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Abstract. We present a metamodel which forms the basis for the de-
sign and implementation of modular information systems supporting a
cooperative working environment. The model consists of four separate,
but interconnected, sub-models dealing with all aspects of modular sys-
tems from the database meta and object model down to a possible storage
model. The database connectivity metamodel is crucial in supporting the
implementation of the database and connectivity models which enable
users to dynamically dock on a foreign database module. At the centre
is the user model which serves to tie the other sub-models together and
this reflects our human-centric approach to cooperative environments.
Consistency of each database module is maintained through our model
of personal and shared workspaces. The global consistency of intercon-
nected database modules can be achieved through synchronisation and
cooperation of the conflicting parties over personal and history data.

1 Introduction

When designing a complete information system, many invariants such as a clear
information model, data consistency, efficient query and recovery operations,
must be ensured in the lifetime of the application. On the other hand, free col-
laboration between multiple users, physical storage distribution, replication and
interchange mechanisms must be enabled, which may often introduce undesirable
side-effects to the information system invariants.
With the goal of solving the problem of legacy database integration, we have

seen major efforts within the information system community in the areas of
schema integration, data heterogeneity and federated databases [HM85, SL90,
Bro92]. In the mean time, modularity has become a standard tool for software en-
gineering and componentware is gaining broad acceptance in the object-oriented
programming world. Nevertheless, every day new database applications are cre-
ated still based on old information and distribution models. This results in a large
impedance mismatch between data and application modelling and design tech-
niques, thereby preventing the full exploitation of new technological advances,
while retaining many of the old pitfalls. We notice that the current middleware
emphasis is justified by its success to close the gap between such technologi-
cal mismatches. However, we still believe that, for new applications built from
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scratch, new models and techniques must be used, not only at the application
level, but also at that of the information itself.
The overall complexity of distribution in an information system is a ma-

jor drawback in terms of, not only its design, but also its implementation and
efficiency. In the past years, many communication and synchronisation proto-
cols [Gri98] that support distribution have been studied and proposed. Never-
theless most of them are at a very low level: They support object-orientation
only at the level of programming languages and processes and not in terms of
information abstractions and cooperative work activities. Thus, while they are
useful to solve the problems of communication between distributed objects, a
lot more is required to achieve the goal of modular information systems. The
effort involved in designing and implementing a complete information system
application is still a very time-consuming and difficult task.
We are therefore seeking both a methodology and a model to support the

design and implementation of an information system in terms of modular com-
ponents. To achieve this goal, the approach taken must be total and at a higher
level of abstraction than just that of a communication protocol: It must aim to
solve the problem of the distribution of information, rather than the problems
of the communication and synchronisation of data arising from it. Existing dis-
tributed protocols can be integrated into the methodology and model by defining
the operational specifications of the special partial problems that they address.
Our system focuses on the extensibility and reusability of databases in a

user-centric approach, rather than purely on the underlying data. Information is
indeed formed out of data and their consistency is crucial. Still, the perception
of information is user and situation dependent. Each user must have a consistent
information space, but it is not guaranteed that this will be part of a consistent
extended space when participating in a community. Nevertheless, it is desirable
for a user to dynamically participate in other communities. An information sys-
tem must then be able to dynamically dock on other systems and resolve possible
conflicts through cooperation and contract definitions.
Thus we are working on a logical rather than physical distribution schema.

Contrary to a transparent distribution environment, the users view the entire
information space in terms of logical, user-aware sub-spaces. As stated above,
physical distribution techniques can still be used and applied to each logical ap-
plication entity, but, by defining logical application modules and their interaction
and evolution, we achieve a system suited to cooperative working environments.
We identify the following four major conceptual areas, with their respective

models, that influence the design and implementation of such a system:

– A rich information model.
– Database modules and their interconnection model.
– A flexible storage model that supports cooperative working environments.
– A user model for our human centric approach and security aspects.

In the following sections, we will describe each of these models in turn and
investigate the dependencies between them. We begin with a discussion of the
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general requirements in Section 2. In Sections 3 to 5, we describe each of the sub-
models, focusing on the features that enable better understanding and control of
the distribution aspects of a modular information space. In Section 6, we examine
how these models are combined. We give concluding remarks in Section 7.

