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ABSTRACT
Process migration and atomic transactions are essential
tools for constructing fault-tolerant distributed systems.
Process migration provides location transparency, the abil-
ity to perform load-balancing and process checkpointing,
and allows processes to be reconstructed after machine fail-
ures. Transactions provide fault-isolation by limiting the
scope of errors, and permit speculative execution by allow-
ing rollback of overly optimistic computations. We present
a compiler that uses a typed intermediate language and a
runtime implementation designed to support these services.
Our intermediate language is type-safe and general enough
to support front-ends for both type-safe and unsafe lan-
guages. In addition, our compiler is able to generate code
for both ML and ANSI C programs. We include bench-
marks that show that our compiler produces programs with
competitive performance.

1. INTRODUCTION
The design of software for distributed applications is a

challenging task. In addition to the difficulties posed by
processor and network failures, distributed applications are
often composed of several parts written in different lan-
guages. In this paper, we approach these problems by using
a typed, semi-functional intermediate language that sup-
ports two key features for distributed computing: whole-
process migration, and undoable transactions. To address
the multi-language issue, the intermediate language is de-
signed to support both type-safe source languages like ML,
and unsafe languages like C.

We have implemented our approach in the Mojave sys-
tem, which currently provides a multi-language compiler for
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programs written in C, Naml (a language based on Caml-
light), and Pascal. Programs in these languages are com-
piled to a typed “Functional Intermediate Representation”
(FIR). Types are maintained throughout the compilation
process, which ensures that component interactions respect
type and memory safety. The core FIR language is a vari-
ant of System F [10] in continuation-passing style (CPS) [1].
In many respects, the FIR language is similar to the typed
intermediate language used in the TILT compiler [24, 20].
However, the FIR is much more limited syntactically.

The FIR language has been quite robust as new source
languages have been added to the Mojave compiler, but
there are tradeoffs, most evident when compiling C. First,
the FIR requires that program execution be safe, despite the
fact that it is not always possible to maintain exact type in-
formation for C. This limitation is resolved using runtime
safety checks. Pointers in the runtime are represented with
base/offset pairs, requiring more storage and extra computa-
tion. Second, the decision to use continuation-passing style
means that there is no runtime stack, and C functions allo-
cate storage on the heap, which can be expensive in some
cases. However, there are also many advantages. The FIR
has made it easy to augment ANSI C with polymorphism
and type inference, exceptions, pattern matching, higher-
order functions, and safe return of pointers to “automatic”
variables.

The paper is organized as follows. In Section 1.1, we dis-
cuss related work. The FIR language is the formal foun-
dation we use to specify process migration and transac-
tions. Sections 2 and 3 describe the syntax, type system,
and judgments for this language. In Section 4 we describe
the four primitives for migration and transactions, and we
define their operational semantics. In Section 5 we cover
the implementation of these primitives, and in Section 6 we
present preliminary benchmarks and performance.

1.1 Related work
The desire for common intermediate languages dates back

to the 1950’s, significantly with the UNCOL project [18].
More modern versions that support at least part of the goals
of multi-language platforms are the Java Virtual Machine [7]
and Microsoft’s Common Language Runtime [19, 11]. The
JVM has many desirable features: it is portable, it is safe,
and compiler technology can produce very efficient executa-
bles. However, as Meijer points out [19], while the JVM was
designed to be generic, it works most effectively for Java.
There is little support for (at one extreme) unsafe languages
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like C, and (at another extreme) functional languages like
ML.

The Microsoft CLR addresses many of these problems,
and supports a wide range of languages including parts of
C++, OCaml, and Standard ML. However, the CLR does
not ensure safety, although Gordon and Syme have been
able to demonstrate safety for a substantial fragment [11].
The CLR is a fairly large language. In contrast, the FIR is
quite small—and consequently more effort is required from
a language front-end to compile to FIR.

Another related area is portable code generators, of which
there are several, including MLRISC [9], C-- [17, 16], and
gcc [23]. As Peyton-Jones suggests, C itself should be con-
sidered as a commonly-used assembly language. In each of
these cases, the code generator is attacking the problem of
portability and machine-code generation, but not the prob-
lem of safety.

In the area of C program safety, the Necula et.al. CCured
compiler [21] and the Morrisett et.al. Cyclone Safe-C [15]
compiler both extend the C language to include extra in-
formation needed to infer safety. The systems distinguish
between “safe” and “unsafe” pointers, where a safe pointer
is always used in ways that can be shown to be safe, and
unsafe pointers include all the rest. In both systems, unsafe
pointers are represented at runtime by a “fat” pointer that
includes safety information, requiring twice the storage of a
safe pointer.

CCured extends the type system and uses type inference
to determine safety. Cyclone requires explicit annotation by
the user: safe and unsafe pointers have different types, and
different dereference operators. Compilation is limited to
the subset of C that can be proven safe.

In contrast with this work, the Mojave compiler accepts
all source files that conform to the ANSI standard, but all
pointers are represented as fat pointers. We use dead-code
elimination coupled with alias analysis to delete provably
unnecessary safety information for variables, but this still
requires more space than the other two systems. There is
no way in Mojave to represent an array of safe pointers; all
pointers are 8 bytes on all platforms.

Process migration has been widely studied [25, 6]. No-
tably, the JoCaml system [5] provides process mobility for
OCaml programs based on the join calculus [8]. Our ap-
proach to process migration has been heavily influenced by
Cardelli’s work on the Ambient Calculus [4, 3]; however,
our work with whole-process migration is only the first step
toward fine-grained mobility.

