
Object and Process Migration in .NET

Peter Tröger and Andreas Polze
Operating Systems and Middleware Chair, Hasso–Plattner–Institute at University of Potsdam, Germany

{troeger|polze}@hpi.uni-potsdam.de

Abstract

Most of today’s distributed computing systems in the
field do not support the migration of execution entities
among computing nodes during runtime. The relatively
static association between units of processing and compu-
ting nodes makes it difficult to implement fault-tolerant
behavior or load-balancing schemes. The concept of code
migration may provide a solution to the problems
mentioned above. It can be defined as the movement of
process, object or component instances from one
computing node to another during system runtime in a
distributed environment.

Within our paper we describe the integration of a
migration facility with the help of Aspect-Oriented
Programming (AOP) into the .NET framework. AOP is
interesting as it addresses non-functional system
properties on the middleware level, without the need to
manipulate lower system layers like the operating system
itself.

We have implemented two proof-of-concept
applications, namely a migrating web server as well as a
migrating file version checker application. The paper
contains an experimental evaluation of the performance
impact of object migration in context of those two
applications.1

1. Motivation and Introduction
Most of the distributed systems in the commercial area

do not allow the re-binding of an execution entity to a
different node during runtime. With every entity bound to
one node these systems have typical problems such as
'single point of failure' or a missing overload protection.

Object and process migration is a possible solution to
the problem mentioned above. Most of the migration
facilities described in literature are implemented on the
level of processes [9]. There exists a vast amount of
studies and research work in this area, which concentrates
on process migration facilities inside distributed operating
systems. Additional research focuses on integration of

1 This work has been sponsored by Microsoft Research Cambridge
under agreement number 2001-61.

migration concepts into object oriented languages and
systems [2]. There are several practical reasons to inte-
grate migration in a distributed environment: Load
balancing, load sharing, application concurrency, object
persistence, efficient remote procedure calls / resource
access [10] or the pervasive computing approach [5].

Our research focuses on a migration facility for active
and passive objects in the .NET framework. Our work
follows the idea of Aspect-Oriented Programming (AOP),
which allows us to address non-functional system
properties on the middleware level, without the need to
manipulate lower system layers like the operating system
itself. Most of the features required for the implementation
of object or process migration (such as location trans-
parency or a machine-independent executable format) are
already present in the .NET frameworks, so the integration
of such a concept is a natural extension of the system
capabilities.

The remainder of the paper is structured as follows:
Section 2 gives an overview over related work. Our
approach to language-independent object migration in a
component framework is presented in Section 3. Section 4
discusses implementation issues, whereas Section 5
presents an experimental evaluation of our approach based
on two proof-of-concept applications. Section 6 finally
concludes the paper.

2. Related Work
In his classification approach for mobile code

architectures Picco [7] makes a fundamental distinction
between weak mobility and strong mobility. In systems
with weak mobility the migrant is either a data object
having no own path of execution or an executable object,
which starts execution from the beginning after migration.
The second group of entities are strong mobile objects,
which are interrupted in their work for the migration and
carry forward the execution on the destination node.
Executed objects can be further divided into interpreted
code objects and native code objects.

For weak mobility with data objects the persistent
storage concepts in most commercial component frame-
works are a good example. Executable code that is started
from the beginning after the transfer is also widely known

mechanisms also offers the possibility for performing a
platform-independent migration. If a chosen component
framework is available on multiple platforms, the
abstraction approach guarantees that serialization and de-
serialization work also while crossing platform
boundaries. The migration framework presented here has
been implemented on the commercial .NET implemen-
tation under Windows 2000; however, it has been ported
and is functional under the shared source implementation
of .NET (Rotor) under the Windows XP, Free BSD and
MacOS operating systems as well.

