
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 37-51, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Designing Web-Based Systems in Social Context:
A Goal and Scenario Based Approach

Lin Liu and Eric Yu

Faculty of Information Studies, University of Toronto
{liu,yu}@fis.utoronto.ca

Abstract. In order to design a better web-based system, a designer
would like to have notations to visualize how design experts� know-
how can be applied according to one's specific social and technology
situation. We propose the combined use of a goal-oriented language
GRL and a scenarios-oriented notation UCM for representing design
knowledge of web-based systems and information systems in general.
Goals are used to depict business objectives, functional and non-
functional system requirements. Tasks are used in the exploration of
alternative technologies and their operationalizations into system
constructs. Actors are used to do role-based analysis on social
relationships. Scenarios are used to describe elaborated business
processes or workflow. The approach is illustrated with an example of
designing a web-based training system.

1 Introduction

In the context of requirements engineering and system design, goal-driven and
scenario-based approaches have proven useful [9]. In order to overcome some of the
deficiencies and limitations of these approaches when used separately, proposals have
been made to couple goal, scenario and agent concepts together to guide the system
design process. As there are both overlaps and gaps between these approaches, their
interactions can be complex and highly dynamic.

In general, goals describe the objectives that the system should achieve through the
cooperation of agents in the software-to-be and in the environment [14]. It captures
�why� the data and functions are there, and whether they are sufficient for achieving
the high-level objectives that arises naturally in the requirements engineering process.
The incorporation of explicit goal representations in requirement models provides a
criterion for requirements completeness, i.e., the requirements can be judged as
complete if they are sufficient to establish the goals they are refining.

Scenarios present possible ways in which a system can be used to accomplish some
desired functions or implicit purpose. Typically, it is a temporal sequence of
interaction events between the intended software and its environment (composed of
other systems or humans). A scenario could be expressed in forms such as narrative
text, structured text, images, animation or simulations, charts, maps, etc. The content

38 Lin Liu and Eric Yu

of a scenario could describe either system-environment interactions or events inside a
system. Purpose and usage of scenarios also varies greatly. It could be used as means
to elicit or validate system requirements, as concretization of use-oriented system
descriptions, or as basis for test cases. Scenarios have also become popular in other
fields, notably human-computer interaction and strategic planning [2].

A successful design relies on the clarity of user requirements and the close
matching of requirements and the adopted technologies. In this paper, we explore the
combined use of a goal-oriented notation GRL [5] and a scenario-based notation
UCM [1] in early requirements engineering and system design. The GRL language is
used to support goal and agent-oriented modelling and reasoning, providing guidance
to the design process. The scenario orientation of the UCM notation allows the
behavioral aspects of the designed system to be visualized at varying degrees of
abstraction and levels of detail. Combining the two notations makes it possible to
evaluate technical solutions according to their contributions to the objectives of
different stakeholders, guiding the design towards viable solutions.

Information system design is a knowledge-intensive process. It involves domain-
specific knowledge, generic software design knowledge and knowledge about the
specific situations of the current design. GRL and UCM together provide an ontology
for expressing such knowledge. For example, domain-specific know-how on picking
a lesson structure is represented as UCM scenarios of common lesson structures.
Generic software design knowledge on the possible collaboration mechanisms for a
web-based system is depicted as a GRL means-ends structure that connects the
possible mechanisms (e-mail, newsgroup, chat, screen-sharing and audio/video
conferencing) to the goal �Determine Collaboration Mechanism�.
In the next section, basic concepts of GRL and UCM are introduced. In section 3, we
summarize our approach of using GRL and UCM together to incrementally modelling
requirements and design. In section 4, a case study in the e-training domain is used to
illustrate the proposed approach. In section 5, related work is discussed. Conclusions
and future work are in section 6.

2 Modelling Notations

2.1 GRL

The Goal-oriented Requirements Language (GRL) [5] is a language for supporting
goal and agent oriented modelling and reasoning about requirements, especially for
dealing with non-functional requirements (NFRs)[3][14]. It provides constructs for
expressing various types of concepts that appear during the requirements and high-
level design process. There are three main categories of concepts: intentional
elements, intentional links, and actors. GRL elements and links are intentional in that
they are used in models that answer questions about intents, motivations and
rationales, such as:

• Why particular behaviors, information and structures are chosen to be included in
the system requirements?