2 Requirements

In this section, we briefly introduce the four sub-models proposed by examin-
ing the general requirements. An overview of the four components is given in
Figure 1.
First of all, the information system must be defined clearly, completely and

orthogonally in terms of an information model and its corresponding metamodel.
This model must be kept as simple as possible to avoid unnecessary complica-
tions when distribution comes into play. ”Simple” refers to the concepts used
and the operations applied to the abstractions offered by the model. The model
should be complete and orthogonal with respect to operations and constructs,
thus ensuring the robustness of the system in delicate situations that may be
introduced by distributed operation (disconnected operation, replication, parti-
tioning etc.). The entities of the system must be uniquely identified, not only
in the scope of the database module in which they reside, but also in the entire
potential cooperation universe in which they might participate now or in the
future.
We see a great significance in the existence of a database connectivity model,

which models how the different peers should be connected and what kind of
entities are represented alone or in conjunction with each other. We handle a
database (or a piece of it) as an object itself which can have attributes, operations
and can reference other databases, thereby building up hierarchies on which
inheritance and encapsulation can be applied.
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The distribution aspect is indeed tightly coupled with the storage of the in-
formation, making the introduction of a general object storage model inevitable.
We use a model based on storage containers, which represent units of storage
at a logical or physical abstraction level. A user view is an information space
which is constructed dynamically from a set of storage containers in terms of set
operators over these containers.
Last, but not least, a user model is required. As a result of our aim to sup-

port cooperative human environments, the user model is actually the interface
and interconnection between all of the sub-models mentioned above. The user
is aware of the high-level logical distribution and database connection models.
Behind the scenes, the user model drives part of the storage model and gives
admission to the visibility of the object model.
Before discussing each model in detail, we present an example to illustrate our

vision of a modular information space. Assume we want to model a population
database for Switzerland which tracks all inhabitants in databases distributed
across the country and maintained by the cantons (autonomous regions of the
Swiss confederation). The canton of Zurich may have a database where infor-
mation on all inhabitants of Zurich are stored under the guidance provided by
the federal inhabitants schema, located in the Swiss capital, Bern. Due to its
autonomy, Zurich could enrich the basic inhabitants data, based on the schema
from Bern, with other information and operations, such as information on local
taxes/statistics and/or some local rules or restrictions. This schema extension
would involve the creation of one or more local subtypes, e.g. ZH person as a
subtype of person as shown in Figure 2.
ETH Zurich, one of the two Swiss federal universities, is located in Zurich.

Assume a restriction that employees of ETH Zurich must live in the local canton.
ETH has access to the information about its employees from the local canton
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inhabitants database and, again, it is free to extend it through additional sub-
types as required, e.g. ETH person as a subtype of ZH person. However, in this
case, control of the inhabitant objects remains with the canton and ETH stores
only the information units corresponding to its local extension in its database
and not the whole object. Thus, only the methods and attributes defined for
type ETH person and not the inherited properties are stored at ETH.
We clearly see that the physical distribution is based on and driven by the

logical application model. Such a structure could be further extended to deal
with, for example, ETH internal organisations which may have requirements to
share both schema and data, with or without taking control over the management
of the relevant objects. At each level of sharing, it is, of course, necessary to
specify which information is accessible to other systems. Thus both data and
metadata are subject to access controls.
In addition, the situation may arise where a user wants to update data that

is not within their control. For example, assume that ETH wants to change the
employment conditions of one of its employees. ETH may update this informa-
tion in the local database, but it ultimately requires the approval of the canton
of Zurich, which issues work permits and processes tax information. In such a
case, ETH may either be given full privileges to alter the information on the
database of Zurich, or, it may apply for an update through a ”change request”
submission. Thus, the process is not simply one of update synchronisation, but
rather of cooperation between the users of data.

3 Information Model and Metamodel

An information system is defined through its schema and the corresponding
metadata defines the general concepts of the application. The metadata provides
the system with crucial information, even at run-time, about the structure and
status of the application data. This information can also be used to support the
distribution strategy. Our aim is to give a user the ability to dynamically dock
on a foreign database, use it and even extend it, without any administrator or
designer intervention. It is therefore of crucial importance that the metadata are
also represented and handled as normal objects.
Object-oriented metamodels [ABD+89] are powerful due to the fact that the

