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Abstract. One of the major problems in integrating independently developed
applications is the divergence between the data and control-of-processing mod-
els assumed by these applications. Research on database integration has focused
on establishing and maintaining a canonical schema on top of the schemas of
the underlying databases. At the same time, web-accessible software systems
have been adopting a multi-layer architecture style, with databases in the lowest
tier, business logic in the middle tier and user interfaces in the top-most tier.
However, as the time-to-market window shrinks, new software is presented with
the challenge of reusing and integrating the functionalities of existing whole
applications, instead of simply their database back-ends. The Babel framework

n-
alities they deliver and the data they manipulate. In addition, it supports the
specification of the “logic” defining how these functionalities should be inte-
grated. Based on these specifications, Babel produces a run-time mediator that
monitors the behavior of the underlying applications, evaluates the defined
logic on the global state of the integrated system, and generates triggers for new
functionalities to be accomplished according to these rules.

As the number of alternative technologies underlying software development increases,
the need to develop methods and tools to support the integration of heterogeneous
software assets becomes more pressing.

Research efforts to that end aimed originally at integrating heterogeneous databases.
As the object-oriented paradigm usurped the more traditional procedural approach to
software design and development, object-oriented databases were proposed as an
alternative to relational databases. As a result, a new area of research was born, f o-
cusing on methods for developing object-oriented views of relational data [20]. How-
ever, even when developed with the same design paradigm for the same application
domain, different databases differ in terms of the syntax they adopt for the representa-
tion of (potentially the same) data and the semantic [7] interpretation of the data by the
applications supported by these databases. Thus, a substantial research effort has been
invested in integrating the schemas of heterogeneous databases or constructing unified
views of their data [2,3,4] and creating new query languages to query distributed het-
erogeneous databases [10].
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More recently, the advent of XML has inspired a whole new area of database re-
search aiming at developing database support for managing XML data [6] and inte-
grating XML-based databases [11]. At the same time, XML provides a flexible syntax
for representing semi-structured data and can be used as the medium to represent
information extracted from all types of different sources, such as HTML documents
[24], and textual information repositories [25]. The scope of the integration problem
has thus expanded from database to information integration [13].

The next logical step in this evolution of the integration research agenda is applica-
tion integration; not only should data, structured in databases or unstructured in infor-
mal repositories, be integrated, but also complete applications. The problem of appli-
cation integration however raises a new important question: how to coordinate the
behavior of independent applications that have been designed with different assump-
tions regarding their context of operation and different expectations on how they may
be called from their environment [22,23].

Several approaches have been developed to address this problem, making strong as-
sumptions regarding the underlying integration infrastructure as well as the re-
engineering of the applications to be integrated. Object-oriented integration frame-
works, such as CORBA for example, require that the applications to be integrated are
developed in the object-oriented style and that the interfaces of their classes be repre-
sented in a proprietary specification language in order to be advertised and brokered
by the central mediator (Object Request Broker). Such approaches are therefore appli-
cable to a specific type of applications and require specialized technical skills and
substantial development effort.

This is exactly the motivation behind more lightweight, event-driven approaches,
such as XWrap/CQ [26] and CoopWare [5,12]. CQ aims at developing a framework
for integrating applications, by monitoring the updates to the information they contain
in distributed open environments such as the web for example. Furthermore it com-
bines traditional database-style pull-based query-answering services with push-
enabled event-driven update monitoring services. CoopWare is an event-based inte-
gration architecture based on active-database technology; update events in the under-
lying databases trigger rules in a central coordinator module that can, in turn, invoke
SQL-like transactions in the underlying databases.