• What alternatives are considered?

Designing Web-Based Systems in Social Context 39

• What criteria are used to deliberate among alternative options?
• What are the reasons for choosing one alternative over others?

A GRL model can either be composed of a global goal model, or a series of goal
models distributed amongst several actors. If a goal model includes more than one
actor, then the intentional dependency relationships between actors can also be
represented and reasoned about.

The intentional elements in GRL are goal, task, softgoal, resource and belief. A
goal is a condition or state of affairs in the world that the stakeholders would like to
achieve. In general, how the goal is to be achieved is not specified, allowing
alternatives to be considered. A goal can be either a business goal or a system goal.
Business goals are about the business or state of the business affairs the individual or
organization wishes to achieve. System goals are about what the target system should
achieve, which, generally, describe the functional requirements of the target
information system. In GRL graphical representation, goals are represented as a
rounded rectangle with the goal name inside.

A softgoal is typically a quality (or non-functional) attribute on one of the other
intentional elements. A softgoal is similar to a (hard) goal except the criteria for
whether a softgoal is achieved is not clear-cut. It is up to the developer to judge
whether a particular state of affairs in fact sufficiently achieves the stated softgoal.
Non-functional requirements (NFRs), such as performance, security, accuracy,
reusability, interoperability, time to market and cost are often crucial for the success
of an information system. In GRL, non-functional requirements are represented as
softgoals and addressed as early as possible in the software lifecycle, and be properly
reflected in design decisions before a commitment is made to a specific
implementation. In the GRL graphical representation, a softgoal, which is �soft� in
nature, is shown as an irregular curvilinear shape with the softgoal name inside.

A task specifies a particular way of doing something. It may consist of subgoals,
subtasks, resources and softgoals. These sub-components specify a particular course
of action while still allowing some freedom. Tasks are used to incrementally specify
and refine solutions in the target system. They are used to achieve goals or to
"operationalize" softgoals. These solutions provide operations, processes, data
representations, structuring, constraints and agents in the target system to meet the
needs stated in the goals and softgoals. In GRL graphical representation, tasks are
represented as a hexagon with the task name inside.

A resource is a (physical or informational) entity, about which the main concern is
whether it is available. Resources are shown as rectangles in GRL graphical
representation.

Belief is used to represent design assumptions and environmental conditions.
Beliefs make it possible for domain characteristics to be considered and properly
reflected in the decision making process, hence facilitating later review, justification
and change of the system, as well as enhancing traceability. Beliefs are shown as
ellipses in GRL graphical representation.

Intentional links in GRL include means-ends, decomposition, contribution,
correlation and dependency links. Means-ends links are used to describe how goals
are in fact achieved. Each task connected to a goal by a means-ends link is an
alternative way to achieve the goal. Decomposition links define the sub-components

40 Lin Liu and Eric Yu

of a task. A Contribution link describe the impact that one element has on another. A
contribution can be negative or positive. The extent of the contribution can be partial
or sufficient based on Simon's concept of satisficing [12]. Correlation links describe
the side effects of the existence of one element to others. Dependency links describe
the inter-agent dependent relationships. Following are the graphical representations
for links.

Fig. 1 (a) Means-Ends; (b) Decomposition; (c) Dependency; (d) Contribution; (e) Correlation

An actor is an active entity that carries out actions to achieve its goals by
exercising know-how. It is an encapsulation of intentionally, rationality and autonomy
[16]. Graphically, an actor may optionally have a boundary, with intentional elements
inside. To model complex relationships among social actors, we further define the
concepts of agents, roles, and positions, each of which is an actor in a more
specialized sense.

An agent is an actor with concrete, physical manifestations, such as a human
individual. A role is an abstract characterization of the behavior of a social actor
within some specialized context or domain of endeavor. A position is intermediate in
abstraction between a role and an agent. It is a set of roles typically played by one
agent. Positions can cover roles, agents can occupy positions, and agents can also
play roles directly. The �INS� construct represents the instance-and-class relation. The
�ISA� construct expresses conceptual generalization/ specialization.

