
 1

Process Migration in Distributed Systems

Shek Lun Ho
Computer Science Department
University of Southern California
Los Angeles, CA90007
shekho@usc.edu

Process Migration is the ability of a system (operating system or user-space program) to transfer
processes between different nodes in a network. The motivations behind process migration are to
balance load, improve availability, enhance communication performance and ease system
administration[13]. However, since a process involves and interacts with many different
components of an operating system, migration of a process is technically complicated and
demands a great deal of researches.

This paper presents key concepts of process migration, design and implementation issues, and
illustrates these concepts by several case studies on the typical implementations – MOSIX,
Sprite, Condor and V.

1. Introduction
Process Migration has been in the computer science literature for more than two
decades. One of the earliest concept papers introduces programs that can span
machine boundaries in search of free machine for executions as “worms”[3]. Subsequent
papers refine the concept of process migration as a potential mean to share processing
power and other resources among multiple processors. Numerous papers and
implementations have been proposed to introduce process migration on different
architectures such as symmetric multiprocessors, Non-Uniform Memory Access (NUMA)
multiprocessor, Massively Parallel Processors (MPP) and Local Area Network (LAN) of
computers.

A process is an operating system (OS) entity of a program in execution. Associated with
it are address space and other OS internal attributes such as home directory, open file
descriptors, user id, program counter and so on. Process migration is defined as the
transfer of a process between different nodes connected by a network.

The motivations for process migration are [1,4,13]:
• Dynamic Load Balancing. It allows processes to take advantage of less loaded

 2

nodes by migrating from overloaded ones.
• Availability. Processes reside on a failure node can be migrated to other healthy

nodes.
• System Administration. Processes that reside on a node that is to be undergone

system maintenance can be migrated to other nodes.
• Data Locality. Processes can take advantage of locality of data or other special

capabilities of a particular node.
• Mobility. Processes can be migrated from a handheld device or laptop computer to

a more powerful server computer before the device get disconnected from the
network.

• Fault Recovery. The mechanism to halt, transport and resume a process is
technically useful to support fault recovery in mission-critical or transaction-based
applications[11,12].

Various works have been done on the realization of process migration, including
MOSIX[5], Sprite[6,7], Charlotte[8], V[9], Condor[11,12] and Mach[10]. Although process
migration is useful in many contexts, it is not widely deployed nowadays. One of the
problems is the complexity to support process migration on top of a system that does not
have supporting facilities in design[1]. These facilities include network transparency,
naming transparency, location transparency and others. Implementing process migration
on systems that do not have relevant facilities may lead to degradation in performance
and security, complicated implementation and poor reliability.

This paper is organized as follows. Section 2 presents the key concepts and
characteristics of process migration as a basis for discussion thereafter. Section 3
presents case studies of important process migration works. Section 4 provides a brief
comparison between different approaches and implementations of process migration.
The final section gives the status of current works, future direction and a brief summary
of process migration.

2. Overview of Process Migration
In this section, we present an overview of process migration.

2.1 System Support
Although process migration can be classified into different implementation categories,
such as UNIX (or variant) transparent migration, microkernel, message-passing kernel
and user-space migration, based on the level of operating system it is built upon, all
implementations tend to provide a common subset of system functionalities in order to
support process migration effectively.

 3

1. Network and Naming Transparencies[1]. Process migrated to the destination node

should be able to execute as if it is on the source node. The communication
channels, I/O devices, file systems should be readily accessible to the migrated
process. In order to provide the execution context, certain degree of network and
naming transparencies are supported. For example, MOSIX uses a super-root, “/…”,
as a network-wide root to provide a uniform mechanism to access objects[5].

2. Interfaces to Export and Import Process States[1]. In order to guarantee the migrated
process can execute correctly at the remote node, certain process states needs to be
extracted from the source node and imported to the remote node. These states
include program counter (PC), files handles, CPU registers and others.
Heterogeneous process migration may need another level of abstraction or
translation to be meaningful to the target architecture.

3. Process Transfer Mechanism. Different implementations use different process
transfer approaches. The choices include remote procedure calls (RPC), message
passing (MP).

4. Load Information Management (Optional)[1]. Load Information Management
components exist in many implementations (e.g. Condor[11]) to make sensible
decision on process migration based on the information disseminated from the local
and remote nodes.