In order to be used with our framework, all migrants
(classes that shall be serialized) must be marked with the
[Serializable] attribute. In the case of active objects, the
instruction pointer for the current point of execution is a
relevant property, which is not saved with the serialization
functionality. We have solved this problem by marking a
special re-entry-method within the migration aspect code,
which is called automatically after restoration of a migrant
on its destination. Serialization occurs in the class scope.
Therefore, all relevant state information must be encap-
sulated in the form of class members. Data residing
outside of a migrant’s scope is not covered by the seriali-
zation mechanism. We have implemented a separate post-
migration-handler, which takes care of these global data.

Transfer of Code and State Information
After the successful identification of a destination and

the storage of the migrants’ information all relevant data
must be transferred to the new host. The architecture
introduced in this paper contains a migration server that is
available on every host. In addition to the task of
answering requests for migration destinations, this module
also works as receiver for a migration data stream. It is
also responsible for the continuation of the migrant. The
relevant subtopics in the handling of state and code
transfer are completely managed by this instance.

One possible simple improvement in a component
framework is the caching of already transferred binaries
inside of the migration server. On later re-migration
events of the same entity the framework is able to reuse
the already transferred binary code. The .NET framework
has a mechanism of holding shared assemblies in a global
cache (GAC) that could be utilized to support migration.
Our current implementation described here uses a
mechanism where the migration facility on the source
node asks the chosen destination host for the availability
of the migrant code base. The unique identification of
migrant assemblies relies on the typing mechanisms of the
component framework.

Handling of Residual Dependencies
In all migration frameworks, regardless of their scope,

there is always the problem of local references that cannot

be easily transferred to the new host. These local
references or dependencies mostly refer to system
resources that are managed inside of the operating system
- file handles, network sockets, shared memory regions or
other location dependent information. Another problem is
the accessibility problem that occurs always in such
environments. If a running entity accessible for other
entities in the distributed system is moved, than there must
be a mechanism that ensures that the migrant remains
accessible even if it is at the new host.

With the goal of non-intrusiveness and the flexibility of
AOP it seems to be more practical to give responsibility
for non-migratable resources and location transparency
not to the framework but to a use case specific module.
This module can be dynamically connected to the migrant
through aspect mechanisms. Our approach allows for
implementation of generic handlers, which use classical
forwarding or remote access solutions. It is also possible
to introduce specific handlers (so-classed post migration
handlers – PMH) that match exactly the use case and
communication characteristics of a migrated application.
The PMH is responsible for the complete handling of
resources that cannot be migrated by the framework itself.
The migration framework is responsible for giving all
available information about the problematic resources to
the PMH. Additionally it must give the PMH a chance to
survive as active task at the source node even if the
migrant has left. However, one has to take care of the fact
that the migrant could go back to its original host. In this
case there must be a defined way for the active PMH
handler to finish its work in a way that the migrant appli-
cation is able to continue execution without interfering the
forwarding mechanisms.

Another accessibility-related problem are blackout-
periods, which occur when an application migrates.
Remote calls arriving during migration cannot be handled
immediately. However, standard retransmission and flow
control mechanisms of the widely used TCP transport
protocol are a satisfactory solution. This assumes that the
blackout-period of an application is short enough to not go
beyond the timeout value of the protocol.

Continuation of Execution
A transferred active entity must be restored from the

state information and must be continued in its execution
on the new host.

In our approach, we chose to create a semi-transparent
solution with the help of AOP. The idea here is to declare
the re-invocation method through the aspect code that is
interwoven with the migrant. This can be seen as an
acceptable solution because it is already clear that the
aspect code designer must have knowledge of the internal
functionality of the migrated application. With the
declaration of a re-entry method the framework can easily
perform the restart operation on the destination host. If

since many years, e.g. Unix remote shell (rsh), the Java
RMI or Microsoft ActiveX. Concerning the type of the
executable object, systems with interpreted executables
have some advantages over those with native code
execution. This factor is especially important if the
migration facility shall run in a heterogeneous
environment [6].