Transactions are a fundamental concept in the database
community, but again, implementations for general-purpose
languages are limited. As part of the Venari project, Haines
et.al. [13] implement a transaction mechanism as part of
Standard ML. Undoability is implemented by extending the
mutation log produced by the generational garbage collec-
tor. Our approach (described in Section 5.3.2) also uses a
mutation log. However, we combine a generational mark-
sweep collector with a copy-on-write mechanism to reduce
the cost of rollback and commit operations.

2. THE FIR SYNTAX
In the syntax descriptions below, we use the following

conventions. In general, we use the meta-variables i and j
to refer to arbitrary integers, and the meta-variables m and
n to refer to arbitrary nonnegative integers. In most cases,

Entity Description
v1, v2, . . . Variable names
tv1, tv2, . . .
α, β, . . . Type variables

i ::= . . . | −1 | 0 | 1 | . . . Integer constants
s ::= [i11, i

1
2], . . . , [i

n
1 , in2 ] Integer interval set

Figure 1: FIR base terms

we use the meta-variable m to enumerate type parameters
α1, . . . , αm, and the meta-variable n to enumerate actual
parameters v1, . . . , vn.

The meta-variable v refers to program variables. The
meta-variables t and u refer to program types, while the
Greek letters α, β, γ and the meta-variable tv refer to type
variables.

The FIR base terms are shown in Figure 1. MCC sup-
ports several forms of numbers, including integers of various
signedness and precision, and floating-point values of various
precisions. For simplicity, we consider only boxed (tagged)
signed integers and unboxed integers.

Sets of integers are used in integer pattern matching ex-
pressions. The sets are represented by lists of closed intervals
[i1, i2].

2.1 FIR type system
The FIR has two classes of types, the basic types, shown in

Figure 2, and the type definitions, which are parameterized
types of the form Λα1, . . . , αm.t.

The type Zbox refers to tagged, signed integers. Native in-
tegers are represented using Zraw , and must be boxed when
stored into memory. Floating-point values and other numer-
ical precisions are supported by the implementation, but we
do not describe them here.

The tuple type 〈t1, . . . , tn〉 represents a tuple 〈v1, . . . , vn〉,
where each value vi has type ti. MCC supports other types
of safe data blocks, including arrays and unions, but they
are omitted here for simplicity.

The unsafe type data represents arbitrary data. Values of
type data are normally used to represent data aggregates
for imperative programming languages, like C, that allow
the assignment of values to the data area without regard
for the data type. Data areas with the data type have no
explicit substructure.

The function type (t1, . . . , tn) → t includes the functions
that return a value of type t, given arguments of types
t1, . . . , tn.

The type tv [t1, . . . , tm] applies arguments to a type
definition. If the definition is a parameterized type
Λα1, . . . , αm.t, the type tv [t1, . . . , tm] is defined as the type
t[t1/α1, . . . , tm/αm]. For example, in a context containing
the definition γ = Λα, β.〈α, β〉, the type γ[Zbox, Zraw →
Zbox] is the same as the type 〈Zbox, Zraw → Zbox〉.

The universal type ∀α1, . . . , αm.t defines a polymorphic
type, where t must be a function type. The existential type
∃α1, . . . , αm.t defines a type abstraction. The values in an
existential type have the form pack(v, t1, . . . , tm), where v
has type t[t1/α1, . . . , tm/αm]. The type projection v.i is
used for values having existential type ∃α1, . . . , αm.t. If a
value v = pack(v′, t1, . . . , tm) has type ∃α1, . . . , αm.t, then
v.i is equivalent to ti.
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Type Description
t ::= Zbox Boxed integers
| Zraw Native integers
| void Void type

| 〈t1, . . . , tm〉 Tuple type
| data Unsafe data
| (t1, . . . , tm)→ t Function type

| α, β, . . . Polymorphic type vars
| tv [t1, . . . , tm] Type application
| ∀α1, . . . , αm.t Universal types
| ∃α1, . . . , αm.t Existential types
| v.i Abstract type

tydef ::= Λα1, . . . , αm.t Parameterized types

Figure 2: The FIR type system

2.2 FIR expressions
Expressions in the FIR are divided into two classes: the

atoms a and general expressions e shown in Figure 3.

2.2.1 Atoms
The atoms a represent values, including numbers, vari-

ables, and basic arithmetic. Atoms are functional: apart
from arithmetic exceptions1, the order of atom evaluation
does not matter. The atoms include the following.

The boxed integers int(i) have type Zbox. The raw inte-
gers rawint(i) are native, unboxed integer constants with
type Zraw . There are two forms for arithmetic: unary op-
erations unop a, and binary operations a1 binop a2. The
operators, shown in Figure 4, include the normal operations
for arithmetic.

The variables v represent values defined in the program
environment, described in Section 3. Variables are im-
mutable: the FIR does not include a variable assignment
operation.

There are three kinds of polymorphic operations. The
apply(v, t1, . . . , tm) atom is a type application of a poly-
morphic value v to type arguments t1, . . . , tm. For
the application to be well-formed, the variable v must
have universal type ∀α1, . . . , αm.u; the atom has type
u[t1/α1, . . . , tm/αm]. The pack(v, t1, . . . , tm) atom per-
forms type abstraction. It has type t = ∃α1, . . . , αm.u
when v has type u[t1/α1, . . . , tm/αm]. The unpack(v)
atom is the elimination form for type abstraction. If
v has existential type ∃α1, . . . , αm.u, the atom has type
u[v.1/α1, . . . , v.m/αm]. The types v.i represent the type
parameter ti in the original pack operation.

2.2.2 Expressions
The let v : t = a in e expression forms a new scope, where

the variable v is bound to the value of the atom expression
a in the expression e. For the expression to be well-formed,
the atom must have type t, and the expression e must be
well-formed for an arbitrary value v of type t.

