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Abstract. The paper presents a logic of belief and time (called MATL)
that can be used to verify electronic payment protocols. This logic encom-
passes its predecessors in the family of logics of authentication. According
to our approach, the verification is performed by means of MultiAgent
Model Checking Checking, an extension of traditional model checking to
cope with time and beliefs. In this framework, principals are modeled
as concurrent processes able to have beliefs about other principals. The
approach is applied to the verification of the Lu and Smolka protocol, a
variant of SET. The results of our analysis show that the protocol does
not satisfy some important security requirements, which make it subject
to attacks.

1 Introduction

In this paper we show howMultiAgent Model Checking [6] (an extension of tradi-
tional model checking, see e.g. [10]) can be used for the verification of electronic
payment protocols using a logic of belief and time. This work extends to payment
protocols our previous work on authentication protocols [4,5].
The application of model checking to payment protocol verification is not

new (e.g., see [13,15,17]). However, in the previous work, payment protocols are
verified by introducing the notion of intruder and, then, by verifying whether the
intruder can attack a given protocol. This approach makes it possible to directly
find a trace of a possible attack, but it may not be clear what the protocol flaw
really is. This work usually employs temporal logics or process algebras.
A different approach makes use of logics of belief or knowledge to specify and

verifying both authentication protocols (see, e.g. [8,1]) and payment protocols
(e.g., see [7,11,14]). The use of such logics requires no models of intruder, and
allows one to find what the protocol flaw is, allowing to specify (and check)
security properties in a more natural way. However, in this approach, usually
verification is performed proof-theoretically.
Our approach can be seen as a combination of the above two: we employ

a logic called MATL (MultiAgent Temporal Logic) which is able to represent
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both time and belief (thus it follows the line of the work based on logics of belief
or knowledge and does not use any model of the intruder); but verification is
performed by means of a symbolic model checker (called NuMAS [3], a model
checker based on NuSMV [9]). NuMAS is built on the work described in [6], where
model checking is applied to BDI attitudes (i.e., Belief, Desire, and Intention)
of agents.
Our work aims at the use of MATL for modeling payment protocols and

uses NuMAS for their verification. This goal is fulfilled in three steps. First, we
capture traditional logics of authentication (e.g., as [1,8,18]) in MATL. Second,
we extend the above work in order to capture typical issues of electronic payment
protocols. MATL is expressive enough to fulfill both the previous steps. Third,
we model principals participating to a payment protocol session as (concurrent
finite state) processes able to have beliefs within the NuMAS system.
The specification of a principal has two orthogonal aspects: a temporal as-

pect, and a belief aspect. When we consider the temporal evolution of a princi-
pal we treat belief atoms (namely, atomic formulae expressing belief) as atomic
propositions. The fact that these formulae talk about beliefs is not taken into
consideration. When we deal with the beliefs of a principal P , we model its be-
liefs about another principal Q as the fact that P has access to a representation
of Q as a process. Then, any time it needs to check the truth value of some belief
formula about Q, e.g., BQφ, P simply tests whether φ holds in its (appropriate)
representation of Q. Beliefs are essentially used to control the “jumping” among
processes. This operation is iterated in the obvious way in case of nested beliefs.
The paper is structured as follows. In Section 2 we briefly introduce the Lu

and Smolka Protocol (a variant of the well-known Secure Electronic Transaction
(SET) Protocol), as a running example. Section 3 describes MATL and its use
as a logic of authentication. The use of MATL as a logic for payment protocols is
described in Section 4. Section 5 describes the formal specifications for the usual
security requirements of payment protocols. The results of the verification of the
Lu and Smolka protocol are reported in Section 6. Finally, some conclusions are
drawn in Section 7.

