
Supporting the Deployment

of Object-Oriented Frameworks

Daqing Hou, H. James Hoover, and Eleni Stroulia

Department of Computing Science, University of Alberta
Edmonton, Alberta Canada T6G 2E8

{daqing,hoover,stroulia}@cs.ualberta.ca

Abstract. Although they are intended to support and encourage reuse,
Object-Oriented application frameworks are difficult to use. The archi-
tecture and implementation details of frameworks, because of their size
and complexity, are rarely fully understood by the developers that use
them. Instead, developers must somehow learn just enough about the
parts of the framework required for their task. Faced with a framework
problem, the developer will ask for assistance or muddle through using
a trial-and-error approach. In many cases, they will not learn what the
framework designer had in mind as the proper solution to their problem,
and thus misuse the framework.
This paper is a preliminary look at the kinds of problems faced by frame-
work users, and how the framework developer can assist in mitigating
these problems. Our goal is to develop mechanisms for detecting when
the framework user has violated the conditions of use intended by the
framework developer, using static analysis of structure, and dynamic
analysis of behavior.

Keywords Object-Oriented frameworks, framework deployment, static
analysis, model checking

1 Introduction

Object-Oriented frameworks are composed of collaborating classes that provide
standard solutions to a family of problems commonly encountered among appli-
cations in some domain. Framework builders provide mechanisms, the variation
points, that enable developers to use the framework to construct their specific
application.

While a deep understanding of general framework based development [4]
remains a research problem, there are many frameworks used for production de-
velopment. Having chosen a framework, how does the development team address
the problem of correct usage of the chosen framework?

The size and complexity of frameworks, and their notorious lack of design and
intended-usage documentation make framework-based development a learning-
intensive and error-prone process. It is quite common for framework users to
misunderstand the relation between their application and how the framework

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 151–166, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

152 Daqing Hou et al.

designer intended the framework to be used, resulting in overly complex solu-
tions, or subtle bugs.

Experience with using industrial strength frameworks has shown that in or-
der for frameworks users to understand and properly use a framework, precise,
concise, and complete documentation is needed. However, textual and diagram-
matic documents are informal and in general, we do not know yet how to judge
whether a programmer has understood a document [7]. Other conventional ap-
proaches such as framework design review, manual code inspection, and testing
can also be helpful.

Frameworks are supposed to capture commonality in a way that makes reuse
easier. But applying most current frameworks requires a nontrivial body of
knowledge about the framework on the part of users. Lack of understanding
makes debugging difficult because it can be hard to follow a thread of execu-
tion that is mostly buried in the framework code. Testing is similarly difficult,
since it often requires a fundamental understanding of the architecture of the
framework.

For the framework user with shallow knowledge, something more akin to
type-checking is desirable. That is, the framework developer takes on the burden
of describing how to properly use the framework, and then compliance by the
framework user is checked mechanically. Although correct type matching is no
guarantee that one has called a function properly, it does catch many common
mistakes. We would like something similar to hold for framework use.

We use the term framework constraint to denote the knowledge that a user
needs to know in order to use a framework properly. The idea is to formalize the
framework constraints on hot spots and check whether a framework instantia-
tion satisfies these constraints. Our goals are to create specification languages
and tools that enable framework builders to encode their knowledge about the
framework and use the knowledge to check user applications.

We investigate the feasibility of two technologies, namely, static analysis and
model checking, to the problem. Along that line, framework constraints can be
categorized into structural constraints and behavioral constraints. Structural con-
straints can be evaluated by parsing and analyzing source code while behavioral
constraints could be dealt with by model checking.

The rest of section 1 formulates some related framework concepts. After
that, section 2 analyzes the framework use problems and causes. The bulk of
the paper, from section 3 to 5 describes our proposed solution and experience:
Section 3 describes a preliminary version of our specification language FCL for
structural constraints. Section 4 gives a specific example for FCL. Section 5
describes our experience with using SPIN/Promela to model check frameworks.
Finally, section 6 concludes the paper, summarizing the identified problems and
some future work.

1.1 Related Concepts of OO Frameworks

For the clarity of presentation, this subsection defines the following terms: frame-
work builder, framework user, framework architecture, framework classes, inter-

Supporting the Deployment of Object-Oriented Frameworks 153

nal classes, framework derived classes, framework parts, application classes, hot
spots, framework instantiation, framework instance/application, and framework
constraints.