2.2 Migration Mechanism
Depending on the particular system goals for migration, different systems implement
migration in slightly different ways. One notable example is LOCUS transfers the entire
virtual address space for the migrated process in trade of implementation simplicity,
while Accent takes lazy-copying approach where pages are retrieved from the source
machine as page faults occur on the target node for minimal initial migration
performance impact. Despite of the slight derivations of these approaches, all of them
exhibit a high degree of similarity in the mechanism (See Fig 1).

A description of process migration implementation is summarized as follows[1,5].
1. Source node issues a migration request to the destination node. Process-specific

information is sent alongside with the request.
2. The to-be-migrated process is removed from its execution context. The to-be-

migrated process is suspended for states extraction as described in step 4.
3. “Communication is temporarily redirected by queuing up arriving messages

directed to the migrated process, and by delivering them to the process after
migration.”[1]

4. States of the process is extracted. Process states, such as address space,

 4

communication channels, processor states and others, are extracted. Some of
these states may reside on the source node after migration depending on
implementations. State translation or abstraction may be needed if the target is of
different architecture (e.g. Tui[13]).

5. An empty process is instantiated on the destination node. Transferred process
state is to be imported. The process is not activated until there are enough process
states.

6. Process state is imported into the new instance.
7. Pending messages are forwarded. Messages received since step 3 are forwarded

to the new instance to maintain the communication channel. Depending on
implementations, there may exist residual dependencies where some process
states are intentionally left on the source and/or intermediate nodes involved in the
transfer process.

8. The new process instance is activated. The new instance is restarted and starts
execution.

The following diagram is copied from D. S. Milojicic et al [1].

Figure 1. Migration Mechanism.

 5

2.3 Migration Policy
As we see from the preceding section, process migration incurs a considerable amount
of performance overhead and network traffic. Moreover, there exist possibilities that
some of the message interactions with the migrating process initiated by a migration-
unaware application may experience a timeout and thus pose an adverse effect on the
semantic transparency of such an application. Therefore, we need some policies to
guide and justify the process migration decision.

1. Criteria to Choose a Process (What)[6]. Studies in UNIX load patterns show that

“More than 78% of processes have lifetimes of less than 1 second”[14] and “97% of
processes have a lifetime of less than 8 seconds” [14] suggest that “costs involved with
migrating short-lived processes can outweigh the migration benefits”[1].

2. Time to Initiate a Migration (When)[6]. Two schemes are widely adopted: periodic or
event-based. In general, the lower the cost of migration, the more frequent the load
information is disseminated[1].

3. Criteria to Choose a Destination Node (Where)[6]. Several schemes are used
depending of the system goals – heuristic (or random) algorithm, periodic load
information dissemination, user-specified host and others.

4. Entity to Make the Decision (Who)[6]. Depending on the distributed scheduling
policies used, several schemes are possible. For systems like V, user can choose
any remote machine for execution of a program by specifying the machine name.
Other systems like Sprite, it has a central migration server that makes the decision
based on the load information reported by the load-average daemon executing in
every Sprite machine.

2.4 Characteristics
In designing a process migration facility, we need to consider numerous characteristics
of how such a design affect the system as a whole. These characteristics have important
impacts on the deployment of process migration.

The main ideas of the following descriptions are taken from D S Milojicic et al [1].

1. Implementation Complexity. Different levels of implementations yield different degree
of complexity in implementation. Process migration can be implemented at the user-
space, within the kernel, in a messaging-passing system, in an RPC-based or in a
UNIX-like environment. Generally, user-space implementation yields a simpler
design and implementation but leads to poorer performance. User-space
implementations often exist as a run-time library and require applications to re-
compile and re-link in order to take advantages of the features. However, user-space
level implementation is at a better position to make decisions on the migration

 6

policies than other implementations. Kernel-based implementations yield better
performance, but it is more complicated to implement (e.g. transparency) and
maintain.

2. Performance Overhead. Process migration involves performance overhead in the
process state transfer. The overhead can be classified as initial cost and run-time
cost. Some implementations that transfer the entire process state (e.g. LOCUS,
Charlotte) incur only initial cost. Another extreme is that some implementations
postpone state transfer until page faults occur (e.g. Accent). This type of
implementation incurs run-time penalty only. Other possibilities that go between the
two extremes (e.g. Sprite) incur both initial and run-time cost. Runtime cost can also
be appeared as a consequence of residual dependencies that some process states
are left on the source and/or intermediate nodes and require continual computation
or forwarding facilities from these nodes.