2 The Lu-Smolka Variant of the SET Protocol

The Secure Electronic Transaction (SET [16]) is an electronic commerce pro-
tocol jointly developed by Visa and Mastercard in order to guarantee secure
transactions over open networks. SET is not a monolithic protocol, but a suite
comprising seventeen subprotocols, each devoted to make secure a specific phase
of a commercial transaction. The Lu-Smolka variant of this protocol [15], re-
ported in Figure 1, is a simplified version of the subprotocol involved in the pay-
ment phase only. This subprotocol is supposed to be invoked during a web-based
commercial transaction. In other words, a client (the cardholder) after selecting
the goods/services that it wishes to purchase/request, the shipping address, and
the billing address (if any), uses the protocol to perform the on-line payment.
In Figure 1, C denotes the cardholder, M the merchant, and P the payment
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(1) C → M : TIDR Initiate Request
(2) M → C : SKM

−1{TID} Initiate Response
(3) C → M : SKC

−1{TID}, {TID, PA}Km , SKC
−1{{TID, PY,CA}Kp}

Purchase Request
(4) M → P : SKC

−1{{TID, PY, CA}Kp}, SKM
−1{TID}, {TID,AA, MA}Kp

Authorization & Capture Request
(5) P → M : SKP

−1{TID, Tr} Authorization & Capture Response
(6) M → C : SKP

−1{TID, Tr} Purchase Response

Fig. 1. The Lu-Smolka variant of SET

gateway. The notation {m}Kx denotes a message m encrypted with the public
key of X , whereas SKx

−1{m} denotes a message m signed by X with its private
key. TIDR represents a record containing initialization data for the protocol.
TID represents the unique identifier of the transaction, it can be considered as
a nonce. PA is the amount that the cardholder is supposed to pay, PY is the
amount that the cardholder is willing to pay, and AA is the amount of charge
that the merchant requests for authorization. CA and MA are the identifiers
of the cardholder’s account and of the merchant’s account, respectively. Finally,
Tr denotes the answer of the gateway that can be either an authorization or a
negation of authorization.
Intuitively, the protocol works as follows. In step (1), C sends the request for

a unique transaction identifier toM .M assigns the TID to the transaction, signs
it, and returns it to C in step (2). At this point, in step (3), C sends the Ordering
Information (OI, i.e., TID and PA) toM , together with the Payment Instruction
(PI, i.e., TID,PY ,CA). PY may be lower than PA, in case the cardholder is
trying to deceive the merchant. Moreover, the PI is for the payment gateway,
while OI is for the merchant. In step (4), M decrypts OI, checks if it is correct,
then encrypts a new OI (OI ′ composed by TID,AA,MA) with the payment
gateway’s public key. Finally, M sends, in a single message, an authorization
and capture request to P . Notice that AA may be higher than PY . In step
(5), P authorizes C’s payment card, checks for consistency between OI ′ and PI,
performs appropriate account operations, and returns the transaction result Tr
to M . In step (6), M reads the response, and forwards the message to C.
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3 MATL as a Logic of Authentication

In this section we briefly introduce MATL and show how MATL can be used for
security protocols. The intuitive idea underlying MATL is to model principals
engaged in a protocol session as finite state processes. We build the notion of
principal incrementally over the notion of process. Suppose we have a set I
of principals. Each principal is seen as a process having beliefs about (itself
and) other principals. We adopt the usual syntax for beliefs: Biφ means that
principal i believes φ, and φ is a belief of i. Bi is the belief operator for i. The
idea is then to associate to each (level of) nesting of belief operators a process
evolving over time, each of which intuitively correspond to a “view” about that
process.
View Structure. Let B = {B1, ...,Bn}, where each index 1, ..., n ∈ I corre-
sponds to a principal. Let B∗ denote the set of finite strings of the form B1, ...,Bn

with Bi ∈ B. We call any α ∈ B∗, a view. Each view in B∗ corresponds to a
possible nesting of belief operators. We also allow for the empty string, ε. The
intuition is that ε represents the view of an external observer (e.g., the designer)
which, from the outside, “sees” the behavior of the overall protocol.

Example 1. Figure 2 depicts the structure of views for the Lu and Smolka proto-
col. The beliefs of principal C correspond to the view BC and are modeled by a
process playing the cardholder’s role in the protocol. The beliefs of principalsM
(the view BM ) and P (the view BP ) are modeled similarly. The beliefs that C
has about (the behavior of) principal M correspond to the view BCBM and are
modeled by a process playing M ’s role in the protocol. Things work in the same
way for any arbitrary nesting of belief operators.

