
Implementation of Process Migration in Amoeba

Chris Steketee, Wei Ping Zhu, and Philip Moseley

School of Computer and Information Science, University of South Australia,�������������
	����������������������������	�� ��!
Chris.Steketee@Unisa.edu.au

Abstract
The design of a process migration mechanism for the

Amoeba distributed operating system is described. The
primary motivation for this implementation is to carry out
experimental and realistic studies of load balancing algo-
rithms for a distributed operating system. Our aim has
been the implementation of a mechanism which is
general, efficient and fully transparent, and which is
reliable in the presence of network and processor failures.

1 Introduction

Process migration is the movement of an executing
process from one host processor in a distributed comput-
ing system to another. This paper describes an implemen-
tation of process migration for the distributed operating
system Amoeba.

Our primary interest in process migration is to give us
a platform for carrying out experimental studies of load
balancing algorithms. A secondary interest is to investi-
gate its applicability to fault-tolerance, but this will not be
further expanded upon in this paper. Process migration as
a means of achieving load balancing has been the object
of a number of studies. The conclusions of these studies
have been equivocal [1-3], and there is scope for further
work to clarify its usefulness and applicability.

Recently, one of us carried out simulation studies of a
range of load-balancing algorithms with a view to com-
paring their relative performance [4]. The results show
that source-initiated algorithms for load balancing
outperform server-initiated algorithms in almost all cases.
This agrees with the findings of [5] but is contrary to the
conclusions of some researchers (for example [6]) that
server-initiated algorithms perform better than source-
initiated algorithms under many circumstances.

It is clear that there is potential for further study both
of the usefulness of process migration for load balancing,
and the relative merits of the various algorithms. In par-
ticular, experimental studies in this field are still

uncommon, and would form a valuable complement to the
various simulation results available. It is with this
motivation that we decided to implement a process
migration facility.

We chose to use the distributed operating system
Amoeba [7] as the platform for our work for two principal
reasons. Firstly, Amoeba appeared well-suited by virtue
of several properties, including location-independent
addressing and its micro-kernel design with an emphasis
on the provision of services by user-level processes.
Secondly, availability: Amoeba is well-documented in
the literature, the implementation, including source code,
is readily available to Universities, and useful work can be
done on a basic equipment configuration which does not
require major expenditure.

This paper reports on the design and implementation of
the process migration mechanism. The use of this mecha-
nism for experimental studies of load-balancing is the
subject of ongoing work, the results of which will be
reported separately.

The remainder of this paper is organised as follows. In
Section 2 we give a brief overview of process migration,
experiences, motivation, and implementation. Section 3
describes Amoeba, concentrating on those aspects most
relevant to our work. Section 4 is concerned with design
issues for process migration mechanisms and Section 5
gives details of our design. This is followed in Section 6
by a summary of the current status of our work, and dis-
cussion of possible areas for further work.

2 Overview of process migration

The term process migration means the movement of an
executing process from one host processor (the source) in
a distributed computing system to another host (the
destination), followed by its continued execution on the
destination. It is to be distinguished from process
placement, which is the selection of a host for a new
process and the creation of the process on that host. Both

facilities have been used for load balancing, but it is the
former which is the subject of this paper.

Process migration has been the subject of a consider-
able amount of research, and there have been a number of
experimental implementations reported in the literature
[8-14]. The potential benefits of process migration have
been classified [15, 16] as:

Load balancing - improved performance for a dis-
tributed computing system overall, or a distributed appli-
cation, by spreading the load more evenly over a set of
hosts;

Reduction in communication overhead - by locating on
one host a group of processes with intensive communica-
tion amongst them;

Resource access - not all resources are available across
the network: a process may need to migrate in order to
access a special device, or to satisfy a need for a large
amount of physical memory;

Fault-tolerance - allowing long running processes to
survive the planned shutdown or failure of a host.