2.2 UCM

Use Case Maps (UCM)[1] provide a visual notation for scenarios, which is proposed
for describing and reasoning about large-grained behavior patterns in systems, as well
as the coupling of these patterns. The UCM notation employs scenario paths to
illustrate causal relationships among responsibilities. It provides an integrated view of
behavior and structure by allowing the superimposition of scenario paths on a
structure of abstract components. Scenarios in UCM can be structured and integrated

Designing Web-Based Systems in Social Context 41

incrementally. This enables reasoning about and detection of potentially undesirable
interactions between scenarios and components.

Basic elements of UCMs are start points, responsibilities, end points and
components. Start points are filled circles representing pre-conditions or triggering
causes. End points are bars representing post-conditions or resulting effects.
Responsibilities are crosses representing actions, tasks or functions to be performed.
Components are boxes representing entities or objects composing the system. Use
case Paths are wiggle lines that connect start points, responsibilities and end points. A
responsibility is said to be bound to a component when the cross is inside the
component. In this case, the component is responsible for performing the action, task,
or function represented by the responsibility.

When maps become too complex to be represented as a single UCM, a mechanism
for defining and structuring sub-maps becomes necessary. A top level UCM, referred
to as a root map, can include containers (called stubs) for sub-maps (called plug-ins).
Stubs are represented as diamonds. Stubs and plug-ins are used to solve the problems
of layering and scaling or the dynamic selection and switching of implementation
details.

Other notational elements include OR-join, OR-fork, AND-join, AND-fork, timer,
abort, failure point, and shared responsibilities. A detailed introduction to and
examples of these concepts can be found in [1].

Although UCM can represent system designs in a high-level way, the tradeoffs
between alternatives, and the intentional reasoning behind design decisions cannot be
explicitly shown.

In our approach, we couple GRL with UCM to provide support for reasoning about
scenarios by establishing correspondences between intentional GRL elements and
functional components and responsibilities in the scenario models of UCM. The
modelling of goals and scenarios is complementary and may aid in identifying further
goals and additional scenarios (and scenario fragments) important to system design,
thus contributing to the completeness and accuracy of requirements, as well as to the
quality of system design.

3 A Design Methodology Based on Goal and Scenario Modelling
To support early requirements engineering and high-level system design, our goal and
scenario modelling methodology aims to elicit, refine and operationalize customer-
specific requirements incrementally based on domain experts' knowledge, until a
satisfactory design is found. In this process, the objectives of a system have to be
clarified, the concrete behaviors and constraints of the system-to-be need to be
elaborated, and functions should be assigned to responsible units in that system.

The goal and agent oriented modelling in GRL focuses on answering the �why�
questions of requirements (such as �why does the system need to be redesigned?� or
�why is the interface designed as it is?�). The strength of GRL modelling is that it
puts the design in a broader context, it considers from different stakeholders'
viewpoint, and seeking for a balanced solution for all. Another advantage of GRL is
that not only functional requirements but also non-functional requirements (in other
words, the quality requirements) are dealt with. While goal-orientation can be highly
useful for requirements engineering, goals are sometimes too abstract to capture all at

42 Lin Liu and Eric Yu

once. Often they are discovered and become explicit only after a deeper
understanding of the system has been achieved.

Fig. 2 Goal and scenario modelling based system design process

In comparison, it is often possible to create operational scenarios about using the
hypothetical system relatively easily. In our approach, in parallel with goal-oriented
modelling, UCM scenarios are used to describe the behavioral features and designs of

Designing Web-Based Systems in Social Context 43

the intended system in some restricted usage contexts. The scenarios basically
answers the �what� questions such as �what should the system do to provide activity
centered electronic lessons?� or �what is the process of giving learner customized
tutorial?" Then, by raising �why� questions about these scenarios (e.g. �why let
learners lead the class instead of instructor?�) some implicit system goals are made
explicit.