Language. We associate a language Lα to each view α ∈ B∗. Intuitively, each Lα

is the language used to express what is true (and false) about the process of view
α. We employ the Computational Tree Logic (CTL) [12], a well known proposi-
tional branching-time temporal logic widely used in formal verification. For each
α, let Pα be a set of propositional atoms. Each Pα allows for the definition of
a different language, called a MATL language (on Pα). A MATL language Lα

on Pα is the smallest CTL language containing the set of propositional atoms Pα

and the belief atoms Biφ, for any formula φ of LαBi . In particular, Lε is used
to speak about the whole protocol. The language LBi

(LBj
) is the language

adopted to represent i’s (j’s) beliefs. i’s beliefs about j’s beliefs are specified
by the language of the view BiBj . Given a family {Pα} of sets of propositional
atoms, the family of MATL languages on {Pα} is the family of CTL languages
{Lα}. We write α : φ (called labeled formula) to mean that φ is a formula of Lα.
For instance, the formula AG (p → Bi¬q) ∈ Lε, (denoted by ε : AG (p → Bi¬q)),
intuitively means that in every future state (the CTL operator AG), if p is true
then principal i believes q is false.
The next step is the definition of an appropriate {Pα} in order to represent

the usual propositions of a logic of authentication as in [1,8,18]. First of all, a
logic of authentication is a logic of belief, i.e. it has formulae as P believes φ.
Such formulae have a one-to-one mapping with MATL formulae as BPφ (see
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Fig. 2. The structure of views for
the Lu and Smolka protocol and the
proposition C sees X in MATL

Fig. 3. The structure of views for the Lu
and Smolka protocol and the proposition
C believes P sees X in MATL

Figure 3). Furthermore, a logic of authentication has propositions about which
(fragments of) messages a principal (say P ) sends or receives. For instance,
in [1] they are expressed by propositions as P said X and P sees X (where X
is a fragment of message). In MATL, such notions can be easily expressed by
formulae as BP said X and BP sees X (see Figure 2). This means that we need
to introduce the propositional atoms said X and sees X in PBP

. A logic of
authentication also has propositions as fresh(X) that expresses the freshness
of (fragments of) messages. Intuitive meaning is that X has been generated
during the current protocol session. In MATL, we introduce the propositional
atom fresh(X). Usually, a logic of authentication also has propositions such as
P says X to express that principal P has sent X recently. This can be expressed
in MATL by the formula BP says X . Propositions of the form pubkP K and
prikP,Q K−1 mean that K is the public key of P and K−1 the corresponding
secret key. They can be directly added as propositional atoms to the languages
of MATL.

Example 2. We can set the atoms Pα for the views BC , BM and BP as follows:

PBC
=




said TIDR,
sees SKM

−1{TID},
said SKC

−1{TID}, {TID, PA}Km , SKC
−1{{TID, PY, CA}Kp},

fresh SKC
−1{TID}, {TID, PA}Km , SKC

−1{{TID, PY, CA}Kp},
fresh TID,
pubkM Km,
...




PBM
=




sees TIDR,
said SKM

−1{TID},
sees SKC

−1{TID}, {TID, PA}Km , SKC
−1{{TID, PY,CA}Kp},

fresh SKC
−1{TID}, {TID, PA}Km , SKC

−1{{TID, PY, CA}Kp},
pubkP Kp,
...
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PBP
=




sees SKC
−1{{TID, PY,CA}Kp}, SKM

−1{TID}, {TID, AA,MA}Kp ,
said SKP

−1{TID, Tr},
fresh TID,
prikP K−1

P ,
...




For instance, the atom said TIDR in view BC represents C sending TIDR toM
(Message 1 of the Lu and Smolka protocol). The atomic propositions of the other
views can be defined similarly. Since each view αBi (with i = C,M,P ) models
the (beliefs about the) behavior of principal i, the set of atomic propositions will
be that of view Bi (see [5]).

Semantics. To understand the semantics of the family of languages {Lα}α∈B∗

(hereafter we drop the subscript), we need to understand two key facts. On
the one hand the semantics of formulae depend on the view. For instance, the
formula p in the view Bi expresses the fact that i believes that p is true. The
same formula in the view Bj expresses the fact that j believes that p is true.
As a consequence, the semantics associates locally to each view α a set of pairs
〈m, s〉, where: m = 〈S, J,R, L〉 is a CTL structure, with S a set of states, J ⊆ S
the set of initial states, R the transition relation, and L : S → P(P ) the labeling
function; and s is a reachable state ofm (a state s of a CTL structure is said to be
reachable if there is a path leading from an initial state of the CTL structure to
state s). On the other hand there are formulae in different views which have the
same intended meaning. For instance Bjp in view Bi, and p in view BiBj both
mean that i believes that j believes that p is true. This implies that only certain
interpretations of different views are compatible with each other, and these are
those which agree on the truth values of the formulae with the same intended
meaning. To capture this notion of compatibility we introduce the notion of
chain.

