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Abstract. “The Times They Are A-Changing” (B. Dylan), and with
them the structures, schemas, master data, etc. of data warehouses. For
the correct treatment of such changes in OLAP queries the orthogonal-
ity assumption of star schemas has to be abandoned. We propose the
COMET model which allows to represent not only changes of transac-
tion data, as usual in data warehouses, but also of schema, and structure
data. The COMET model can then be used as basis of OLAP tools which
are aware of structural changes and permit correct query results spanning
multiple periods and thus different versions of dimension data. In this
paper we present the COMET metamodel in detail with all necessary
integrity constraints and show how the intervals of structural stabilities
can be computed for all components of a data warehouse.

1 Introduction and Motivation

A data warehouse is an integrated, materialized view over several data sources
which can be conventionally structured or semi-structured data. Data Ware-
houses are building blocks for many information systems, in particular systems
supporting decision making, controlling, revision, customer relationship manage-
ment (CRM), etc.[HLV00]
Data warehouses are used for analyzing data by means of OLAP (On-Line

Analytical Processing) tools which provide sophisticated features for aggregat-
ing, analyzing, and comparing data and for discovering irregularities. Data ware-
houses differ from traditional databases in the following aspects: They are de-
signed and tuned for answering complex queries rather than for high throughput
of a mix of updating transactions, and they typically have a longer memory, i.e.,
they do not only contain the actual values (snapshot data) but also historical
data needed for the purposes outlined above. Historical data can be stored either
directly as in temporal databases or - more frequently - as already aggregated
and abstracted data.
The most popular architecture for data warehouses are multidimensional data

cubes, where transaction data (called cells, fact data or measures) are described
in terms of master data (also called dimension members) hierarchically organized
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in dimensions, where the facts of the upper levels are computed from the facts
of the lower levels by some consolidation functions.
This multi-dimensional view provides long term data that can be analyzed

along the time axis, whereas most OLTP (On-Line Transaction Processing) sys-
tems only supply snapshots of data at one point of time. Available OLAP systems
are therefore prepared to deal with changing measures, e. g. , changing profit or
turnover. Surprisingly, they are not able to deal with modifications in dimen-
sions, e. g. , if a new branch or division is established, although time is usually
explicitly represented as a dimension in data warehouses.
Consider the following example: Diagnoses for patients were represented in a

data warehouse using the “International Statistical Classification of Diseases and
Related Health Problems” (ICD) code. However, codes for diagnoses changed
from ICD Version 9 to ICD Version 10. For instance the code for “malignant
neoplasm of stomach” has changed from 151 in ICD-9 to C16 in ICD-10. Other
diagnoses were regrouped, e.g. “transient cerebral ischaemic attacks” has moved
from “Diseases of the circulatory system” to “Diseases of the nervous system”.
Even worse, the same code described different diagnoses in ICD-9 and ICD-10.
Other ICD-9 codes are a subset of ICD-10 codes, i.e. the granularity of codes
changed (in fact ICD-10 comprises about 8, 000 unique codes, over 3, 000 more
than ICD-9). The question is now: how can we get correct results for queries
like “did liver cancer increase over the last 5 years”. Without knowing the above
changes we will end up with incorrect results.
The reason for this disturbing property of current data warehouse technology

is the implicitly underlying assumption paradigmatically visible in the Star-
Schema for data warehouses that the dimensions are orthogonal. Orthogonality
with respect to the dimension time means the other dimensions ought to be
time-invariant. This silent assumption inhibits the proper treatment of changes in
dimension data. We have to be aware that the dimensions data, i.e. the structure,
the schema and the instances of the dimensions of a data warehouse may change
over time.
We propose an architecture for representing the changes of a data warehouse

schema and of the dimension data in a way that correct analysis of data is made
possible. Since it means recognizing that the shape and content of a star (-
schema) may change over time we call this a COMET Schema. In particular, we
propose a temporal data warehouse architecture which extends multidimensional
data warehouses to achieve the following features:

1. Representation of changes in master data, units and schema of data ware-
houses.

2. Identification of structure versions as changeless periods.
3. Provision of mappings of transaction data between structure versions.
4. Supporting queries which touch data spanning several structural versions.
5. Analysis of data according to new and old versions of the structure

In this paper we focus on the first two aspects. We propose a metamodel
for data warehouses which is a temporal database of all components of a data
warehouse: schema, master date (also called dimension members), hierarchical
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relationships etc. The data of this model is the necessary basis for achieving the
other goals.