The general steps of the process are illustrated in Figure 2. From the flow chart, we
can see that goal modelling and scenario modelling proceed in parallel, and they can
interact at certain points in each round. In the goal-oriented modelling process, first
actor dependency models are created, then the original business objectives and system
requirements are identified and operationalized, until some concrete design options
are obtained. These design options are explored UCM scenarios. On the UCM side,
business process or workflow, as well as responsibility assignment are visualized and
analyzed. On both sides, new requirements may become evident by asking why
questions, and be entered into the GRL model. When all scenarios are acceptable, and
all goals and softgoals are sufficiently fulfilled, the solution fragments for each
independent goal can be assembled to form a complete design for the intended
system. Scenarios illustrating the business processes or workflow are also obtained.

4 Case Study: Designing a Web-Based Training System

To illustrate the complementary application of GRL and UCM, we use the example of
designing a Web-Based Training (WBT) System [6]. The approach is applicable to
information systems in general, where there are conflicting goals and tradeoffs during
design. A case study in telecommunication domain is discussed in [10], which focuses
more on using goal and scenario together in software architectural design. Starting
from the identification of the major stakeholders of the domain, we explain in
sequence how to capture the original business objectives of the stakeholders, refine
and operationalize these objectives into applicable design alternatives with GRL and
how to visualize and concretize some solutions with UCM.

Step 1: Placing system design within its broader social context [15] (as in
Figure 3), the proposed modelling approach can help to address the following
questions systematically: Who are the major players in the business domain? What
kinds of relationships exist among them? What are the business objectives and criteria
of success for these players? In Figure 3, circles denote actors in the domain. If there
is a line above the actor�s name, the actor is an agent (or class of agent) with physical
existence. Actors with a line under their name are abstract roles that can be played by
agents.

The various dependency links in the model depict that in web-based training, the
course provider is a key player, who provides web-based education service to
learners. At the same time, he/she may depend on the support of web-technology
expert, course content provider and web training consultant. Apart from the three
instance level agents - "Mortgage Bankers Association of America", "Mortgage
Banker Jim", and "William Horton Consulting", the model represents the common
practices of e-training domain, and is a reusable domain knowledge model.

44 Lin Liu and Eric Yu

Fig. 3 Major players in E-Learning domain, agent dependency relationships, role-playing
relationships and agent classification

Step 2: After the main vendors are identified, we ask them what are their business
objectives, i.e., what they hope to accomplish for their organization, their sponsors, or
their financial backers. Assume that, in our specific e-training system, the course
provider is "Mortgage Bankers Association of America", who has two things in mind:

• Earn $200,000 by selling courses
• Reduce costs of training by 50% over the next year

They are represented as two softgoals in the initial GRL goal model in Figure 4.
Step 3: Explore the alternative business processes, methods or technologies used in

this industry or business. Evaluate how are these alternatives serving the specific
business objectives and the quality expectations of stakeholders.

Fig. 4 Business objectives represented as softgoals in original goal model

In Figure 5, we see how the two solutions �Web-Based Training� and
�Conventional Classroom Training� (represented as task nodes) contribute differently
to the goals. By using contribution links labelled with numbers or different symbolic
types, the model portrayed that WBT makes the goal of �Reduce Cost of Training by
50% Over Next Year� satisfiable, while conventional training method hurts the
fulfillment of this goal. Furthermore, the fulfilling of this goal helps the achievement

Designing Web-Based Systems in Social Context 45

of �Earn $200,000 By Selling Courses�. The result of this analysis suggests that WBT
may be a better option for current stakeholder. The upper part of this model (the two
softgoals and the help relationship between them) is only applicable to current system,
while the lower part (the structure showing the different resource consumption of the
two solutions) depicts generic domain knowledge reusable to all course providers of
web-based training system.

Fig. 5 Evaluate alternative technologies by comparison of resource consumption

Step 4: The advantages and disadvantages of the candidate solution are further
investigated by evaluating its contributions to other concerned softgoals. For each
disadvantage, mitigation plans are considered to complement the current solution.

The corresponding goal model (Figure 6) shows that the advantages of WBT
include �Costs Saved�, �Better Teaching Techniques Enabled�, �Collaborative
Learning Promoted�, and �Effective Learning Technologies Used�. Consequently, the
overall �Quality of Learning Improved�. It also contributions positively to
�Globalization�, �Flexibility�, both of which contribute positively (helps) to the
learner's satisfactory, as the right hand side of the model suggests. On the left side,
disadvantages are considered, e.g., the inherent �High Dropout Rates� and �More
Efforts� on �Conversion� and �Electronic Delivery� of WBT hurts the high level
goals of the stakeholder. These disadvantages can be mitigated by countermeasures
such as �Require Commitment�, which are represented tasks connected with a
negative correlation links (the dotted lines with arrows) to the unfavorable
contributions links in the graph.