Definition 1 (Chain). Let α be any view, a α−chain c is a finite sequence
〈cε, ..., cβ , ..., cα〉, where cβ = 〈m, s〉 is an interpretation for Lβ and β is a prefix
of α (i.e., α = βγ for some index γ ∈ B∗). A compatibility relation C on {Lα}
is a set of α−chains, for every α.

Intuitively, C will contain all those c’s whose elements cα, cβ (where α, β are
two views in B∗) assign the same truth values to the formulae with the same
intended meaning.

Example 3. Figure 4 shows some possible chains of the MATL structure for the
Lu and Smolka protocol. The boxes in each view represent interpretations of the
language associated with the corresponding view. The figure shows an interpreta-
tion for view ε, two interpretations for view BM and two interpretations for view
BM BP . Links connecting boxes in different views represent BM BP−chains. Fig-
ure 4 shows three BM BP−chains, c = 〈cε, cBM

, cBM BP
〉, c′ = 〈c′ε, c′BM

, c′BM BP
〉

and c′′ = 〈c′′ε , c′′BM
, c′′BM BP

〉, where cε = c′ε = c′′ε , c
′
BM

= c′′BM
and cBM BP

=
c′′BM BP

. Let us assume that each interpretation satisfies the formula written
close to it in figure. Therefore, the interpretation labeled cBM

satisfies the for-
mula BP said X . The intended meaning of this formula in view BM is that M



Verification of Payment Protocols via MultiAgent Model Checking 317

Fig. 4. Some chains of the Lu and Smolka protocol

believes that P believes it has sent message X to M . The formula said X in
view BM BP has the same intended meaning, as BM BP models the beliefs of P
seen from (the beliefs of) M . Therefore any BM BP−chain passing through the
interpretation c′BM

must reach an interpretation in BM BP which satisfies the
argument said X , as shown in the figure.

Let us now define the notion of satisfiability. We start with satisfiability local
to views (first step) and suppose that for each view α there is a satisfiability
relation between CTL structures and formulae of Lα. With an abuse of nota-
tion, we denote all these satisfiability relations with the same symbol |=. The
context always makes clear which relation we mean. The second step is to de-
fine (global) satisfiability taking into account chains. To do this we need some
further notation. Let |= denote satisfiability also on chains. For any α−chain c
and for any formula in Lβ , satisfiability relation |= is defined only when either
α is a prefix of β or β is a prefix of α. (i.e., when either α = βγ or β = αγ). If
α = βγ then cβ |= φ iff φ is true in cβ . If β = αγ then cβ |= φ for any φ. In other
words, if a chain stops at a given level (e.g. α), then it satisfies every formula
of the views (e.g., αγ) which are below that level in the tree. Let us extend the
satisfiability relation to sets of formulae: x |= Y if and only if for any y ∈ Y ,
x |= y.
We are now ready to define the notion of model for MATL (called MATL

structure), and then that of satisfiability between MATL structures and formulae
of a view.

Definition 2 (MATL structure). A nonempty compatibility relation C for a
family of MATL languages on {Pα} is a MATL structure on {Pα} if for any
αβ−chain c ∈ C,

1. cα |= Biφ iff for every αγ−chain c′ ∈ C, c′α = cα implies c′αBi
|= φ;
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2. if cα = 〈m, s〉, then for any state s′ of m, there is a αβ−chain c′ ∈ C such
that c′α = 〈m, s′〉.