Process migration is considerably more difficult to im-
plement than process placement, since it involves a pro-
cess in a state of execution. Migrating a process requires
suspending the process on the source host, extracting its
state, transmitting the state to the destination, reconstruct-
ing the state on the destination, deleting the process on the
source, and resuming the process’s execution on the des-
tination. This sequence of events should be controlled in
such a way that if it does not complete successfully, the
process can continue its execution safely on the source
machine. All this should be done while keeping the over-
head of process migration comparable with the overhead
of creating and starting a new process. Finally, there is
the need to route correctly messages sent to the process
during and after migration. These issues are taken up in
more detail in Sections 5 and 6.

A more detailed overview of process migration design
issues may be found in [16], and an annotated
bibliography in [17].

3 Overview of Amoeba

Amoeba is a distributed operating system which has
been under development at the Vrije Universiteit,
Amsterdam since 1981. The current version, Amoeba 5,
runs on Intel 80x86, Motorola 680x0, and SPARC plat-
forms. Although primarily intended for research pur-
poses, it is well-developed for use as a software develop-
ment platform. It has a Unix emulation facility, and in-
cludes support for TCP/IP, the X-window system, MMDF
mail, and Tex. In the design and development of Amoeba�����������
	����������	��������
���������
��	��������
���
������������	��
����	��
���
�

conceptual simplicity of design. In addition to research

into distributed operating systems, Amoeba has been used
for the implementation of parallel algorithms and as a
platform for a distributed programming language,� ����	 ��!#"
$%!#&
')(

An excellent exposition of Amoeba can be found�*�+�-,.'/(102�3�*�.�*�4���5�5�*�6���.$879�:��;.���<	��2�6���:�6���=�5���.�5�5���6���.�

Amoeba, concentrating on those aspects which are most
relevant to this paper, including developments since [7].

3.1 Amoeba concepts

Transparency: Amoeba is a distributed operating�/>?�/�@�A� 	B�C�D�A�E�@�?�B�F�@�G�*H?I?'5(0J�K�?�E�?L?�@�?�B�CM@�?�B	A�@�@�?�

transparency - neither end-users, nor application
programs, need to know the location of the objects
(including processes) being addressed.

Objects, servers and capabilities: Amoeba is an
object-based operating system. Objects are managed by
servers, one for each type of object. An object is identi-
fied by a capability, consisting of a port and a private
part. The port identifies the server managing this object
type; the private part is used by the server to identify and
protect the specific object. In order to perform an opera-
tion on an object, it is necessary to have a capability for
that object. Amoeba has a number of standard servers, in-
cluding the Bullet file server [21], the Soap directory
server [22], a process server and a time-of-day server.
Servers are also written by users when developing new
applications.

Remote procedure call: Amoeba’s mechanism for
inter-process communication is the Remote Procedure
Call or RPC

�6HDN?'5(OP�?���Q�@�Q�@���DM@�B���B�D�@�B�R;?�S�@�?�

synchronous message passing - the client process sends a
request message to the server, which carries out the re-
quest and responds with a reply message.

RPC uses three system calls. The client process uses
trans to send a request and wait for the reply. The server
uses getreq to indicate its readiness to receive a request on
a specific port, and putrep to send the reply message. All
three calls are blocking. The Amoeba kernel performs no
buffering of request or reply messages - this avoids mes-
sage copying and therefore speeds performance.

A request is addressed to a port, which is a location-
independent permanent identifier for a server, normally
embedded in the capability for the object being accessed.
The Amoeba kernel on the client host broadcasts a locate
message to find the server which has an outstanding
getreq for that port. As an important optimisation, client
kernels maintain a cache of server locations, thus elimi-
nating the need for most locate broadcasts.

Fast local internet protocol (FLIP): Starting with
Amoeba 5, the RPC mechanism is layered on top of a new�.�5�*79�.��� ���2�.�*�.�5�.M*$���� 0�� � H���'/(O �.�*� �.�2�

vides processes
with location-independent network addresses, which have
been designed with process migration in mind, since they
can migrate with processes. The RPC layer in Amoeba 5
maps ports to FLIP addresses rather than to hosts. The
port is a permanent address for a service, whereas the
FLIP address is associated with a particular incarnation of
a process. The FLIP layer uses a broadcast mechanism to
locate processes, and caches the resulting mapping.