Related Work. Our concept builds on the techniques developed in tempo-
ral databases [JD98], schema evolution and schema versioning of databases
[FGM00]. However, all these approaches are not designed for analytical queries
like data warehouses. Therefore, extensions and adaptions for the particularities
of data warehouses are necessary.
We first presented the problem and a concept for solution for simple data

warehouses by transformation functions in [EK01]. The work presented here
extends this approach for fact constellation schemas and provides a metamodel
together with integrity constraints which covers changes in a much more detailed
way, i.e., on both the schema and the instance level.
Other approaches for temporal data warehouses are [Yan01, BSH99, Vai01,

CS99]. They are more (e.g, [Yan01]) or less (e.g., [CS99]) formal. To our best
knowledge, only [Vai01] deals with both schema and instance modifications. How-
ever, the approach proposed in [Vai01] supports only schema/instance evolution
and no versioning. Furthermore, none of the mentioned papers supports a mech-
anism to introduce relationships between instances in different structural ver-
sions, i.e., transformation functions for instances between different versions of
structure. Hence, none of these approaches supports correct results for queries
spanning multiple versions of structure.

Outline. The rest of the paper is organized as follows: In section 2 we present
the concept of our temporal data warehouse approach. In section 3 we present
our COMET model for temporal data warehouses. In section 4 we show how
we can compute the changeless time intervals for a given dimension member. A
prototype implementation of this model is sketched in section 5. Finally we draw
some conclusions.

2 Temporal Multidimensional Systems

Our concept extends the well known data warehouse approach with aspects of
temporal databases and schema versioning. The changes we have to cope with are
not only schema changes, but also changes in the dimension data (also called mas-
ter data). The dimension Time ensures to keep track of the history of transaction
data, i.e., measures. Nevertheless, for correct query results after modifications
of dimension data we have to track modifications of these data [EK01].
Therefore, we extended the well known data warehouse approach with the

following aspects [EK01]:

• Temporal extension: dimension data has to be time stamped in order to
represent their valid time. The valid time represents the time when a “fact
is true in the modeled reality” [JD98].
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• Structure versions: by providing time stamps for dimension data the need
arises that our system is able to cope with different versions of structure.
• Transformation functions: Our system has to support functions to trans-
form data from one structure or schema version into another.

All dimension members and all hierarchical links between these dimension
members have to be time stamped with a time interval [Ts, Te] representing the
valid time where Ts is the beginning of the valid time, Te is the end of the
valid time and Te ≥ Ts. Furthermore, we timestamp all schema definitions, i.e.
dimensions, categories and their hierarchical relations, in order to keep track of
all modifications of the data warehouse schema [EKM01].
If we represent all time stamps of all modifications within our data warehouse

on a linear time axis the interval between two succeeding time stamps on this
axis represents a structure version. This means that a structure version is a view
on a temporal data warehouse valid for a given time period [Ts, Te]. Therefore,
within a structure version the structure of dimension data on both the schema
level and on the instance level is stable. Information about structure versions
can be gained from our temporal data warehouse using temporal projection and
temporal selection [JD98].
The data returned by a query may originate in several (different) structure

versions. Hence, it is necessary to check whether the data needed for answering
the query (the relevant sub-cube) was affected by structural changes. This is
important since not all structural changes affect all data. If data was affected by
structural changes , it is necessary to provide transformation functions mapping
data from one structure version to a different structure version.
Using transformation functions enables us to assure that a successful analysis

can be made even though there might be changes in the dimension data and
dimension structure. The combination of structure versions and transformation
functions enables the user to analyze data with dimension data and dimension
structures “backward” or “forward” in the time axis.