notion of an object is a simple orthogonal abstraction, based on which, all of the
concepts of an application can be modelled. Providing distribution of the object
abstraction, in the form of types, entities or operations, will yield some kind
of application distribution. The same applies to relational metamodels which
have also been used successfully as a basis for distribution. However, as stated
in the introduction, our overall aim is to obtain a methodology and a model to
support overall information system application design. Therefore, the existence
and completeness of an information model alone is not sufficient.
In our aim to support extensibility and reusability, concepts such as fine-

grained object decomposition, collections of relevant objects and object rela-
tionships through references are important characteristics. We therefore need
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an information model that incorporates such constructs. Through a rich object-
oriented model that encapsulates many application concepts, the implementation
of a distributed information system is greatly simplified. Although the addition
of certain semantic constructs to the core of the system may initially appear
to introduce unnecessary complexity, it in fact pays off in terms of simplifying
application development.
We have based our prototype on the OMS Pro data management system

[Wue00, KNW98]. It, in turn, is based on OM, an object-oriented model with
support for object collections and associations, a rich collection algebra and
object evolution [Nor93]. OMS Pro handles all information, metadata and data
with the same object concept. In fact, when it comes to the implementation,
metadata is handled slightly differently in order to achieve efficiency, but the
logical behaviour is common to all database objects. As a result, when a client
database connects to a server database, the client can have full access (subject to
access controls) to the metadata enabling the remote data to have known type
and structure. Moreover, the choice of a model which clearly separates notions of
entity representation and classification within its type and value system [Nor95]
allows us to even work with parts of an object or even to reference objects that are
private. The system and model were both developed within our research group
which gave us the freedom and resources to introduce distribution concepts into
the core of the system. Due to the fact that OM is orthogonal with respect
to operations and constructs, it demonstrates the benefits of making as many
information systems concepts distribution-aware as possible.
Returning to our Swiss inhabitants example, the shared schema would be

stored in a shared database in Bern. A canton could create person objects
locally according to this shared schema. No special handling of this metadata
must be undertaken due to the fact that distribution, partitioning, replication
and synchronisation of metadata are treated as normal objects. The canton of
Zurich can then extend the remote shared schema by creating locally additional
metadata. For example, since local cantons manage taxes autonomously, the
canton of Zurich could create a local subtype of the shared schema’s person
type with the relevant tax-related attributes and methods.
In Figure 3, we present the object and metamodel of the OMS database in

the OM notation. Rectangles represent collections of objects and ovals represent
associations between collections, i.e. a collection of reference pairs. Classification
hierarchies are formed through subcollection relationships between collections as
specified by cisa objects, indicated graphically through directed edges between
collections.
In the shaded part of collection rectangles, the type of the member objects

is indicated. Type hierarchies are built from subtype relationships represented
as tisa objects. Active objects represent the operational part of the database
through methods, triggers and macros (database operations).
One can see that metadata are also normal objects with an appropriate type

and possibly methods. Of course, in the definition of the basic persistent type



A Modelling Approach to the Realisation of Modular Information Spaces 251

object

Objects

object

Schema

object

Units

object

MetaData

object

DataObjects

object

Interface

object

Actives

object

Types

object

cisa

object

association
object

tisa

object

LinkedActives

object

macrosobject

ptype

object

btypes

object

stypes

object

methods

object

triggers

partition

disjoint

cover

SchemaMetaData

(0,*)

(0,*)

OfType

(1,*)

(0,*)

ConsistsOf

(0,*)

(0,*)

StoredIn
(0,*)(0,*)

LinkedTo

(0,*)(0,*)

THierarchies

(0,*)

(0,*)

References
(0,*)

(0,*)

MemberType

object

collection
(0,*)

(0,*)

CHierarchies

(0,*)

(0,*)

Associates

(0,*)

(0,*)

ConstMembers

object

Constraints

(0,*)

(0,*)

Fig. 3. Information Model and Metamodel

and object (ptype and object), we arrive at a classic fix-point situation where
those objects must be defined using themselves.
Although we cannot provide details of the OM model and its metamodel

here, the main constructs of the model can be summarised as:

– Unique objects which may be instances of arbitrary types with attributes of
base/structured or reference type.

– Types and subtype (tisa) relationships.
– Methods, triggers and macros.
– Collections with subcollection (cisa) relationships and constraints such as
disjoint and partition over them.

– Associations between objects participating in collections.