In our work, we have also been investigating methods for lightweight integration of
distributed, heterogeneous, independently developed applications. Babel [21], like
CQ, assumes XML as the syntax for representing the data extracted from the underly-
ing applications. Like CQ and CoopWare, it assumes that the coordination behavior of
the mediator is triggered by events generated by the underlying resources. Unlike CQ
and CoopWare, Babel does not assume SQL-like queries integrating the underlying
resources; instead, it assumes that the underlying applications are wrapped with a
particular style of adapter wrappers that expose a task-based interface of the applica-
tions’ behaviors of interest. In the context of the CelLEST project [17], we have also
developed Mathaino [9], a tool that implements a semi-automated method for con-
struction of such wrappers for legacy systems running on ASCII-based protocols such
as tn3270. Furthermore, Babel pr ovides a design-time environment, with an easy-to-
use interface, for specifying the logic of the coordination among the wrapped applica-
tions being integrated.
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The rest of the paper is organized as follows. Section 2 discusses the overall Babel
architecture, its components and its approach to data modeling and coordination con-
trol. Section 3 briefly describes the design-time environment of Babel that can be used
to support the specification of the coordination logic. Section 4 discusses the run-time
behavior of Babel. Section 5 describes Babel’s implementation and our experiments
with it evaluating its performance, scalability and robustness. Finally, Section 6 sum-
marizes the approach and concludes by identifying its novel contributions to the area.

2 The Babel Architecture

Figure 1 diagrammatically depicts the overall architecture of the Babel framework. It
consists of two loosely coupled environments: a design-time environment called Vis-
ual X-logic Generator (VXG), which supports the “visual programming” of the me-
diation logic, and a run-time environment, which monitors the execution of the un-
derlying wrapped applications and executing the mediation logic.

The run-time mediator of Babel enables the reactive integration of heterogeneous
applications, wrapped within a particular type of adapter wrappers. These wrappers
“translate” the original application interface into an event-based interface; they exe-
cute specific tasks on the original applications in response to input events, and they
produce output events in response to the completion of these tasks. These events are
monitored by the Babel mediator and recorded in the mediator’s repository. In addi-
tion to maintaining the task history, the Babel mediator also maintains a registry of
Event-Condition-Action (ECA) rules and workflow-session definitions, which specify
the “logic” of the mediation. Upon receiving a task event form one of the wrapped
applications, the mediator identifies the relevant rules and sessions. The events r e-
sulting from the rule execution are forwarded to the appropriate wrappers that proceed
to execute the corresponding tasks on their underlying applications.

Figure 1: The overall Babel Architecture

VXG helps to alleviate the problem of “programming” the mediation logic. It con-
sists of a “Rule Wizard”, which guides the user to define the mediation application’s
ECA rules. VXG also provides a “Session Builder”, i.e., a lightweight workflow-
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process definition tool, to define higher-level coordination logic based on these ECA
rules. Upon the completion of the visual programming, VXG “compiles” XSLT pro-
grams, implementing the defined rules and sessions, which are then registered with the
run-time Babel mediator.

As is the case with all environments aiming at the integration applications of devel-
oped independently, Babel requires that all applications at the bottom tier of the run-
time architecture be wrapped, in order to expose a canonical behavior to the mediator
and thus hide their heterogeneity. There are two dimensions of heterogeneity that the
Babel wrappers are designed to abstract away: the data model underlying the individ-
ual integrated applications and their protocol of interaction with their external envi-
ronment.

Domain-specific data consumed as input (and produced as output) by the underlying
applications are transformed from (and into) a canonical data model; this data model
is the “lingua franca” of the overall mediation application 1: all data exchanged at run-
time between the wrappers and the mediator, as well as the coordination logic of the
mediation application, are represented in terms of this model. It is therefore imperative
that the syntax of the data-modeling language is expressive enough to succinctly
model the data of realistically complex applications, so as not to complicate coordina-
tion logic that is based on top of it. Babel adopts XML as the syntax in which to spec-
ify the canonical data model of the mediation application. XML enables data modeling
in terms of a “flexible” object-oriented syntax (XML schemas include support for
inheritance and aggregation and allow for missing attributes). Furthermore, XML
documents are self-documenting, since they include their underlying domain model in
the tags surrounding their data, and can therefore be exchanged among applications, as
long as these applications “agree” on the semantics underlying the domain model.