3. Naming/Location Transparency. Process migration requires the migrated process to
execute as on the source node. Otherwise, a migrated process may fail to execute
when there is a discrepancy in the mechanism it access resources as on the source
node. Different levels of transparency are implemented in different systems. For
example, Sprite associates a home directory to all processes that executes host-
specific code. Some location transparencies, however, are inevitably difficult to
maintain in cases like accessing a local device.

4. Fault Tolerance. Any exceptions occur in the process of migration, such as network
partition and node failure, may severely affect the reliability of the system. Design
issues such as reduction of residual dependency may improve the fault tolerance.

5. Scalability. Scalability takes 3 forms: Numeric, geographic and administrative, and it
is affected by the design choices chosen. For example, process states accumulate
as the number of migration increases in Mach[10] and hence adversely affect the
scalability. Other consideration issues include residual dependencies, granularity of
the transfer segment, virtual memory transfer techniques[6], etc..

2.4 Alternatives
As process migration incurs significant overhead and requires sophisticated system level
functionalities, several alternatives are more feasible in certain scenarios.

1. Remote Execution[6]. Remote execution is used to invoke some code on a remote

machine. The semantic is well understood, simple to implement and avoid most of
the overhead incurred in process migration. However, it doesn’t not provide any kind
of transparencies, provide no mechanisms to evict the remote process and decision
is made not based on usage.

2. Middleware[1,15]. Middleware such as CORBA provides an excellent abstraction of the

 7

underlying hardware/software architecture. Thus, making heterogeneous object
invocation much simpler to implement.

2.5 Categories of Process Migration
Process migration has can be implemented on different levels of a system (See
references). The level and system in which process migration is implemented greatly
affects the design choices: some designs are only feasible at a particular level in certain
system architectures. In this section, we divide the levels/systems into four categories
and examine the corresponding design choices.

1. UNIX-like Kernel[1]. As naming and location transparencies are not fully supported in

UNIX, transparent process migration requires significant modification to the
monolithic kernel. Examples are LOCUS and Sprite.

2. Message-Passing Kernel[1]. As messages can be easily redirected between the
sender and the receiver, it facilitates the change of communication endpoints in
process migration. For example, System V.

3. Microkernel[1]. Microkernel builds process migration facilities on top of the operating
system as a separate module. As transparencies are often available in these
systems and message passing communication mechanism is utilized, process
migration seems to be relatively easily to implement. Mach is a typical example.

4. User-Space Migration[1]. As user-space migration does not require a modification of
the kernel, it implies that the entire address space must be extracted and transferred
to rebuild it at the destination node. Moreover, processes that involve signal
processing, shared libraries or IPC are usually unable to be migrated.

3. Case Studies
In this section, we examine several typical process migration implementations in the
research area. Most of the implementations are used as a test bed for distributed
computing, and quite a few of them are commercialized.

The systems we discuss are MOSIX, Sprite, Condor and V. The design goals,
mechanisms and implications are discussed.

3.1 MOSIX
“MOSIX is a general-purpose Multicomputer Operating System which Integrates a
cluster of loosely connected, independent computers (nodes) into a single-machine
UNIX environment. The main properties of MOSIX are its high degree of integration and
the possibility of scaling the configuration to a large number of nodes”[5]

 8

The design goals of MOSIX are:
1. Single System Image[5]. It provides a single view of the file system and network

transparency is provided at the user level.
2. Autonomy[5]. Kernel is replicated in each processor and thus autonomic. It makes its

own control decision independent of other nodes.
3. Scalability[5]. Probabilistic algorithms are used to minimize system management and

network overhead.
4. Dynamic Configuration[5]. Node may join and leave a cluster at will without

significant adverse effect.

Figure 2. The MOSIX architecture

The following descriptions referenced and summarized from [1,5].

MOSIX organizes it kernel into three layers: the upper kernel, linker and lower kernel
(see figure 2). The lower-kernel is machine-dependent and operates independently to
provide normal services such as access to local disks devices, context-switching and
others. The machine-independent upper kernel provides standard UNIX system call
interface and has a complete knowledge about the location of all objects it handles. The
linker provides inter-node communication, data transfer, process migration and load
balancing algorithms. By this way, the upper kernel provides an abstraction of the
execution context with location transparency to the process running above it (see Design
Goals 1).

