernel-based implementations yield better 
performance, but it is more complicated to implement (e.g. transparency) and 
maintain. 

2. Performance Overhead. Process migration involves performance overhead in the 
process state transfer. The overhead can be classified as initial cost and run-time 
cost. Some implementations that transfer the entire process state (e.g. LOCUS, 
Charlotte) incur only initial cost. Another extreme is that some implementations 
postpone state transfer until page faults occur (e.g. Accent). This type of 
implementation incurs run-time penalty only. Other possibilities that go between the 
two extremes (e.g. Sprite) incur both initial and run-time cost. Runtime cost can also 
be appeared as a consequence of residual dependencies that some process states 
are left on the source and/or intermediate nodes and require continual computation 
or forwarding facilities from these nodes. 

3. Naming/Location Transparency. Process migration requires the migrated process to 
execute as on the source node. Otherwise, a migrated process may fail to execute 
when there is a discrepancy in the mechanism it access resources as on the source 
node. Different levels of transparency are implemented in different systems. For 
example, Sprite associates a home directory to all processes that executes host-
specific code. Some location transparencies, however, are inevitably difficult to 
maintain in cases like accessing a local device. 

4. Fault Tolerance. Any exceptions occur in the process of migration, such as network 
partition and node failure, may severely affect the reliability of the system. Design 
issues such as reduction of residual dependency may improve the fault tolerance. 

5. Scalability. Scalability takes 3 forms: Numeric, geographic and administrative, and it 
is affected by the design choices chosen. For example, process states accumulate 
as the number of migration increases in Mach[10] and hence adversely affect the 
scalability. Other consideration issues include residual dependencies, granularity of 
the transfer segment, virtual memory transfer techniques[6], etc.. 

 
2.4 Alternatives 
As process migration incurs significant overhead and requires sophisticated system level 
functionalities, several alternatives are more feasible in certain scenarios. 
 
1. Remote Execution[6]. Remote execution is used to invoke some code on a remote 

machine. The semantic is well understood, simple to implement and avoid most of 
the overhead incurred in process migration. However, it doesn’t not provide any kind 
of transparencies, provide no mechanisms to evict the remote process and decision 
is made not based on usage. 

2. Middleware[1,15]. Middleware such as CORBA provides an excellent abstraction of the 
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underlying hardware/software architecture. Thus, making heterogeneous object 
invocation much simpler to implement. 

 
2.5 Categories of Process Migration 
Process migration has can be implemented on different levels of a system (See 
references). The level and system in which process migration is implemented greatly 
affects the design choices: some designs are only feasible at a particular level in certain 
system architectures. In this section, we divide the levels/systems into four categories 
and examine the corresponding design choices. 
 
1. UNIX-like Kernel[1]. As naming and location transparencies are not fully supported in 

UNIX, transparent process migration requires significant modification to the 
monolithic kernel. Examples are LOCUS and Sprite. 

2. Message-Passing Kernel[1]. As messages can be easily redirected between the 
sender and the receiver, it facilitates the change of communication endpoints in 
process migration. For example, System V. 

3. Microkernel[1]. Microkernel builds process migration facilities on top of the operating 
system as a separate module. As transparencies are often available in these 
systems and message passing communication mechanism is utilized, process 
migration seems to be relatively easily to implement. Mach is a typical example. 

4. User-Space Migration[1]. As user-space migration does not require a modification of 
the kernel, it implies that the entire address space must be extracted and transferred 
to rebuild it at the destination node. Moreover, processes that involve signal 
processing, shared libraries or IPC are usually unable to be migrated. 

 
3. Case Studies 
In this section, we examine several typical process migration implementations in the 
research area. Most of the implementations are used as a test bed for distributed 
computing, and quite a few of them are commercialized.  
 
The systems we discuss are MOSIX, Sprite, Condor and V. The design goals, 
mechanisms and implications are discussed. 
 