The tail-call a(a1, . . . , an) represents a function call to
the function a,2 with arguments a1, . . . , an. For the tail-

1A notable arithmetic exception is division by zero.
2There is no expression for defining functions. Functions are

Definition Description
a ::= int(i) Boxed integers

| rawint(i) Raw integers
| v Variables
| apply(a, t1, . . . , tm) Type application
| pack(v, t1, . . . , tm) Existential pack
| unpack(v) Existential unpack
| unop a Unary operation
| a1 binop a2 Binary operation

e ::= let v : t = a in e Basic operations
| a(a1, . . . , an) Tail-call
| special spec Special tail-call

| match a with si 7→ e
i∈{1..n}
i Case analysis

| let v = alloc in e Allocation
| let v : t = a1[a2] in e Load from heap
| a1[a2] : t← a3; e Store into heap

Figure 3: FIR atoms and expressions

call to be well-formed, the function a must have some type
(u1, . . . , un)→ void, and each argument ai must have type
ui. The return type of the function is the empty type void.
There is no syntactic mechanism for using the return value
of a function, and functions never return.

The special-call special spec represents a call for process
migration, or one of the atomic transaction operations. The
spec operations are shown in Figure 4.

The operator migrate [i, ap, ao] af (a1, . . . , an) defines a
process migration. The operator atomic af (ac, a1, . . . , an)
specifies entry into an atomic transaction. The operator
rollback [al, ac] is used to abort a transaction. The op-
erator commit [al] af (a1, . . . , an) commits the transaction
identified by al.

The match statement match a with si 7→ e
i∈{1..n}
i is

a pattern match of an integer against multiple sets. Each
match case si 7→ ei specifies an integer (or raw integer) set
si and an expression ei to be evaluated if a ∈ si. Evaluation
is ordered and total. Evaluation chooses the first match
that succeeds, and the match statement is well-formed only
if there is a match case for any possible value of a.

The aggregate data areas include tuples, arrays, elements
in a union type, and raw data. The let v = alloc in e
expression allocates a data aggregate, using one of the alloc
forms shown in Figure 4.

Values are projected from an aggregate data area using
the let v : t = a1[a2] in e expression. For the expression to
be well-formed, a1 must be an aggregate, and a2 must be a
valid index into the aggregate. All fields in aggregates are
mutable. The a1[a2] : t ← a3; e expression assigns value a3

to field a2 in aggregate a1.

3. JUDGMENTS
All judgments, including type and well-formedness judg-

ments, are defined with respect to an environment Γ, which
we also call a context. The environment contains both vari-
able declarations of the form v : t, and variable definitions

statically defined as part of the program context, discussed
in Section 3.1, and function definitions may not be nested.
The function a in a tail-call is always a variable v or a type-
application v[t1, . . . , tm] where v is defined in the context.
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Definition Desc
unop ::= − | ! | · · · Arith
binop ::= + | − | ∗ | / | · · · Arith

alloc ::= 〈a1, . . . , an〉 : t Tuple
| malloc(a) : t Rawdata

spec ::= migrate [i, ap, ao] af (a1, . . . , an) Migrate
| atomic af (ac, a1, . . . , an) Entry
| rollback [al, ac] Rollback
| commit [al] af (a1, . . . , an) Commit

Figure 4: FIR operators

Definition Description
h ::= int(i) Boxed integers

| rawint(i) Raw integers
| v Variables

b ::= h Heap values
| Λα1, . . . , αm.λv1, . . . , vn.e Functions
| pack(v, t1, . . . , tm) Type packing
| 〈h1, . . . , hn〉 Tuples
| 〈c〉 Raw data

Figure 5: Heap and store values

of the form v : t = b. The declaration v : t specifies that a
variable v has an unspecified value of type t. The definition
v : t = b specifies that variable v has the value b, and b has
type t.

3.1 Heap and store values
The definitions in the context use values of two sorts:

heap values h, and store values b, shown in Figure 5. The
heap values represent atoms that have been fully evaluated.
The store values are the values in a program store. These
include heap values, functions, “packed” values with exis-
tential type, and data in each of the aggregate data types:
tuples, arrays, elements of a union type, and rawdata.

Functions are universally quantified, with type parameters
α1, . . . , αm,3 and actual parameters v1, . . . , vn. Elements
of type data are represented abstractly using the form 〈c〉;
the elements in the data area are not explicitly described.

3.2 Kinds
The program types are also defined/declared as part of

the context Γ. For presentation purposes, we classify the
program types with kinds, which have the following form.

ks ::= ω | Ω
k ::= ωm → ks

The kind ks classifies the type definitions tydef as “small”
types ω and “large” untagged types Ω, primarily to support
efficient garbage collection. The general kind k = ωm →
ks represents a parameterized type definition tydef . The
number of parameters m may be any nonnegative integer.
If m = 0, we often omit the type parameters.

3We allow m = 0 here; that is, a function may or may not
have any type parameters.

Definition Description
def ::= v : t Variable declaration

| v : t = b Variable definition
| tv : k Type declaration
| tv : k = tydef Type definition

Γ ::= ε Empty environment
| Γ, def Adding a definition

Γ ` � Context Γ is well-formed
Γ ` tydef 1 = tydef 2 : k tydef 1 and tydef 2 are equal
Γ ` a : t Atom a has type t
Γ ` b : t Store value b has type t
Γ ` e : t Program e has type t

Figure 6: Program contexts and judgments

3.3 Contexts and judgments
A program context Γ is defined as a set of mutually-

recursive declarations and definitions, as shown in Figure 6.
There are two forms of definitions. The type definition
tv : k = tydef defines a type named tv , having kind k, and
value tydef . The variable definition v : t = b defines a vari-
able named v, with type t and store value b. For each defi-
nition form there is a corresponding declaration form.