People who build the framework are referred to as framework builders and
people who use the framework are called framework users. When no confusion
occurs, we may also use builders and users instead. The process of building appli-
cations based on frameworks is called framework instantiation and the generated
application is referred to as framework instance or simply application when ap-
propriate.

Framework architecture (or architecture) defines the typical software archi-
tecture for problems in the domain. It comprises both abstract and concrete
classes, which can be collectively referred as framework classes. Some framework
classes are internal classes and are not intended to be visible to framework users.
Only concrete framework classes can be internal. In most cases, framework users
create additional classes by subclassing abstract classes. We call these additional
classes framework derived classes and the abstract classes hot spots [14] or varia-
tion points. Sometimes, framework builders can predict potential subclasses and
provide them as accompanying parts of the framework. For example, in MFC [15]
(Microsoft Foundation Classes), class CCtrlView has the predefined concrete
subclasses CEditView, CListView, CRichEditView, and CTreeView [17]. These
additional classes capture common implementations of the framework architec-
ture and are referred to as framework parts. For those parts of the application
design not covered by frameworks, new classes need to be developed to fulfill
the actual applications requirements. We refer to these new classes as applica-
tion classes. Collectively, framework derived classes and application classes are
sometimes called a framework extension.

Thus, in the context of frameworks, an application can be composed of one
or more framework architectures, framework parts of each framework (if any),
framework derived classes, and application classes.

Framework constraints (see section 3) are rules and conventions for a frame-
work to which any framework extension has to conform. Quite often, these rules
and constraints are either implicit in or missing from existing documentation.
Making them explicit and checkable should help framework users verify that
they have used the framework as intended.

2 Problems Faced by Framework Users

Any tools that purport to support framework use should initially focus on the
most common problems. What kinds of problems do framework users face in
practice, and is it possible to mitigate them? Although frameworks vary in size
and complexity, users face the same kinds of problems. We began by examining
two frameworks, Microsoft’s MFC and our own CSF (Client/Server Framework).
MFC is probably the most successful industrial foundation framework. CSF was
developed to as part of our research on frameworks at the University of Alberta
and has been used in an undergraduate project course for several terms.

154 Daqing Hou et al.

2.1 Common Types of Questions on Frameworks

We did a short investigation of MFC’s architecture and implementation, col-
lecting and analyzing questions which users posted to two MFC news groups,
comp.os.mswindows.programmer.tools.mfc and microsoft.public.vc.mfc.
We then developed a preliminary classification taxonomy for these questions,
consisting of the following five areas.

– “Where” Questions
Developers often need to introduce application-specific behavior to over-
ride or specialize the default behavior of the framework, but do not know
where to start. Due to the difficulty of understanding framework code and
improper documentation, frequently framework users are unclear or even
unaware about the “template methods” they should reuse and the nature of
the “hook” methods they should develop [16,8].

– “How to” Questions
Many questions asked about MFC are of the “how to” type. Examples of this
category are “how to translate an Enter key into Tab key so that you can
use the Enter key to traverse widgets in a way similar to using the Tab key”,
or “how to change an Edit’s background at run time”. To answer this type
of questions, the application developer needs to understand the architecture
of the underlying framework, specifically, the message and command routing
logic [5].

– “Why” Questions
Quite often, errors in the developers’ assumptions about the framework ar-
chitecture lead to improper extensions that exhibit bizarre behavior. The
precise error is difficult to localize, since it is not necessarily in the ap-
plication code itself and debugging requires a deeper understanding of the
framework architecture and possibly its code structure.

– “Does it support” Questions
Quite often, ambiguities in the framework documentation result in the de-
veloper wondering whether or not a particular feature required of the ap-
plication is possible to implement within the framework. These issues are
especially critical, because application development cannot even start with-
out having a resolution for them.

– “What If Not Supported” Questions
Finally, a large number of questions deal with deficiencies of the framework.
Sometimes, a poor choice of framework leads to architectural conflicts or
mismatch [9] between the desired application and the framework, in which
case little can be done. Often there are simply gaps in the framework where
it was never designed to accommodate the users’ desired extensions. In this
case, it may be possible to evolve the framework to fill these gaps in a manner
consistent with the original framework designers intent.

