Multidimensional Semistructured Data:

Representing Context-Dependent Information
on the Web

Yannis Stavrakas':? and Manolis Gergatsoulis?

! Knowledge & Database Systems Laboratory, National Technical University of
Athens (NTUA)
157 73, Athens, Greece
2 Institute of Informatics & Telecommunications, National Centre for Scientific
Research (N.C.S.R.) ‘Demokritos’
153 10 Aghia Paraskevi Attikis, Greece

{ystavr,manolis}@iit.demokritos.gr

Abstract. In this paper, we address a problem common in the frame of
WWW, namely, representing information that assumes different facets
under different contexts (sets of worlds). For expressing context-depen-
dent (or multidimensional) data, we introduce Multidimensional Semi-
structured Data, where context is defined through (dimension,value)
pairs. An extension of OEM called Multidimensional Object Exchange
Model (MOEM) is introduced, for representing multidimensional data.
We discuss the properties of MOEM and define a transformation that,
for any given world, reduces MOEM to a conventional OEM holding
under that world. As a case study, we show how MOEM can be used to
represent changes over time in an OEM database.

1 Introduction and Motivation

The nature of the Web poses a number of new problems [1]. While in traditional
databases and information systems the number of users is more or less known and
their background is to a great extent homogeneous, Web users do not share the
same background and do not apply the same conventions when interpreting data.
Such users can have different perspectives of the same entities, a situation that
should be taken into account by Web data models. Similar problems appear when
integrating information from various sources [10], where the same conceptual
entity may exhibit different structure, or contain conflicting data.

Those problems call for a way to represent information entities that manifest
different facets, whose contents can vary in structure and value. As a simple
example imagine a report that must be represented at various degrees of de-
tail and in various languages. A solution would be to create a different report
for every possible combination of variations. Such an approach is certainly not
practical, since it involves excessive duplication of information. What is more,
different variants are not associated as being parts of the same entity. Although

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 183-199, 2002.
© Springer-Verlag Berlin Heidelberg 2002

184 Yannis Stavrakas and Manolis Gergatsoulis

existing web data models, such as OEM [7], are in principle capable to repre-
sent such multi-facet entities, they fall short for a number of reasons, namely
(a) hidden semantics: by not addressing directly the issue of multiple facets, it
is the responsibility of an application to assign semantics in an ad-hoc manner,
(b) cumbersome notation: representing multiple facets of an entity cannot be
done in an elegant way, and (c) duplication of information: information that is
common can be duplicated, which is undesirable.

In this paper we introduce multidimensional semistructured data and an ex-
tension of OEM called multidimensional OEM, that incorporate ideas from mul-
tidimensional programming languages [3] and associate data with dimensions,
in order to tackle the aforementioned problems. We show how multidimensional
OEM can be reduced to OEM under a specific world. As an example application
of multidimensional OEM, we consider the problem of representing histories of
changes in an OEM database. This problem has been also investigated in [3],
where the need for an OEM extension has been recognized. In Section 5 we dis-
cuss [8] further. A model for semistructured data that deviates from OEM has
been proposed in [(], where edge labels are themselves pieces of semistructured
data. The model we propose views labels as containing metadata rather than
data. In [9], an extensible semistructured data model has been proposed that uses
sets of properties of the form “property_name: property_value” as edge labels.
By attaching properties at will, the graph becomes rich in metadata. Different
properties may have different semantics, which results in a model of increased
generality, but on the other hand makes the formulation of queries more compli-
cated. The goal of our approach is to represent information that presents different
facets. This leads to common semantics for the metadata, which is used solely to
embody context information. In addition, our model retains OEM labeled edges
and attaches context metadata to a new type of edges; graph models such as
OEM become special cases of the model we propose.

Our work was influenced by Intensional HTML [16], a Web authoring lan-
guage that incorporates ideas presented in [13] and allows a single Web page
to have different variants and to dynamically adapt itself to a user-defined con-
text. Our previous work on Multidimensional XML (MXML) [14,11,12] has also
played a major role in shaping the data model we describe in this paper. MXML
is an extension of XML that treats context as first class citizen. In MXML, ele-
ments and attributes can assume different values or structure, depending on the
context. A multidimensional DTD (MDTD) has also been proposed for defining
constraints on MXML documents.

In this paper, we address the representation of context-dependent semistruc-
tured data in general. We define an extended formalism for contexts, and inves-
tigate various aspects of a multidimensional model for semistructured data. The
structure of the paper is as follows. In Section 2 we give a formalism for contexts.
In Section 3 we introduce a graph data model and syntax for multidimensional
semistructured data, we discuss validity issues of the proposed model, and de-
fine a process for obtaining conventional graphs from a multidimensional graph.
Querying multidimensional semistructured data is briefly discussed in Section 4.

Multidimensional Semistructured Data 185

In Section 5, a way to model OEM histories using multidimensional OEM is
presented. Finally, Section 6 concludes the paper.

2 A Formalism for Contexts

Multidimensional semistructured data (MSSD in short) are semistructured data
(SSD in short) [15] which present different facets under different worlds. The no-
tion of world is fundamental in our approach. A world represents an environment
under which data obtain a substance. In the following definition, we specify the
notion of world using a set of parameters called dimensions.