FLIP also provides multicast primitives, which are
used in Amoeba 5 to implement an atomic group commu-
nication facility.

Processes and threads: The unit of execution is the
process. A process resides completely on one host pro-
cessor; several processes may co-exist on one host. A
process occupies one or more memory segments which
together constitute its address space. All segments for a
process reside in physical memory for the entire period of
time that the process exists - Amoeba does not use virtual
memory, to avoid its performance impact, and on the
principle that physical memory is relatively cheap.
Memory management hardware is however used for pro-
tection and relocation.

A process may have several threads of execution
within its address space. Synchronisation between threads
uses mutexes, with defined operations lock and unlock.
Multithreading is used to provide the parallelism that is
otherwise lost by virtue of the synchronous nature of the
RPC mechanism.

Micro-kernel design: The Amoeba kernel contains
only those functions which need to be there, with other
operating system functions carried out in server processes.
The kernel performs low-level memory management, pro-
cess scheduling, inter-process communication, and in-
put/output device handling. Other operating system func-
tions are carried out by servers.

Process server: The functions of process management
in Amoeba are performed by a process server which runs
in each host. The process server in turn makes use of
system calls to the kernel in order to carry out some of its
functions, such as memory allocation. This division of
labour ensures that the normal functions required by user
programs, such as process creation, can be invoked from a
client running on a remote host, by using RPC transac-
tions with the appropriate process server. The process
server runs in kernel mode because of its need to carry out
privileged functions.

Run server: Amoeba has the ability to perform static
load balancing by means of process placement, in which
the most lightly-loaded suitable host is selected when a
new process is to be created. This is based on processor
load statistics collected regularly from each host. The
collection of statistics, and selection of the host, are car-
ried out by the run server, which is described in [25].

3.2 Amoeba as a platform for process migration

Amoeba was not originally designed and implemented
with process migration in mind. We have therefore had to
retrofit process migration to an existing operating system.
While this has caused some difficulties, Amoeba has
nonetheless proved to be a suitable platform for imple-
menting process migration. The reasons for this are:
• Amoeba’s communication mechanisms, particularly
the FLIP layer in Amoeba 5, are location-transparent;
• The micro-kernel design means that the kernel keeps
relatively little process state; in particular, files and de-
vices are accessed by means of transactions to servers.

It should also be noted that the addition of process mi-
gration to Amoeba has been canvassed on at least two
previous occasions to our knowledge [26, 27]. While
these plans were not in fact carried through, they have
been valuable precursors. The former paper describes a
mechanism for process checkpoints, including the
suspension of process threads in a clean state (see 5.1
below), which was implemented and has provided some
of the infrastructure needed for process migration. The
latter paper includes a design for process migration which
gave us considerable insight, though our final design
differs substantially from that one. In particular, ideas
taken over from the latter paper include the generation of
a “migration pending” status response to communication
with a migrating process, and the use of the location-
independence of FLIP addresses (see 5.2). The most
significant differences between that design and ours are
the handling of communication issues at the FLIP level
thereby avoiding the asymmetry between client and server
inherent in RPC, and the avoidance of memory-memory
copying in transferring the memory state of a process (5.3
step 4). The emphasis on fail-safe migration (5.4) is also
new in our work.

4 Design issues for a process migration
mechanism

Our particular interest in process migration at this time
is its application to load balancing. In order to carry out
experimental studies of load balancing in a realistic envi-
ronment, we wish to place as few restrictions as possible

on our implementation. Ideally it should be possible to
migrate an arbitrarily-chosen process to an arbitrarily-
chosen host without the knowledge or involvement of
either the migrant process or those processes with which it
is communicating.