These are the logical constructs that actually influence database consistency
and, as seen later, form one dimension that influences the distribution strategy.
Although the presence of collections, associations and their constraints increases
the complexity of the core system in comparison to a simple object-type model,
we prefer to deal with these concepts once in the core of the system rather than
having to provide ad-hoc distribution of rich constraints within the application.
The various forms of relationship metadata objects — association, cisa

and tisa— are treated as special cases in our model. They represent the linking
between objects used as the basis for connection and extension when intercon-
necting databases. After explaining the database connectivity model in the next
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section, the dependency between these metadata objects and the database model
should be clear.
Apart from the metamodel, we are interested in the granularity of information

distribution. One can decide to allow distribution of object collections or choose
to distribute at the granularity level of attributes. In earlier work [NPW98], we
successfully used the granularity of an object unit. This is the set of attribute
values of an object associated with a particular type, without its inherited at-
tributes. For example, the object o10 of type employee which is a subtype of
person would consist of two separate units, namely that of (o10,employee) and
(o10,person). The abstraction of a unit as a basis for distribution is appropriate
for the following reasons:

– (ObjID,Type) pairs can be seen as unique keys of searchable information.
– The system offers extension at a finer level of granularity than that of an
object, providing flexibility without reaching the inefficient fragmentation of
attribute level distribution.

– We provide multiple inheritance and context-aware views of objects by dy-
namically composing object instances from units.

– The user access privileges can be applied to the unit level, providing fine-
grained security.

Last but not least, dealing with units at the physical level of the system, en-
ables us to provide rich functionality and flexibility to the upper logical abstrac-
tion levels, while keeping the underlying implementation simple and efficient.

4 Database Connectivity

We now discuss some database connectivity issues and the corresponding part
of the metamodel. As stated previously, we want to create a dynamic, shareable,
distributed information system. The usual client/server architecture would be
very limited for this purpose, as it should be possible that a database shares its
data and schema and, at the same time, acts as a client on other databases. A
database module should be autonomous, allow other modules to extend it and
be able to be an extension from other modules. However, allowing such flexibility
could introduce some problems. What if, for instance, a cycle of interconnected
databases occurs? Where must the data, and above all the metadata, be stored?
How can we control propagations among database modules?
To give solutions to such problems, one must define what a database module

is and how it relates to the information model. As seen in the previous section,
a database is defined by its schema. The question that arises in a distributed
interconnected environment of database modules, is how can we decide which
part of the schema belongs to which module and, further, when can we say that
a database module is consistent?
The straightforward answer used in many object-oriented systems is to use

the transitive closure of objects, defined as the information of an object plus the
information of all objects that are linked or referenced from it. If we have all this
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information and it is consistent, then the module itself is in a consistent state.
Recall now from our requirements that a user of a database module should be
able to dynamically attach to and extend a foreign module. If we base our model
on the transitive closure concept, such interconnected and linked modules could
never be disconnected again! We therefore looked for another approach.
We distinguish two kinds of module connections:

– Applications that are logically autonomous and one can shift the focus to
another logical application through linked information.

– Applications that are more tightly linked together and build a hierarchy.

It is clear that, in the first case, the consistency of the application is separate
from the consistency of the linked information. The user is focused on the appli-
cation domain of the module but has the opportunity to attach dynamically to
further information and use another application. The user can later detach from
the other module without influencing its consistency. If desired, the first working
scenario can migrate to the second, more strict scenario, where the two parties
are willing to cooperate and build a community that must also be consistent due
to some kind of contract (new extended consistency).
We therefore see a database module as a logical application abstraction.

When modelling large applications, one can easily come up with sub-schemas
interconnected with each other via association, subtype or subcollection rela-
tionships, representing logical domains of the whole application. Even graphi-
cally, we tend to draw partial application spaces adjacent to each other. Based
on these considerations, we introduce the following definition:

“A consistent database module schema consists of all metadata objects
of a logical application domain and all further objects that build up their
transitive application consistent closure.”