3 The COMET Model

In this section we will specify our generic temporal data warehouse model
COMET. The COMET model allows to register all changes of schema and struc-
ture of data warehouses.

3.1 Goals and Features

In contrast to the well known modelling techniques for data warehouses, e.g.
the Star Schema modelling technique, our COMET Model allows to model data
warehouses that do evolve over time.
The COMET model offers the following features for the definition of data

warehouses:
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Fig. 1. The COMET Model (using UML notation)

• Temporal Data Warehousing: The COMET model enables us to keep
track of modifications on both the instance level and the schema level.
– Instance Level: Instances, i.e. dimension members may change over time.
For example new products may become a part of the product port-folio
of the company, divisions may split up into several subdivisions or the
way how to compute facts may change over time.

– Schema Level: The schema of the defined data warehouse may change
over time. For example dimensions may be deleted or categories may be
inserted.
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• Fact-Constellation Schemas: Frequently it is not possible that all mea-
sures and dimensions can be captured in a single schema. Usually, a data
warehouse consists of several fact tables described by several (shared or non-
shared) dimensions. The COMET model allows to set up Fact-Constellation
Schemas (also known as Galaxy Schemas) as proposed for example in [AV98].
Thus, it allows shared dimensions, e.g., a dimension Products may be part
of several cubes.
• Proportional Aggregation: Our model supports correct aggregation even
if dimension members are not disjunct. This means that one dimension mem-
ber may belong to several “parents”, e.g., the calendar week number 5 (which
is a dimension member of the categoryWeeks) of 2002 belongs to the months
January and February where four days or 4/7 belong to January and three
days or 3/7 belong to February. Our model supports proportional aggrega-
tion to enable correct aggregation of non-disjunct dimension members.
• Generic Dimensionality: In contrast to the different OLAP models pro-
posed so far our model fulfills E.F. Codd’s sixth OLAP rule of “Generic
Dimensionality” [CCS93]. He claims that each dimension must be equiva-
lent in both its structure and operational capabilities.
E.g., we treat the dimension Time that is usually a part of a data warehouse
like any other dimension. Furthermore, we represent the facts of a data
warehouse as a dimension Facts. Although there are discussions about Codd’s
sixth OLAP rule, it allows to apply the whole functionality of our COMET
approach even to the dimension Time or Facts. For example, the dimension
Time can become finer or coarser, i.e. we can insert or delete a new leaf
category(say days instead of weeks). Obviously we have to register such
changes and to transform values back and forth.

3.2 Elements of the COMET Model

The core of the COMET model are the classes to represent Cubes (class Cube-
Version), Dimensions (class Dimension), Categories (class Category) and Di-
mension Members (class Member). As represented by the corresponding multi-
plicities in Fig. 1, a cube consists of several dimensions and each dimension
consists of several categories.
Categories are represented in the class Category and are in a hierarchical

order. E.g., the categories “Country”, “State”, “Region” and “City” are in the
following order Country ← State, Country ← Region, State ← City and
Region← City were X ← Y means Y rolls-up to X . This is represented by the
recursive association of the class Category.
The same applies for dimension members which are also in a hierarchial

order represented by the recursive association of the class Member. For example
the dimension members “USA”, “Texas”, “South” and “Dallas” are in the order
USA← Texas, USA← South, Texas← Dallas and South← Texas.
As both hierarchical relations between categories and between dimension

members may change over time we have to represent the valid time of these
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relations with timestamp represented in the classes CategoryHierarchy and
MemberHierarchy.
Furthermore, we have to represent how data may be aggregated. We repre-

sent this with the attribute cons func in the class MemberHierarchy. Moreover,
this attributes allows the representation of proportional aggregation functions
for non-disjunct members. For example, an salesman may be assigned to two
divisions Div1 and Div2. The amount of sales attained by this salesman may
be assigned with the factors 40% and 60% to the divisions Div1 and Div2.
Another important aspect that the COMET model has to fulfill is that the