4.1 Homogeneous versus heterogeneous migra-
tion

Our only major restriction is to limit ourselves to
homogeneous migration, in which processes are migrated
between processors of the same architecture. While there
has been some work on heterogeneous migration, for ex-
ample [28], this has of necessity been restricted in scope,
since it is clearly difficult to translate the execution state
of an arbitrary process from one machine architecture to
another1.

4.2 Separation of policy from mechanism

Our implementation, like some others, takes care to
separate process migration policy from process migration
mechanism. The mechanism is concerned with how mi-
gration is carried out, and a substantial part is by necessity
implemented in kernel processes. Alterations to the
mechanism require recompilation of the kernel, and errors
are likely to result in failure of the host. By contrast, pro-
cess migration policy is concerned with when and where
to migrate which process.

In order to allow ready experimentation with process
migration policies, whether for load balancing or other
purposes, the policies are implemented in normal user-
level processes2. Policy changes do not require recompi-
lation of the kernel, and the effects of errors are less dras-
tic. Moreover, this approach allows a range of policies to
be studied, from completely centralised (one system-wide
process implementing migration policy) to completely
distributed (one policy process per host).

Our implementation effects this separation by means of
a process migration server process which initiates and co-
ordinates migration. A copy of this server runs on each
host, and the migration is carried out using transactions
with the process server on each host and also between the
process migration servers on the source and destination.
We chose this approach, rather than placing our imple-
mentation completely within the existing process server,
for reasons of modularity.

1 Note that, by contrast, heterogeneous process placement is quite
feasible and has been implemented, for example, in the Amoeba. run
server

2 At present, the “policy” processes are essentially trivial ones for
testing the mechanism - eg migrate a specific process to a specific host
as specified by user input.

4.3 Security

The fact that process migration is requested by user-
level processes means that it is potentially available to an
arbitrary user. In some cases this would be an undesirable
state of affairs as error or malice could lead to a grossly-
imbalanced system. We therefore allow a system admin-
istrator to restrict access to the process migration mecha-
nism or to leave it unrestricted. This is achieved by re-
quiring the requesting process to present a process migra-
tion capability to the process migration server - this capa-
bility is stored in the directory server, and the ability to
restrict access is available using the normal mechanisms
of that server.

4.4 Transparency

An important goal in process migration is trans-
parency. This means that neither the process being mi-
grated, nor user processes with which it is communicat-
ing, should be aware of the migration. Our design has
aimed for this degree of transparency in the implementa-
tion of Amoeba process migration, and has essentially
achieved it completely. The exceptions are a few low-
level system calls which are host-dependent, for example
one which returns the value of the hardware clock on the
local host3. The only other detectable effect of the migra-
tion of a process is timing, in particular the execution
hiatus when a process is migrated.

4.5 Residual dependencies

A particular problem in migrating a process is the
routing of messages addressed to the migrated process,
since the sender of the message need not know about the
migration. One way of handling this is for the source
machine to redirect messages to the destination machine.
This is an example of a residual dependency

(�0�� �
���
����	SM

residual dependencies are undesirable because of the
chain of dependencies when a process is migrated several
times and the continuing use of resources on the source
machine. This has detrimental effects on both perfor-
mance and reliability.

Our implementation makes no use of residual depen-
dencies. In particular, message routing is achieved using
the inherent location-independence of Amoeba communi-
cation protocols.

3 The normal way of accessing time is to use a system-wide Time-
of-Day server.

4.6 Memory transfer

Typically the greatest cost of migrating a process is the
time spent copying the memory image of the process from
source to destination machine, since this is limited by
communication speeds. Various approaches have been
adopted to this. In a straightforward implementation, the
process is first frozen on the source, then the complete
memory image is transferred to the destination, and
finally process execution is resumed on the destination.
This is the approach used by Charlotte [12] and LOCUS
[11]. V [13] uses pre-copying of memory pages in
parallel with continued execution of the process on the
source machine. While this in fact increases the total
amount of work, since pages modified during this period
have to be copied twice, it does greatly reduce the
migration latency, that is the time during which the
process is frozen.