Definition 1. Let D be a nonempty set of dimension names and for each d € D,
let V4 be the domain of d, with V4 # 0. A world w with respect to D is a set
whose elements are pairs (d,v), where d € D and v € Vg, such that for every
dimension name in D there is exactly one element in w.

The main difference between conventional semistructured data and multi-
dimensional semistructured data is the introduction of context specifiers, that
are used to qualify semistructured data expressions (ssd-expressions) [1] with
contexts. The context of an ssd-expression can be seen as a set of worlds under
which that ssd-expression holds; it becomes therefore possible to have at the
same time variants of the same information entity, each holding under a differ-
ent set of worlds. An information entity that encompasses a number of variants
(also called facets) is called multidimensional entity. If the facets ey, ea,. .. ,e, of
a multidimensional entity e hold under a world w (or, under every world defined
by a context specifier ¢), then we say that e evaluates to ey, es,. .. e, under w
(under ¢, respectively).

In order to define context specifiers and explain their relation to worlds, we
first discuss context specifier clauses.

Definition 2. Let D be a set of dimension names and for each d € D, let Vy
be the domain of d, with Vg # (). Then a dimension specifier s of a dimension d
is a pair (d,V) where d € D and V € 2Y¢. A context specifier clause cc is a set
of dimension specifiers, such that for any dimension d € D there exists at most
one dimension specifier (d, V') in cc.

A context specifier clause cc is called empty and is denoted by .., if for some
dimension d, (d,)) € cc. The empty context specifier clause (.. represents the
empty set of worlds &, (empty context). If cc =), then cc is called universal
context specifier clause, and represents the set of all possible worlds U, (universal
context). Any number of dimensions can be combined to form a context specifier
clause, in other words, it is not necessary for a context specifier clause to contain
an element (dimension specifier) for every possible dimension. The meaning of
omitting dimensions becomes evident in what follows, where we explain how a
context specifier clause is interpreted as a set of worlds.

186 Yannis Stavrakas and Manolis Gergatsoulis

Definition 3. The extension ®cc of a context specifier clause cc is defined as
follows: if cc=0, then @cc=U,; if cc=0cc, then Rcc=E,; else if cc={(d1, V1),
(d25‘/2))) (dnaVn)}a then ®cc = { {(dlvvl)v (d27’02)7' . '7(dnavn)} | v; € ‘/Z
with 1 <i < n}.

The extension of a context specifier clause gives a set of sets of (dimension,
value) pairs. To determine whether each set of pairs represents a world or not,
the set D of all the dimensions must be taken into account. For a dimension in
D that does not exist in a context specifier clause, the inclusion of all values
in its domain is implied. The following defines an expansion of context specifier
clauses in order to take into account the set of dimensions D.

Definition 4. Let D be a set of dimensions and for each d € D, let Vy be the
domain of d, with Vg # (). Let cc be a context specifier clause. Then the expansion
of cc with respect to D is a context specifier clause, denoted by exp(cc), that
contains the following elements: (a) if (d,V') € cc, then (d,V) € exp(cc); (b) if
d e D and (d,V) ¢ cc for any V, then (d,V4) € exp(cc).

Assuming a set of dimensions D, the worlds specified by cc with respect
to D are given by the extension of the expansion of cc, W (ce) = ®(exp(cc)).
Consequently, (a) what represents a world with respect to a set of dimensions D,
represents a set of worlds with respect to every D’ D D, and (b) what represents
a world with respect to a set of dimensions D, also represents a world with
respect to every D' C D.

The intersection of two context specifier clauses cc; and cca, is a context
specifier clause that represents the worlds specified by both cc; and ccs.

Definition 5. Let ccy, cco be two context specifier clauses. The context specifier
clause intersection ccy Nee ceo, is a context specifier clause ccg such that:

ces ={(d, V) | (d,V) € cc1 and there is no element (d,V') in cca} U {(d, V)
| (d,V) € ceo and there is no element (d,V') in cc1} U {(d,V) | (d,V1) € e
and (d,V2) € cca and V =V; NVa}

Note that cc Nee Ope = Dce, and ccNee O = ce.

Consider the dimension language ranging over English, French, Greek,
the dimension detail ranging over low, medium, high, and the dimension
format ranging over ps, pdf. Consider also the context specifier clauses
cer = {(lang,{en, gr}), (detail, {medium, high})} and cco = {(lang, {gr, fr})}.
Then, cc; Nee cc2 = {(lang,{gr}), (detail, {medium,high})}, and repre-
sents the worlds: {(lang, gr), (detail, medium), (format,ps)}, {(lang,gr),
(detail, medium), (format,pdf)}, {(lang,gr), (detail,high), (format,ps)},
{(lang, gr), (detail, high), (format,pdf)}.

Definition 6. A context specifier ¢ is a nonempty set of context specifier
clauses.

A context specifier ¢ = {ccy, cea,. .. ,cen}, n > 1, represents the set of worlds
W5 (e) = Wi(cer) U W (cea)U ... UWE (eep). In analogy to context specifier

Multidimensional Semistructured Data 187

clauses, the empty context specifier (. is a context specifier that contains only
empty clauses cc; = cca =...= cc;, = Dee, and does not represent any world. A
context specifier that contains at least one universal clause represents the set of
all possible worlds, is called universal contezt specifier, and is denoted by {0}.