Notice that the transitive application consistent closure is a subset of the
absolute transitive closure. Taking advantage of the reference semantics of an
association and, using the unit model described in the previous section, we are
able to define the application borders through those constructs.
In OM, associations are the connection points between objects. If we were

to ignore them, we would reduce the logical application, but could then easily
ensure the consistency of the remaining parts of the application domain. From
a particular part of a schema, we can regard associations as the bridges to the
neighbouring database modules. If we close these bridges, we can still remain
and work effectively within our own information island, as long as that island is
itself a meaningful sub-space of the overall application information space.
Some contexts in which an application object resides can also be set apart if

desired. As mentioned before, OM models object roles that can define context-
sensitive properties and behaviour. For example, a person can have both a stu-
dent and a private context for two different application sub-spaces. If it makes
logical sense, a context can be omitted. Thus, the specialisation relationships
declared through subtype (tisa) and subcollection (cisa) relationships can also
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be seen as bridges to neighbouring contexts. Because the object model is phys-
ically structured in terms of units, the partitioning of objects over contexts is
straightforward. For this reason, we see in Figure 3 that associations, tisas and
cisas are all regarded as special forms of interface metadata.
In summary, a database module represents a logical information space, de-

fined by a consistent schema and composed of objects according to that schema.
Through connectivity with other database modules, the information space can
be extended through associations and/or contexts defined by interface metadata.
The database modules can then build-up a hierarchy. A module can view only the
immediate connected modules, thereby avoiding major propagation and security
issues. If a module A wishes to use a module B that extends another module C,
then the module A must connect explicitly to module C. The system supports
this by providing the dependencies of a module to the connected clients.
The resulting connectivity model is shown in Figure 4. We further distin-

guish connections (Connection), based on the kind of interface metadata used
to connect the databases, into Associative (AssocDB) and Submodule (SubDB)
connections. This is mainly due to the fact that the connection through an as-
sociative bridge, represents a more loosely-coupled connection than that of a
submodule connection. Making this distinction enables us to optimise aspects of
performance in the implementation.
In our inhabitants example, every canton would have at least one database

module. A shared database module, namely that of the federation, is maintained
in Bern. The federation would have many such modules for further applications,
such as federation laws and foreign policy. Associations across these logically
separated application modules enables them to be connected to each other. Sup-
pose the traffic department of the canton of Zurich now wants to work on traffic
data that they created locally and associated to the inhabitant data based on
the shared schema. They can perform this operation by simply using their traf-
fic database module and connecting to the inhabitant module of Bern. There is
no need to connect to the federation foreign policy module, even if this is in-
terconnected to the inhabitants module. An associative connection between the
database modules is created automatically.
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On the other hand, ETH also uses the inhabitants module, this time of the
canton of Zurich, and can extend the schema by introducing new subtypes locally,
such as ETH person, student and professor with new attributes and methods.
The information units of each student or professor object will be stored locally,
while the person units will still be maintained in the canton of Zurich database.
Once ETH has established such a connection, it has a database module that
is strongly connected to the inhabitant database of canton of Zurich. In effect,
they are building a submodule hierarchy. The information units of each student
and professor must be available to ETH from the different cantons. Moreover,
due to the fact that we actually distribute objects based on logical criteria, the
system can automate the replication process using the metadata [Pit96] and
copy the student/professor inhabitant units locally to ETH, increasing not only
the response time, but also the ability to work further in a case of a connection
failure.
Having this connectivity model, we still have not answered the question as to

where the objects are stored and how the users are involved. To answer this, we
first need to present a storage model appropriate for a distributed, cooperative
working environment.

5 Storage Model

A major property of information systems is to guarantee consistency of the
stored data. Most of the proposed approaches are based on a short transaction
scheme. An update, typically carried out from a task or a batch command, locks
a resource, applies the update and frees the resource again. In our system which
focuses on cooperative working environments, we take another approach.
An OMS transaction represents a particular logical work activity on the

database which may even span several OMS user sessions. The length of such a
transaction will definitely be too large to apply traditional locking techniques.
Apart from the logical consistency of the system, we must ensure further phys-
ical consistency. All user interactions must be made persistent automatically
and recovery must be ensured in the case of failure. OMS Pro was originally
designed as a rapid prototyping tool, and, in such a development environment,
physical consistency is crucial since “mistakes” are not excluded. Further, a hu-
man cooperation environment could lead to inconsistencies due to the different
perspectives of each user.
We therefore built a system that gives each individual the flexibility to always