There are several practical subtopics in the area of code
migration that differentiate related work: Kernel related
data stored in the address space of the process (for
example file handles) become a relevant problem during
the state preservation and restoration [3]. Sprite [9] solves
this problem with the remote usage of location depended
resources on the home node.

There are also several approaches in the different
practical systems to receive the relevant data directly from
the execution environment on the source node. Condor [6]
relies on wrapped system libraries that allow the
continuous supervision and logging of created and
released system resources. In combination with a modified
core dump functionality for considering dynamic data this
solution works without modifications to the underneath
standard UNIX kernel. In a component framework the
component connector concept could be used similarly to
introspect the usage of resources transparently. Also the
component container architecture can be used for such
introspections.

Some systems work with a complete virtual machine on
top of the operating system. This strategy is mostly used
in agent systems in which a special layer rests on top of a
normal UNIX system [1]. A modified Java virtual
machine is also being used to support strong code
migration [11]. Agent systems additionally use a
specialized compiler to include necessary information
(such as code preemption points) in the executable. Most
language extension based solutions are marking migration
relevant data in the code, which allows the compiler to
inject the needed migration relevant instructions at the
right point. An example for this class of systems is the
SOS system [13], were C++ classes can be marked as
dynamic and the compiler inserts an indirection table for
pointers. With this method the indirection table can be
adjusted on the destination machine for the new address
space.

The TUI system [14] uses debug information collected
at compilation time and generates intermediate data for
heterogeneous migration purposes. Ferrari [6] enhanced
this idea by suggesting a generation of intermediate code
that is able to restore the execution state on the destination
machine. The Java Tube system [8] breaks the program
into scalar fragments at compilation time and saves their
overall state after the execution of one fragment. The
author calls this high order state saving because the state
is saved at the virtual machine level.

 However, several architectures for strong code
mobility make the migrant directly responsible for state
preservation. One very common solution in this respect is
the specification of a compulsory management interface
that is called before migration start and after migration
end. This approach is used in the ANSAWare migration
extension Zenith [4] and in the SUN JINI system. The
SOS system [13] calls a re-initialization constructor on the
object after the migration is completed.

3. Migration within Component Frameworks
The term migration is used in several contexts in

practice. Figure 1 shows a possible classification of
different approaches to migration.

migration

passive migrant active migrant

optimized
resource
access

replication movement
load

sharing
persistency

load
balancing

agent
systems

pervasive computing

Figure 1: Classification of migration types

Basically there is a distinction between the migration of
passive and of active objects. Passive objects do not have
an own path of execution. Examples for this are data
objects or instances of library classes. A passive object
can be replicated or moved to another host. Modern
component frameworks offer a replication mechanism
under the term serialization. It allows saving the actual
state of an object to a persistent store. Since the original
object can be further used after its serialization, the
mechanism is classified here as passive object replication
operation. In case of an object movement the object is no
longer available at its source host, which leads to the
classification as passive object movement operation. Both
variants have to consider the consistency problem for
replicated data.

The migration of active objects deals with
independently running software modules or executables.
This can affect interpreted or compiled processes or
objects. Within this paper the term migration is used for a
movement operation of an actively executed object. The
replication of an executed active object cannot be seen as
migration activity. This is reasoned by the fact that no
consistency model for its operations can be guaranteed or
modeled here, while for a movement a strong consistency
is always aimed through several standard mechanisms.

Our approach to object migration in component-based
frameworks has to consider a number of fundamental
design decisions, which are discussed below:

Migration Decision
In order to support binary reuse of components,

migration policies should be dynamically attached to
possible candidates for component migration. The main
idea here is to build a framework where objects residing
inside a component can perform self-initiated as well as
externally triggered migration. This goal is reached
through the extension of the migrant code with
mechanisms of aspect-oriented programming (AOP): The
aspect code for a migrant checks the policy at dedicated
points of execution. If the policy claims a situation where
the migration should happen than the aspect code has to
perform the search for a matching destination. After a
successful search the aspect code can initiate the transfer
to a new host. Alternatively, the aspect code may trigger a
migration explicitly without taking care of a policy rule
and only with regard to the internal state of the migrant.