We now define how the intersection and union of worlds is performed at the
level of context specifiers. The intersection of context specifiers N, is based on the
intersection of clauses N.., while the union of context specifiers U, is not different
from conventional set union, and is introduced for uniformity of notation.

Definition 7. Let ¢1, co be two context specifiers. Then the context specifier
intersection ¢y Neca, is a context specifier c3 such that: cs = {cc;Nee ccj | ce € e,
ccj € ca}. The context specifier union ¢1 U c2, is a context specifier ca such
that: c4 = c1 U cy.

Consider the context specifiers ¢; = {{(lang, {en, gr}), (detail,{high})}}
and co = {{(lang,{en}), (detail,{low})}, {(lang,{gr})}}. Then c¢; N, c2 =
{0cc , {(lang, {gr}), (detail, {high})}} = {{(lang,{gr}), (detail, {high})}}, and
c1 Ue o = {{(lang, {en, gr}), (detail, {high})}, {(lang,{en}), (detail, {low})},
{(lang,{gr})}}-

It is easy to show that the context specifier intersection and union are equiv-
alent to the intersection and union of the corresponding sets of worlds. More
formally, if ¢; and ¢y are context specifiers, then:

WB(Cl) N WB(CQ) = Wé(cl Ne CQ)

WB(Cl) U WB(CQ) = Wé(cl Ue CQ)

A context specifier may contain clauses that define overlapping sets of worlds.
In the example above, the worlds matching {(lang, gr), (detail, high), ...} are
covered by the first and the third context specifier clause of c¢4. The context
specifier ¢4 can be simplified as follows: ¢4 = {{(lang, {en}), (detail, {high})},
{(tang, {gr}), (detail, {high})}, {(tang, {en}), (detail, {low})}, {(lang, {gr})}}—
{{(lang, {en}), (detail, {high})}, {(lang, {en}), (detail, {low})}, {(lang, {gr})}}
= {{(lang, {en}), (detail, {low, high})},{(lang, {gr})}}.

Definition 8. Two context specifier clauses ccy,cco are said to be mutually ex-
clusive iff cci Nee cca = Bee. Two context specifiers 1, ca are said to be mutually
exclusive iff ¢1 Ne ca = .

Mutually exclusive context specifier clauses and context specifiers define dis-
joint sets of worlds. The context specifier clauses cc; = {(lang,{en})} and
cco = {(detail, {low})} are not mutually exclusive, since the worlds matching
{(lang, en), (detail,low), ...} are covered by both ccq and cey. In contrast, the
context specifier clause ccs = {(lang, {gr, fr}), (detail, {high})} is mutually ex-
clusive with both cc; and ces.

Section 3.2 defines a syntax for context specifiers in ssd-expressions, which
will be used throughout the paper. As an example, consider the expressions:

[time=07:45]
[language=greek, detail in {low,medium}]
[season in {fall,spring}, daytime=noon | season=summer]

188 Yannis Stavrakas and Manolis Gergatsoulis

The last context specifier contains two clauses, and represents the worlds
where it is either summer or fall/spring noons. The universal context specifier is
denoted by [] while the empty context specifier is denoted by [-].

3 Supporting Contexts in SSD

In this section we propose a graph model for representing MSSD, specify a
syntax for expressing multidimensional semistructured data, and discuss some
properties of multidimensional data graphs.

3.1 Multidimensional OEM

A predominant graph model for SSD is Object Exchange Model (OEM) [2], that
was originally designed in Stanford as part of the TSIMMIS project [7]. OEM is a
rooted directed labeled multigraph, flexible enough to tolerate the irregularities
of SSD. We retain that flexibility, and extend OEM with two new basic elements:

— Multidimensional nodes: a multidimensional node represents a multidimen-
sional entity, and is used to group together nodes that constitute facets of
that entity. Facets of entities can use multidimensional nodes to connect to
each other, as a multidimensional node plays the role of a surrogate for its
facets. In our graph model, multidimensional nodes have a rectangular shape
to distinguish them from conventional circular nodes.

— Context edges: context edges are directed labeled edges that connect a mul-
tidimensional node to its variants. The label of a context edge pointing to a
variant p, is a context specifier that defines the set of worlds under which p
holds. Context edges are drawn as thick or double lines, to distinguish them
from conventional edges.

We call the new model Multidimensional Object Exchange Model (MOEM
in short). In MOEM the conventional circular nodes of OEM are called context
nodes and represent variants associated with some context. Conventional (thin)
OEM edges are called entity edges and define relationships between objects.

As in OEM, all MOEM nodes are considered objects, and have a unique
object identifier (oid). In what follows, the terms node and object will be used
interchangeably in the frame of MOEM. Context objects are divided into complex
objects and atomic objects. Atomic objects have a value from one of the basic
types, e.g. integer, real, strings, etc. The value of a complex object is a set of
object references, represented by entity edges. The value of a multidimensional
object is also a set of object references, represented by context edges.