Process migration in MOSIX is cooperative in the sense that the source and destination
nodes cooperate to make a migration decision. During migration, only dirty pages and
user areas of the migrating process are transferred while clean pages are “paged-in”
whenever there is a page fault at the destination node. In other words, it keeps residual
dependencies. Moreover, a process in MOSIX is site-independent that each system call
gets routed to the appropriate node by the linker and lower kernel. Thus, process that
involves signal handling, memory-mapped files manipulation and other host-specific

 9

application can be easily migrated.

3.2 Sprite
Sprite is an operating system to provide a network of personal workstations act as a
time-sliced system. “Each host runs a copy of the Sprite kernel and work closely together
using a remote-procedure-call (RPC) mechanism”[6]. Processes in Sprite can access files
or devices on any host, and data can be cached across the network while consistency is
maintained with the one-copy semantic.

The design goals process migration in Sprite are:
1. Utilize Idle Hosts[6]. Idle hosts are plentiful even at the busiest time of the day.

Utilization of these otherwise wasted computing resources can give a boost in
performance to other loaded hosts.

2. Exclusive Use of Workstations by their owner[6]. Computer resources privilege is
given to the local user. Migrated processes are evicted back to their source nodes
whenever the workstation owner log into his/her machine.

3. Kernel RPC[6]. Sprite uses protected kernel RPC as a form of interprocess
communication. Redirection of communication channels is not as obvious as it is in
the message-passing kernel.

Sprite associates each process with its designated home machine, regardless of its
physical location. To provide a location transparency abstraction to the migration
process, host-specific system calls are forwarded to the shadow process on the host
machine via kernel-to-kernel RPCs. Other calls, such as memory allocation and the
distributed file system-related calls, are handled locally. The migrated process get
evicted once the owner returns back to the remote machine.

3.3 System V
System V is a distributed operating system that is run on a cluster of networked
workstations. Every host runs a small identical kernel plus some service modules and
run-time libraries[16]. The implementation scheme of V provides transparency, minimal
interfaces and residual dependencies on the source host[2].

The design goals V’s process migration are:
1. Network Transparency[9]. Network transparency is implemented with the use of V IPC

primitives and global naming to provide communication channels between a program
and the operating system.

2. Minimal Interference to the system[9]. Process migration is regarded as an atomic
transfer of process states between two hosts without interfering other parts of the

 10

system.
3. No Residual Dependencies[9]. Process states are not left over on the source node

once the process migration has been committed to “protect programs executing on
behalf of different (remote) users on the same workstation.” [9]

System V organizes process and its address space into logical hosts identified by a
structure (logical-host-id, local-index). Process migration is done by the migration of the
logical host in which the program is running on. V uses a special mechanism to transfer
the address space of the migrated process – precopy. It iteratively performs precopy until
the number of pages fall below a threshold during the actual migration. Precopy
effectively reduces the “freezing” time of a process in contrast to Charlotte or LOCUS.
The net effect is that it can improve the triggering time for critical operations, such as
timed system calls, which has a fixed timeout value. System V solves the residual
dependencies problem by requiring that the execution context of a program is either
resided in its address space or in a globally accessible server.

3.4 Condor
Condor is a software package that provides identification of idle machines in a network
and offloads processes to those machines.

The design goals of process migration in Condor are:
1. Maximize Computation Utilization. Idle workstations are potential destinations for

process migration because otherwise the computation cycles may be wasted.
2. No Modification to Kernel. UNIX systems are proprietary and access to the internals

of the system is not possible at the time Condor is proposed.

Condor is implemented as a software package for long-running, computation-intensive
jobs[11]. The way Condor extracts and imports process states is through the use of core-
dump facility (check pointing) provided by traditional UNIX system. However, it has some
inherent limitations such as the inability to restore process states like signals and timers,
lack of support of inter-process communication, inconsistency between different core
dump file formats and performance.