Our study of the use of the CSF framework and the questions asked by
the undergraduates students who used it in their course projects revealed, not
surprisingly, the same types of questions.

Supporting the Deployment of Object-Oriented Frameworks 155

2.2 Underlying Causes

It is difficult to communicate the intended use of a framework to the users who
need to develop applications. Sheer size can be one factor: a framework with
hundreds of classes, like MFC, is quite daunting to learn even for an expert.
Often domain-specific knowledge must first be acquired in order to appreciate
how to use the framework [3]. Even small frameworks can have complex behavior
that is not obvious from reading static artifacts like code. Here is a brief list of
common hurdles in understanding a framework.

Environmental Dependency Frameworks are usually built on top of a certain
platform, depend on some supporting techniques, and serve a specific domain.
For example, several key design decisions of MFC are based on the Microsoft im-
plementation of the concepts of message queues, event looping and dispatching,
window structure, window class, window procedure, and window subclassing. As
a result, to understand and use MFC, a programmer must first get familiar with
the Windows operating system.

Structural Coupling One problem in using and understanding frameworks is the
numerous and varied dependencies between their classes. These structural de-
pendencies comprise an important part of the complexity of frameworks. There
are several ways for two classes to work together. Suppose that we have two ob-
jects, X and Y, and X needs a reference, ref, to Y. Four techniques are commonly
used to retrieve the reference:

– X creates and uses Y and then discards it. ref is a local variable of some
method of X’s class; the type of ref (i.e. a class) is statically compiled into
X’s class;

– ref is an instance variable of X and references Y. This is a more flexible
approach because ref can be changed at run-time;

– Y is passed to X as a parameter of some method. This is even more flexible
because the responsibility of obtaining a reference no longer lies in X’s class;

– Y is retrieved from another object. This object can, for instance, be a factory
or a collection.

For example, the Observer pattern [8], used in this paper to illustrate our
method, uses techniques 3 and 4. Firstly, the observer is registered as being inter-
ested in certain event originating from the subject. This is done using technique
3: observer is passed to the subject as a parameter of its attach method and the
subject stores the reference to the observer in its collection (usually a list). Later,
whenever the event occurs, the subject retrieves the previously stored reference
from its collection property and calls the observer’s update method.

Behavioral Coupling O-O systems have complex message dispatch mechanisms
that make behavior difficult to comprehend. One example of behavioral coupling
is the interaction and dependency between the so-called template [16,8] and

156 Daqing Hou et al.

hook methods. Template methods define the generic flow of control and inter-
action between objects; hook methods enable the customization of the behavior
of a template method, through interface implementation, or class extension and
method overriding [14,10]. Although in theory we have accumulated a body of
knowledge on the forms of method interaction, in practice it is not easy for users
to recognize the nature of the interaction from the code. A message from the
MFC newsgroup amply demonstrates this:

“This (when or if you should call the base class version (of functions)
from within your overridden version? ... And if you do call the base
class version, should you call the base class version before the code in
your version or after) is (what) I think one of the most confusing things
about MFC... I really think the documentation for all these CWnd virtual
functions and message handlers should spell this out clearly, case by case.
As it is, the only way is to look at the source code for the base class,
but since these functions may or may not be implemented at each level
of the class hierarchy it is not that easy.”

3 The Framework Constraints Language – FCL

In our study of frameworks, we have encountered recurrent types of rules and
conventions regulating how to correctly use a framework; we call these rules
structural constraints. Simple examples of structural constraints can be the car-
dinality of certain objects, their creation and deletion, and method invocation
etc. To formally specify structural constraints we are in the process of developing
a language called FCL (Framework Constraints Language). The language is still
very preliminary and evolving rapidly as we use it.

This section introduces the main types of constraints that have been identified
to date. To help understand the grammar (the appendix to this paper), the
corresponding non-terminal symbols are also provided for the description of each
construct. A concrete example of the FCL specification for the Observer pattern
is given in the next subsection.