relation between dimensions and categories may change over time. The same
applies for the relation between categories and dimension members. This is rep-
resented with the time stamps (attributes ts and te) in the association classes
Dim/Cat and Cat/Member.
We have to deal with different versions of a cube due to the fact that the

schema and/or instances of a cube may change over time and the fact that the
COMET model supports not only schema evolution but schema versioning. Each
version of a cube may have a preceding and a succeeding version and each version
is valid for a given valid time. We represent this with the the class CubeVersion
and the recursive relation for this class.
The COMET model supports transformation of data from one structure

and/or schema version into the (immediate) succeeding or preceding version.
We represent these transformation functions within the class Trans.Function.
Each transformation function transforms several cell data entries from exactly
one version into its preceding or succeeding version. Moreover, several transfor-
mation functions may be defined to transform a cell value from one version into
its preceding and succeeding version.
Transformation functions are only allowed between contiguous cube version

(two versions Vi and Vk are contiguous if Ts,i = Te,k + Q or if Ts,k = Te,i + Q
where Q is the defined chronon of the data warehouse). As described in section 2
we can represent these transformation functions as matrices. In order to increase
query performance, we are able to automatically compute transformation matri-
ces between two non-contiguous version by multiplying all corresponding trans-
formation matrices. Consider for example two transformation matrices M1→2

to transform data from version V1 into version V2 and M2→3 to transform data
from version V2 into version V3. By multiplying these transformation matrices we
can compute a transformation function M1→3 to transform data directly from
version V1 into V3.
As described above the COMET model allows us to assign different dimen-

sions to a cube. On the other hand each dimension may be assigned to several
cubes in order to allow fact-constellation schemas. Furthermore, if a dimension is
assigned to more then one cube it may consist of a different structure, i.e. a dif-
ferent set of categories and their hierarchical assignments, in each of these cubes.
This is represented by the tertiary association between the classes CubeVersion,
Dimension and CategoryHierarchy.
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Furthermore, each dimension member may have different User Defined At-
tributes (UDA), e.g. the products stored in the data warehouse may have a
“Color” and a “Weight”. Hence, UDAs are attributes describing a dimension
member. In contrast to dimensions UDAs do not allow the appliance of OLAP
functionality, e.g. Drill-Down, Roll-Up, Slice, etc.
COMET allows the definition of UDAs for each defined Dimension or Cate-

gory. The UDAs defined for a certain dimension define the UDAs applicable
for all dimension members assigned to this dimension (all dimension members
that are assigned to a category which is assigned to the specific dimension). The
UDAs defined for a certain category define the UDAs applicable for all dimension
members assigned to this category. E.g., one may want to assign a “Color” to
each product and hence define this UDA through the dimension Products, but
only products that do belong to the category “Video Cassette Recorder” have a
UDA “Number of Heads”. The attributes ts and te in the class UDAs represent
the valid time of a UDA.
The association class UDAValues specifies the value of a specific UDA for a

specific dimension member. The attributes ts and te in the class UDA Values
represent the valid time of a value defined for a specific UDA and a specific
dimension member.
The measures of the defined data warehouse are stored in the class CellData.

A measure, i.e., a cell in a n-dimensional data cube contains a value and is
referenced by a vector ν = (DMD1 , ..., DMDN ) where DMDi is a dimension
member DM that is assigned to a dimension Di [Kur99].
Due to the temporal extensions that are a part of the COMET model a lot

of integrity constraints have to be taken into consideration. In the next section,
we will discuss these constraints in detail.