3.1 MOSIX 
“MOSIX is a general-purpose Multicomputer Operating System which Integrates a 
cluster of loosely connected, independent computers (nodes) into a single-machine 
UNIX environment. The main properties of MOSIX are its high degree of integration and 
the possibility of scaling the configuration to a large number of nodes”[5]  
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The design goals of MOSIX are: 
1. Single System Image[5]. It provides a single view of the file system and network 

transparency is provided at the user level. 
2. Autonomy[5]. Kernel is replicated in each processor and thus autonomic. It makes its 

own control decision independent of other nodes. 
3. Scalability[5]. Probabilistic algorithms are used to minimize system management and 

network overhead. 
4. Dynamic Configuration[5]. Node may join and leave a cluster at will without 

significant adverse effect. 
 

 
Figure 2. The MOSIX architecture 

 
The following descriptions referenced and summarized from [1,5]. 

MOSIX organizes it kernel into three layers: the upper kernel, linker and lower kernel 
(see figure 2). The lower-kernel is machine-dependent and operates independently to 
provide normal services such as access to local disks devices, context-switching and 
others. The machine-independent upper kernel provides standard UNIX system call 
interface and has a complete knowledge about the location of all objects it handles. The 
linker provides inter-node communication, data transfer, process migration and load 
balancing algorithms. By this way, the upper kernel provides an abstraction of the 
execution context with location transparency to the process running above it (see Design 
Goals 1).  
 
Process migration in MOSIX is cooperative in the sense that the source and destination 
nodes cooperate to make a migration decision. During migration, only dirty pages and 
user areas of the migrating process are transferred while clean pages are “paged-in” 
whenever there is a page fault at the destination node. In other words, it keeps residual 
dependencies. Moreover, a process in MOSIX is site-independent that each system call 
gets routed to the appropriate node by the linker and lower kernel. Thus, process that 
involves signal handling, memory-mapped files manipulation and other host-specific 
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application can be easily migrated. 
 
3.2 Sprite 
Sprite is an operating system to provide a network of personal workstations act as a 
time-sliced system. “Each host runs a copy of the Sprite kernel and work closely together 
using a remote-procedure-call (RPC) mechanism”[6]. Processes in Sprite can access files 
or devices on any host, and data can be cached across the network while consistency is 
maintained with the one-copy semantic. 
 
The design goals process migration in Sprite are: 
1. Utilize Idle Hosts[6]. Idle hosts are plentiful even at the busiest time of the day. 

Utilization of these otherwise wasted computing resources can give a boost in 
performance to other loaded hosts. 

2. Exclusive Use of Workstations by their owner[6]. Computer resources privilege is 
given to the local user. Migrated processes are evicted back to their source nodes 
whenever the workstation owner log into his/her machine. 

3. Kernel RPC[6]. Sprite uses protected kernel RPC as a form of interprocess 
communication. Redirection of communication channels is not as obvious as it is in 
the message-passing kernel. 

 
Sprite associates each process with its designated home machine, regardless of its 
physical location. To provide a location transparency abstraction to the migration 
process, host-specific system calls are forwarded to the shadow process on the host 
machine via kernel-to-kernel RPCs. Other calls, such as memory allocation and the 
distributed file system-related calls, are handled locally. The migrated process get 
evicted once the owner returns back to the remote machine. 
 
3.3 System V 
System V is a distributed operating system that is run on a cluster of networked 
workstations. Every host runs a small identical kernel plus some service modules and 
run-time libraries[16]. The implementation scheme of V provides transparency, minimal 
interfaces and residual dependencies on the source host[2]. 
 
The design goals V’s process migration are: 
1. Network Transparency[9]. Network transparency is implemented with the use of V IPC 

primitives and global naming to provide communication channels between a program 
and the operating system. 

2. Minimal Interference to the system[9]. Process migration is regarded as an atomic 
transfer of process states between two hosts without interfering other parts of the 
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system. 
3. No Residual Dependencies[9]. Process states are not left over on the source node 

once the process migration has been committed to “protect programs executing on 
behalf of different (remote) users on the same workstation.” [9] 

 
System V organizes process and its address space into logical hosts identified by a 
structure (logical-host-id, local-index). Process migration is done by the migration of the 
logical host in which the program is running on. V uses a special mechanism to transfer 
the address space of the migrated process – precopy. It iteratively performs precopy until 
the number of pages fall below a threshold during the actual migration. Precopy 
effectively reduces the “freezing” time of a process in contrast to Charlotte or LOCUS. 
The net effect is that it can improve the triggering time for critical operations, such as 
timed system calls, which has a fixed timeout value. System V solves the residual 
dependencies problem by requiring that the execution context of a program is either 
resided in its address space or in a globally accessible server.  
 