An FCL specification starts with a class list section. The section can be used
to organize classes into groups such as framework classes, abstract classes, and
concrete classes (ClassListSection) etc. The class list section is followed by one or
more units (Unit). Each unit consists of a scope (Scope) and a list of constraints.
A scope can specify a group of classes either explicitly through class names or
through pattern matching. The scope is then followed by the list of constraints
(Constraints). All classes in the scope must conform to the constraints.

Constraints are further decomposed into primitive and compound ones. Prim-
itive constraints for classes can be either about variables (OnVar) or about meth-
ods (OnMethod). Constraints on the definition of variables (OnVar) include their
types, cardinality, visibilities, and access scope (i.e., iVar for instance variable,
gVar for global variable, and lVar for local variable).

A method constraint has two parts: a method signature and a body (On-
Method). The signature identifies the method that will be restricted. The body

Supporting the Deployment of Object-Oriented Frameworks 157

contains constraints that the method has to satisfy. The constraints on meth-
ods (MethodConstraint) can be method invocation (MethodCall) and sequence
(Sequential). They can be used to specify causal and temporal relations among
methods, i.e., m1 calls m2 and m1; m2, respectively. There are also two prede-
fined predicates on variables, use and change, which allow one to specify con-
straints on the usage and modification of variables.

A constraint may depend on other constraints. For instance, “if you sub-
class X then you must also subclass Y”. Compound constraints are formed by
connecting constraints with the usual logic connectives, implication, negation,
conjunction, and disjunction (Constraint).

Some example constraints are as follows:

– For a framework class X, one constraint can be “framework users must/must
not subclass X” (Subclass). In order to specify limits on the number of sub-
classes, the integral range is introduced. It includes greater than, less than
or equal, and their combination (Dim). Integral ranges can also be used to
restrict the number of variables and methods.

– Although the advocated mechanism for using a whitebox framework is in-
heritance, framework builders may also permit users to augment class X
directly. Correspondingly, other constraints on X can be “must/mustn’t add
certain instance variables”, “cardinality and/or type of instance variables
Y must/mustn’t satisfy certain condition” (OnVar), “must/mustn’t add/call
certain methods” (OnMethod). These can also be applied to framework de-
rived classes.

– For a framework derived class X, constraints may be “class X must/mustn’t
override a certain method” (MethodHead), “must/ mustn’t add certain
instance variables”, “cardinality and/or type of instance variables Y
must/mustn’t satisfy certain condition” (OnVar), “must/mustn’t add a cer-
tain method” (OnMethod).

– Constraints on a hook method can be: “must/mustn’t delete/change/use
parameter variable” (Predicate), “must/mustn’t define variables” (OnVar),
“must call methods before/after some point” (MethodCall and Sequential),
etc. (MethodConstraint)

4 An Example: Structural Constraints
for the Observer Pattern

Design patterns can be seen as small frameworks made of a few classes. Although
we could have given other examples, for the purpose of presentation, we choose
to use the Observer pattern to discuss some of the constraints on the pattern
and how to specify them in FCL.

As shown in figure 1, Subject and Observer are the framework classes of the
Observer pattern. A Subject may have one or more Observers associated with
it. All observers are notified whenever the Subject changes its state. In response,
each Observer will query the Subject to synchronize its state with the Subject.

158 Daqing Hou et al.

0..*+ void attach(Observer&)

+ void detach(Observer&)

private list<Observer&> observers

Subject

- void notify() For each o in observers

o.update(this)

Observer

+ v update(Subject&)

Fig. 1. Class diagram for the observer pattern

//Abstract classes

abstractclass = [Subject, Observer]

frameworkclass = [abstractclass, model, view]

These two statements define two class lists, one for the abstract classes,
Subject and Observer, the other for Subject, Observer, and their subclasses,
model and view.

subclass model of Subject conforms to

{

iVar vars (>0)

private(vars)

method methods (>1)

exists m: methods, v: vars

{ change(v); notify()

}

}

This constraint requires that, in the framework extension, there must be
exactly one subclass of class Subject, which is referred to as model (here model
is only a place holder, the actual subclass can use any name, say clock).