Different applications provide different modes of interaction with their environment.
Legacy applications, running on mainframe hosts, are designed to have their services
invoked from a ASCII terminal, implementing a protocol such as tn3270 or vt100.
Others, designed in the client-server style, make their services accessible through
HTTP requests issued by browsers. The Babel application wrappers abstract away
these differences by viewing the applications as performing tasks. Tasks are abstrac-
tions of the interesting capabilities of the underlying applications [16], and are defined
in terms of their type and their input and output information. Wrappers expose two
types of events for each distinct task of their underlying application: a task-initiation
event and task-execution event. Task-execution events flow from the wrappers to the
mediator. Each such event constitutes, in effect, a record of a single execution of the
task in question by the underlying application. The generation of task-execution events
by the wrappers enables the mediator to monitor the behaviors of interest of the
wrapped applications. The mediator generates task-initiation events, based on the task-
execution events it has received and the coordination logic it enacts. Each such event

1 We use the term “application mediation” to denote a specific instantiation of the Babel run-
time environment, including the wrapped original applications, the domain model of the data
exchanged among the wrappers and the Babel mediator, and the specific coordination rules
and workflow sessions.

2.1 Application Wrapping
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provides the necessary data for the application wrapper to execute the corresponding
task of the underlying application. In this model, the integrated applications are
viewed as components that accomplish a set of tasks by receiving events containing
the required input for these tasks and by responding with events recording the task
execution.

The domain-specific information contained in task-initiation and task-execution
events is represented in terms of the canonical domain model of the mediation appli-
cation. Each individual application wrapper is responsible for parsing the information
contained in task-initiation events and using it to “drive” the underlying application so
as to accomplish the desired task. Similarly, the wrapper is responsible for translating
the data produced by the task execution into the canonical domain model to generate
the corresponding task-execution event to the mediator.

Consider for example a digital library application that can be queried with a par-
ticular keyword, in response to which, it returns a set of three books with titles
matching the keyword. An instance of this task, as represented in Babel, is shown in
Figure 2.

Figure 2: Representing the Library “BookQuery” task in Babel.

This task takes as input the “keyword” of a “book” and returns as output three book
instances, each of which has four attributes, “author’s last name”, “keyword”, “title”,
and “subject”. In order to treat input and output objects uniformly, the task data model
uses the “information”-structured data as input or output. The various types of “infor-
mation” manipulated by the applications tasks constitute the overall domain of the
mediation application. Information objects in Babel are represented in terms of the
object type, object Id, and for each one of interesting attributes, an XPath-like expres-
sion characterizing the attribute in the context of the object and the attribute value.
Finally, each task is characterized in terms of its “type”, which uniquely identifies the
wrapper consuming initiation events and produces execution events for this task, and
its “Id”, uniquely identifying each distinct execution of this task type on the underly-
ing application. Note that task-initiation events forwarded by the mediator to the
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wrappers do not have values for the expected output information objects; task-
execution events, on the other hand, have values for all pieces of information included
in the task input and output.

After wrapping the applications of interest, the next step towards developing a media-
tion application with Babel is to define the “logic” of how these applications will be
coordinated at run time. The Babel framework supports two types of coordination
logic: Event-Condition-Action rules and lightweight workflow sessions.

2.2.1. Even-Condition-Action Rules: The Event-Condition-Action (ECA) rule par a-
digm was developed in the context of active-databases research and was originally
intended to support daemons monitoring transactions of interest and triggering further
transactions in response [27]. The underlying intent of this paradigm is to enable the
specification of high-level consistency constraints and to provide a mechanism for
their maintenance. Often, application integration is motivated by similar needs, i.e., to
maintain a high-level of consistency over the loosely integrated applications. For ex-
ample, it is often desired to propagate data-entry transactions form one application to
another and to trigger desired global side-effects of a transaction in one application to
related ones. This is why we adopted ECA rule-based integration as the basic level of
coordination logic supported by Babel.