The MOEM in Figure 1 is an example of a context-dependent recreation
guide. For simplicity, the graph is not fully developed and some of the atomic
objects do not have values attached. The dimensions and their respective do-
mains in Figure 1 are as follows: season ranging over {summer, fall, winter,
spring}, daytime ranging over {noon, evening}, detail ranging over {high,

Multidimensional Semistructured Data 189

recreation_guide

music_club restaurant

review.

name address Toview
we & 2

detail=high] score comments
street no floor [igh]

[detail=low] 6
&9 @ @ -
scor

[detail=high,

arking
address review ’ ¢

menu name
[detail=high]
[season in

{fall,winter,spring}] [detail=low]

[season=summer] score
flang=gr] [lang=fr] @
commems
[lang=en]
s\reet

city ~ street @
38 zipcode
@ @ 8 [lang=en]
@ “"terrace” @ [lang=gr]

[daytime=evening] { [daytime=noon] Sth"

[daytime=noon] [daytime=evening] @
& @

Fig. 1. A multidimensional recreation guide

[season=summer,
daytime=noon]

score comments lang=gr]
[season!=summer 827
| daytime!=noon]

@<—

"Athens"

low}, and lang ranging over {en, fr, gr}. The restaurant with oid &15 nor-
mally operates on the fifth floor, but at summer noons it operates on the terrace.
Therefore, floor with oid &21 is a multidimensional object whose (atomic) value
depends on dimensions season and daytime. Except from having a different
value, context objects can have a different structure, as is the case of &6 and
&7 which are variants of the multidimensional object address with oid &4. In
this case, the music_club with oid &2 operates on a different address during the
summer than the rest of the year (in Athens it is not unusual for clubs to move
south close to the sea in the summer period, and north towards the city center
during the rest of the year). The menu of the club is available in three languages,
namely English, French and Greek. The restaurant and the club have a number
of reviews that can be detailed or brief, depending on the dimension detail.
In addition, each has a couple of alternative parking places, depending on the
time of day as expressed by the dimension daytime.

The existence of two kinds of nodes and two kinds of edges raises the question
of which node - edge combinations are meaningful. Starting with what is not
legal, a context edge cannot start from a context node, and an entity edge cannot
start from a multidimensional node. Those two are the only constraints on the
morphology of an MOEM graph.

Figure 2 depicts some legal non-trivial MOEM constructs. In Figure 2(b)
more than one context edges connect a multidimensional node with the same
context node. The multidimensional node A evaluates to B under the union
of the worlds specified by c¢I and c2. The two context edges can, therefore,
be replaced by a single one with context specifier ¢3 = ¢l U, ¢2. Figure 2(c)

190 Yannis Stavrakas and Manolis Gergatsoulis

2.8

A ctlitlz2
c1 c:
" " ¢l c2 c1c2 c3c4 ﬂ
ﬁ % g Cé % é} ; ‘
C
(<] © . >
(b) © éé © o S

Fig. 2. Some interesting MOEM constructs

(a)

shows a context node D that is part of two multidimensional nodes, A and B.
This is the case of the context object with oid &31 in the example of Figure 1.
A multidimensional entity may be part of another multidimensional entity, as
demonstrated in Figure 2(d). The construct of Figure 2(e) is equivalent to that
of Figure 2(f): from the perspective of I1 and 2, the context node A is assumed
to be the only variant of the multidimensional entity represented by B, holding
under every possible world.

We now give some formal definitions for the concepts that have been discussed
in this section. We start by introducing multidimensional data graphs.

Definition 9. Let C be a set of context specifiers, L be a set of labels, and A
be a set of atomic values. A multidimensional data graph is a finite directed
edge-labeled multigraph G = (V, E,r,C, L, A,v), where:

1. The set of nodes V is partitioned into multidimensional nodes and context
nodes V' = V,,1aUVey. Context nodes are further divided into complex nodes
and atomic nodes V., = V.U V,.

2. The set of edges E is partitioned into context edges and entity edges F =
Eczt @] Eett; such that Ecxt - led xCxV and Eett - ‘/c X LxV.

3. r €V is the root, with the property that there exists a path from r to every
other node in V.

4. v is a function that assigns values to nodes, such that: v(x) = M if x € V4,
v(xz) =Cifx €V, and v(zx) = v'(x) if x € Vg, where M and C are reserved
values, and v’ is a value function v’ : V, — A which assigns values to atomic
nodes.

It is easy to recognize that OEM is a special case of multidimensional data
graph, where there are no multidimensional nodes and context edges.

An important issue is whether or not, given a specific world, it is always pos-
sible to reduce a multidimensional data graph to a conventional graph holding
under that world. To be able to safely “disassemble” a multidimensional data
graph, each multidimensional entity in the graph must evaluate to at most one
variant under any world. This leads to the definition of context deterministic
multidimensional data graphs, where the context specifiers of each multidimen-
sional entity are mutually exclusive.

Definition 10. A multidimensional data graph G = (V, E,r,C, L, A,v) is con-
text-deterministic iff for every (p,c1,q1), (p,c2,q2) in Eept, with ¢1 # qa2, ¢1 Ne

Multidimensional Semistructured Data 191

ca = Q.. An MOEM graph is a context-deterministic multidimensional data
graph.