Accent [14] by contrast uses lazy copying, in which
pages are moved to the destination from the source host
only when referenced. The advantage is that often a
substantial proportion of pages are not subsequently
referenced at all by the migrated process and so never
need to be moved to the destination. The main dis-
advantage is the overhead for the process after migration
to re-establish a working set on the destination host. In
addition, the continued storage of pages on the source host
is a form of residual dependency. Sprite [8] uses a
variation of this approach, with dirty pages on the source
being flushed to a file server, from which the destination
fetches data as page faults occur.

At this stage we have limited ourselves to a straight-
forward implementation of memory transfer. Since
Amoeba is not aimed at hard real-time applications, la-
tency is not an over-riding concern, especially not at the
cost of the increased total cost caused by pre-copying.
Implementation of lazy copying is not a sensible choice
either, since Amoeba does not support virtual memory
facilities, to avoid the performance penalty. Before decid-
ing whether to implement lazy copying in Amoeba it
would be necessary to look at the total system perfor-
mance effect of implementing both virtual memory and
lazy copying.

5 Design details of the Amoeba mechanism

5.1 State transfer

The complete state of a process in Amoeba includes in-
formation about that process held in the kernel, in addition
to the process’s user space. The latter simply consists of

the contents of the process’ memory segments. Kernel
information includes memory mapping for each segment,
machine registers for each thread, communication state
for each thread, and inter-thread synchronisation informa-
tion.

In general, each thread of a process may be executing
(or ready to execute) in user space, executing in the kernel
(as a result of a system call), or blocked. Copying the
state of a process with threads that are all either blocked
or executing/ready in user space is essentially straightfor-
ward. However, copying the state of a process with a
thread executing in kernel state is anything but straight-
forward. The reason is essentially that the kernel is not it-
self being migrated, and so to encode the state of kernel
execution in such a way that this state can be identically
reproduced in the kernel of the destination machine is a
difficult problem. Fortunately, it is also unnecessary.
Execution times in the Amoeba kernel are always short,
and terminate in either a return to user space, or in the
thread becoming blocked. It is satisfactory therefore,
when freezing a process for migration, to wait until it does
not have a thread executing in the kernel. In other words,
system calls are allowed to run to completion except when
they cause the thread to be blocked.

There is one additional constraint applied to the state of
a process before allowing it to be frozen. If a thread is
actively transferring data (sending or receiving a request
or reply message), then this is allowed to complete before
freezing the process, despite the fact that the thread may
be blocked for short periods of time during the transfer.
This avoids timeouts in the RPC protocol between com-
municating processes.

Capturing the state of a thread reduces now to two
cases - either the thread was executing in user space be-
fore the process was frozen, or it was blocked. In the
former case, the state consists of the relevant parts of the
process’s user memory (in particular the thread’s stack)
plus its kernel state. In the case that a thread is blocked,
then its kernel state in addition contains the reason it is
blocked. There are only two reasons that an Amoeba pro-
cess may be blocked - it is waiting to receive a message
(request or reply), or it is waiting for a mutex to be un-
locked. Each of these reasons is readily encoded, includ-
ing its parameters (eg address of mutex).

5.2 Communication with migrating process

In accordance with the objective of transparency,
neither a process being migrated, nor processes
communicating with it, should be aware of the migration
in order to continue to communicate successfully.
However it is acceptable for there to be a communication
delay caused by the migration - Amoeba is not a real-time

operating system, and process migration is one of a
number of causes which may result in a greater-than-
normal communication time. It should also be noted that
each thread of a process may be engaged in two
communication transactions at one time - this occurs
when the thread, in processing a received request, sends a
request to another process.

It is necessary to consider the communication conse-
quences of process migration both after migration of a
process has completed (successfully or otherwise), and
while a process is being migrated.

Communication with a process whose migration has
completed: As indicated, the objective is for the migrated
process to have no residual dependency on the processor
from which the process was migrated. This means that
communication with the process should occur after
migration in the same way as before, without the use of
the original processor to re-route messages. Essentially,
this is handled by the fact that FLIP network addresses are
location-independent. It is simply a matter of ensuring
that the addresses used by the process are migrated with
it.