A Babel rule is an event-condition-action triple that specifies what task-initiation
event should be invoked as the action generated in response to a task-execution event
received, in the context of a particular condition. Babel rules are also specified in
XML, in terms of a high-level, natural-language description of the rule, a type, and a
unique id. Both the condition and the action elements of a rule are optional. Rules with
no conditions are always applicable, upon receipt of their triggering event. Rules with
no actions are only used to advance the state of the workflow sessions.

The conditions of Babel’s rules are logical compositions of simple constraints. An
individual constraint is a predicate that must hold true between the input information
provided by the task-execution event triggering the rule and the information contained
in the task (–initiation and –execution) events recorded in the mediator’s history. In
addition to defining the rules’ conditions, constraints are also used to define how the
information provided as input to the generated task-initiation event, i.e., the action of
the rule, should be constructed. The action data could may be constructed based on
rule parameters input by the mediation designer, the generating-event data as well as
data of the tasks contained in the mediator’s history.

Consider, for example, a help-desk mediation application that integrates multiple
libraries and bookstores. One service that this mediation application provides is to
receive through email keywords from its customers and, in response, search for rele-
vant books in all the partner libraries. To support this service, the two rules, shown in
Figure 3(a), have to be defined.

The first rule of Figure 3(a) specifies, that when the mediator receives a task-
execution event from its EmailReceipt wrapper, it should check whether the subject of
the received email is “ BookQuery”. If it is, then the mediator should generate a task-
initiation event for its “Library1BookSearch” wrapper. The input information for this
task-initiation event should be “keyword” whose value should be whatever is in the

2.2 Coordination Logic
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“Content” of the received email. The second rule defines the reaction of the mediator,
when it receives a task-execution event from its “Library1BookSearch” wrapper.
Upon receipt of such an event, the mediator should look in its history of task events to
identify all the past receipts of “ BookQueries” for the same keyword as the keyword
appearing in the input of the current task-execution event. For all such tasks in its
history, the mediator should generate a task-initiation event of type “ EmailSend” and
it should forward the current task’s output book to the senders of the corresponding
“BookQueries”, found in the history. Note that the representations of rules shown in
Figure 3(a) are simplified demonstrations; rules are actually represented as XSLT
programs.

(a) (b)
Figure 3: Two rules (a) and a session (b) for the Book Help Desk.

2.2.2 Workflow Sessions: Coordination based solely on ECA rules is not sufficient.
Although, side effects can be effectively specified and maintained using such rules,
more complex, multi-step processes are often desired. Workflow management systems
provide the automated coordination, control and communication of work needed for
multiple task execution [15], but to the best of our knowledge , no existing workflow
model applies a similar event-based mediation approach yet.

In order to incorporate a lightweight workflow processing capability in the Babel
mediator, we have extended the coordination language of Babel with the concept of a
session. A session is a lightweight process that coordinates multiple tasks by combin-
ing multiple rules. Rule composition is based on sequencing, branching and looping
operations. WFMC specifies nine valid run-time states for a workflow process in-
stance [18]. The more limited Babel session incorporates the following states for its
session instances:
- Not Started: the initial state of every session; a session requires the occurrence of

a particular task-execution event to start;
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- Running: after a session has started (the initiating task-execution event has oc-
curred) and one of the rules applicable to this event has been successfully applied;

- NotRunning: after a session has transitioned to its new state and no incoming
event has triggered any of the rules enabling a new transition from this state; and

- Terminated: after the session has completed, i.e., it has reached a state where no
further rules are relevant.