The statements in the curly brackets are constraints on the class model.
The first statement, iVar vars (>0), says that class model must define at least
one extra instance variable. However, we can predict nothing more about their
types and cardinalities. The second statement requires these variables to be
private. Similarly class model also must define at least two methods (see the
third statement) because at least one method is needed to change state and the
other to query the state (note that method is a keyword of FCL whereas methods
is only an FCL variable that represents the set of methods of model). The last
statement says that there must be at least one method, say m, in class model,
which satisfies the following requirements:

– firstly, m changes some variable v in set vars;
– secondly, m must call the inherited notify method;
– and thirdly, the change must happen before the notify method is called.

Supporting the Deployment of Object-Oriented Frameworks 159

subclass view (>=1) of Observer conforms to

{

override update(Subject s)

{

s.methods

!s.m

!delete(s)

!change(s)

}

}

This constraint requires that in the framework extension, there must be at
least one subclass of class Observer. These subclasses are collectively referred to
as view. All classes in view must override the updatemethod. Furthermore, this
update method is required to call some methods of the actual parameter s, but
not m (recall that m is defined in Subject and calls notify and notify invokes
update in turn). The method update is also not permitted to delete or change
s.

oneclass in !frameworkclass conforms to

{

model o

view v (>0)

o.attach(v)

o.m

o.detach(v)

}

This statement requires that there must exist exactly one application class,
which is referred to as oneclass, satisfying the followinf constraint: inside class
oneclass, there is exactly one object of model created (model o) and at least
one object of class view created (view v(>0)); there must be the invocations of
methods attach, m, and detach of the object o.

!frameworkclass conforms to

{

!model::notify()

!view::update(*)

}

This statement says that in all classes except those in frameworkclass,
there must not be the direct invocations of the methods model::notify and
view::update.

5 Behavioral Constraints

Informally, behavioral constraints are the requirements that are put on appli-
cations by the framework but cannot be checked by static program analysis.

160 Daqing Hou et al.

Typically such constraints specify a pattern of (two and more) states and/or
events that characterizes applications’ behavior. Examples of behavioral con-
straints are as follows:

1. Object interface protocols which are the FSM (finite state machine) specifi-
cation of the method invocation order of objects. One formal treatment of
object protocols appears in [13];

2. Control reachability, e.g., all hook methods must eventually be called, or, in
MFC, all user defined message handlers must eventually be called;

3. Livelock-freedom, e.g., no livelocks are permitted in GUI programming.
4. Target existence, e.g., an object must exist when others send message to it.

A variety of temporal logics might be used for encoding behavioral con-
straints. We experimented with linear temporal logic (LTL) in our work, which
is supported by a mature model checker, SPIN [11]. LTL is a propositional logic
with the standard connectives &&, ||, ->, and !. It includes three temporal op-
erators: <>p says that p holds at some point in the future, []p says that p holds
at all points in the future, and the binary p U q operator says that p holds at
all points up to the first point where q holds. An example LTL specification for
the response property “all requests for a resource are followed by granting of the
resource” is [](request -> <>granted).

Many efforts have been made to apply model checking to software artifacts
including requirements specifications [1,2], architectures [12], and implementa-
tions [6]. When model checking software, one describes the software as a finite
state-transition system, specifies system properties with a temporal logic for-
mula, and checks, exhaustively, that all sequences of states satisfy the formula.
Specifically, in the case of the model checker SPIN, its finite state model is writ-
ten in the Promela language and its correctness properties in LTL. Users specify
a collection of interacting processes whose interleaved execution defines the finite
state model of system behavior. SPIN performs an efficient nonempty language
intersection test to determine if any state sequences in the model conform to the
negation of the property specification. If there are no such sequences then the
property holds, otherwise the sequences are presented to the user as exhibits of
erroneous system behavior.

In this approach, framework builders are responsible for constructing the
validation model of the framework and defining its properties. Together with
the framework, the validation model and the properties will be delivered to
framework users to model-check the application. Since frameworks are meant for
massive reuse, we argue that the framework builders’ investment in constructing
the validation model and defining the properties will be quickly amortized.

One of the major problems in model checking software is model construction:
given real world software components built with sophisticated programming con-
structs which give rise to gigantic state spaces, generate correct compact repre-
sentations for tractable model checking. In the next subsection, we describe our
experience with using Promela to manually construct finite state models.

Supporting the Deployment of Object-Oriented Frameworks 161

5.1 Using Promela to Model The Observer Pattern

We used the following strategy to model the behavior of the observer pattern.
Classes are modeled as processes. These processes are embedded in an atomic
statement to eliminate unnecessary interleaving execution.