Note that, in any case, a multidimensional entity may evaluate to no variant
under some world(s). A context-deterministic graph merely assures that an entity
cannot evaluate to more than one variants under any specific world.

For the rest of this paper we assume context-deterministic graphs. This does
not imply that context-nondeterministic graphs are of no interest; however, the
investigation of context-nondeterministic graphs is out of the scope of this paper.

3.2 MSSD-Expressions

As pointed out in [1], the cornerstone of SSD syntax is ssd-expression. We de-
fine mssd-expression by extending SSD syntax to incorporate context specifiers.
The grammar of mssd-expression is given below in Extended Backus-Naur Form
(EBNF), where symbols that can be defined by a regular expression start with
a capital letter.

mssd-expr ::= value | 0id value | 0id

value ::= Atomicvalue | "{" complexvalue "}" | "(" multidimvalue ")"
complexvalue ::= Label ":" mssd-expr ("," complexvalue)?
multidimvalue ::= contspec ":" mssd-expr ("," multidimvalue)?

It is evident that multidimvalue corresponds to the multidimensional node
of MOEM, while atomicvalue and complexvalue correspond to context nodes.
Note that multidimvalues can have object identifiers, just like complex and
atomic values. The conventions concerning the syntax of labels, atomic values,
and object identifiers, as well as the requirements for the consistency of ssd-
expressions [1] also hold for mssd-expressions.

A context specifier is of the form:

contspec ::= "[" contspecclause ("|" contspecclause)* "]"
contspecclause ::= "" | "-" | dimlist

dimlist ::= dimspec ("," dimspec)*

dimspec ::= dimname (atomicop Dimvalue | setop "{" setdimvalue "}")
atomicop ::= "=" | "I="

setop ::= "in" | "not in"

setdimvalue ::= Dimvalue ("," Dimvalue)*

As an example, consider the following mssd-expression that describes the
music_club object with oid &2 in Figure 1:

&2 {menu: &37 ([lang=gr]: &38 {...},
[lang=en]: &39 {...},
[lang=fr]: &40 {...}),
name: &3,
address: &4 ([season=summer]:
&6 {zipcode: &11, street: &12, city: &14 "Athens"},

192 Yannis Stavrakas and Manolis Gergatsoulis

[season in {fall,winter,spring}]:
&7 {city: &14, street: &13}),
review: &5 ([detail=low]: &8 6,
[detail=high]:
&9 {score: &8, comments: &10}),
parking: &28 ([daytime=evening]: &30,
[daytime=noon]: &31)
¥

In this paper we assume finite dimension domains, which the proposed syntax
describes by enumerating their elements. Other ways of representation as well as
infinite domains may be useful and are not excluded, they are, however, out of
the scope of this paper. In Section 5.2 we introduce a shorthand for representing
intervals over a bounded, discrete, and totally ordered time domain.

3.3 Properties of Multidimensional Data Graphs

Multidimensional data graphs present interesting properties, a discussion of
which cannot be exhausted in the present section. In what follows, we intro-
duce some basic concepts starting with the definitions of explicit context and
inherited context.

Definition 11. Let G = (V, E,r,C, L, A,v) be a multidimensional data graph.
The explicit context of an edge h = (p, k,q) € E is given by the contlext specifier
ec, defined as follows: if h € E.py then ec = k; otherwise, ec = {(0}.

The explicit context can be considered as the “true” context only within
the boundaries of a single multidimensional entity. When entities are connected
together in a multidimensional graph, the explicit context of an edge is not the
“true” context, in the sense that it does not alone determine the worlds under
which the destination node holds. The reason for this is that, when an entity es
is part of (pointed to through an edge) another entity e;, then es can have
substance only under the worlds that e; has substance. This can be conceived as
if the context under which e; holds is inherited to e2. The context propagated in
that way is combined with (constrained by) the explicit context of each edge to
give the inherited context for that edge. In contrast to edges, nodes do not have
an explicit context; like edges, however, they do have an inherited context. The
inherited context of a node or edge is the set of worlds under which the node
or edge is taken into account, when reducing the multidimensional graph to a
conventional graph (as explained later in this section).

Definition 12. Let G = (V, E,r,C, L, A,v) be a multidimensional data graph,
ic, be a context specifier giving the inherited context of the root r, and p,q be
nodes in V with p # r. The inherited context of node p is given by the context
specifier ic, = icy Ug ica ..U icy, with n > 1, where icy,ica,. .., ic, give the
inherited contexts of the edges in E that lead to p. Let icqy be a context specifier
giving the inherited context of node q, h be an edge in E that departs from q, and

Multidimensional Semistructured Data 193

ecy, be a context specifier giving the explicit context of h. The inherited context
of edge h is the least set of worlds given by a context specifier icp, such that
ey = 1cq Ne ecy.

If the root r of an MOEM graph G is assumed to hold under every possible
world, the inherited context of the root becomes the universal context. A point
that requires attention, is that the inherited context of an edge which constitutes
part of a cycle is eventually defined in terms of itself. It is easy, however, to show
that in such cases there exists a least fixed point, which gives the inherited
context of the edge.