The expressiveness of a workflow depends heavily on its flexibility. Several flow
control formalisms being applied in workflow management systems (WFMS), such as
Petri nets [1] and statecharts [19]. Babel is an event-based mediator and its control
flow relies on (task-execution) events as triggers. Babel internally represents the de-
fined workflow sessions as Transition Vectors . A Transition Vector holds all transi-
tions involved in a workflow session definition. Each transition is defined in terms of a
(from-state, rule, to-state2) triple. A session consists of a number of transitions, one or
more of which may be source transitions. Source transitions have the 0 th state as their
“from-state”, and they specify when a new session instance should be initialized.
When the mediator receives a new task-execution event, it checks the received event
against all the start-up transitions of the registered workflow sessions. If one of the
rule conditions in these transitions is met, a new instance of this session is spawned
and its state advances from the 0th state to the to-state specified by the transition. If the
rule conditions of multiple start-up transitions are successful, the one with the lowest
order in the transition vector will be followed. After a session instance is created, it
switches to a “not-running” process state until another task-execution event is re-
ceived. If any of the rules applicable to a received task-execution event is associated
with a transition possible in the current state of the session instance, this session in-
stance switches to the “running” process state and the rules’ conditions are evaluated;
if successful, the session instance advances to the to-state of the successful transition.
If the all transitions at the current state of the session instance fail (the rules of the
transitions fail), the session remains at its original state. Transitions with “to-state” as
“-1” are sink transitions. Once a session instance passes one of its sink transitions, it
expires, i.e., it switches to the “terminated” process state.

In order to prevent ambiguities, no two transitions with the same “from-state” and
the same “rule” are allowed in the transition vector of a session. Moreover, each tran-
sition vector must have at least one start-up transition and one terminating transition.

Consider for example, the BookServices application introduced above. An addi-
tional service could be to search from for a book-price quote, if the same user searches
for the same book title three times. This new service and the one we described in the
section above are not independent; they are in fact two mutually exclusive alternatives,
and it would be more efficient if this fact were represented with a workflow session.
Figure 3(b) diagrammatically depicts the transition vector of such a session. Here
rule3 is similar in content to rule1, with two exceptions: it is conditioned upon finding
at least three similar “BookQuery” task-execution events in the history, and instead of
generating a LibrarySearch task-initiation action, it generates a “ BookstoreSearch”

2 We use the term “state” to denote (a) the state of the process executing a session instance and
(b) the logical states comprising a workflow session definition. Wherever ambiguous, we use
the term “process state” to denote the former.
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action. Rule 4 is similar with rule 2, in that it sends query result of the book from a
book dealer ( www.amazon.com) instead of from a library. This session will be acti-
vated when a task-execution event of the type “ BookQuery” is received, in which
case, either rule3 or rule1 will be successful. If rule3 succeeds, the first transition will
lead the session instance to state2, and rule1 will not be evaluated. If rule3 fails, i.e.,
the first two times that the user requests information about the same book, rule1 will
succeed and the session instance will move to state3. From state2 and state3, the ses-
sion instance will move to state-1, i.e., it will expire, when it receives a “Library-
BookSearch” or a “BookstoreSearch” task-execution event when rule4 or rule2 will be
applied correspondingly. The reason that rule 3 is always checked before rule 1 is that
rule 3 is inside a transition with a lower order than rule 1.

VXG, the Babel design-time environment supports the specification of ECA rules and
workflow sessions through two visual-programming components, the Rule Wizard and
the Session Builder . The Babel user can use VXG to define rules and sessions with
simple dialog operations and drag-and-drop actions in response to the wizard prompts.
The storyboard of Figure 4 below illustrates the rule- and session- definition process
with Babel’s VXG.

The interface supports the specification of rules (steps a – h) and sessions (steps i –
l). To define a rule, the user has first, to give a short description (in English) of the
logic that the rule is intended to implement (step a). Next, the user has to choose the
type of events that can potentially activate the rule and the type of events that must
have already occurred in the past on which the rule’s activation may be conditioned
(step b). The interface enables the user to select both these event types from a drop-
down menu that is configured to include as choices all wrappers known to the system.
These event types appear as components in the main panel of the interface. Then
(steps c,d) the user can define functions on the various types of information associated
with the chosen event types by dragging and dropping the corresponding ports of the
selected components. Next (step e) the user selects the type of action that will result
from the rule’s invocation and defines the action’s input in terms of information con-
tained in the triggering and condition events (step f). Finally, the user may inspect and
edit the XSLT program implementing the defined rule (step g), and, if it is correct, the
rule is saved in the system’s repository under a user-provided file name (step h).