Given a class P, to create an object for it, we use run P(parameter list).
Each object has a unique id, which is modeled by process id. Therefore, to create
an object and get a reference to it, use byte id; id = run P(parameter list).
Note that we have defined id as type of byte, this is because currently SPIN
supports at most 256 processes (that is, 256 objects in our case) simultaneously.
Once created, the object keeps observing a rendezvous channel for messages
intended for it.

In a sequential program, at any time, there is only one active method. There-
fore, we define one single global rendezvous channel to synchronize method in-
vocation among all objects. All objects keep polling the channel to look for
messages directed to them. For an object, if there is no message or the message
is not for it, it’s blocked (this is implemented with the eval and pid feature of
Promela). The rendezvous channel is defined as follows:

chan Rendezvous = [0] of {

object,returnChannel,message,p1,p2, ...,pn}

This statement defines the variable Rendezvous as a rendezvous channel
(as indicated by the dimension of 0) and the message format for the channel.
A message consists of following elements:

– object: specifies the message reception object;
– returnChannel: is used to synchronize caller and callee;
– Method name (message): is type of mtype, which is the default enumeration
type of SPIN; Currently, we assume no method name conflict among all
classes and treat all method names as enumeration members of this type;
If there are more than 256 messages, we could also model them as integer
constants.

– n: is the largest number of parameters of all the methods.

In general, methods can also be modeled as processes. However, because
of the potential state space explosion problem, we recommend inlining them
into class processes whenever possible. Instance variables are modeled as local
variables of processes.

Method invocation is synchronized using rendezvous. For each invocation, the
caller site provides: object id (object), a rendezvous channel (returnChannel),
method name (message), and a list of parameters (p1, p2, ..., pn).

The following two code segments illustrate how method calls are modeled.
The caller site uses the following pattern:

...

//Each caller must define one local rendez-vous

chan returnChannel = [0] of {int};

...

162 Daqing Hou et al.

Rendezvous!object,returnChannel,message,p1,p2, ..., pn

returnChannel? returnValue;

// vp: Variable Parameters

returnChannel? vp1;

...

returnChannel? vpm;

The callee site uses the following pattern:

do

::Rendezvous?this,returnChannel,msg,p1,...,pn

if

...

::msg == message -> do something;

returnChannel!returnValue;

returnChannel!vp1;

...

returnChannel!vpm;

...

:: msg == delete -> break;

returnChannel!NULL

fi

od

In the code, this represents the callee’s pid. returnChannel, msg, and p1 to
pn are local variables of the callee process.

The purpose of returnChannel is to prevent the caller from proceeding unless
the callee returns. When the callee finishes, it first sends the caller its return
value, then the value of each variable parameter, if any.

Inheritance is also modeled. Each object of a concrete subclass automatically
creates one internal object for each of its superclasses. All messages that are not
recognized by one object are dispatched to its superclass objects.

For the Observer pattern, a small model was manually constructed. To test
it, several artificial bugs were seeded into the model.

– The first bug is that the user code calls update directly;
– The second is sending a message to an already-deleted observer object;
– The third is terminating the program without freeing an object.

The frameworks constraints specifying the permitted patterns on method
calls should ideally be expressed as trace clauses over the traces of the system.
However, as discussed below, SPIN is limited in its capability for specifying event
patterns. Instead, the constraints were specified using assertions.

The result is somewhat dissatisfying: model checking quickly found all the
bugs, but it is not clear how well this technique generalizes and extends.

LTL supports only the specification of properties of state sequence instead
of action/event sequence. But sometimes we need to write properties directly in
terms of events, such as method invocation and return. On the surface, it seems
that SPIN/Promela’s trace assertion can be used for this purpose. But our initial
experiment revealed several problems:

Supporting the Deployment of Object-Oriented Frameworks 163

– SPIN can only trace events on a global channel;
– It does not support non-determinism;
– When specifying properties for sequential programs, constructs that can dis-
tinguish between causal relation and temporal relation between events are
needed.