In our approach, the aspect code, which is interwoven
with the migrant, calls the check routine of a so-called
policy module at specified points of the execution. The
policy module starts the migration with library functions if
the policy condition is met. The aspect code is also able to
start the migration directly because of a special condition.
This happens if it detects a specific internal state of the
migrant. The state can depend on member variables or
function results.

The other relevant part of the architecture, the
migration server, is needed to locate a destination prior to
a migration step. If the migrant (or more exactly its aspect
code) does not name an explicit migration destination, the
library asks around in the network for a matching
destination. In the actual design this is simply done by
sending the policy type as multicast network message. All
migration servers in the multicast group check if the
policy module is available locally. In the positive case
they answer if their own policy check allows a new
migrant. In the negative case no answer is send. This
technique for location of a destination allows parallel
work of different types of migrants inside the same
distributed system. The source node takes the first positive
answer and initializes the migration to the host where the
message was coming from.

Preemption of the Application
After the selection of a migration destination the next

step is the safe preemption of the application. It must be
ensured that both the system and the migrant itself are not
left in an inconsistent state. The system must be able to
continue its general work after removing the migrating
application. The migrant should be in an execution phase

where it is possible to save and later restore its internal
state completely. In all former solutions this part of the
whole procedure leads to some non-trivial problems. One
example is the migration of processes currently
performing a pending system call. If the underneath
system is not prepared for the possibility that a program is
removed in this state an instable system environment
could arise.

Figure 2: Concept for a flexible migration framework
Our approach again utilizes the flexibility of AOP.

Assuming a message-driven, cyclic execution model, the
aspect-weaver identifies possible migration points at the
end of each message-handling function. This approach
ensures that the migrant is always in a save state for
transfer. There is no possibility that pending system calls
or other problematic actions are performed during this
time. The assumption a cyclic execution model somewhat
restricts applicability of our current solution. However,
this is not a problem with passive (server-type)
applications (which act on incoming requests – method
calls), but rather in actively executing applications. Here it
could be possible that major parts of the program rest
inside the main() function without ever completing an
execution cycle. In this case, which can be seen as well as
bad software design style, the migration facility and the
aspect code do not get a chance to check for a policy
condition or to start a migration operation.

State Saving
After interrupting the migrating application, the next

critical step is to save the current state of the object
instances residing in the migrating components. Most
modern component frameworks provide mechanisms for
object serialization. Serialization is the process of saving
an object state to a fixed storage. The advantage here is
that the complete state inspection is handled directly on
the level of the runtime objects. The framework is
responsible for the platform-independent encoding of the
state information (with respect to byte order or alignment
problems), the recursive analysis of cascaded data
structures and the proper saving of the correlation between
data type, name and value. The usage of pure framework

Aspect
Code

Migrant

 Migration Library

Migration Policy
Module

Migration Server

Post Migration Handler

Migration Server

Migration Policy Module

Migration Server

Migration Policy Module

such a method is not marked by the aspect code, than the
framework could call the last method that was executed
before the migration. This variant has to be used carefully
to avoid state inconsistencies of the migrant.

The next chapter explains how the concrete implemen-
tation of the concepts presented here is accomplished
within the .NET framework.

4. Implementation Issues
The whole framework was developed using the C#

programming language. Figure 3 shows the general
architecture of our migration framework.

Figure 3: Architecture of the migration framework

The migration library is the functional heart of the
framework. All primary functionalities for the migration
are concentrated here. Each migrant application is bound
to a library instance through its aspect code. The library
offers the IMigrantLib interface for all the necessary
functionalities.