To define a session, the user has, first, to import the relevant rules by selecting their
specifications from the system (step i). The description of the imported rules is shown
as a tool tip, when the user moves the mouse over the icon corresponding to the rule
(step j). Then, in the main panel of the interface, she can select design a state-
transition network, by defining new states and by using the imported rules to define
the transition between them (steps k,l). The sessions defined in this manner are also
“translated” by VXG into XSLT programs that are saved in Babel’s environment.

3 VXG: The Babel Design-Time Environment
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Figure 4: Defining ECA Rules and Workflow Sessions with Babel's VXG.

At the end of the process, VXG produces the XSLT programs corresponding to the
defined rules and sessions. No XSLT knowledge is required to perform the tasks by
using the Babel design-time to write the complex coordination logic.

At run time, ECA rules and workflow sessions are dynamically registered with the
Babel mediator. At the same time, the mediator receives task-execution events from
the wrappers of the underlying applications. Whenever a data stream comes to the
mediator, the mediator parses it, infers its content type, i.e., whether it is a rule or a
session or a task event, and validates it according to the appropriate schema. If the
input is a rule definition, the Babel mediator stores it in its rule repository . From this
point onward, task-execution events of the type specified in the event field of the reg-

4. The Babel Run-Time Environment
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istered rule will activate this rule. If the input is a session definition, the Babel media-
tor registers this session with its session manager . If the input is a task-execution
event, the Babel mediator places it into its event queue and gets ready for receiving
the next input.

An independent thread, inside the Babel mediator, processes the event queue, accord-
ing to First-In-First-Out policy. Given the type of the task-execution event being proc-
essed, the session manager, first, evaluates whether a new session instance should be
initialized. If any of the start-up transitions of the registered sessions are conditioned
upon a rule applicable to this task type and the rule is successful, a new instance is
created (as discussed in Section 2.2 above). Second, all the currently active session
instances are examined to evaluate whether they can advance to a subsequent state;
these which are at a state waiting for the application of a rule conditioned upon an
event of the current type are added to the job pool . Finally, for each of the registered
rules applicable to the type of the task-execution event at hand, a corresponding “task-
rule” job is added to the job pool.

Babel’s job pool is a data structure that maintains a bag of jobs, i.e., pairs of task-
execution events and the applicable rules. The Babel mediator processes these jobs in
parallel -- each rule or session is applied on the task event by an independent thread.
Babel adopts a Working-Thread Pool model for its parallel. When the Babel mediator
is initialized, a fixed amount of threads are created and organized in a working thread
pool. Working threads continuously look for pending jobs in the Job Pool. A thread
either starts working on the selected job on successful job retrieval, or suspends itself
until new jobs become available.

This Working Threads Pool (WTP) paradigm shortens processing latency because
creating a thread is an expensive operation to be avoided during mediation runtime.
Meanwhile, keeping a fixed number of threads ensures the stability of the system be-
cause threads will not grow indefinitely to exhaust system resources. Furthermore,
since the jobs are dynamically assigned to the worker threads, workload is balanced
among the threads. When all the worker threads have completed their processing,
Babel dispatches all the task-initiation events generated to the corresponding wrap-
pers, and updates its information repository to record these new events.