Multidimensional entities are not obliged to have a facet under every possible
world. However, they must provide enough coverage to give substance to each
incoming edge under at least one world. The validity of a multidimensional data
graph ensures that edges pointing to multidimensional nodes do not exist in
vain. As an example, consider the MOEM in Figure 3(a), which is a variant of a
part of the MOEM in Figure 1 where the context specifier ¢ of the context edge
(%18, ¢, &23) has been changed to [detail=high,lang=fr]. Now, the entity
edge (&23, “comments”, &27) does not hold under any world and is invalid, since
there does not exist any world under which &23 holds together with one of &41,
&42. If node &27 pointed also to a third context node through a context edge
with explicit context [lang=fr], the entity edge in question would be valid.

Definition 13. Let G = (V, E,r,C, L, A,v) be a multidimensional data graph.
Let h = (p,k,q) be an edge in E that leads to a node q in V, let icy, give the
inherited context of h, and let ecy, ..., ec,, withn > 1, give the explicit contexts
of the edges in E that depart from q. Then, the edge h is invalid iff ic, # 0.
and icp Ne (ec1Ue ... Ucecy) = B.. The multidimensional data graph G is valid
iff none of its edges is invalid.

Each MOEM comprises a number of conventional OEM graphs. The facet of
an MOEM graph G under a world w, is an OEM graph G,, that holds under w.
Given a world w expressed as a context specifier ¢, the graph G, can be
obtained from G through the following process:

Procedure reduce_to OEM (G, ¢y, G,,) is Initialize G, to G. With G,,
do the following.

Step 1: Remove every node in V and edge in E with ¢, N ic = 0., where ic
gives the inherited context of the node or edge respectively.

Step 2: For every edge (p,l,m1) € Ee with my € Vi, follow the path of
consecutive context edges (mi,c1,ma),...,(Mn,cn,q), n > 1, until no
more context edges can be followed. Then, if ¢ € V4 add a new entity
edge (p,1,q) in Eey.

Step 3: Remove all multidimensional nodes in V,,;4. Remove all edges in E de-
parting from or leading to the removed nodes. O

Intuitively, explicit contexts can be seen as defining constraints that are accu-
mulated from the root to the leaves to form inherited contexts. Inherited contexts

194 Yannis Stavrakas and Manolis Gergatsoulis

~
review / w = { (season,summer),

[(a) An Invalid MOEM recreation_guide (detail low),
1 (daytime,noon),
&18 é (lang,gr) }

[detail=high,lang=fr] (b) An OEM Instance music_clup restaurant

[detail=low] rgetaji=high,lang=f
[detail=low] I g 9=f]

€2)

address
name
score menu rewew parklng
[detail=high,lang=fr]
score comments 8
[detail=low] [detail=] hlgh lang=fr] &3 score
zupcode cny 5 street floor score

@ street 6
s [Iang Ql’] [Iang en] . s
@ @ "Athens" "terrace"

Fig. 3. Figure 3(a) depicts an invalid MOEM, annotated with the inherited
contexts of edges (second line of labels), and Figure 3(b) the OEM instance,
holding under the world w, of the MOEM in Figure 1

review
rewew

address parking name

are used to identify parts of the graph that are unreachable under some context,
and that can be removed in order to obtain the facet corresponding to a spe-
cific world. As an example, consider the MOEM in Figure 1. By applying the
above steps on the MOEM for the world w = {(season, summer), (detail, low),
(daytime,noon), (lang,gr)}, we get the OEM in Figure 3(b). Notice how the
two parking multidimensional entities with oids &28 and &29 are represented
by the object with oid &31. Also, notice how the comment object with oid &35 is
excluded from the resulting OEM.

4 Querying Multidimensional Data Graphs

An issue that arises is how to query [5,2] multidimensional semistructured data.
In this section, we discuss briefly what a “multidimensional” query is, mention
the directions of our ongoing work, and argue that an MOEM graph is something
more than the sum of the OEMs it can be “decomposed” to.

Similarly to an OEM database, we define an MOEM database as a database
whose model is an MOEM graph. Suppose that an MOEM database M is reduced
to an OEM database O,, under the world w. Then, a “multidimensional” query
q = (quw,w) on M can be expressed as a query ¢, on O,,. For example, consider
the query g “give me the addresses of restaurants at summer noons in low detail
in Greek” on the MOEM database M of Figure 1. Then ¢ is equivalent to g,
“give me the addresses of restaurants” on the OEM facet O,, of M for w =
{(season, summer), (detail,low), (daytime,noon), (lang, gr)}.

However, reducing M to O, is not a necessary step for evaluating g¢; the
processing of ¢ can take place directly on M. Intuitively, ¢, can be used for nav-

Multidimensional Semistructured Data 195

igating through MOEM entity edges, while w can guide the navigation through
MOEM context edges.

In addition, the fact that multidimensional data graphs group variants of
entities together, allows a “cross-world” type of queries. As an example, consider
the music_club in Figure 1, and the query: “give me the name and the address
in winter of a club whose summer address is given”. We believe that such queries
show the potential of multidimensional data graphs, and that query processing
for multidimensional data graphs is an interesting research direction.

5 Using MOEM to Represent Changes

In this section, we will give an example of how MSSD can be applied to a
tangible problem: we will use MOEM to represent changes in an OEM database.
In short, the problem can be stated as follows: given a static OEM graph that
comprises the database, we would like a way to represent dynamically changes
in the database as they occur, keeping a history of transitions, so that we are
able to subsequently query those changes.