Briefly: the nonemptyness condition for C guarantees that the external observer
has a consistent view of the world. The only if part in condition 1 guarantees that
each view has correct beliefs, i.e., any time Biφ holds at a view then φ holds in
the view one level down in the chain. The if part is the dual property and ensures
the completeness of each view. Condition 2 can be understood on the basis of
two crucial observations, concerning the mutual nesting of CTL operators and
belief operators. The first, concerning the nesting of CTL operators inside belief
operators is that cα |= φ is computed using the notion of satisfiability in a
CTL structure. Therefore, a chain links the fact that a belief atom holds in a
state of a CTL structure in one view with the fact that its argument holds in
a state of a CTL structure in the view below. The second observation concerns
the nesting of belief operators inside temporal operators (temporal operators
which involve no belief atoms are treated as in CTL structures, i.e., without
jumping among views). Consider for instance the formula EXBip. To assess
the truth of EXBip we need to be able to assess the truth of Bip in some
(reachable) next state s′ (the CTL operator EX) of the CTL structure we are
considering, e.g., 〈〈S, J,R, L〉, s〉. The only way to establish this is to request that
in s′ we have a chain c′ which gives access to a CTL structure in the view below.
Given the fact that chains connect CTL structures only for what holds in their
(reachable) states, the only solution is to request that s′ is the state component
of the structure c′ε = 〈〈S, J,R, L〉, s′〉 with c′ ∈ C. Given the fact that temporal
operators allow us to state facts about all the states in a CTL structure, this
operation must be repeated for each state s ∈ S. But this is exactly what Item 2
of Definition 2 says.

Example 4. Consider again Figure 4. The formula ¬BM (BP said X ∧ sees X)
is satisfied by the interpretation in view ε. By Item 1 of Definition 2 (only
if direction), there must be a chain starting from the interpretation in view ε
whose component for view BM does not satisfy the argument of the belief, i.e.,
BP said X ∧ sees X . This is indeed the case for both c′ and c′′, as c′BM

= c′′BM

and both of them do not satisfy BP said X . This is due to the fact that there
exists a chain whose component for view BM BP does not satisfy the argument of
the belief, i.e., said X . This is indeed the case for c′ as c′BM BP

does not satisfy
said X . Assume now that c is the only chain passing through interpretation cBM

.
The component for view BM BP of chain c passing through that interpretation,
i.e., cBM BP

, satisfies the argument said X . Thus, by Item 1 of Definition 2 (if
direction), cBM

must satisfy BP said X , as shown in Figure 4.

Given a MATL structure C, a formula φ and a view α, C |= α : φ is read as φ is
true in C (or equivalently, φ holds in C, or φ is satisfied by C) at view α, and it
is defined as follows:

C |= α : φ iff for all c ∈ C s.t. cα = 〈〈S, J,R, L〉, s〉 and s ∈ J, cα |= φ (1)
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The intuition is that in order to check the satisfiability of φ at the view α we
need to check all the interpretations of Lα allowed by the compatibility imposed
by the chains we are considering.
For any set of labeled formulae Γ , let Γα denote the set {φ | α : φ ∈ Γ}.

Definition 3 (MATL Logical consequence). A set of labeled formulae Γ
logically entails α : φ, in symbols Γ |= α : φ, if for every MATL structure C and
every αβ−chain c ∈ C, if for every γ prefix of α, cγ |= Γγ then cα |= φ. A labeled
formula is valid if it is a logical consequence of the empty set.

Notice that MATL structures define a logic where each Bi has the same strength
as a modal operator in the multimodal logic K(m), where m is the number of
principals.
Axioms. MATL is expressive enough to be used as a logic of authentication.
Furthermore, it has a temporal component that usually is not present in the other
logics of authentication (e.g., see [1,8,18]). In order to show how the properties
of security protocols can be expressed within MATL, we shall now impose some
constraints to the models in order to capture the intended behavior of a protocol.
These constraints can be formalized with a set of sound axioms. This is similar
to what happens with several logics of authentications (see for example [1,18]).
Indeed MATL encompasses such logics. Here, for the sake of readability, we show
how it is possible to translate in MATL some of the most significant axioms that
has been proposed in most logics of authentication.
As a first example, let us consider the message meaning axioms. Usually, such

axioms correspond to the following schema:

shkP,QK ∧ P sees{X}K → Q said X

Intuitively, it means that when a principal P receives a (fragment of) message
encrypted with K, and K is a key shared by P and Q, then it is possible to
conclude that the message comes from Q. The above axiom schema can be
formulated in MATL as follows:

P : shkP,QK ∧ sees{X}K → BQsaidX (2)

where with P : Ax we also emphasize which view (P ) the axiom Ax belongs to.
Message meaning is often used with the nonce verification, that has the following
schema:

Q said X ∧ fresh(X)→ Q says X

This schema expresses that when a principal Q has sent X (i.e., Q said X)
recently (i.e., fresh(X)), then we can assert that Q says X . In MATL, this
becomes

P : BQsaidX ∧ fresh(X)→ BQsaysX (3)

As a consequence, it is important to establish whether a fragment of message is
fresh. The following axioms help on this task:

fresh(Xi)→ fresh(X1, . . . , Xn)
fresh(X)→ fresh({X}K)
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Intuitively, they mean that when a fragment is fresh, then the message that
contains such a fragment (the encryption of the fragment) is fresh as well. In
MATL, they can be inserted in the appropriate views without modification.
Another important set of axioms establishes how a message can be decomposed.
For instance, in [1] we have the following schemata:

P sees(X1 . . . Xn)→ P sees Xi

P sees {X}K ∧ P has K → P sees X

For instance, the intuitive meaning of the second schema is that a principal can
decrypt a message encrypted with a given key when it knows such a key. Once
again, in MATL the above axiom schemata can be inserted in a view without
modification.

4 MATL as a Logic for Payment Protocols

In this section we discuss the main differences between our logic and previous
logics of authentication. We especially take into account those differences which
arise when the focus is on payment protocols. For what concerns atomic propo-
sitions, we introduce atoms of the form recX and sendP X (where X can be a
full message of a given protocol but not a fragment of message) that represent
the communicative act of receiving X and sending X to P , respectively. This
allows us to take into account the temporal aspects of a protocol. Indeed, such
propositions represent when a principal actually receives or sends a message
during a session. Therefore, we are able to recognize when such events occur by
looking at the sequence of states. This is different from the notion of what are
the fragments of messages that a principal has (atom sees) or uses when com-
posing its messages (atom said). Furthermore, the atom sees represents both
the notion of possessing (what a principal has because it is initially available
or newly generated) and seeing (what has been obtained from a message sent
by another principal). Notice that, for instance, Abadi and Tuttle [1] make for
keys a different choice. Indeed, when they have a key K, they distinguish the
proposition P sees K by P has K. In our opinion this difference does not make
much sense, as in their logic a principal happens to have all the keys it sees (e.g.,
see [18] where the authors introduce the axiom schema: P sees K ↔ P has K).
The above facts have the following consequences in the corresponding axiom
system. The following axiom schemata relate sent (received) messages to what
a principal says (sees).

P : sendQX → said X (4)
P : rec X → sees X (5)

The next axiom schemata capture the idea that a principal sees what it previ-
ously said or what it says.

P : said X → sees X (6)
P : says X → sees X (7)
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The following schema represents the fact that a principal can compose a new
message starting from the (fragment of) messages it already sees.

P : sees X1 ∧ . . . ∧ sees Xn → sees(X1 . . . Xn) (8)

For what concerns payment protocols, we have to take into account hash func-
tions and signatures, as well. First of all, we assume a signature as a reliable
schema without considering how such a schema is1. This allows us to focus on
whether the protocol is trustworthy. This is similar to what is usually assumed
for encryption algorithms in such a kind of verification. The corresponding axiom
schemata are the following:

P : fresh(X)→ fresh(H(X)) (9)
P : fresh(X)→ fresh(SKQ

−1{X}) (10)
P : sees X → sees H(X) (11)

P : sees X ∧ sees KP
−1 ∧ prikP KP

−1 → sees SKP
−1{X} (12)

P : sees X ∧ sees KQ ∧ pubkQ KQ → sees {X}KQ (13)

where Q and P can be both substituted with the same principal or with differ-
ent ones. The above schemata are the obvious extension to hash functions and
signatures of the axioms about the freshness and the capability of composing
messages.
The following axiom schema represents the capability of extracting the orig-

inal message from its signed version when the principal has the corresponding
public key.

P : sees SKQ
−1{X} ∧ sees KQ → sees X (14)

The next schema corresponds to the message meaning axiom schema for signed
messages.

P : sees SKQ
−1{X} ∧ pubkQ KQ → BQsaidX (15)

Intuitively, it means that when a principal sees a message signed with the key
of Q, then it believes that Q said such a message.