Communication during migration: Process migra-
tion takes a finite amount of time to complete. During
this time, other processes may attempt to communicate
with it on the source host, by sending a request message
or returning a reply message. These messages can be
dealt with only after completion of the migration. There
are at least two ways of dealing with them:
• Queue them on the source and later transfer the queue
to the destination with the process, where the messages
will be delivered when the process is restarted;
• Reject them and depend on the sender of the message
to retransmit them.

The former method has the advantage of transparency,
but can lead to substantial memory and communications
overhead when there are large messages. It is also con-
siderably more difficult to implement, given that Amoeba
does not otherwise buffer messages.

For these reasons, the method chosen was the latter,
using a “migration pending” status response to indicate
that the process is temporarily unavailable to receive
messages. This is not regarded as an error condition, and
the sender is expected to handle this case by trying again
later. Because this retry cannot lead to multiple delivery,
it can safely be incorporated into the FLIP communication
layer and is therefore completely transparent to applica-
tion programs. This adds one message to the FLIP proto-
col of [24]. Note that this technique applies equally to
RPC request and reply messages.

Communication after failure of migration: Since
process migration may fail for a variety of reasons, it must
be possible for communication with the process to be re-
instated normally when it resumes execution on its source
machine. There is in fact no need to handle this case
specially - the mechanisms in the previous sections work
equally well when the process resumes execution without
having migrated. This is a consequence of the fact that
“locate” protocols are used to find the process after mi-
gration.

5.3 Control

It was decided to implement the control of the process
migration mechanism by providing a migration server in
each host processor. The decision to implement the
mechanism in a distinct server minimises the additional
logic required in the kernel and the process server. It was
also necessary to decide whether there would be a single
central migration server, or multiple servers. A single
server would have the advantage of using resources in
only one host processor, and of being a single point to
which all migration requests are directed. However, it
also has the disadvantage of being a potential bottleneck
when several migration requests are active simultane-
ously, and of incurring a higher communication overhead,
especially when the single migration server is not running
on either the source or destination processors. Therefore
the approach of a migration server in each host processor
was adopted.

The migration server in the source and destination
hosts cooperate to achieve the migration of a process.
Migration is initiated by sending a request to the migra-
tion server in the source host. This server contacts the
migration server in the destination host, which then carries
out the majority of the work.

The sequence of events for migration of a process is as
follows:
1. The migration server on the source host receives a
request to migrate a specified process to a destination
host.
2. The source migration server freezes the process by
sending a “suspend” request to the process server on the
source host. Any messages received for the process after
this point cause a “process is migrating” response, gener-
ated by the FLIP layer on the source host. These are
recognised by FLIP on the sending host, which will retry
after a suitable delay.
3. The source process server sends a “process descrip-
tor” for the source process to the migration server on the
destination. This contains the state of the process, includ-
ing all state information held by the kernel, and the size

and number of memory segments. The destination migra-
tion server uses this to set up a copy of the process on the
destination host, by making requests to the destination
process server to set up the kernel state and to allocate
memory for the process segments.
4. The destination migration server sends a series of
RPC requests to the source process server, copying the
segments from source to destination. The RPC replies
which carry the segment contents are transmitted directly
from source segment to destination segment without
memory-memory copying - this is important for perfor-
mance reasons.
5. The migration is completed by the passing of an
execution token for the process from the source to the
destination migration server in a message exchange
between the two. When the source migration server has
sent the token, it removes the process on the source host.
When the destination migration server receives the token,
it sends a “process restart” request to the destination
process server to indicate that the process is executable.
6. Any messages sent to the process on the source will
now receive a “not here” reply, causing the FLIP layer on
the requesting host to use its locate mechanism to find the
process on the destination host.