When the Babel mediator generates a task-initiation event for an application wrapper,
the wrapper starts “driving” the underlying application in order to execute the task
corresponding to the event it received.

tractor layer, and the API to the underlying applications layer. The XML data inter-
face layer retrieves from the mediator task-initiation events and parses them to extract
the input required by the underlying application to execute the task. This layer also
compiles the data output by the underlying application, after it has completed the task
in question, into task-execution events and sends them back to the mediator. This layer
is quite general and is shared by all application wrappers. The driver-and-extractor
layer consists of wrapper-specific modules. The driver takes as input information
provided from the Babel mediator to drive the underlying application. For instance,

4.1 Processing Task-Execution Events

4.2 Application-Wrapper Processing

A wrapper consists of three layers: the XML data interface layer, the driver and ex-
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the email wrapper gets task data from mediator, extracts the email address and user
name meta-data, and makes the system call to send the email. On the other end, infor-
mation feedback from the applications is detected and sent to the Babel mediator by
the extractor module. These two modules operate on top of the API layer, which con-
sists of the APIs specific to the underlying applications.

The wrappers in the Babel environment can be constructed using the Mathaino tool
of the CelLEST environment [ 9]. Mathaino (semi-)automatically constructs front-end
interfaces for legacy user interfaces, based on traces of the legacy system-user interac-
tion. Other types of applications, such as web-based applications accessible through
browser thin-clients, are wrapped manually.

The Babel wrappers are heavy-weighted components that monitor and drive the un-
derlying application. The Babel mediator communicates with the wrappers by sending
and receiving data asynchronously. The Babel architecture also allows the wrappers to
be built as light-weighted components, extensions of the mediator itself. The commu-
nication of the mediator with these extensions is synchronous. The Babel architecture
provides a framework for building such extension services as hooks to this framework.

5 Implementation Overview and Performance Evaluation

Both the design-time and the run-time environments of the Babel framework are im-
plemented using JDK1.3. The XML parser is provided by JAXP 1.1 [8] and the XSLT
processing engine for the run-time rule and session enactment is based on SAXON
6.2.2 [14]. The mediator run-time includes an information repository module, cur-
rently implemented with flat XML files. At run time, the task-execution (-initiation)
events from (to) the wrappers to (from) the mediator are XML data exchanged over
RMI.

We evaluated the performance of the run-time Babel mediator in terms of efficiency,
scalability and robustness with simulations performed on sun4u SPARC-SUNW, Ul-
tra-30, under SunOS 5.6. Our experiments were designed to evaluate the performance
of the Babel mediator, independent of the network latency in delivering events from
(to) the wrappers and the wrapper processing itself.

A wrapper sends events to the mediator periodically, with constant time tp between
subsequent events. Timing starts when the mediator receives the event. The mediator
de-serializes the object received from the RMI interface, reorganizes the data into a
“raw” XML document, parses and validates it, and saves it in the event queue. Even-
tually, this event is retrieved from the queue and processed by the Rule Manager and
the Session Manager. Then it is saved in the mediator’s history. All these activities are
recorded for mediator performance profiling. In the following simulation, costs in
various aspects will be estimated.

5.1 Efficiency
For each experiment run, the time between every two events, sent to the mediator, is
constant tp. Suppose an event-message is received at tr and that this message is proc-
essed and the resulting messages (if there are any) are placed in the message dis-
patching queues of each wrapper at tf. Then the mediation processing time is ts = tf- tr.
The time elapsed between ts and tp measures the mediation efficiency, independent of
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the wrapper performance and communication issues. Different values of tp were cho-
sen as multiples of 200 milliseconds to evaluate the mediation performance.

Figure 5 shows a negligible service time for pure event processing with no rules
triggered, which means that the message queuing, parsing, validating and information
repository updating costs are trivial. The other three lines depict the average process-
ing time when 1 rule, 2 rules, or 3 rules are triggered by the incoming task-execution
event, correspondingly. In addition to the number of rules triggered, the complexity of
the actual rules triggered may also have an effect to the processing times; the reported
simulation results are averaged using different rules. We based our simulation result
on 100 test runs, and the standard deviation ranges from 2.1—3.7. This simulation
shows that the average processing time decreases as the time gap increases, and at
certain time gap, the average processing time becomes constant. A similar number
reported in [5,12] is higher.

Figure 5: Average processing time (ts) vs. time between message requests.