The problem of representing and querying changes in SSD has been studied
in [8] where Delta OEM, which extends OEM with annotations, is proposed.
Our approach, although quite different, is based on the same framework, which
we outline in Section 5.1. The approach that we propose will be developed in
Section 5.2. An important advantage of MOEM is that a single model can be
applied to a variety of problems from different fields; representing valid time is
a problem that we discuss here as a case study.

5.1 Basic Concepts

In order to modify an OEM database O, four basic change operations were
identified in [8]:

creNode(nid, val): creates a new node, where nid is a new node oid (nid ¢ V),
and wval is an atomic value or the reserved value C.

updNode(nid, val): changes the value of an existing object nid to a new value
val. The node nid must not have any outgoing arcs (in case its old value is C,
the arcs should have been removed prior to updating the value).

addArc(p, I, ¢): adds a new arc labeled | from object p to object ¢. Both
nodes p and g must already exist in V, and (p, [, ¢) must not exist in E.

remArc(p, I, q): removes the existing arc (p,[,¢). Both nodes p and ¢ must
exist in V.

Arc removals can be used for deleting objects, as in OEM the persistence of
an object is determined by whether or not the object is reachable from the root.
Sometimes the result of a single basic operation u leads to an inconsistent state:
for instance, when a new object is created, it is temporarily unreachable from
the root. In practice however, it is typical to have a sequence L = uy, us, ..., U,
of basic operations wu;, which corresponds to a higher level modification to the

196 Yannis Stavrakas and Manolis Gergatsoulis

database. By associating such higher level modifications with a timestamp, an
OEM history H is defined as a sequence of pairs (¢,U), where U denotes a set
of basic change operations that corresponds to L as defined in [8], and ¢ is the
associated timestamp. Note that within a single sequence L, a newly created
node may be unreachable from the root and still not be considered deleted. At
the end of each sequence, however, unreachable nodes are considered deleted and
cannot be referenced by subsequent operations.

5.2 Modeling OEM Histories with MOEM

Given an MOEM database M, the following MOEM basic operations are in-
troduced: createCNode for creating a new context node, updateCNode for
changing the value of an atomic context node, createMNode for creating a new
multidimensional node, addEEdge for creating a new entity edge, remEEdge
for removing an entity edge, addCEdge for creating a new context edge, and
remCEdge for removing a context edge.

We will now use the framework outlined in the previous section and the
MOEM operations introduced above to represent changes in an OEM database
using MOEM. Our approach is to map the four OEM basic change operations
to MOEM basic operations, in such a way, that new variants of an object are
created whenever changes occur in that object. In this manner, the initial OEM
database O is transformed into an MOEM graph, that uses a dimension d whose
domain is time to represent an OEM history H valid [3] for O. We assume that
our time domain 7T is linear and discrete; we also assume: (1) a reserved value
now, such that ¢ < now for every t € T, (2) a reserved value start, representing
the start of time, and (3) a syntactic shorthand v..v,, for discrete and totally
ordered domains, meaning all values v; such that v; < wv; < v,,. The dimension d
denotes, for each context node it qualifies, the time period during which this
context node is the holding node of the corresponding multidimensional entity.

Figure 4 gives an intuition about the correspondence between OEM and
MOEM operations. Consider the sets U; and Us of basic change operations, with
timestamps 1 and to respectively. Figure 4(a) shows the MOEM representation
of an atomic object, whose value “A” is changed to “B” through a call to the
basic change operation updNode of U;. Figure 4(b) shows the result of addArc
operation of Uy, while Figure 4(c) shows the result of remArc operation of Us,
on the same multidimensional entity. It is interesting to notice that three of the
four OEM basic change operations are similar, in that they update an object
be it atomic (updNode) or complex (addAre, remArc), and all three are mapped
to MOEM operations that actually update a new facet of the original object.
Creating a new node with creNode does not result in any additional MOEM
operations; the new node will subsequently be linked with the rest of the graph
(within the same set U) through addArc operation(s), which will cause new
object variant(s) to be created. It is worth noting that the changes induced
by the OEM basic change operations affect only localized parts of the MOEM
graph, and do not propagate throughout the graph.

Multidimensional Semistructured Data 197

[din {t1..now}]
A [din {start..t1-1}]
Iab1 Iab2
‘ € ot e
A g
[din {t1..now}]
(a) updNode(&11, "B") at t1 [din {start..t1-1}]
|ab3
N / AN , Iab4
lab1 ab2 lab1 lab2 7/ Iab3
lab3 lab4

&8 labs

©"® ©

(b) addArc(&1, “labs", &9) at t1

(c) remArc(&3, "lab3", &7) at t2

Fig. 4. Modeling OEM basic change operations with MOEM

Based on the above, each OEM basic change operation can be mapped to a
procedure implemented through calls to MOEM basic operations, thus defining
a process for encompassing an OEM History into an MOEM database. Given
an MOEM database M created through such a process, it is possible to specify
a time instant and get an OEM database O which is a temporal instantiation
of M. In other words, a time instant ¢ is a world for M and we can apply the
process described in Section 3.3 to reduce M to an OEM holding under ¢.