3.3 Integrity Constraints

We will now discuss the constraints that have to be fulfilled in order to guaranty
the integrity of our temporal data warehouse model.
A basic constraint is that for all time stamps [Ts, Te] in the COMET model

Ts ≤ Te has to be true, i.e., a temporal component may not end before it starts.
A temporal component is an object of any class that has attributes to represent
the valid time (attributes ts and te), e.g., a dimension, a category, a dimension-
member and so on.
In order to give a formal description of the integrity constraints we introduce

the predicates overlaps and exists in as follows:

• overlaps(Ci, Cj): describes that the valid time of temporal component Ci

overlaps the valid time of temporal component Cj and vice-versa.
overlaps(Ci, Cj) is true if ∃t • (TCi

s ≤ t ≤ TCi
e ) ∧ (TCj

s ≤ t ≤ T
Cj
e ), i.e. it

is fulfilled, if there exists at least one point in time where both temporal
components are valid.
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• exists in(Ci, Cj): describes that the time interval representing the valid time
of temporal component Ci is a subset of the time interval representing the
valid time of temporal component Cj .
exists in(Ci, Cj) is true if ∀t ∈ [TCi

s , TCi
e ] • t ∈ [TCj

s , T
Cj
e ].

Furthermore, we will use the notation A.X as a reference to the componentX
of the assignment A. An assignment may be an object of the classes Dim/Cat,
Cat/Member, CubeAssignment, CategoryHierarchy or MemberHierarchy.

• IC 1: A dimension D can be assigned to a Cube C if the valid time intervals
of both components are overlapping. Furthermore, both components have to be
valid within each timepoint of the valid time of the assignment:

∀A ∈ CubeAssignment : exists in(A,D) ∧ exists in(A,C) (1)

• IC 2: Within the valid time interval of an assignment AC .D between a
dimension D and a cube C the dimension D must not be assigned more than
once to this cube:

∀Dx, Dy ∈ {AC .D1, ...A
C .DN} : Dx = Dy → ¬overlaps(AC .Dx, A

C .Dy) (2)

• IC 3: A category G can be assigned to a dimension D if the valid time
intervals of both components are overlapping. Furthermore, both components
have to be valid within each timepoint of the valid time of the assignment:

∀A ∈ Dim/Cat : exists in(A,G) ∧ exists in(A,D) (3)

• IC 4: Within the valid time interval of an assignment AD.G between a
category G and a dimension D the category G must not be assigned more than
once to this dimension:

∀Gx, Gy ∈ {AD.G1, ...A
D.GN} : Gx = Gy → ¬overlaps(AD.Gx, A

D.Gy) (4)

• IC 5: A dimension memberM can be assigned to a categoryG if the valid time
intervals of both components are overlapping. Furthermore, both components
have to be valid within each timepoint of the valid time of the assignment:

∀A ∈ Cat/Member : exists in(A,M) ∧ exists in(A,G) (5)

• IC 6: Within the valid time interval of an assignment AG.M between a
dimension member M and a category G the dimension member M must not be
assigned more than once to this category:

∀Mx,My ∈ {AG.M1, ...A
G.MN} : (6)

Mx =My → ¬overlaps(AG.Mx, A
G.My)

• IC 7: Furthermore, within the valid time interval of an assignment A be-
tween a dimension member M and a category G - were G is again assigned to
a dimension D1 - the dimension member M must not be assigned to another
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category assigned to a different dimension D2 were D1 and D2 are assigned to
the same cube C:

∀ (M,Gi), (M,Gj) ∈ Cat/Member (7)

∀t : T (M,Gi)
s ≤ t ≤ T (M,Gi)

e ∧ T (M,Gj)
s ≤ t ≤ T (M,Gj)

e •
Gi = Gj ∧
(((Gj , D) ∈ Dim/Cat ∧ (Gi, D) ∈ Dim/Cat) ∨
((Gj , D1) ∈ Dim/Cat ∧ (Gi, D2) ∈ Dim/Cat ∧
(D1, C1) ∈ CubeAssignment ∧ (D2, C2) ∈ CubeAssignment ∧
C1 = C2))

Please note that this constraint does allow a dimension member to be as-
signed to different categories of the same dimension, e.g. “Diet-Cola” may be
part of “Diet-Drinks” and “Soft-Drinks” where both “Diet-Drinks” and “Soft-
Drinks” are part of dimension “Products”.