The first action of the migrant related aspect code is the
registration of the migrant itself, the regarding policy
module and the post migration handler (PMH) module:

bool Start(object mig,
 string policyFileName,
 string pmhFileName);

The last two parameters are optional, so it is also
possible to use the framework without a policy module or
the post migration handler. The next parts of the
IMigrantLib interface are the functions to start an explicit
or semi-transparent migration attempt. This it is accom-
plished by three functions:

bool MigrateToHost(string destHost);
bool MigrateIfNeededToHost(string dest);
bool MigrateIfNeededSearchHost();

The first function starts directly a migration to the
chosen host without checking any policy condition. With a
call to the second function, the destination host is given
but the decision if the migration is necessary is left to the
policy module. The third variant leaves all decisions to the
policy module and the migration framework. In this case
the library is not only responsible for the local check up of

the policy condition but also for asking for a matching
migration destination within the network. This is achieved
directly through a connection to the migration server UDP
multicast group. The other functions of this interface are
necessary for the concrete state saving and restoring in the
context of the serialization procedure.

The second interface IMigrationServerLib offers all
relevant core functionalities for the migration server. This
mainly bears the subtasks during the restoring of the
migrant in mind. Concretely the following functions are
available:

MigrantEnv PrepareMigrantEnv(Stream stream,
 int minStayTime);
bool IsAssembly(string assName);
bool RegisterPolicy(string aName);
void StartServerComm(string udpAddress,
 int udpPort,
 Type theServerType);

The first function creates a new execution environment
for the migrant. In terms of .NET this yields to the
creation of a new application domain and the de-
serialization of the migrant in this new domain. Since the
migrant is received as binary stream by the new host, this
stream is given as argument to the function. The second
argument is the amount of seconds the migrant has to stay
minimally at his new host. The main intention for this
factor is the avoidance of 'migrant flooding': If for
example a migration policy checks for the CPU load of
the local machine then it could happen in a network wide
overload situation that most of the machines are above the
fixed threshold of the policy. This would lead to a
continuous migration of all entities.

The result of the function call is an object that acts as
handle for the new environment. The migration server
manages these handles.

The server uses the second function IsAssembly() to
check if a code assembly is already loaded when a remote
node asks on the IRemoteMigrationServer interface for
that assembly.

The last two functions are used at initialization time of
the migration server. Firstly the policy modules that will
be used for remote migration destination requests are
registered with the RegisterPolicy() function. The
StartServerComm() routine connects to the UDP multicast
group of servers and establishes the remoting channel for
the accessibility of the IRemoteMigrationServer interface.

 During the implementation phase some general
conceptual problems with the implementation and specific
problems with the .NET framework appeared:

 The .NET Main() function that is called first in an
executable is marked as static function. Inside this
function, a serialization cannot be started because there is
no object instance available at this point. The migration
cannot be started until the control flow moved into a user-
created application object occurred.

A similar problem exists if the constructor of the
application object performs the main work of the
application. The constructor of the aspect proxy class is
always executed after the base class constructor is
finished. If the base class constructor calls virtual
functions that are overridden by the proxy class it could
happen that these methods call migration library functions
before it is was initialized in the derived constructor
method. This problem can be avoided through a proper
handling in the aspect code.

The concept of using the serialization functionality for
state saving leads to some limitations. The state of
external assemblies or objects being used by the migrant is
not saved. Also some deep-level data structures like the
hash table collection are not completely savable. At the
moment there are no viable solutions for this kind of
problem available. The post migration handler modules
could solve part of the deep copy problem. Saving
external states of related assemblies can only be
implemented in an intrusive fashion. We are currently
inspecting the shared source implementation (Rotor) of
.NET to explore solutions to this problem.

Modern applications usually work with multithreading.
In .NET a threading functionality is also available. If the
migrant application uses multiple threads several
problems may arise. Thread local data in .NET is not
saved during a serialization. Checking for termination of
all threads contained in an application domain is another
problem, which has to be solved to decide when a
migrating application may migrate to a previously used
location.