6 Conclusions

In this paper, we presented a formalism for contexts, we introduced multidi-
mensional semistructured data, specified their syntax, and proposed a new data
model called multidimensional OEM, which is a graph model that extends OEM
by incorporating dimensions. We defined the concept of a multidimensional data
graph, gave a validity criterion for that graph, and specified a process for reduc-
ing multidimensional OEM to a conventional OEM under a specific world. As a
case study of multidimensional OEM, we showed how it can be used to represent
the history of an OEM database.

The implementation of the above comprises two applications: “MSSDesigner”
that allows to design, validate and reduce MOEM graphs, and “OEM History”
that models the history of an OEM database and allows to get OEM temporal

198 Yannis Stavrakas and Manolis Gergatsoulis

instantiations. Both applications can be reached at:
http://www.dblab.ntua.gr/~ys/moem/moem.html
We believe that MOEM has a lot more potential, and can be used in a va-
riety of fields, among which: in information integration, for modeling objects
whose value or structure vary according to sources; in digital libraries, for repre-
senting metadata that conform to similar formats; in representing geographical
information, where possible dimensions could be scale and theme.

Acknowledgements

Special thanks to Prof. Timos Sellis and Prof. Panos Rondogiannis, for their
valuable comments and suggestions. Also, to Christos Doulkeridis and Vassilis
Zafeiris for implementing the ideas presented in this paper.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann Publishers, 2000. 185, 191

2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query
Language for Semistructured Data. International Journal on Digital Libraries,
1(1):68-88, 1997. 188, 194

3. E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and W. W. Wadge. Multidimen-
sional Programming. Oxford University Press, 1995. 184

4. Ph. A. Bernstein, M. L. Brodie, S. Ceri, D. J. DeWitt, M. J. Franklin, H. Garcia-
Molina, J. Gray, G. Held, J. M. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier,
J. F. Naughton, H. Pirahesh, M. Stonebraker, and J. D. Ullman. The Asilomar
Report on Database Research. SIGMOD Record, 27(4):74-80, 1998. 183

5. P. Buneman, M. Fernandez, and D. Suciu. UnQL: A Query Language and Algebra
for Semistructured Data Based on Structural Recursion. The VLDB Journal,
9(1):76-110, 2000. 194

6. Peter Buneman, Alin Deutsch, and Wang-Chiew Tan. A Deterministic Model for
Semistructured Data. In Workshop on Query Processing for Semistructured Data
and Non-Standard Data Formats, 1998. 184

7. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou,
J. Ullman, and J. Widom. The TSIMMIS project: Integration of Heterogeneous
Information Sources. In Proceedings of IPSJ Conference, Tokyo, Japan, pages 7-18,
October 1994. 184, 188

8. S. S. Chawathe, S. Abiteboul, and J. Widom. Managing Historical Semistructured
Data. Theory and Practice of Object Systems, 24(4):1-20, 1999. 184, 195, 196

9. C. E. Dyreson, M. H. Bohlen, and C. S. Jensen. Capturing and Quering Mul-
tiple Aspects of Semistructured Data. In Proceedings of the 25th International
Conference on Very Large Data Bases (VLDB’99), pages 290-301, 1999. 184

10. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ull-
man, V. Vassalos, and J. Widom. The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent Information Systems, 8(2):117-132,
1997. 183

11

12.

13.

14.

15.

16.

Multidimensional Semistructured Data 199

M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating Dimensions to XML
and DTD. In Database and Expert Systems Applications (DEXA’ 01), Munich,
Germany, September 2001, LNCS Vol. 2113, pages 646—656. 184

M. Gergatsoulis, Y. Stavrakas, D. Karteris, A. Mouzaki, and D. Sterpis. A Web-
based System for Handling Multidimensional Information through MXML. In
Advances in Databases and Information Systems (ADBIS’ 01), September 2001,
LNCS Vol. 2151, pages 352-365. 184

J. Plaice and W. W. Wadge. A New Approach to Version Control. IEEE Trans-
actions on Software Engineering, 19(3):268-276, 1993. 184

Y. Stavrakas, M. Gergatsoulis, and T. Mitakos. Representing Context-Dependent
Information Using Multidimensional XML. In Research and Advanced Technology
for Digital Libraries, 4th European Conference ECDL’2000, LNCS 1923, pages
368-371, 2000. 184

D. Suciu. An Overview of Semistructured Data. SIGACT News, 29(4):28-38,
December 1998. 185

W. W. Wadge, G. D. Brown, M. C. Schraefel, and T. Yildirim. Intensional HTML.
In Proceedings of the Fourth International Workshop on Principles of Digital Doc-
ument Processing (PODDP °98), March 1998, LNCS 1481, pages 128-139. 184

	Multidimensional Semistructured Data: Representing Context-Dependent Information on the Web
	Introduction and Motivation
	A Formalism for Contexts
	Supporting Contexts in SSD
	Multidimensional OEM
	MSSD-Expressions
	Properties of Multidimensional Data Graphs

	Querying Multidimensional Data Graphs
	Using MOEM to Represent Changes
	Basic Concepts
	Modeling OEM Histories with MOEM

	Conclusions