We assume that each variable and type variable in a con-
text is defined/declared at most once, and we use alpha-
renaming throughout this paper to rename variables as ap-
propriate.

The judgment Γ ` � specifies that the context Γ is well-
formed. A context is well-formed if all of its declarations
and definitions are well-formed. For each declaration v : t
and definition v : t = b, the term t must be a well-formed
type, and the value b must have type t. Similarly, all type
definitions in Γ must be well-formed.

The type system includes an equational theory of types.
The judgment Γ ` tydef 1 = tydef 2 : k is a type definition
equality judgment. When the judgment is true, tydef 1 and
tydef 2 have the specified kind, and they are equal. There is
no separate membership judgment Γ ` tydef : k.

The judgments Γ ` a : t, Γ ` b : t, Γ ` e : t express typing
relations for labels, atoms, store values, and expressions,
respectively.

4. OPERATIONAL SEMANTICS
Evaluation is defined on programs, which include three

parts: the current environment Γ, a checkpoint environment
C, which is an ordered list of checkpoints, and an expression
e to be evaluated. A checkpoint 〈Γ, f(�, a1, . . . , an)〉 con-
tains a context Γ, and a function f(�, a1, . . . , an), where �
is a special transaction parameter. The function is called if
evaluation is resumed from the checkpoint.

C ::= 〈Γ, f(�, a1, . . . , an)〉 Single checkpoint
C ::= Cm; . . . ; C1 Checkpoint environment

Definition 4.1. Fully-defined contexts
A context Γ is said to be fully-defined if every variable v

in the context is defined with the form v : t = b and every
type variable tv is defined with the form tv : k = tydef .
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Definition 4.2. Programs
A program is either the special term error, or it is a triple

(Γ | C | e) that satisfies the following conditions.

• Γ is fully-defined and Γ ` e : void,

• For each 〈Γ′, f(�, a1, . . . , an)〉 ∈ C, the context Γ′

is fully-defined, and the judgment Γ′, vc : Zraw `
f(vc, a1, . . . , an) : void holds.

Intuitively, the error term specifies a runtime error during
program evaluation (such as an out-of-bounds array access,
or a runtime type error during a subscripting operation).

Evaluation is a relation on programs. The relation

(Γ | C | e)→
(
Γ′ | C′ | e′

)
specifies that the program (Γ | C | e) evaluates in one step
to the program (Γ′ | C′ | e′). The relation

(Γ | C | e)→ error

specifies that evaluation of the program (Γ | C | e) results in
a runtime error in one step.

4.1 Special-calls
The operational semantics for special-calls are shown in

Figure 7. For this paper, we describe only the rules for
special-calls. The complete type system and its operational
semantics are described in the technical report [14].

When a process migrates, the entire process (including
Γ, C, and the continuation function) migrates to a new lo-
cation, which is just another runtime environment. The
operational definition of migration is transparent by design.
The program context must not change during process migra-
tion. This decouples the process execution from the process
location, allowing transparent fault recovery in distributed
systems.

In the migrate [j, aptr , aoff ] afun(a1, . . . , an) special-call
expression, the atoms aptr and aoff specify a string (as a raw-
data block and offset) that describes the migration protocol
and target (for example, a machine name). The number j is
a unique identifier used by the runtime. Operationally, eval-
uation of the expression leads to process migration followed
by the evaluation of the tail-call afun(a1, . . . , an).

Atomic transactions are entered with the special-call
atomic afun(aconst , a1, . . . , an). The runtime adds a process
checkpoint to the checkpoint environment C. This check-
point can be restored later if the transaction is aborted.
Evaluation proceeds with a tail-call afun(aconst , a1, . . . , an),
and the atomic call is treated identically to this tailcall for
typing purposes. For technical reasons, aconst must have
type Zraw .

The rollback [alevel , aconst ] special-call aborts a transac-
tion. It is possible to enter several transactions simulta-
neously (in the source program, transactions are typically
nested). The atom alevel is an integer that identifies the
atomic level, and aconst is a transaction parameter.

When a transaction checkpoint 〈Γ, afun(�, a1, . . . , an)〉 is
rolled back with the rollback [i, j] special-call to level i
with transaction parameter j, evaluation proceeds as a tail-
call afun(j, a1, . . . , an) using the original process context Γ
and the truncated checkpoint environment Ci; . . . ; C1. All
checkpoints with level higher than i are discarded4.
4The level that was rolled back is re-entered by this primi-
tive; in effect, the state that is restored is the state captured
immediately after the level was entered.

Transactions are committed with the special-call
commit [i] afun(a1, . . . , an). Operationally, the checkpoint
is deleted from the checkpoint context and evaluation
continues with a tail-call to the function afun(a1, . . . , an).

The FIR does not syntactically require entry and commit
operations to be balanced. Instead, programs that attempt
to rollback to or commit a checkpoint that does not exist
evaluate to the error term.

4.2 Type safety
The typing rules for the FIR are straightforward exten-

sions of the rules for System F. The following two theorems
summarize the relation between the operational semantics
and program typing.

Theorem 4.1. Preservation If (Γr | Cr | er) is a valid
program and (Γr | Cr | er)→ (Γc | Cc | ec), then (Γc | Cc | ec)
is a program.

Theorem 4.2. Progress If (Γr | Cr | er) is a program,
and er is not a value h, then there is a program (Γc | Cc | ec)
such that (Γr | Cr | er) → (Γc | Cc | ec), or (Γr | Cr | er) →
error.

The proof of preservation is a case analysis on the reduc-
tion operator, and the progress proof is by induction on the
length of the proof of Γ ` er : t. The complete proofs can
be found in the technical report [14].