46 Lin Liu and Eric Yu

Fig. 6 Advantages, disadvantages and mitigation measures connected with contribution links

GRL evaluates the satisfaction of softgoal via a qualitative labeling procedure [3].
The label of a high level node is computed from the label of low level nodes, and the
type of contribution from these nodes with possible user input. As one can hardly find
a perfect technology, or a perfect situation that a technology can apply to without any
change, a best solution, for many needs, may be a hybrid combining the best features
of different solutions. In this case, alternative solutions need to be further decomposed
and reassembled.

Fig. 7 Alternatives to implement essential sub-components and their impacts on actor
dependencies

Designing Web-Based Systems in Social Context 47

Step 5: Identify the alternative essential sub-processes/components to implement
the candidate solution. The model in Figure 7 elaborates the generic knowledge about
�Build a WBT System�. First of all, an e-course provider needs to �Choose e-Course
Pattern�, decide whether to use �Collaboration Mechanisms� and what mechanism to
use, and �Pick a Lesson Structure� for the course. As all of these sub-processes are
necessary steps for the finishing of the root task, they are represented as subgoals
connected to the root task with decomposition links.

Considering course patterns, the designers have two main options: instructor-led
course and learner-led course. In Figure 7, the two task nodes are connected to parent
goal with means-ends link. The dependency links pointing from these two tasks tell us
that the two solutions lead to quite different role designations � the teacher is the
driving force in instructor-led courses, but only acting as one of the optional learning
resources in learner-led training. Conversely, the dependencies pointing to the two
task nodes show that they have different capabilities and qualities to offer. Learner-
led training has �Lower Costs�. Learners are more �Flexible� on their schedule and
learning content, and they also appreciate the �Anonymity and Privacy�. In instructor-
led training, instructors can �Answer questions and solve problems promptly� (as they
arise), provide the authority needed by some learners for �Motivation�, and urge and
�Inspire� learners in a humanized way.

Similarly, existing collaboration mechanisms are connected to the goal �Determine
Collaboration Mechanisms� with means-ends links. Their impacts to social
dependencies and contributions to course provider�s business objectives will be
further explored. By making tradeoffs among the possible solutions, one can work out
an acceptable design.

Step 6: As the goal-oriented design proceeds, finer-grained analysis needs to be
conducted, hence the scenario-based notation comes into use. To elaborate the goal
�Pick Lesson Structure� in Figure 7, alternative structures are denoted in the GRL
model in Figure 8 as task nodes having different usage. For instance, �Classic
Tutorials� are good to teach basic knowledge and skills, as they provide a �Safe�,
�Reliable� and �Simple� way.

On the right side of Figure 8, each of the first five class structures is described as a
UCM scenario. WBT System and Learner, are represented as agent components
(rectangles), holders of responsibilities (small crosses along on the wiggle lines). The
first scenario means that, in a classic tutorial, after an introduction, learners read
through a series of sessions, each teaching a more difficult concept or skill. At the end
of the sequence (denoted with a use case path, the wiggle line with filled circle head,
and small bar tail) is a summary and a test. Examples and practice are also provided in
each session.

The second and fourth scenarios read similarly as the first one. In the third
scenario, the use case path branches for different learners if they choose different
subjects in the course. In the fifth scenario, the learner and the WBT system
collaborates on searching on the web for materials the learner is interested in, so they
are sharing responsibilities (denoted by adding a square �S� between the shared
responsibilities).

The last scenario uses GRL and UCM modelling constructors jointly, as neither
GRL nor UCM can describe this case on their own. In this scenario, both static and
dynamic features needs to be considered. Tasks and decomposition links are used to

48 Lin Liu and Eric Yu

describe the composition of the course materials, while the use case path is used to
capture the dynamic generation of course structure at runtime. This model suggests
that a close coupling of the two notations is needed for some applications.