5.4 Errors During Migration

Various errors can occur to prevent successful comple-
tion of a migration. These include failure of the source or
destination host, an unrecoverable communication error,
and insufficient memory for the process’s segments on the
destination host. Under these circumstances it is desirable
that the process be removed from the destination and re-
sume normal execution on the source host. The design
presented here achieves this, except for the (inevitable)
loss of the process if the source host fails before migration
has completed.

The passing of the execution token eliminates the pos-
sibility that a migrated process can be executing on both
source and destination hosts simultaneously. Only the
holder of the token is free to resume its copy of the pro-
cess. An unrecovered communication error can cause loss
of the token and therefore of the process, but not duplica-
tion. The destination uses a timeout to ensure that it will
not retain a migrating process indefinitely waiting for the
execution token.

6 Current status and future work

The work described in this paper is partly implemented
- we have a prototype version of the migration server
which successfully migrates processes. The prototype
does not handle the transfer of communication state, nor

the generation and handling of “migration pending” status
responses, and so migration is not at this point completely
transparent. We are therefore not yet able to study its ef-
fectiveness as a general load-balancing tool, although the
prototype is being used for experimental studies applied to
test processes which do not require communication trans-
parency.

After complete implementation of the design as de-
scribed in this paper, possible future work includes:
• Extension of the mechanism to cater for the migration
of processes engaged in Amoeba group communication -
this has not been included at this stage because we have
not had the time to investigate it;
• The use or adaptation of process migration for fault
tolerance.

7 Acknowledgments

We are grateful for a research grant from the Institute
of Computer Systems Engineering and Assurance,
University of South Australia, which made this work pos-
sible, and for a University of South Australia internal re-
search grant which contributed to the purchase of equip-
ment.

Undertaking redevelopment work on an operating sys-
tem, when the original development team is located
halfway across the world, is arguably a foolhardy exer-
cise. It has been made possible only by the help received
from Andrew Tanenbaum and the Amoeba project, first in
acquiring Amoeba and then in providing support and in-
formation. Frans Kaashoek kindly provided the unpub-
lished [27] which provided some of the ideas for our
work. Greg Sharp and Kees Verstoep deserve special
thanks for their patient assistance and unfailingly prompt
responses to our questions.

Thanks are due also to the referees, whose feedback
has helped to improve the quality of the paper signifi-
cantly.

Earlier work by Michael Carrucan and Aart van
Halteren in the context of student projects provided a very
useful starting point for this project.

8 References

[1] D.L. Eager, E.D. Lazowska and J. Zahorjan, “The
Limited Performance Benefits of Migrating Active Processes for
Load Sharing”, in Proc. ACM SIGMETRICS 1988. pp. 63-72,
1988.
[2] W.E. Leland and T.J. Ott, “Load-balancing Heuristics and
Process Behavior”, in Proc. PERFORMANCE'86 and ACM
SIGMETRICS 1986. 1986.
[3] P. Krueger and M. Livny, “A Comparison of Preemptive
and Non-Preemptive Load Distributing”, in Proc. 8th
International Conference on Distributed Computer Systems.
1988.