secure his/her work and to support the resolution of logical conflicts by either
providing synchronisation tools or a personal view over the information. The
decision to use information units as our level of granularity, as discussed in
Section 3, supports such a strategy by providing quite small granularity and
thereby restricting the level of conflicting information. In this section, we focus
therefore on information units as the physical level of information storage, rather
than whole objects.
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The information units are stored in what we call “information storage con-
tainers”. These containers may be either physically stored or virtual containers
derived from other containers (for example, views defined in terms of set opera-
tors). This means that to retrieve a unit given its key (recall from section 3 that
the pair (ObjID,type) is the unique key of a unit) from a virtual container V,
the request sent to V will be propagated to the containers in terms of which V
is defined. This may seem complicated initially, but it allows us to be very flex-
ible and enables us to model many distribution scenarios. With special storage
structures, we are even able to reduce the overheads introduced.
To give a better understanding of how we work with information containers,

let us study the use of such containers to implement the single user storage solu-
tion of Figure 5. It comprises one logical and three physical containers. Original
is a physical container holding the database consistent state. This container is
implemented in a similar manner to a conventional object repository, providing
indexing, recovery etc. Each user has his own Workspace container where all
the changes are immediately made persistent. A workspace is also a physical
container but, because it holds a small number of units, indexing may not be so
crucial. Temporary objects are stored in the Volatile container which, although
it is a physical container, is implemented in memory. The UserView container is
then a virtual space that is defined as follows:

UserV iew = {x| (x ∈ Original ∧ x /∈ Workspace) ∨
x ∈ Workspace ∨ x ∈ V olatile}, where x is a unit

The user always views the UserView container, while the system writes up-
dates only to the Workspace or Volatile container, thereby avoiding fragmenta-
tion of the Original container and decreasing the possibility of loss of information
due to failures in the Original container. On commit, the UserView is checked for
consistency and, if the check succeeds, the changes in Workspace are ”melted”
into the Original; the Workspace and Volatile containers are emptied for the
next session. To support some functionality required for logging, versioning and
rollback through the different logical commit stages, the Workspace is actually
copied to a history container. Any snapshot of the Original container over time



A Modelling Approach to the Realisation of Modular Information Spaces 257

can consequently be reconstructed from the subsequent union of its History con-
tainers.
The abstraction of information containers, combined with the concepts of

information unit uniqueness and small granularity, gives us the flexibility to, not
only easily introduce new virtual storage containers by just defining a name and
the corresponding dependencies between others, but also to optimise the imple-
mentation of physical containers or even re-distribute the units of one physical
container into many other containers. For example, the Original container in
OMS is actually partitioned into three physical containers according to the cat-
egory of units in terms of whether they are meta-, user- or classification-data.
To extend the single user case just discussed into a multi-user cooperative

environment, we next present the user model.

6 User Model and the Model in its Entirety

The user has an important role in our system in actually binding together the
models discussed so far and their properties (see Figure 1 or Figure 6 for a more
detailed view). Therefore, while presenting the user model, we will also explain
the model in its entirety.
One can notice that the user model authenticates access to objects and forms

connections between database modules. Although, at this stage of our project,
security is not a major focus, we model and implement access privileges through
user groups. We perform security checking on the physical information level, i.e.
that of the information unit. Introducing security at such a fine-grained level
causes some additional loss of efficiency of the system. For the moment, we have
a naive and rather slow implementation that we aim to improve in the future.
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It is worth noting that the User notion is also an object of our information
model, but it has to be treated specially at the physical storage level to increase
performance.
Having introduced information containers as storage abstractions and ex-

plaining the single user solution, let us now extend the abstraction in the con-
text of cooperative working environments. Every database module has a single
Original space where it stores consistent units defined by the database schema
as mentioned in the previous section. When a user logs into the database and
at the same time connects to a remote database module, they will view a union
of both modules (subject to access controls). The uniqueness of the objects in
the new environment is guaranteed by a hierarchical registration process which
was presented in a previous publication [NPW98]. The user can then decide to
use the connected database either by extending it through the creation of tisa
relationships, or by designing affinities through the creation of associations. As
mentioned before, all changes will immediately become persistent in the user’s
working containers (Workspace and Volatile).
For every connection, the system maintains a virtual container Remote (see

upper-left corner of Figure 6). It comprises all objects made accessible through
the connection. The user can further extend its functionality by introducing a
physical sub-container of Remote that acts as network cache. The system can be
directed to keep in the network cache all referenced objects that are requested
together with their consistent transient closures. For large amounts of data, this
could be time consuming, but it enables additional important features such as
disconnected operation.
When the user decides that they have reached a logical working milestone,