4. Comparison
This section compares the systems described in the previous section, i.e. MOSIX, Sprite,
Condor and V.

This table is summarized from D S Milojicic et al [1], A Barak et al [5], F Douglis et al [6,7], M M Theimer et al [9], D S and

M Litzkow et al [11,12]

 11

 MOSIX V Sprite Condor
Category UNIX-like Message-passing/Microkernel UNIX-like User-space

Goals • Dynamic

Process

Migration

• Single System

Image

• Autonomy

• Dynamic

Configuration

• Scalability

• Network Transparency

• Minimal Interference

• No Residual

Dependencies

• Autonomy

• Location

Transparency

• Using Idle

Cycle

• Simplicity

• Maximize

Utilization

• No Modification

to Kernel

Extensibility Fair Fair Fair Very Good

Transparency

1. (Open Files)

2. (Fork)

3. (Communication

Channel)

Full

(Yes)

(Yes)

(Yes)

Full

(Yes)

(Yes)

(Yes)

Full

(Yes)

(Yes)

(Yes)

Limited

No signals, timers,

memory-mapped

files and shared

libraries

Transfer Strategy Dirty Pages Precopy Flushing Entire Address

Space

Freeze Time Moderate Very Low Moderate High

Residual

Dependency

No No No No

Load information Distributed Unknown Centralized Combination of both

Performance Good Good Good Poor

Table 1. Comparison of process migration implementations

5. Future Researches & Summary
Although process migration offers some promising benefits, it is not widely deployed in
the academia and the industry because of a variety of reasons. These obstacles include:

1. Lack of Infrastructure[2]. An overwhelming success of process migration demands the

support of an infrastructure that allows different machine hardware/software
architectures to participate and also the mobility of these devices. However, although
some of the individual empowering technologies (like mobile IP, Java) are catching
on, a mature infrastructure does not readily exist.

2. Complexity. Process migration involves many different research areas in computer
science, a coherent solution that meets almost all the design goals among all areas
is difficult to attain without loss of generosity.

 12

With the successful deployment of the commercial Internet, more and more computing
resources are available and connected. One of the prominent trends in the research of
process mobility is the Mobile Agent. Mobile agent resembles process migration that
both allow a task (or a process abstraction) to be migrated and executed on a different
node. The major different is that process migration is often deployed on a cluster of
relatively tightly coupled machines where mobile agent is often deployed in the scale of
the Internet. The implication is that security and reliability are becoming a more dominant
issue in the design such a mobile agent system.

In this paper we have presented some background information of process migration,
such as motivations, mechanisms, policies, characteristics and others. Then we examine
and compare several existing implementations, namely MOSIX, Sprite, Condor and V
and how they address the design and implementation tradeoffs of process migration. At
last, we address why process migration does not get widely adapted and point out
direction for future researches.

References
1. Dejan S. Milojicic, Fred Douglis, Yves Paindaveine, Richard Wheeler, and Songnian

Zhou. Process Migration.
2. Dejan Milojicic, Frederick Douglis, and Richard Wheeler. Mobility, Processes,

Computers, and Agents.
3. John F. Shoch, and Jon A. Hupp. The “Worm” Programs – Early Experience with a

Distributed Computation.
4. Michael L. Powell, and Barton P. Miller. Process Migration in DEMOS/MP.
5. Amnon Barak and Richard Wheeler. MOSIX: An Integrated Multiprocessor UNIX.
6. Fred Douglis and John Ousterhout. Transparent Process Migration: Design

Alternatives and the Sprite Implementation.
7. Frederick Douglis. Sprite Process Migration: a Retrospective.
8. Yeshayahu Artsy and Raphael Finkel. Designing a process migration facility: the

Charlotte experience.
9. Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton. Preemptable Remote

Execution Facilities for the V-System.
10. Dejan S Milojicic, Wolfgang Zint, Andreas Dangel and Peter Giese. Task Migration on

the top of the Mach Microkernel.
11. Michael Litzkow, and Marvin Solomon. Supporting checkpointing and Process

Migration outside the UNIX Kernel.
12. Michael litzkow, and Marvin Solomon. The Evolution of condor checkpointing.
13. Peter Smith, and Norman C. Hutchinson. Heterogeneous Process Migration: The Tui

 13

System.
14. Luis-Felipe Cabrera. The Influence of workload on Load balancing Strategies.
15. Steve Vinoski. CORBA: Integrating Diverse Applications Within Distributed

Heterogeneous Environments.
16. David R Cheriton. The V Distributed System.