[4] W. Zhu, “The Development of an Environment to Study
Load Balancing Algorithms, Process Migration and Load Data
Collection”. PhD thesis, University of New South Wales, 1992.
[5] S. Zhou, “A Trace-Driven Simulation Study of Dynamic
Load Balancing”. IEEE Trans. on Software Eng. vol. 14, no. 9,
1988.
[6] Y.-T. Wang and R.J.T. Morris, “Load Sharing in
Distributed Systems”. IEEE Transactions on Computers. vol.
C-34, no. 3, pp. 204-217, 1985.
[7] A.S. Tanenbaum, et al., “Experiences with the Amoeba
Distributed Operating System”. Communications of the ACM.
vol. 33, no. 12, 1990.
[8] F. Douglis and J. Ousterhout, “Transparent Process
Migration: Design Alternatives and the Sprite Implementation”.
Software - Practice and Experience. vol. 21, no. 8, pp. 757-785,
1991.
[9] A. Barak and A. Shiloh, “A Distributed Load-balancing
Policy for a Multicomputer”. Software - Practice and
Experience. vol. 15, no. 9, pp. 901-913, 1985.
[10] M.L. Powell and B.P. Miller, “Process Migration in
DEMOS/MP”, in Proc. 9th Symposium on Operating System
Principles. pp. 110-119, 1983.
[11] G.J. Popek and B.J. Walker (eds.), The LOCUS
Distributed System Architecture, Computer Systems Series,
Cambridge, Mass.: MIT Press, 1985.
[12] Y. Artsy and R. Finkel, “Designing a Process Migration
Facility: the Charlotte Experience”. Computer. vol. 22, no. 9,
pp. 47-56, 1989.
[13] M.M. Theimer, K.A. Lantz and D.R. Cheriton,
“Preemptable Remote Execution Facilities for the V-System”, in
Proc. 10th Symposium on Operating System Principles. pp. 2-
12, 1985.
[14] E. Zayas, “Attacking the Process Migration Bottleneck”,
in Proc. 11th ACM Symposium on Operating Systems Principles.
Austin, TX, ACM, pp. 13-22, 1987.
[15] J.M. Smith, “A Survey of Process Migration
Mechanisms”. ACM Operating System Review. vol. 22, no. 3,
pp. 28-40, 1988.
[16] M.R. Eskicioglu, “Process Migration in Distributed
Systems: A Comparative Survey”. Technical Report TR 90-3,
University of Alberta, 1990.
[17] M.R. Eskicioglu and L.-F. Cabrera, “Process Migration:
An Annotated Bibliography”. IEEE Computer Society
Technical Committee on Operating Systems Newsletter. vol. 4,
no. 4, 1990.
[18] H.E. Bal, A.S. Tanenbaum and M.F. Kaashoek, “Orca: A
Language for Distributed Programming”. SIGPLAN Notices.
vol. 25, no. 5, pp. 17-24, 1990.
[19] H.E. Bal, A.S. Tanenbaum and M.F. Kaashoek,
“Experiences with Distributed Programming in Orca”, in Proc.
IEEE CS International Conference on Computer Languages.
New Orleans, Louisiana, 1990.
[20] A.S. Tanenbaum and R. van Renesse, “Distributed
Operating Systems”. Computing Surveys. vol. 17, no. 4, pp.
419-470, 1985.
[21] R. van Renesse, A.S. Tanenbaum and A. Wilschut, “The
Design of a High-Performance File Server”, in Proc. 9th
International Conference on Distributed Computer Systems.
IEEE, pp. 22-27, 1989.
[22] R. van Renesse, “The Functional Processing Model”. PhD
thesis, Vrije Universiteit, Amsterdam, 1989.
[23] A.D. Birrell and B.J. Nelson, “Implementing Remote
Procedure Calls”. ACM Transactions on Computer Systems.
vol. 2, no. 1, pp. 39-59, 1984.

[24] M.F. Kaashoek, R. van Renesse, H. van Staveren and
A.S. Tanenbaum, “FLIP: An Internetwork Protocol for
Supporting Distributed Systems”. ACM Transactions on
Computer Systems. vol. 11, no. 1, pp. 73-106, 1993.
[25] “Amoeba Reference Manual”. Vrije Universiteit and
Stichting Mathematisch Centrum, 1992.
[26] S.J. Mullender, “Process Management in a Distributed
Operating System”. Technical Report CS-R8700, Centre for
Mathematics and Computer Science, Amsterdam, 1987.
[27] F. Douglis, M.F. Kaashoek and G.J. Sharp, “Amoeba 6.0
Kernel Interface Specification”. Unpublished draft Vrije
Universiteit, 1992.
[28] Y. Hollander and G.M. Silberman, “A Mechanism for the
Migration of Tasks in Heterogeneous Distributed Processing
Systems”, in Parallel Processing and Applications, Chiricozzi,
E. and d’Amico, A., (eds.), North-Holland, 1988.