• IC 8: The assignment between two categories G1 and G2 as ChildCat and
ParentCat within the class CategoryHierarchy is allowed if the valid time in-
tervals of both categories are overlapping. Furthermore, both categories have to
be valid within each timepoint of the valid time of the assignment:

∀A ∈ CategoryHierarchy : exists in(A,G1) ∧ exists in(A,G2) (8)

• IC 9: An assignment between a dimension D and two categories G1 and G2

(CategoryHierarchy) may be a part of the relation CubeAssignment if both
categories are assigned to the dimension D:

∀ A ∈ CubeAssignment : ∃y1, y2 ∈ Dim/Cat • (9)
y1.D = A.D ∧ y2.D = A.D ∧
(y1.G, y2.G) = A.(G1, G2)

• IC 10: Furthermore, all components (a dimension D, an assignment AG
between two categories and a CubeVersion C) that are a part of a relation
CubeAssignment have to exist during the valid time of the relation:

∀ A ∈ CubeAssignment : exists in(A.D,A) ∧ exists in(A.AG,A) ∧ (10)
exists in(A.C,A)

• IC 11: The assignment A between two categories as ChildCat and ParentCat
is allowed if there does not already exist an assignment for the time interval of
the assignment A:

∀Ai, Aj ∈ CategoryHierarchy : (Ai.G,D) = (Aj .G,D)→ Ai = Aj (11)

• IC 12: There must not be any cycles within the assignments in the class
CategoryHierarchy:
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childsC(P ) = {x ∈ Category : ∃A ∈ CategoryHierarchy •A = (P, x) ∪ (12)
childsC(x)}

�A ∈ CategoryHierarchy : (A.P,A.x) ∧ P ∈ childsC(P ) (13)

• IC 13: The assignment between two dimension members as ChildMember and
ParentMember within the class MemberHierarchy is allowed if both membersMx

and My are assigned to the same category G for each timepoint t within the
time interval representing the valid time of the assignment. Furthermore, both
components (ChildMember and ParentMember) have to be valid within the time
interval of the assignment:

∀ A ∈MemberHierarchy : (A.Mx, G) ∈ Cat/Member ∧ (14)
G ∈ Category ∧
(A.My, G) ∈ Cat/Member ∧
exists in(A, (A.Mx, G)) ∧
exists in(A, (A.My, G))

• IC 14: The assignment A between two dimension members as ChildMember
and ParentMember is allowed if there does not already exist an assignment for
the time interval of the assignment A:

∀Ai, Aj ∈MemberHierarchy : (Ai.M,G) = (Aj .M,G)→ Ai = Aj (15)

• IC 15: An assignment A between two dimension members M1 and M2

as MemberHierarchy is allowed if there exists an assignment between two cate-
gories G1 and G2 as CategoryHierarchy and if both components of the
MemberHierarchyM1 andM2 are assigned to both components of the Category-
Hierarchy G1 and G2 such thatM1 is assigned to G1 andM2 is assigned to G2:

∀ A ∈MemberHierarchy : (16)
∃ACH ∈ CategoryHierarchy∧ ∃B1, B2 ∈ Cat/Member •
A.M1 = B1.M ∧A.M2 = B2.M ∧
ACH .G1 = B1.G ∧ACH .G2 = B2.G

• IC 16: There must not be any cycles within the assignments in the class
MemberHierarchy:

childsM(P ) = {x ∈Member : ∃A ∈MemberHierarchy •A = (P, x) ∪ (17)
childsM(x)}

�A ∈ MemberHierarchy : (A.P,A.x) ∧ P ∈ childsM(P ) (18)

• IC 17: An assignment between an UDA U and a category G is allowed, if
the valid time of the UDA is within the valid time of the category:
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∀G ∈ Category : exists in(G.UDA,G) (19)

• IC 18: An assignment between an UDA U and a dimension D is allowed, if
the valid time of the UDA is within the valid time of the dimension:

∀D ∈ Dimension : exists in(D.UDA,D) (20)

• IC 19: An assignment between an UDA U and a dimension member M
within UDA Values is allowed, if the valid time of the UDA value is within the
valid time of both components:

∀A ∈ UDAValues : exists in(A,M) ∧ exists in(A,U) (21)