5 Specifications for Payment Protocol

Payment protocols are intended to protect business transactions, therefore they
must achieve various security requirements. In literature, there’s no common
agreement about this issue. There are indeed different definitions of security
requirements for payment protocols. In this work, we follow the taxonomy in-
troduced in [2], where requirements are classified with respect to the security
needs of each actor involved in an electronic payment. Indeed, [2] proposes a
number of requirements expected by the customer, by the merchant, and by the
payment gateway. When we formalize security requirements with MATL, it is
1 The most common schema is the following: SKQ

−1{X} = (X, H(X)KQ
−1)
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indeed quite natural to state a specification for a principal as a formula in the
view of the principal itself.

Customer Requirements
Proof of Transaction Authorization by Payment Gateway. The customer must
have a proof that the payment gateway authorized the transaction.

Example 5. In the case of the Lu and Smolka protocol, the above requirement
can be written as follows:

C : AG (sees Tr → BP says Tr) (16)

Intuitively, it asserts that in the view of the customer C, in every future state,
if C receives Tr, then C must believe that P has recently sent this information.

Receipt from Merchant. The customer must have a proof that the merchant
who has made the offer has received payment and promised to deliver the
good/service.

Example 6. For the Lu and Smolka protocol, such a requirement becomes:

C : AG (sees Tr → BM says Tr) (17)

This means that, in the view of C, in every future state, if C receives the gateway
answer Tr, then it must believe that the merchant M has recently sent it (re-
member that in the Lu-Smolka protocol the answer is forwarded to the customer
by the merchant).

Merchant Requirements
Proof of Transaction Authorization by Payment Gateway. The merchant needs
an unforgeable proof that the payment gateway has authorized the payment.

Example 7. For the Lu and Smolka protocol, we have

M : AG (sees SKP
−1 {TID ,Tr} → BP says Tr) (18)

Intuitively, this formula means that in the view ofM , in every future state, if the
merchantM receives SKP

−1{TID, T r}, then it must believe that the gateway P
has recently sent Tr.

Proof of Transaction Authorization by Customer. The merchant needs an un-
forgeable proof that the customer has authorized the payment before that the
merchant receives the transaction authorization from the payment gateway.

Example 8. For the Lu and Smolka protocol, such a requirement becomes:

M : A ((BCsays PA) B (19)
(sendP SKC

−1{{TID, PY,CA}Kp}, SKM
−1{TID}, {TID,AA,MA}Kp))

Intuitively2, the specification above asserts that the merchant M must believe
that, in every future path, the customer C will have recently sent PA before the
merchant M sends the Authorization & Capture Request message (message 3 of
the protocol).
2 A (p B q) means that in every future path, p will be true before q holds.
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Confidentiality of Customer Sensitive Information. The customer desires privacy
of information related to its account.

Example 9. In order to formalize the fact that the merchant must not know the
Customer Account (in particular its Credit Card Number) in the Lu and Smolka
protocol, we write:

M : AG (¬sees CA) (20)

The above formula states that in the view of the merchant M , in every future
state, M never sees the Customer Account.

Payment Gateway Requirements
Proof of Transaction Authorization by Customer. When the payment gateway
debits a certain amount to the customer, the payment gateway must have an
unforgeable proof that the customer has authorized this payment.

Example 10. For the Lu-Smolka protocol, such a requirement becomes:

P : AG (sees SKP
−1 {TID ,Tr} → BCsays PY ) (21)

This formula asserts that in the view of the gateway P , in every future state,
if P receives SKP

−1{TID, T r} then it must believe that the customer C has
recently sent PY .

Proof of Transaction Authorization by Merchant. When the payment gateway
authorizes a payment to a certain merchant, the payment gateway must have an
unforgeable proof that this merchant has required that this payment must be
made to him.

Example 11. For the Lu-Smolka protocol, we have:

P : AG (sees SKP
−1 {TID ,Tr} → BMsays AA) (22)

This formula asserts that in the view of the gateway P , in every future state,
if P receives SKP

−1{TID, T r} then it must believe that the merchant M has
recently sent AA.