In the case study above, the UCM model are rather simplistic because we have
only tackled the highest level of process design, and the process in e-training is not
very complicated. As we go down to a sufficiently detailed design, a UCM model
may be fairly complex, and more modelling constructs need to be used. Having
analyzed the benefits and tradeoffs of these structures, we can see that UCM is a
useful counterpart to GRL in the process from requirements to high-level design,
because it provides a concrete model of each design alternative. Based on the features
in such a model, new non-functional requirements may be detected and added to the
GRL model. At the same time, in the GRL model, new means to achieve the
functional requirements can always be explored and concretized in a UCM model.
Thus the above design process may iterate several rounds until an acceptable design is
made.

5 Related Work
The work of this paper builds on an original submission to ITU-T Study Group 10 on
the topic of User Requirements Notation (URN) [13]. The User Requirements
Notation (URN) is intended to allow software engineers to specify, review for
correctness, and possibly discover requirements for a proposed new system or for
extensions to an existing system. This standard shall specify functional requirements
in UCM and non-functional requirements in GRL as well as a set of relationships
between the GRL and UCM. The methodology introduced in this paper is a follow-up
step in relating the two modelling notations.

The combined use of goals and scenarios has been explored within requirements
engineering, primarily for eliciting, validating and documenting software
requirements. Van Lamsweerde and Willement studied the use of scenarios for
requirements elicitation and explored the process of inferring formal specifications of
goals and requirements from scenario descriptions in [8]. Though they treat goal
elaboration and scenario elaboration as intertwined processes, their work regarding
scenarios in [8] mainly focuses on goal elicitation. Our emphasis is the other way
around, i.e., how to use goal model (especially NFRs) to direct design based on
scenarios. The fundamental point is that both the goal-oriented modelling in GRL and
the scenario-based modelling in UCM run through requirements to design, and also
their interactions.

In the CREWS project, Rolland et al. have proposed the coupling of goals and
scenarios in requirements engineeing with CREWS-L�Ecritoire [11]. In CREWS-
L�Ecritoire, scenarios are used as a means to elicit requirements/goals of the system-
to-be. Both goals and scenarios are represented as structured text. The coupling of
goal and scenario could be considered as a �tight� coupling, as goals and scenarios are
structured into <Goal, Scenario> pairs, which are called �requirement chunks�. Their
work focuses mainly on the elicitation of functional requirements/goals. In GRL, both
functional and non-functional requirements are considered, with special attention
being paid to non-functional requirements. The modelling process involves both
requirements engineering activities and high-level architectural and process design.

Designing Web-Based Systems in Social Context 49

Fig. 8 Design alternatives represented as tasks, and their corresponding scenarios

The Software Architecture Analysis Method (SAAM) [7] is a scenario-based
method for evaluating architectures. It provides a means to characterize how well a
particular architectural design responds to the demands placed on it by a particular set

50 Lin Liu and Eric Yu

of scenarios. Based on the notion of context-based evaluation of quality attributes,
scenarios are used as a descriptive means of specifying and evaluating quality
attributes. SAAM scenarios are use-oriented scenarios, which are designed
specifically to evaluate certain quality attributes of architecture. The evaluations are
done using simulations or tests on a finished design. In GRL+UCM, scenarios are
more design-oriented, being concerned with refinement of system requirements. The
quality of the architectures corresponding to these scenarios is judged based on expert
knowledge as the design proceeds.

6 Conclusions and Future Work

Goals and scenarios complement each other not only in requirements engineering but
also during the incremental system design process. The combined use of GRL and
UCM enables the description of functional and non-functional requirements, abstract
requirements and concrete system models, intentional strategic design rationales and
non-intentional details of concurrent, temporal aspects of the future system.
The coupling of goals and scenarios in our current approach is loose, as goal and
scenario models can be constructed separately. One scenario may refer to more than
one goal, and vice versa. There are no rigid constraints on the requirements
engineering and design process. That is, the goal model and scenario model can be
developed in parallel simultaneously, interacting whenever there are design decisions
to be traded off, or new design alternatives need to be sought, or new business goals
or non-functional requirements are discovered. Tighter coupling may be investigated
in the future to provide more guidance and support.