• IC 20: Furthermore, as assignment between an UDA U and a dimension
memberM within UDA Values is allowed, if the UDA is assigned to a categoryG
and the dimension member is assigned to this category, or if the UDA is assigned
to a dimension D and the dimension member is assigned to this dimension:

∀x ∈ UDAValues : (22)
(∃y ∈ Cat/Member •

y.M = x.M ∧ y.G = x.U.G) ∨
(∃y ∈ Dim/Cat •
∃z ∈ Cat/Member •

z.G = y.G ∧ z.M = x.M ∧ y.D = x.U.D)

• IC 21: The number of dimension members used to reference a CellData
must be equal to the number of dimensions assigned to the cube: Let M =
{M1, ...,Mn} be the set of dimension members used to reference a cell V and
let D = {D1, ..., Dm} be the set of dimensions assigned to a cube C. V may be
assigned to C if n = m.

• IC 22: A transformation function Trans.Functionmay be used to transform
cell values between two contiguous versions of a cube CV1 and CV2 (Q is the
defined chronon of the data warehouse):

∀x ∈ Trans.Function• (x.CV1.Te +Q = x.CV2.Ts) ∨ (23)
(x.CV1.Ts −Q = x.CV2.Te)

Transformation functions between non-contiguous version can be automat-
ically computed by multiplying the given transformation matrices as proposed
in [EK01].

• IC 23: A transformation function Trans.Functionmay be applied to lower-
level dimension members only (dimension members without successors):

∀x ∈ Trans.Function : (24)
�A ∈ MemberHierarchy •A(x.Member, )
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Legend:

Fig. 2. Stable intervals sets

4 Stable Intervals

In this section, we will discuss an important aspect of our COMET approach –
called Stable Intervals Sets – that enables us to increase query performance of
queries spanning multiple structure versions.
The basic idea is that we want to compute the largest stable interval for

upper-level dimension members (a dimension member with at least one succes-
sor). A stable interval of an upper-level dimension member DM is an interval in
which no modification to another component does affect query results for DM .
As described in section 2 each dimension member and each hierarchical re-

lation between dimension members has a timestamp that represents the valid
time of the corresponding object. Nevertheless, this does not mean that changes
“beneath” an upper-level dimension member do not affect the data computed
for this dimension member during the given time interval of the valid time.
Consider for example a temporal data warehouse that stores information

about a faculty. The faculty did not change but the departments within the
faculty, the staff, etc. might have changed. Hence, if a query retrieves data for
the faculty within the valid time interval of the faculty it still might be affected
by wrong computations due to structural evolution of departments, etc. On the
other hand, we do not want to perform transformations for all queries, with
several structure versions within the relevant time interval of the query, if these
structure versions stem from changes in parts from the data warehouse which
are not relevant for the given query.
The stable intervals set of a dimension member is now a set of time intervals

where for each interval the structures influencing (derived) cell-data for this
dimension member did not change. So if a query stays with a stable interval,
there is no need to transform data.
More formal we can define the following: let GDM = (N , E) be a directed

graph that represents all dimension members their hierarchical relations between
dimension members consolidating in a dimension member DM where N is the
set of all dimension members (=nodes) and E is the set of all hierarchial relations
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REM: O.sis = stable intervals set for object O

REM: DM = Dimension Member that changed

REM: T = Timestamp of Dimension Member DM

REM: P = Set of all parents of DM

ComputeSIS(↓T:TimeStamp, ↓DM: Member)

{

P = {x ∈ Members : ∃y ∈ MemberHierarchy • y(x,DM)}
FOR ALL p ∈ P :

IF @y ∈ p.sis • y.ts = T.ts ∨ y.te = T.ts

I = y ∈ p.sis • y.ts < T.ts ∧ y.te > T.ts

p.sis = p.sis ∪ [T.ts, I.te]
I.te =T.ts − 1

ENDIF

IF @y ∈ p.sis • y.ts = T.te ∨ y.te = T.te

I = y ∈ p.sis • y.ts < T.te ∧ y.te > T.te

p.sis = p.sis ∪ [T.te, I.te]
I.te =T.te − 1

ENDIF

ComputeSIS(T, p)