5. RUNTIME IMPLEMENTATION
The FIR is machine-independent, and the Mojave com-

piler architecture is designed to support multiple back-ends,
including both native-code and interpreted runtimes. Ob-
ject code generation is performed in two stages: the FIR
is first translated to a “Machine Intermediate Representa-
tion” (MIR), which introduces runtime safety checks in a
machine-independent form, and then the final object code is
generated for the target architecture from the MIR program.
We do not discuss the MIR language in detail here; the lan-
guage itself is similar to the FIR with a simpler type system,
and the process of generating MIR code is a straightforward
elaboration of the FIR code.

The runtime implementation manages several tasks, in-
cluding execution of runtime type-checks for subscript op-
erations, garbage collection, process migration, and atomic
transactions. To complicate matters, a faithful C pointer
semantics rules out direct use of data relocation (which oc-
curs when a process migrates, or during heap compaction).
To address these matters we introduce several auxiliary data
structures and invariants.

5.1 Runtime data structures and invariants
The runtime consists of the following parts and invariants.

• A heap, containing the data for tuples, arrays, unions,
and rawdata. A data value in the heap is called a
block, and the heap contains multiple (possibly non-
contiguous) blocks.

• A text area, containing the program code. The text
area is immutable at all times except during process
migration.

• A set of registers. Each variable in the program is
assigned to a register. At any time during program
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(Γ | C | specialmigrate [j, hptr , hoff ] f(h1, . . . , hn))→ (Γ | C | f(h1, . . . , hn)) Red-SysMigrate

(Γ | C | special atomic f(hc, h1, . . . , hn))→
(Γ | 〈Γ, f(�, h1, . . . , hn)〉 ; C | f(hc, h1, . . . , hn))

Red-Atomic

(Γ′ | Cm; . . . ; Ci = 〈Γ, f(�, h1, . . . , hn)〉 ; . . . ; C1 | special rollback [i, j])→
(Γ | Ci; Ci−1; . . . ; C1 | f(j, h1, . . . , hn))
when i ∈ {1 . . . m}

Red-Atomic-Rollback

(Γ | Cm; . . . ; C1 | special commit [i] f(h1, . . . , hn))→
(Γ | Cm; . . . ; Ci+1; Ci−1; . . . ; C1 | f(h1, . . . , hn))
when i ∈ {1 . . . m}

Red-Atomic-Commit

Figure 7: Special-call operational semantics

execution, a register may contain a value in one of
several machine types: a pointer into the heap, a func-
tion pointer, or a numerical value. The machine type
is statically determined from the variable’s type in the
FIR. Register spills have the same properties as regis-
ters.

Invariant: if a register contains a pointer, it contains
the address of a block in the heap; if a register contains
a function pointer, it contains the address of a function
entry point in the text area.

• A pointer table, containing pointers to all valid data
blocks in the heap.

Invariant: all non-empty entries in the pointer table
contain pointers to valid blocks in the heap, and every
block in the heap has an entry in the pointer table.

• A function table, containing function pointers to all
valid higher-order functions. The function table is im-
mutable, except during process migration.

Invariant: all entries in the function table contain the
address of a function entry point in the text area.

• A checkpoint record, containing descriptions of all live
program checkpoints. Checkpoints are discussed in
Section 5.3.

5.1.1 Data blocks and the heap
The heap represents the FIR store, and it contains the

store values b defined in Figure 5, which we call blocks.
The runtime representation of a block contains two parts: a
header that describes the size and type of information stored
in the block, and a value area containing the contents of the
block.

There are two types of data blocks in the heap. Unsafe
data corresponds to values of type data. Safe data is type-
safe ML data, and corresponds to the 〈t1, . . . , tn〉, t array,
and union(tv [t1, . . . , tn], s) types.

The contents of unsafe data are not explicitly typed in
the FIR, and safety checks are required to ensure the data
is interpreted properly. Any pointer read from an unsafe
block must be checked to ensure it is a valid pointer, and
the bounds must be checked any time an unsafe block is
dereferenced. In contrast, the contents of safe block data are
typed in the FIR, and many safety checks can be omitted5.
The garbage collector can use explicit FIR types to identify

5Safety checks cannot be omitted on data after a successful

pointers embedded in safe block data, but it must use a
more conservative algorithm to determine which values are
pointers in unsafe block data6.

The pointer table contains the address of each valid live
block in the heap. A block header has three parts: it con-
tains 1) a tag that identifies the block type (unsafe or safe),
2) an index into the pointer table identifying the pointer
for this block, and 3) a nonnegative number that indicates
the size of the block. The tag field is overloaded to indicate
the union case for data in a disjoint union. The header also
contains bits used by garbage collection and transactions.

5.1.2 Pointer table
The pointer table ptable effectively acts as a segment table

for the blocks (segments) in the heap. It supports several
features, including migration and transactions, but its main
purpose is to allow for relocation and safety for C data areas.
The pointer table is implemented in software, however its
design is compatible with a hardware implementation for
increased efficiency.

Figure 8 illustrates the pointer table layout. The pointer
table contains entries pointing to all allocated data blocks.
Source-level C pointers are represented in the runtime as
(base + offset) pairs. The base pointer always points to the
beginning of a data block in the heap, and the offset is a
signed byte index relative to the base. Base pointers are
never stored directly in the heap. Instead, the base pointer
is stored as an index to an entry in the pointer table, which
contains the actual address of the beginning of the data
block.

The pointer table serves several purposes. First, it pro-
vides a simple mechanism for identifying and validating data
pointers in aggregate blocks. When an index i for a base
pointer is read from the heap, the following steps are per-
formed:

1. i is checked against the size of the pointer table to
verify if it is a valid index.