AOP under .NET
We have used LOOM.NET by Wolfgang Schult [12] to

interweave the migration aspect code with an already
compiled .NET assembly. Aspect code can be defined
separately for the various programming language-entities:
namespace, class, constructor, method or field. These
concrete aspect implementations are grouped together and
can be attached as package to a binary assembly. During
aspect weaving, the LOOM.NET tool creates
automatically a derived class from the original .NET class
contained in an assembly. This proxy class contains the
aspect code and can be compiled and linked to produce an
extended version of the original assembly. The weaving
mechanism is extensible by the aspect designer through
the implementation of so-called extension modules.

5. Experimental Evaluation
We have implemented two proof-of-concept

applications that utilize our migration framework. There
are two different motivations for using migration in
context of those applications: the migrating File Version
Checker accesses data residing on local disks on different

nodes in a network. It migrates to access large amounts of
data locally. Our experiments show that there is a tradeoff
between migration overhead and performance gains
during disk access.

The web server uses migration for a different reason. It
accesses data stored on a network file system and migrates
itself to a different node when it encounters a dramatic
increase of computational load on its home node. We
could demonstrate that the performance gains from
moving to a lighter loaded node outweighs the overhead
required for forwarding http-communication between
home node and current location of the web server.

Test Environment
All experiments were done on four machines of the

same type (Pentium II 450 MHz, 128 MB RAM,
Windows 2000, 100Mbit network). The assembly cache of
our migration framework was modified in such a way that
it always claims the non-availability of the requested
assembly. The reason for this modification is a bug in the
.NET framework. Also the security context mechanisms
were switched off in the experiments.

The clocks of the 4 machines were synchronized
through NTP over the Internet. NTP adjusts clocks with a
drift of less than one millisecond. With the synchronized
clocks and the time stamp logs from the 4 nodes it was
possible to get a complete timing description of the
several actions in the migration framework.

Experiments with File Version Checker
The first proof-of-concept application is a program to
check file versions. It goes recursively through the
directory structure from a given path and collects all files
that match the search condition. For every file the version
information is extracted. This is done for a set of given
hosts. The result is a file that describes the differences
between the hosts. The program can be used for automatic
checks before software installations.

Figure 4: Non-migrating and migrating File Version

Checker

The first version of this application is performing the
same recursive check routine locally and than remotely on
the other systems. The results of all these runs are
correlated and written in the result file. The remote check
is carried out through a network file system access on the
administrative share of the remote host.

The migrating variant of File Version Checker starts
also with the recursive check of the local resources. At the
end of this function call the aspect code triggers an
explicit migration to the first remote host. At this host the
recursive check routine is called as re-entry method, so
again a local file check is initiated. This procedure is
carried out until the migrant returns to its home node
where the result file is created.

The file version checker application can be seen as
example for the 'migrate to resource' approach. The
primary goal is the improvement of the execution time.
The characteristic of the application reminds of the agent
approaches in system management applications. With this
working proof-of-concept scenario in mind several other
agent-oriented applications are imaginable.

The tests were done with an increasing number of files
to be evaluated. The aimed goal of the experiment was to
show that through the advantage of accessing all files
locally in every case the migrating solution should
perform faster than the non-migrating solution.

In Figure 5 the application’s runtime in relation to the
number of files checked is shown. It can be seen in the
graph that the version without migration performed faster
than the solution with migration. This is due to the
migration overhead, which correlates to the state
information stored in the file version checker and
increases with an increasing number of files to be
checked.

0

50

100

150

200

250

300

350

400

1 31 61 91 12
1

15
1

18
1

21
1

24
1

27
1

30
1

33
1

36
1

39
1

42
1

45
1

48
1

51
1

54
1

57
1

60
1

63
1

66
1

69
1

72
1

75
1

78
1

81
1

84
1

87
1

90
1

93
1

96
1

99
1

10
21

10
51

10
81

number of checked files

tim
e

ne
ed

ed
 (s

)

without migration with migration
 Figure 5: Performance comparison for File Version

Checker

Another argument for the better performance of the
non-migrating solution can be seen in file caching effects.
All runs of the experiment were performed sequentially
with a simple shell script. In this scenario the non-
migrated application has the advantage of being speeded
up by the operating system file access caching. The same
files are accessed again and again from the same machine
in the experiments. After an initial phase most accesses
are answered directly by the local file system cache. The
migrant application is restarted at every node. This leads
to a much lesser effect of caching strategies and eats up
the advantage of the local file parsing.