Specially, SPIN seems not to be designed to support the last point above.
Actually, during our exploration of SPIN, we have found one bug in SPIN’s
implementation of trace assertion. This shows that probably the trace mechanism
has not been extensively used [Gerard Holzmann, Personal Communication] in
practice. Although we could work around by defining extra boolean variables to
mark the invocation and return of method, thus express properties on events by
state based LTL formula, this method is neither efficient nor straightforward.

Due to space limitation, readers are referred to [18] for further details.

6 Conclusions and Further Work

Many structural constraints are feasible to check. Checking these could achieve
benefits similar to what compilers have done with static type checking.

A checker program is envisaged that understands the FCL specification,
parses the application, and performs the conformance checking. In addition,
our FCL definition is still in the demonstration stage, thus needs revision to
add new types of constraints. One of our ongoing tasks is to formalize the core
architecture of MFC and identify checkable structural constraints.

Checking behavioral constraints is more problematic. Since we use processes
to model objects, one problem is how to model the visibility of objects. In ad-
dition, languages such as C++ and Java permit direct reference to the public
variables of objects, thus the capability of modeling visibility would also be
needed. Earlier versions of SPIN did support remote referencing, which could
be used to achieve this. Unfortunately, to support partial order reduction of the
state space, this feature has been removed from the newer versions. Although
SPIN is not suited, other formalisms such as CTL (Computation Tree Logic) are
worth investigating.

By the very nature of frameworks, the validation model must be incomplete.
Therefore, there are two other important problems left:

– how to extract the other part of the validation model from application
classes, and

– how to combine the two models to get a complete validation model of the
application so that we can run model checking on it.

Further investigation to these problems is also needed.
Finally, section 2 only briefly summarizes the types of questions that frame-

work users may have: they are by no means either the best classification or com-
plete. Further empirical study is needed to provide more fine–grained knowledge.

164 Daqing Hou et al.

Acknowledgements

The authors thank Marsha Chechik, Jim Cordy, Garry Froehlich, Amr Kamel,
Rudolf Keller, Andrew Malton, and Keny Wong for their discussion and assis-
tance during various stages of the project. We also want to thank the three
anonymous reviewers for their very insightful comments on the paper.

This work was supported by the Natural Sciences and Engineering Research
Council of Canada, and the Alberta Science Research Authority.

References

1. R. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin, and
J. Reese. Model Checking Large Software Specifications, Software Engineering
Notes, 21(6):156–166, November 1996. 160

2. J. Atlee, J. Gannon. State-based Model Checking of Event-driven System Require-
ments, IEEE Transactions on Software Engineering, 19(1):24–40, June 1993. 160

3. A. Birrer, T. Eggenschwiler. Frameworks in the Financial Engineering Domain: An
Experience Report, Proceedings of ECOOP 93, 1993. 155

4. J. Bosch, P. Molin, M. Mattsson and P. Bengtsson. Obstacles in Object-Oriented
Framework-based Software Development, ACM Computing Surveys Symposia on
Object-Oriented Application Frameworks, 1998. 151

5. P. DiLascia. Meandering Through the Maze of MFC Message and Command Rout-
ing, Microsoft System Journal, July 1995. Available at
<http://www.microsoft.com/msj/0795/dilascia/dilascia.htm> 154

6. M. Dwyer, V. Carr, and L. Hines. Model Checking Graphical User Interfaces Us-
ing Abstractions, In LNCS 1301, pages 244–261. Proceedings of the 6th European
Software Engineering Conference held jointly with the 5th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, September 1997. 160

7. G. Froehlich, H. J. Hoover, L. Liu, P. G. Sorenson. Hooking into Object-Oriented
Application Frameworks, Proceedings of the 1997 International Conference on Soft-
ware Engineering, Boston, Mass., May 17-23, 1997. 152

8. E. Gamma, R. Helm, R. E. Johnson, J. O. Vlissides. Design Patterns–Elements of
Reusable Object-Oriented Software, Addison Wesley, 1994. 154, 155

9. D. Garlan, R. Allen, J. Ockerbloom. Architectural Mismatch or Why it is so hard
to build systems out of existing parts, Proceedings of the 17th International Con-
ference on Software Engineering, April 1995. 154

10. R. Helm, I. M. Holland, D. Gangopadhyay. Contracts: Specifying behavioral Com-
positions in Object-Oriented Systems, Proceedings of ECOOP/OOPSLA 90, Ot-
tawa, Canada, 1990. 156