2. The value p is read from the ith entry in the pointer
table.

migration, unless the two machines are mutually trusting.
By default, the destination machine generates safety checks
on all data.
6As a consequence, the garbage collector may consider cer-
tain blocks to be live beyond their real live range.
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Figure 8: Pointer table representation

3. p is checked to ensure it is not free (that it points into
the heap).

After these steps, p is always a valid pointer to the be-
ginning of a block. For additional safety, we can verify that
the index stored in p’s block header matches index i. These
steps can be performed in a small number of assembly in-
structions, requiring only two branch points.

The second purpose of the pointer table is to support re-
location. If the heap is reorganized by garbage collection
or process migration, the pointer table (and registers) are
updated with the new locations, but the heap values them-
selves are preserved. This level of transparency has a cost:
in addition to the execution overhead, the header of each
block in the heap contains an index. In the IA32 runtime,
if we include the pointer table overhead, the overhead is in
excess of 12 bytes per block.

5.1.3 Function pointers
Function pointers are managed through the function table

funtable that serves the same purpose as the pointer table
for heap data. A function stub must be generated for each
FIR function that escapes (higher-order functions). Each
function stub has a function header, and the function table
contains the addresses of all the escaping-function headers.
To ease some of the runtime safety checks, each function
stub is formatted with a block header that indicates that
the function is a data block with zero-size. As with block
pointers, function pointers are represented in the heap as
indexes into the function table.

The function header also contains an arity tag, used to de-
scribe the types of the arguments. Arity tags are used when
a function is called to ensure that a function is called with ar-
guments that are compatible with the function’s signature7.
The arity tags are integer identifiers, computed at link time
from the function signatures. The signatures themselves are
generated based on the primitive architecture types, not the
high-level FIR types8. When a function is called, the argu-
ments have the same arity tag as the function signature, or
the runtime raises an exception.

5.1.4 Pointer safety
The runtime operations for load 〈c〉 [i] : t and store 〈c〉 [i] :

t← h are guaranteed to be type-safe, even for unsafe blocks.
The runtime safety check for a load operation is performed
as follows.

7This must be checked at runtime since C permits function
pointers to be coerced arbitrarily.
8The primitive architecture types are currently value,
pointer aggr, pointer block, poly, and function �.

1. The index i is compared with the bounds of block 〈c〉;
an exception is raised if the index is out-of-bounds.

2. The value h at location i is retrieved, and a safety
check is performed.

• If t represents a pointer, then h should be an index
into the pointer table. If h is a valid pointer table
index, and the entry ptable[h] is a valid pointer p,
the result of the load is p.

• If t represents a function pointer, then h should
be an index into the function table. If h is a
value function table index, the result of the load
is funtable[h].

• Otherwise, h does not represent a pointer, and
the result of the load is h.

The safety check for a store operation is somewhat sim-
pler. For a store operation 〈c〉 [i] : t ← h, the runtime
invariants guarantee that if t represents a pointer, then h is
a valid pointer to a block in the heap; and if t is of function
type, then h is a valid pointer to a function header. In these
two cases (after a bounds-check on the index i) the index
for h is stored. If t does not represent either kind of pointer,
the value h is stored directly.

5.2 Process migration
In a distributed system, a process will execute on a spe-

cific machine with a particular architecture. Since individ-
ual nodes in a cluster may fail at any time, a mechanism for
migrating a process from one machine to another is an es-
sential tool for fault-tolerance. Such a mechanism needs to
perform three operations: a pack operation to capture the
entire state of the process, including the program counter,
all register values, heap data, and code; a transmit opera-
tion to transmit the state of the process to a target machine;
and an unpack operation to reconstruct the process state on
the target machine and resume execution. Collectively, this
sequence of operations is referred to as process migration.

Process migration should be architecture-independent, to
allow for distributed clusters of heterogeneous nodes. Also,
process migration should be safe; the remote machine re-
ceiving the program should be able to verify that the pro-
gram type-checks and that heap values are used in a proper
manner. If the remote machine can verify that a received
program is safe, then we can use process migration in envi-
ronments where machines in the cluster do not trust each
other entirely, such as the wide-area computing clusters on
the Internet.

Note that since process migration requires pack and un-
pack operations, it is fairly straightforward to extend the
mechanism to support saving the process state to a file for
later execution, and to write checkpoint files while the pro-
cess is running that contain snapshots of the full process
state. In the event of a later failure, the process can be
recovered from this file using the unpack operation.

5.2.1 Runtime support for migration
The implementation of the pack and unpack operations is

relatively straightforward. Since all heap data and function
pointers in the heap are represented indirectly as indices, the
heap data is not modified by a migration, even if the data are
relocated. The pack operation first performs garbage collec-
tion and then packs the live data in the heap, the pointer
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table, the program text, and the registers into a message
that can be stored or transmitted.

In order to achieve architecture independence, we never
migrate the actual executable text9. Instead we migrate the
FIR code for the program. The location index i in the mi-
gration call is used to correlate the runtime execution point
with a corresponding execution point in the FIR. On an un-
pack operation, the FIR code is type-checked, recompiled,
and execution is resumed. Note that for C programs, the
size and byte-ordering of the various data types must con-
form to a uniform standard.

It is possible to migrate values stored in hardware regis-
ters across architectures. Note that the only live variables
across migration are the arguments (a1, . . . , an) passed to
function f . This corresponds exactly to the set of register
values which will be live during migration. To migrate these
values, the backend packs them into a newly allocated block
in the heap, taking care to convert any real pointers into in-
dex values. This allows us to use an architecture-dependent
representation of values in the registers, and also provides
safety checks on register values automatically, when they are
read out of the heap on the target machine.