5.2 Scalability
To evaluate the mediator’s scalability, we defined several rules to be triggered by
events of the same task type. After the mediator receives an event of this type, the
Rule Manager retrieves a number of rules rn already registered for this event and starts
processing those rules against the current task event in parallel. In this simulation, 1 to
10 rules were registered to Babel and the corresponding average mediator processing
time Ts (measured in the same way as first simulation) was recorded. Standard devia-
tion ranges from 3.2–5.8.
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Figure 6: Average processing time (t_s) vs. Number of rules r_n.
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As can be seen from Figure 6, the mediator shows very moderate increase in T s with
the increase of the number of triggered rules. Processing of 10 rules takes 119.6 milli-
seconds, while one rule takes 28.4 milliseconds. We can therefore infer that the paral-
lel rule-processing model scales well with large number of concurrently triggered
rules.

5.3 Robustness
Finally, another important metric to evaluate is the mediator’s capability of handling
message flooding, i.e., a large amount of events simultaneously sent to the mediator.
In order to test this capability, we started a lot of wrapper instances on the machine on
which the mediator runs, and bombarded the mediator with simultaneous messages.
The time tr, as needed for the mediator to process various number nr of simultaneous
messages, is recorded.

Figure 7: Average recovery time vs. Number of simultaneous messages.

As shown in Figure 7, the mediator is able to recover within a very short period of
time (5.317 sec) for n r =50 (standard deviation ranges from 0.49—0.83 sec). The
mediation slows down as the number of messages increases and reaches 161.909 sec
at 350 simultaneous messages, and does not crash under a very heavy load. However,
this performance impact is attributed to the constant information repository updating.
When the information repository increases, it takes much longer to update the flat
XML file-based database.

6 Conclusions and Further Work

In this paper, we discussed Babel, an application-integration framework. Babel is
certainly not unique in providing an infrastructure for rule-based mediation over inde-
pendent applications. CoopWare [5,12] is a similar framework, on which in fact we
based our evaluation of Babel. However, Babel’s approach to application integration
is novel in the following respects.

First, it enables both rule- and session-based integration of the underlying applica-
tions. Reactive rule-based integration is sufficient for establishing consistency rules
between pairs of tasks across applications. However, as the execution of rules pro-
duces new events that may cause new rules to apply, tracing the overall consequences
of the rules becomes diff icult. If the rules are fairly independent, i.e., not many task-
initiation actions and task-execution events refer to the same task types , then there are
few secondary effects of the rule execution, and therefore few long-term conse-
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quences. If however this is not the case, and tightly controlling the overall integration
behavior is important, then more complex process descriptions are required, and this
type of integration is also supported by Babel, with workflow sessions.

Second, the coordination logic of a mediation application developed with Babel, i.e.,
the event-condition-action rules and the workflow sessions, are declaratively specified
in XML. They are therefore easy to inspect and modify. Even more importantly, the
VXG interface supports the specification of the coordination logic and thus alleviates
the burden of the programmer. At the same time, by virtue of the fact that the logic is
compiled into XSLT programs that are executable by the run-time Babel mediator, the
mediation applications are easily extensible. If the programmer has a strong XSLT
background, he/she can bypass VXG and manually program more complex rules to be
executed by the mediator.

Finally, the event-based description of the underlying application services is similar
to the recently proposed WebServices WSDL model. In this model too, applications
are viewed as components that export services; each service consists of a set of opera-
tions (≈tasks) and each operation is defined in terms of two messages, one to provide
the input necessary for the method implementing the operation ( ≈task-initiation event)
and one to request the output of the method ( ≈task-execution event). An interesting
difference is that in the Babel model, task-initiation events flow from the mediator to
the wrappers and task-execution events flow from the wrappers to the mediator, where
in WebServices, messages providing the service input and requesting the service out-
put flow in the same direction, from the client to the server. WSFL, the workflow-
level standard of the WebServices stack, is agnostic with respect to the integration
style of the underlying server applications. In our future work, we plan to investigate
whether or not (and how exactly) the Babel coordination logic can be translated in
WSFL.
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