GRL and UCM are vehicles for expressing knowledge. To make better use of them,
we need to acquire both software design knowledge and more knowledge of various
domains, and represent this knowledge in GRL and UCM structures. The
development of such repositories would enable the reuse of knowledge and provide
useful guidance for the design process.

Another ongoing work is to extend a formal goal-oriented requirements language,
Formal Tropos, so that the temporal properties shown in the scenarios can be
embeded into the goal models and validated by using model-checking techniques [4].

Acknowledgements

The work of this paper is motivated by an original submission to ITU-T study group
10 on the topic of User Requirements Notation (URN). The kind cooperation of
people from Mitel Networks, Nortel Networks and other institutions is gratefully
acknowledged. This work received financial support from NSERC, CITO, and Mitel
Networks.

Designing Web-Based Systems in Social Context 51

References

1. Buhr, R. J. A. Use Case Maps as Architectural Entities for Complex Systems. In:
Transactions on Software Engineering, IEEE, Vol. 24, No. 12, December 1998,
pp. 1131-1155.

2. Carroll, J. M. Introduction: The Scenario Perspective on System Development. In
Scenario-Based Design: Envisioning Work and Technology in System
Development, Ed Caroll, J. M. 1995. pp. 1-17.

3. Chung, L., Nixon, B. A., Yu, E.and Mylopoulos, J. Non-Functional Require-
ments in Software Engineering. Kluwer Academic Publishers, 2000.

4. Fuxman, A., Pistore, M., Mylopoulos, J., and Traverso, P. Model Checking Early
Requirements Specifications in Tropos. In Proceedings of the 5th IEEE
International Symposium on Requirements Engineering. August 2001. Toronto,
Canada. 174-181.

5. GRL web site. http://www.cs.toronto.edu/km/GRL/.
6. Horton, W. Designing Web-Based Training, John Wiley & Sons, 2000.
7. Kazman, R., Bass, L., Abowd, G. and Webb, M. SAAM: A Method for

Analyzing the Properties of Software Architectures. In Proceedings of the 16th

International Conference on Software Engineering. May 1994. Sorrento, Italy.
81-90.

8. Lamsweerde, A. V., Willemet, L. Inferring Declarative Requirements Specifi-
cations from Operational Scenarios. IEEE Transactions on Software Engineering,
Special Issue on Scenario Management, December 1998.

9. Lamsweerde, A. V. Requirements Engineering in the Year 00: A Research
Perspective. In the Proceedings of 22nd International Conference on Software
Engineering. Limerick, June 2000, ACM press.

10. Liu, L., Yu, E. From Requirements to Architectural Design - Using Goals and
Scenarios. ICSE-2001 Workshop: From Software Requirements to Architectures
(STRAW 2001) May 2001, Toronto, Canada. pp.22-30. Toronto, Canada, May
14, 2001. On-line at: http://www.cs.toronto.edu/~liu/.

11. Rolland, C., Grosz, G. and Kla, R. Experience With Goal-Scenario Coupling In
Requirements Engineering. In Proceedings of the IEEE International Symposium
on Requirements Engineering 1998. June 1999. Limerick, Ireland.

12. Simon, A. H. The Sciences of the Artificial, Second Edition. Cambridge, MA:
The MIT Press, 1981.

13. URN web site. http://www.usecasemaps.org/urn/.
14. Yu, E. and Mylopoulos, J. Why Goal-Oriented Requirements Engineering. In

Proceedings of the 4th International Workshop on Requirements Engineering:
Foundations of Software Quality. June 1998, Pisa, Italy. E. Dubois, A.L. Opdahl,
K. Pohl, eds. Presses Universitaires de Namur, 1998. pp. 15-22.

15. Yu, E. Agent-Oriented Modelling: Software Versus the World. In the
Proceedings Agent-Oriented Software Engineering AOSE-2001 Workshop.
LNCS 2222. On-line at: http://www.fis.utoronto.ca/faculty/yu.

16. Yu, E. Agent Orientation as a Modelling Paradigm. Wirtschaftsinformatik. 43(2)
April 2001. pp. 123-132.

	Introduction
	Modelling Notations
	GRL
	UCM

	A Design Methodology Based on Goal and Scenario Modelling
	Case Study: Designing a Web-Based Training System
	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