Experiments with a Web Server
Our second proof-of-concept application is a small web

server. The base program was taken from a C# developer
page2. The program is a simple HTTP web server,
delivering web pages on HTTP requests on a given port.

One of the reasons for using a third party application
was to demonstrate that the implementation of our
migration framework via AOP allows a non-intrusive
extension of the original (binary) Web server application.

The aspect code for the migrating variant of the web
server is a little more complex than the aspect code for the
file version checker. The new web server uses a policy
module that checks on request the CPU load on the local
machine. One could also imagine that the policy module
uses the IO load as trigger. The migration function call is
performed through the aspect code after successfully
answering a HTTP request.

The aspect code utilizes the MigrateIfNeeded
SearchHost() call of our library. This variant locates the
migration destination itself. The policy assembly must be
available locally on every possible migration server
instance in the network. With this preparation the
mechanism of searching a destination through a broadcast
policy check request can be used as expected.

Another part of the migrating web server is the PMH
module, which implements forwarding of http requests. It
is needed because the TCP listener socket is not
transferable to the new node. Also the accessibility of the
server at the new host can only be ensured with this
architecture. The actual implementation of the PMH
handler responds to incoming HTTP requests with a
HTTP redirect message. This message contains the
address of the new host. The HTTP client recognizes the
'forwarding information' message and sends the request
again to new address.

The web server application is a good example for load
balancing through migration. Figure 6 shows the client
response times for a request in the migrated and the non-
migrated case under varying load scenarios on the web
server’s host computer. We have used the tool cpustres
from the Windows 2000 Resource Kit to simulate
computational load on the Web server’s host computer.
This tool has been run with one to four active threads. All
but one of cpustres’ threads were spinning in a loop, using
their scheduling quantum completely. Only one thread
was varied in its CPU usage, using an adjustable amount
of its quantum (10%, 40%, 60%, 90%, respectively). This
is reflected in the horizontal scale of the diagram in Figure
6. Our experiment shows a response time of the migrating
web server, which is initially by a factor of two better than
the original web server’s response time on a lightly loaded
machine. However, with increasing load, there is a break
even and finally, with very high load in the original web

2 http://www.codeproject.com/csharp/mywebserver.asp

server’s computer, the migrating version behaves worse
than the original web server. This is due to the delays
introduced by the post migration handler module (PMH
proxy), which remains on the original node even if the
web server migrates.

0

500

1000

1500

2000

2500

3000

3500

4000

11 14 16 19 21 24 26 29 31 34 36 39 41 44 46 49

load factor

re
sp

on
se

 ti
m

e
(m

s)

directly with PMH proxy

Figure 6: Web server response time under load

A central problem with the web server application was
its multi-threaded architecture. The actual facility is not
able not handle migrants with multiple threads. In the
concrete case it was not possible to re-migrate the
program from a host since the TCP listener thread could
not be terminated explicitly in this situation. The only way
to solve the problem was to unload the complete appli-
cation domain of the migrant during the cleanup phase in
the aspect code.

6. Conclusions
We have described the integration of a migration

facility into the .NET framework. Using aspect-techniques
for integrating migration into .NET addresses non-
functional system properties on the middleware level,
without the need to manipulate lower system layers like
the operating system itself. We could demonstrate the
extension of a binary .NET component (the Web server
application) into a migrating version without being
required to even see the Web server’s source code.