they would check the new state and, if consistent, the system will “melt” the
changes into the shared Original container. This working scheme can be observed
frequently in development processes such as web site development and Software
Configuration Management [Est01]. Developers will change some information
from the current consistent state, test them for mistakes and inconsistencies and,
when satisfied with these changes, the changes are deployed. This is exactly how
our system core works. Using our system, it is therefore possible to implement
such an application with minimal development effort, by exploiting the rich
functionality of the cooperative working schema.
Let us now discuss the possibility of two users changing a shared object

simultaneously. As mentioned before, we usually will not lock the objects. Thus,
the possibility exists that the first user changes an object field, while another user
is also working on it. But recall that both users will read the shared object and
apply any change to their own Workspace. When one of the users first commits
objects in the shared database, the other could then find that his database view
is in an inconsistent state. Here we refer to the extended consistency of the
information space formed by the connection of the database modules between
each user and the shared module. The local consistency will stay intact due to
the absence of the bridge objects that extend the information space, as explained
in section 4. But what motivates us to allow such a possibility?
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In a cooperative working environment, and most of all when the parties are
loosely connected, an information unit can evolve in an application domain with-
out the awareness of foreign application domains. In such cases, we arrive at a
conflict situation. The involved parties can view the different versions and coop-
erate to resolve the conflict. In our system we support two different scenarios.
On one hand, the cooperative environment may have some kind of hierarchi-
cal structure, whether it is an organisational, operational or even task-oriented
hierarchy. Thus giving priority to the changes introduced by the party higher
in the hierarchy. On the other hand, an application could support a more lib-
eral, democratic way where multiple perceptions can be accepted. We therefore
model this fact by associating the user model with the storage model as shown
in Figure 6.
In both cases, the server database should only be updated if the docked user

has update privileges. If not, the user will get a personal view of the remote
database for any changes that will be made: The changes will be melted into the
user’s Personal container ensuring the consistency of the user information space
and avoiding the introduction of further conflicts with other users of the shared
module, thereby giving a solution to the democratic view-point with personal
versions.
To support the hierarchical working model, the users of a particular database

are building up a priority hierarchy. This may enable more users to access and
even update data, while giving moderation privileges over the data and its syn-
chronisation in conflict situations. This scheme is ideal for multi-user applications
working in a workflow manner commonly used in all hierarchical organisational
working models. In the case that the working model changes over time, it is
always possible to again publish your personal view of the information or vice-
versa.
Imagine in our ETH example that a teaching assistant wants to reduce their

working time by half. The personnel department makes the appropriate ETH
internal changes to the database. Recall that the canton of Zurich tracks all
working profiles to adapt the taxes or work permits of its inhabitants. Con-
sequently, the occupation information must also be altered in the database of
Zurich. Because ETH has no direct write access to the data, the changes are
stored at the ETH personnel container and a notification of the situation is sent
to the canton of Zurich database. The responsible person in the employment
centre of Zurich, the moderator that handles ETH cases, is informed from the
system about the request for occupation change. He can either accept the change
by adopting the ETH personnel copy of the employment object or resolve the
inconsistency due to this change in cooperation with the ETH personnel depart-
ment. In this way, the central office retains control of the data, but clients of
that data may notify them of changes.
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7 Conclusions

We have identified four major concept areas that must be investigated when
building a distributed information system for a cooperative working environ-
ment. The model presented defines the concepts of each area and interconnects
them to support both data and schema sharing in modular information spaces.
The process of modelling our system in this way, led to a better understanding

of the existing concepts that influence overall system design and the interoper-
ability between them. This, in turn, led to improved functionality and efficiency
of the current platform over an initial prototype.
To perform such metamodelling, it is important to use a rich and expressive

data model that increases the semantic information about the data, which can,
in turn, be used to drive the distribution. Moreover the overall implementation
of the application will be easier by using distribution, replication and synchroni-
sation concepts already introduced in the core of the system with a clear logical
model. A flexible object storage model must exist to support distribution and in-
teroperability between users. The granularity of information is crucial, not only
for reasons of efficiency, but also flexibility. Finally, the user plays a central role
in the system, controlling the connectivity within his environment. Two work-
ing strategies are supported by the system: A user privilege schema organised
hierarchically, that supports user cooperation and a more autonomous solution
based on versioning.
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