5.3 Atomic operations and transactions
In databases, transactions play a key role in ensuring

that sequences of operations that are run simultaneously do
not interfere. Semantically, transactional execution appears
atomic; that is, either all the operations in a transaction
must succeed, or none of them will succeed.

The primary obstacle in implementing atomic transac-
tions is restoration of the program state10. When a transac-
tion is aborted, the entire process state, including all vari-
able and heap values, must be restored to the state it had
on entry into the transaction.

Rollback can be expressed with process migration by hav-
ing a process write a new checkpoint file each time it enters
a new atomic section. If the transaction is aborted, the pre-
vious state can be restored by restoring the process from
a checkpoint. However, since the migration mechanism re-
compiles the program, and the entire process state must be
reconstructed, this operation can be very expensive. Even
taking the checkpoint is expensive, since the entire state
must be written to a file, even parts of the state that have
not changed since a prior checkpoint. By contrast, atomic
transactions use a copy-on-write mechanism to keep track
of modified state that must be restored if the transaction is
rolled back.

The FIR provides three primitives for managing atomic
transactions: entry, which enters a new atomic level; com-
mit, which marks an atomic level as completed; and rollback,
which aborts all changes made by a particular level and re-
sumes execution at the point where the level was previously
entered.

9As a future optimization, we may include support for mi-
grating executable code when the architecture is known.
Such an optimization would compromise program safety
however, since it is not trivial to verify the correctness of
assembly code.

10In this paper, we do not consider rollback of I/O operations.
However, the concepts discussed here can be extended to
include I/O operations with some assistance from the oper-
ating system. These extensions will be discussed in a future
paper.
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Figure 9: Heap data with multiple atomic levels

5.3.1 Using atomic transactions in the FIR
Atomic transactions may be nested; each entry operation

enters a new atomic level nested within the previous level.
Atomic levels are numbered from 1 to N , where 1 is the
oldest atomic level entered and N is the most recent. A
process that has not entered any atomic transactions is at
level 0. A level l keeps track of all changes made to the
state that have occurred since l was entered. Atomic levels
use copy-on-write semantics; when a block in the heap is
modified, the block is cloned and the pointer table updated
to point to the new copy of the block, preserving the data
in the original block. On a commit or rollback operation of
l, exactly one of these blocks will be discarded.

Rollback resumes execution at the point where level l was
entered. No function or argument list is specified; the func-
tion that was associated with level l is saved as part of the
checkpoint, to be called with the original atom arguments
but with the new value for c. This version of the primitive is
a retry primitive; atomic level l is automatically re-entered
after it (and all later levels) have been rolled back11.

5.3.2 Implementation of atomic transactions
Transactions are implemented in close cooperation with

the garbage collector. The heap layout is shown in Figure 9,
which is drawn with the base of the heap at the top of the
figure, and the limit of the heap at the bottom.

The heap has the following properties.

• Each heap generation i is delimited by a base pointer
base[i], and a limit pointer base[i + 1], or, in the case
of the youngest generation, limit .

• The upper bound of atomic level i is delimited by the
level [i] pointer.

Invariant: (Atomic Invariant) all heap data for
atomic level i is between base[1] and level [i], and it
is immutable.

The generational bounds and the atomic level bounds
are independent. An atomic level may cross a generational
boundary, and often does. The two are related however:
since the data in an atomic level is immutable, garbage col-
lection on an atomic level is idempotent.

11In effect, the state that is captured and restored is the state
immediately after level l was entered.
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5.3.2.1 Garbage collection.
The garbage collector uses generational, mark-sweep,

compacting, collection. During the mark phase for gener-
ation i, the entire live set for generation i and all younger
generations is traversed, and the live blocks are marked. The
marking algorithm uses a pointer-reversal scheme to elimi-
nate the need for additional storage during traversal.

During the sweep phase for generation i, the heap from
base[i] to limit is scanned. If a dead block is encountered, its
entry in the pointer table is deleted. Otherwise, if the block
is live, it is copied left to the lowest unallocated location
in the heap, and the pointer table is updated with the new
location. Note that the heap data itself is not modified
during collection.

Block ordering is preserved by the collection, and the heap
pointers level [i], base[i], current , and limit are updated after
an allocation to point to their new locations.

5.3.2.2 Transaction support.
On atomic entry, a new generation is set up in the heap

by creating a new level [i] pointing at current , the end of the
heap. All data before current becomes immutable. In ad-
dition to the level [i] bounds, each level has its own pointer
table pdiff [i], that can be used to restore the pointer table
if the transaction is aborted. To minimize storage require-
ments, the pdiff [i] table is stored as a set of differences with
the current pointer table ptable.

Within a transaction, the only operations requiring spe-
cial support are the assignment operations. If a block is to
be mutated, and the block belongs to a previous generation
(its address is below the current level [i]), the block is copied
into the minor heap, the current pointer table ptable is up-
dated with the new location, and the previous pointer table
pdiff [i−1] is updated with the block’s original location. The
original data remains unmodified. The garbage collector in-
cludes the pdiff tables as “root” pointers; the original block
remains live.

When an atomic level i is committed, the pointer level [i]
and the difference table pdiff [i] are deleted. In general, this
will release storage that was needed in case of rollback, and
the space is automatically reclaimed during the next garbage
collection. On a rollback to atomic level i, the pointer table
is restored from the current pointer table and the pdiff [i]
table, which is deleted along with the level [i] delimiter.

6. BENCHMARKS
System benchmarks are shown in Figure 10 for version

0.5.0 of the Mojave compiler, which was released in May
2002, about a year after the Mojave project started. The
performance numbers measure total real execution time on
an unloaded 700MHz Intel Pentium III. The Mojave system
is freely available at mojave.caltech.edu under the GNU
General Public License.