6 Verification of the Lu and Smolka Protocol

The verification of the Lu and Smolka protocol with NuMAS requires to model
each view as a finite state machine, to specify the security requirements in the
appropriate views (see Section 5), and to check the specifications by means
of the model checker. Modeling a view amounts at establishing what are the
propositional atoms and the beliefs of the a view, and how they vary over time.
The temporal evolution of the propositional atoms sendP X and recX can be
derived directly from the protocol description. The behavior of the other atoms
derives from the axioms described in Section 3. The reader can refer to [4,5]
for a description of how the views can be modeled in NuMAS and to [3] for a
description of the symbolic model checking algorithm for MATL. Here we report
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Table 1. The verification of the Lu and Smolka protocol

View Specification Result

C (16) False
C (17) True

M (18) False
M (19) True
M (20) True

P (21) False
P (22) False

the results of the verification (that required 0.3 sec. on a PC equipped with a
Pentium III and 512 MB RAM). The results are summarized in Table 1. Notice
that some expected security requirements concerning transaction authorizations
are not satisfied. This means that the protocol suffers from weaknesses which
make it vulnerable to attacks by dishonest entities. Indeed, following we describe
a possible attack reported in [17] (see Figure 5). We write X → I(Y ) : m when
the dishonest entity intercepts a message m in transit from X to Y , preventing
it from being received; we write I(X) → Y : m when the dishonest entity
sends a message m to Y , impersonating X . The attack proceeds as follows. A

(α.1) C → I : TIDR
(β.1) I(C) → M : TIDR
(β.2) M → I(C) : SKM

−1{TID}
(α.2) I → C : SKI

−1{TID}
(α.3) C → I : SKC

−1{TID}, {TID, PA}Ki , SKC
−1{{TID, PY,CA}Kp}

(β.3) I(C) → M : SKC
−1{TID}, {TID, PA}Km , SKC

−1{{TID, PY, CA}Kp}
(β.4) M → P : SKC

−1{{TID, PY, CA}Kp}, SKM
−1{TID}, {TID, AA, MA}Kp

(β.5) P → M : SKP
−1{TID, Tr}

(β.6) M → I(C) : SKP
−1{TID, Tr}

Fig. 5. An attack on the protocol Lu-Smolka protocol

dishonest merchant I waits for a buyer C to start a session α with it. At this
point, I opens a parallel session β, impersonating the client C towards another
merchant M . The TID provided by M in step (β.2) is sent by I to C as the
transaction identifier of session α. In this way I obtains a message having the
two components with the TID signed by C in step (α.3). By means of these
signed fragments, I can send the message in step (β.3) to M , masquerading
as C. After receiving the above message, in step (β.4), M requires the payment
authorization to the gateway P . For this purpose, it sends a message with the
same fake SKC

−1{{TID, PY,CA}Kp} it received in the previous step. Notice
thatM blindly forwards this fragment, since it is encrypted with P ’s public key.
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The gateway is unable to detect the cheat and thus authorizes the payment in
favor of M , sending the message in step (β.5). Finally, M forwards the received
message to C, but I intercepts and removes it, so that C has no suspects of the
fraud. In this way, the session β ends, allowing I to masquerade as C towardsM .
As a consequence of the above attack on a commercial transaction, a dishonest
buyer I succeeds in debiting to another buyer C a purchase that C in fact has
never performed. Moreover, if the good is delivered via Internet (e.g., the content
of a web-page) or I has altered the shipping address in the (often insecure) phase
before the invocation of the protocol, I is able to obtain that good without
paying it. As a final remark, notice that when M receives the message in step
(3), it is not able to deduce the identity of the intended receiver. This problem
has implications on the non-repudiation requirement, and exists in the original
version of SET as well [19]. However, in SET, the presence of the merchant
identifier in message (4) allows the gateway P to deduce the real identity of the
intended merchant and, thus, to avoid the above fraud. This is however not true
of the Lu and Smolka protocol, where Specification (21) is not satisfied and the
attack in Figure 5 can occur.

7 Conclusions

In this paper we have described MATL, a logic of belief and time that can be
used for the verification of payment protocols as well as other kinds of security
protocols. The verification is fulfilled by means of NuMAS, a symbolic model
checker based on MATL. This kind of verification has been applied to the Lu
and Smolka protocol, a variant of SET. Even if this protocol was considered
secure, we have discovered that the protocol does not satisfy some important
requirements as the proof of transaction authorization. This kind of verification
has been applied to SSL 3.0 and 3KP as well. For these protocols, all the se-
curity requirements are satisfied. Such verifications require few seconds with a
normally equipped PC. For lack of space, in this paper we have described only
the verification of the Lu and Smolka protocol.
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