3.4 Condor 
Condor is a software package that provides identification of idle machines in a network 
and offloads processes to those machines.  
 
The design goals of process migration in Condor are: 
1. Maximize Computation Utilization. Idle workstations are potential destinations for 

process migration because otherwise the computation cycles may be wasted. 
2. No Modification to Kernel. UNIX systems are proprietary and access to the internals 

of the system is not possible at the time Condor is proposed. 
 
Condor is implemented as a software package for long-running, computation-intensive 
jobs[11]. The way Condor extracts and imports process states is through the use of core-
dump facility (check pointing) provided by traditional UNIX system. However, it has some 
inherent limitations such as the inability to restore process states like signals and timers, 
lack of support of inter-process communication, inconsistency between different core 
dump file formats and performance. 
 
4. Comparison 
This section compares the systems described in the previous section, i.e. MOSIX, Sprite, 
Condor and V. 

 
This table is summarized from D S Milojicic et al [1], A Barak et al [5], F Douglis et al [6,7], M M Theimer et al [9], D S and  

M Litzkow et al [11,12] 
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 MOSIX V Sprite Condor 
Category UNIX-like Message-passing/Microkernel UNIX-like User-space 

Goals • Dynamic 

Process 

Migration 

• Single System 

Image 

• Autonomy 

• Dynamic 

Configuration 

• Scalability 

• Network Transparency 

• Minimal Interference 

• No Residual 

Dependencies 

• Autonomy 

• Location 

Transparency 

• Using Idle 

Cycle 

• Simplicity 

 

• Maximize 

Utilization 

• No Modification 

to Kernel 

 

Extensibility Fair Fair Fair Very Good 

Transparency 

1. (Open Files) 

2. (Fork) 

3. (Communication 

Channel) 

Full 

(Yes) 

(Yes) 

(Yes) 

Full 

(Yes) 

(Yes) 

(Yes) 

Full 

(Yes) 

(Yes) 

(Yes) 

Limited 

No signals, timers, 

memory-mapped 

files and shared 

libraries 

Transfer Strategy Dirty Pages Precopy Flushing Entire Address 

Space 

Freeze Time Moderate Very Low Moderate High 

Residual 

Dependency 

No No No No 

Load information Distributed Unknown Centralized Combination of both

Performance Good Good Good Poor 

Table 1. Comparison of process migration implementations 

 
5. Future Researches & Summary 
Although process migration offers some promising benefits, it is not widely deployed in 
the academia and the industry because of a variety of reasons. These obstacles include: 
 
1. Lack of Infrastructure[2]. An overwhelming success of process migration demands the 

support of an infrastructure that allows different machine hardware/software 
architectures to participate and also the mobility of these devices. However, although 
some of the individual empowering technologies (like mobile IP, Java) are catching 
on, a mature infrastructure does not readily exist. 

2. Complexity. Process migration involves many different research areas in computer 
science, a coherent solution that meets almost all the design goals among all areas 
is difficult to attain without loss of generosity.  
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With the successful deployment of the commercial Internet, more and more computing 
resources are available and connected. One of the prominent trends in the research of 
process mobility is the Mobile Agent. Mobile agent resembles process migration that 
both allow a task (or a process abstraction) to be migrated and executed on a different 
node. The major different is that process migration is often deployed on a cluster of 
relatively tightly coupled machines where mobile agent is often deployed in the scale of 
the Internet. The implication is that security and reliability are becoming a more dominant 
issue in the design such a mobile agent system.  
 
In this paper we have presented some background information of process migration, 
such as motivations, mechanisms, policies, characteristics and others. Then we examine 
and compare several existing implementations, namely MOSIX, Sprite, Condor and V 
and how they address the design and implementation tradeoffs of process migration. At 
last, we address why process migration does not get widely adapted and point out 
direction for future researches. 
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