The Mojave system is currently under development, and
benchmark performance varies widely. Performance num-
bers are given for several compilers. The gcc column uses
the GNU compiler collection, version 2.96; gcc2 uses the -O2
optimization. The mcc2 columns list performance numbers
for the Mojave compiler. For comparison purposes (only),
the mcc2u column lists performance without runtime safety
checks. In the current state of development, the mcc2 com-
piler performs only minimal optimization, including dead-
code elimination, function inlining, and assembly peephole

C benchmarks (time in seconds)

Name gcc gcc2 mcc2 mcc2u mcc6u
fib 35 1.0 0.78 4.6 4.6 4.32
mandel 54.7 42.1 (5.5) 7.2 7.3 6.0
msort1 3.83 1.15 5.92 3.01
msort4 5.4 1.15 8.22 4.13
imat1 37.1 6.27 27.9 17.3 7.6
fmat1 8.9 2.98 10.2 8.33 4.86
migrate 1.77
regex 2.87

Naml benchmarks (time in seconds)

Name ocamlc ocamlopt mcc2 mcc2u
fib 35 3.89 0.61 8.33 7.81
mandel 545 8.1 183 160

Figure 10: Mojave benchmarks

optimization. Advanced FIR optimizations are fairly easy
to implement, and the mcc6u column lists performance num-
bers using an optimizer under development that implements
alias analysis and partial redundancy elimination. Naml
benchmarks are similar, and include numbers for the IN-
RIA OCaml compiler [22], version 3.04.

The specific benchmarks include the following. The fib

program computes the nth Fibonacci number (using the
naive algorithm). This benchmark is highly recursive, and
the performance numbers reflect the use of continuation-
passing style. The mcc programs allocate an exponential
number of closures on the heap, and much of the time is
spent in garbage collection.

The mandel benchmark computes a Mandelbrot set. This
is a special case where mcc C compiler, using the standard
optimizations, happens to perform significantly better than
gcc -O2 (performance numbers for gcc -O3 are shown in
parentheses). In contrast, the performance for Naml re-
flects the use of minimal optimization. The program is im-
plemented with fixed-point numbers, and each arithmetic
operation is a function call. The ocamlopt compiler inlines
the function calls, while mcc2 and ocamlc do not.

The msort benchmarks implement a bubble-sort algo-
rithm, imat1 performs integer matrix multiplication, and
fmat1 tests floating-point matrix multiplication.

The migrate benchmark measures the “minimal” process
migration time. The program consists of a single migration
call. Nearly all of the time is spent in recompilation on the
target machine.

The regex algorithm is a naive, imperative implementa-
tion of a Unix-style regular-expression matcher, using trans-
actions to perform backtracking. The time listed is for de-
termining that the pattern *h*e*l*l*o*w*o*r*l*d* occurs
in the text of the introduction to this paper. The bench-
mark enters 945341 transactions with a maximum transac-
tion nesting depth of 6833.

7. CONCLUSION
The Mojave compiler is in an early stage of development,

but we believe that it demonstrates the feasibility of prac-
tical process migration and transactional computing. We
intend the Mojave compiler to be a testbed for the devel-
opment of distributed algorithms, as well as the application
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of domain-specific formal methods [2, 12]. As future work,
we are investigating transactional filesystem support, as well
as the implementation of multi-threaded process migration
and transactions.
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Gödel a l’analyse, et sonapplication a l’elimination des
coupures dans l’analyse et la theorie des types. In 2nd
Scandinavian Logic Symp., pages 63–69.
Springer-Verlag, NY, 1971.

[11] Andrew D. Gordon and Don Syme. Typing a
multi-language intermediate code. In POPL, 2001.

[12] Adam Granicz and Jason Hickey. Phobos: A front-end
approach to extensible compilers. In Proceedings of the
36th Annual Hawaii International Conference on
System Sciences (HICSS-36), 2003.

[13] Nicholas Haines, Darrell Kindred, J. Gregory
Morrisett, Scott M. Nettles, and Jeannette M. Wing.
Composing first-class transactions. ACM Transactions
on Programming Languages and Systems, November
1994. Short Communication.

[14] Jason Hickey, Justin D. Smith, Brian Aydemir,
Nathaniel Gray, Adam Granicz, and Cristian Tapus.
Process migration and transactions using a novel
intermediate language. Technical Report caltechCSTR
2002.007, California Institute of Technology,
Computer Science, July 2002.

[15] J.G.Morrisett, T.Jim, D.Grossman, M.Hicks,
J.Cheney, and Y.Wang. Cyclone: A safe dialect of C.
In Usenix Annual Technical Conference, 2002.

[16] Simon Peyton Jones, D. Oliva, and T. Nordin. C--: a
portable assembly language. In Proceedings of the
1997 Workshop on Implementing Functional
Languages, 1998.

[17] Simon Peyton Jones, Norman Ramsey, and Fermin
Reig. C--: a portable assembly language that supports
garbage collection. In PPDP, 1999. Invited talk.

[18] S. Macrakis. From UNCOL to ANDF: Progress in
standard intermediate languages. Technical report,
Open Software Foundation Research Institute, 1993.

[19] Erik Meijer and John Gough. A technical overview of
the common language infrastructure.
http://research.microsoft.com/̃ emeijer.

[20] Greg Morrisett, David Tarditi, Perry Cheng, Chris
Stone, Robert Harper, and Peter Lee. The TIL/ML
compiler: Performance and safety through types.
(Workshop on Compiler Support for Systems
Software, Tucson, Arizona.), February 1996.

[21] George C. Necula, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy
code. In Proceedings of the 29th ACM Symposium on
Principles of Programming Languages (POPL02),
2002.
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