11. G. Holzmann. Design and Validation of Computer Protocols, Prentice Hall, Engle-
wood Cliffs, NJ, 1991. 160

12. G. Naumovich, G. Avrunin, L. Clarke, and L. Osterweil. Applying Static Analysis
to Software Architectures. In LNCS 1301. The 6th European Software Engineering
Conference held jointly with the 5th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, September 1997. 160

13. O. Nierstrasz. Regular Types for Active Objects, Object-Oriented Software Com-
position, O.Nierstrasz and D.Tsichritzis eds, Prentice Hall, 1995, pp.99–121. 160

14. W. Pree. Design Patterns for Object-Oriented Software Development, Addison
Wesley, 1995. 153, 156

Supporting the Deployment of Object-Oriented Frameworks 165

15. G. Shepherd, S. Wingo. MFC Internals: Inside the Microsoft Foundation Class
Architecture, Addison Wesley, 1996. 153

16. R. J. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Soft-
ware, Prentice Hall, Englewood Cliffs, NJ, 1990. 154, 155

17. Microsoft Developer Network. Available at <http://www.msdn.microsoft.com>
153

18. Promela Model for the Observer Pattern. Available at
<http://www.cs.ualberta.ca/˜daqing/frameworks/so> 163

19. The Client Server Framework Web Site. Available at
<http://www.cs.ualberta.ca/˜garry/framework>

A Appendix: FCL Grammar

Legend note: all symbols starting with capital letters are nontermi-

nal. ::=, [], {}+, | and empty are preserved as meta-symbols. All

others are terminal symbols.

LType and LMethodProt are programming language specific definition

of type and method signature, which are omitted.

FrameworkConstraint ::= ClassListSection Toplevel

ClassListSection ::= ClassList | ClassList ClassListSection

ClassList::= ListName = "[" List "]"

List ::= Class | Class , List

Class ::= Id | ListName

ListName ::= Id

Toplevel ::= Unit | Unit Toplevel

Unit ::= Scope [conform|conforms] to { Constraints }

| Unit->Unit

Scope ::= ListName | SubClass | !Scope

| NameDecl in Scope

SubClass ::= subClass NameDecl of Class

NameDecl ::= Id [(Dim)]

Dim ::= BasicDim | BasicDim, BasicDim

BasicDim ::= Constant | > Constant | <= Constant

Constraints ::= Constraint | Constraint Constraints

Constraint ::= OnVar | OnMethod |

Constraint -> Constraint | !Constraint |

{Constraints} | Constraint "||" Constraint

OnVar ::= Type NameDecl | Predicate (Ids)

Type ::= LType | iVar [LType] | lVar [LType]

| gVar [LType]

OnMethod ::= MethodHead { MethodConstraints }

| MethodConstraint

MethodHead ::= [override] LMethodProt | Qualified

| method NameDecl

166 Daqing Hou et al.

Qualified ::= [exists] {Id: Id [,]}+

| forall {Id: Id[,]}+

MethodConstraints ::= MethodConstraint

| MethodConstraint MethodConstraints

MethodConstraint ::= OnVar | Predicate (Ids)

| MethodCall [(Ids)] | Sequential

| MethodConstraint->MethodConstraint

| !MethodConstraint

| { MethodConstraints }

| MethodConstraint "||" MethodConstraint

MethodCall ::= [Class::] Id | Id.Id

Predicate ::= use | change | delete

| public | protected | private

Sequential ::= MethodConstraint ; Sequential

| MethodConstraint ; MethodConstraint

/*

*Simple non terminal symbols

*/

Constant ::= integer constant

Id ::= Identifier

Ids ::= empty | Id | Id, Ids | *

	Supporting the Deployment of Object-Oriented Frameworks
	Introduction
	Related Concepts of OO Frameworks

	Problems Faced by Framework Users
	Common Types of Questions on Frameworks
	Underlying Causes

	The Framework Constraints Language -- FCL
	An Example: Structural Constraints for the Observer Pattern
	Behavioral Constraints
	Using Promela to Model The Observer Pattern

	Conclusions and Further Work
	Appendix: FCL Grammar