There are several practical reasons to integrate
migration in distributed environments, among them load
balancing (explicit positioning of processes to distribute
the computational load), and load sharing (automatic
migration of computational intense tasks to idle
machines).

The experimental migrating web server, one of our
proof-of-concept applications, demonstrates the benefits
of load balancing through migration. In comparison to the
non-migrating version, it could shorten the response time
to clients’ requests by a factor of two on a lightly loaded
machine. Evaluation of the migrating file version checker,
our second proof-of-concept applications, led to the
conclusion that inefficient cache usage and big state
spaces of migrating applications have to be carefully

considered as they may neglect performance benefits
achieved by migration.

We are currently concentrating on a metrics, which
takes those issues into account and will be implemented as
part of the migration server’s policy module.

References
[1] G. Attardi et.al. Techniques for dynamic software

migration. In Esprit '88, Proc. of the 5th Annual Esprit
Conference, pages 475-491. North-Holland, 1988.

[2] Paulo Amaral, Christian Jacquemot, Peter Jensen,
Rodger Lea, and Adam Mirowski. Transparent object
migration in COOL2. In Yolande Berbers and Peter
Dickman, editors, Position Papers of the ECOOP '92
Workshop W2, pages 72-77, 1992.

[3] Yeshayahu Artsy and Raphael A. Finkel. Designing a
process migration facility: The Charlotte experience.
IEEE Computer, 22(9):47-56, 1989.

[4] N. Davies and G. Blair and J. Mariani. Supporting
Persistent Re-locatable Objects in the ANSA
Architecture. In Internal Report Ref: MPG-92-04 and
submitted for publication, Lancaster University,
Bailrigg, Lancaster,# LA1 4YR, U.K., February 1992.

[5] IBM Corporation. Autonomic Computing manifesto,
2001. http://www.ibm.com/research/autonomic

[6] Adam John Ferrari. Process state capture and recovery
in high-performance heterogeneous distributed
computing systems. Dissertation, Faculty of the School
of Engineering and Applied Science, University of
Virginia, January 1998.

[7] Alfonso Fuggetta, Gian Pietro Picco and Giovanni
Vigna, Understanding Code Mobility. In IEEE
Transactions on Software Engineering, 24(5): 342-
361,1998.

[8] David Halls. Applying Mobile Code to Distributed
Systems. PhD thesis, University of Cambridge, 1997.

[9] Mark Nuttall. Survey of systems providing process or
object migration. In Imperial College Research Report
DoC 94/10, 1994.

[10] Mark Nuttall and Morris Sloman. Workload characteris-
tics for process migration and load balancing. In
International Conference on Distributed Computing
Systems, 1997.

[11] Michael Philippsen and Matthias Zenger. JavaParty -
transparent remote objects in Java. In Concurrency:
Practice and Experience, 9(11):1225-1242, 1997.

[12] Wolfgang Schult and Andreas Polze. Aspect-Oriented
Programming with C# and .NET. In International
Symposium on Object-oriented Real-time distributed
Computing (ISORC), Crystal City, VA, USA. April 29 -
May 1 2002, pages 241-248.

[13] Marc Shapiro, Philippe Gautron, and Laurence Mosseri.
Persistence and migration for C++ objects. In Stephen
Cook, editor, ECOOP'89, Proc. of the Third European
Conf. on Object-Oriented Programming, pages 191-204,
Nottingham (GB), 1989.

[14] Peter Smith and Norman C. Hutchinson. Heterogeneous
process migration: The TUI system. In Software
Practice and Experience, 28(6):611-639, 1998.

	Motivation and Introduction
	Related Work
	Migration within Component Frameworks
	Migration Decision
	Preemption of the Application
	State Saving
	Transfer of Code and State Information
	Handling of Residual Dependencies
	Continuation of Execution

	Implementation Issues
	AOP under .NET

	Experimental Evaluation
	Test Environment
	Experiments with File Version Checker
	Experiments with a Web Server

	Conclusions
	References