ENDFOR

}

Fig. 3. The ComputeSIS algorithm

between those dimension members (=edges). Both N and E are defined through
the class MemberHierarchy of our COMET model.
The Stable Intervals Set for leaf dimension members (a dimension member

without successors) is equivalent to the valid time defined for this member. The
Stable Intervals Set of a non-leaf dimension member DM changes with each
modification within the graph GDM as defined below. In the COMET model the
Stable Intervals Set is represented with the attribute SIS of the class Member.
Figure 2 shows how we represent the set of stable intervals within dimension

members. For instance, the set of stable intervals of the dimension member B
is derived from the valid time of all succeeding dimension members (C and D)
and hierarchical relations (B ← C and B ← D).
Figure 3 sketches the algorithm to propagate changes of dimension members

that affect the Stable Intervals Set. The algorithm to propagate changes of hier-
archical relations (Parent← Child) is similar to the proposed algorithm except
that it first computes the Stable Intervals Set for the Parent and then calls
ComputeSIS(T , P ) where T is the timestamp of the hierarchical relation and P
is the Parent.
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Fig. 4. The COMET administration tool

5 Implementation

In [EKM01] we discussed different implementation architectures. We are cur-
rently prototypically implementing a temporal data warehouse based on our
COMET model with the indirect approach [EKM01].
The COMET prototype consists of three parts: the Temporal Data Ware-

house (holds the required information about structure versions, cell data and
transformation functions) implemented in Oracle 8. 1, the Transformer (maps
all required cell values from all required structure versions into the chosen base
structure version by using the defined transformation functions) and the Ad-
ministration Tool (allows to define the schema and structure of a temporal data
warehouse, to modify schema and structure and to import cell data into the
temporal data warehouse).
In Fig. 4 we show a screen shot of the main window of the Administration

Tool. This window shows a cube and all assigned components (dimensions, cate-
gories and dimension members). The administrator may select a specific version
of this cube by selecting the corresponding structure version in the selection list
SV (top right).
The main idea of the indirect approach is that the Transformer generates a

data mart for each structure version needed by the user. In most cases, this will
only be the actual structure version. Each data mart consists of all fact data that
are valid for the same time interval as the corresponding structure version plus it
consists of all fact data that could be transformed by the defined transformation
functions from all other structure versions.
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Therefore, the user defines his/her base structure version by selecting a spe-
cific data mart. This base structure version determines which structure has to
be used for the analysis. In most cases this will be the current structure version.
However, in some cases, e.g. for auditing purposes, it will be of interest to use
an “older” structure version.
We are implementing this approach with Oracle 8.1i as basis for our Temporal

Data Warehouse and Hyperion Essbase (Release 6) as front end that holds our
data marts. As we use a standard OLAP database for each data mart, the main
advantage of the indirect approach is that each data mart offers the whole OLAP
functionality, e.g., drill-down, roll-up, slice, dice, etc.

6 Conclusions

Unfortunately, many of our information systems are ill prepared for change and,
surprisingly, multidimensional data warehouse systems are among those. Natu-
rally, it is vital for the correctness of results of OLAP queries that modifications
of dimension data is correctly taken into account. E.g., when the economic fig-
ures of European countries over the last 20 years are compared on a country
level, it is essential to be aware of the re-unification of Germany, the separation
of Czechoslovakia, etc.
Business structures and even structures in public administration are nowa-

days subject to highly direct changes. Comparisons of data over several periods,
computation of trends, computation of benchmark values from data of previous
periods have the necessity to correctly and adequately treat changes in dimension
data. Otherwise we face meaningless figures and wrong conclusions triggering
bad decisions. From our experience we could cite too many such cases.
The COMET model we propose in this paper allows to register all changes

of schema and structure of data warehouses. The innovation lies in the complete
registration and temporal attribution of all elements of a data warehouse. This
is then the basis for OLAP tools, transformation operations, the derivation of
(correctly) star shaped data marts etc. with the goal to reduce incorrect OLAP
results.
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