
SNet: A Modeling and Simulation Environment

for Agent Networks Based on i* and ConGolog

Günter Gans1, Gerhard Lakemeyer1, Matthias Jarke1,2, and Thomas Vits1

1 RWTH Aachen, Informatik V
Ahornstr.55, 52056 Aachen, Germany

2 Fraunhofer FIT
Schloss Birlinghoven, 53754 Sankt Augustin, Germany

{gans,lakemeyer,jarke}@cs.rwth-aachen.de

Abstract. SNet is a prototype environment supporting the represen-
tation and dynamic evaluation of designs for social networks compris-
ing human, hardware, and software agents. The environment employs
metadata management technology to integrate an extended version of
the i* formalism for static network modeling with the ConGolog logic-
based activity simulator. The paper defines the formal mappings neces-
sary to achieve the integration and describes an operational prototype
demonstration. SNet’s intended application domain is requirements man-
agement and mediation support for inter-organizational and embedded
process systems, as well as simulation support for inter-organizational
studies e.g. in hightech entrepreneurship networks.

1 Introduction

The modeling of business processes has been an important aspect of informa-
tion systems engineering for many years. In this research, a progress from pure
drawing facilities towards a more formal semantics can be observed. This formal
understanding enables consistency and completeness analysis of models as well
as their semi-automatic transformation.

A further step in this progression is the modeling and simulation of dynamic
business aspects. For many well-known business process formalisms, such as the
event-process chains of the ARIS modeling formalism [Sch94], timed Petri nets
([OSS94], meanwhile commercialized by PROMATIS AG for the Oracle De-
signer environment), or simply automata-based mechanisms [PJ96], simulation
environments have been developed from which the impact of different business
strategies on operational efficiency and, in some cases, organizational memory
and similar long-term factors can be assessed.

The modeling of dynamic inter-organizational relationships, especially for
complex social networks involving many human, organizational, and possibly
technological agents, is in a much less mature stage. While extensions of tra-
ditional business models do cover some important aspects of modern business
concepts such as supply chain management, they often ignore the autonomy
of the members within network settings, thus underestimating the independent

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 328–343, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

SNet 329

evaluation of different agent goals, modulated by the strategic interdependences
among them, and the resulting complex dynamics of negotiation and trust-based
(or distrust based) activity. In this paper, we report on SNet, a modeling and
simulation environment for agent networks that attempts to remedy some of
these shortcomings.

The social networks we have in mind are in particular those created among
independent organizations or individuals to pursue some shared strategic goals,
but always at the risk of falling apart. To formalize such networks the agent-
oriented requirements modeling language i* [Yu95] seems particularly suited
since it explicitly allows one to capture the mutual dependencies among actors,
which are key ingredients of such networks. However, representing the structural
relationships among actors alone is not sufficient. As was argued in [GJK+01a],
it is equally important to model the network dynamics because the interactions
among the actors are to a large extent trust-based, and to understand the impact
of trust one needs to consider interactions and their effects over time. To do so,
the authors propose a multi-perspective modeling approach which includes an
extension of i*, speech acts, and the action language ConGolog. While it was
suggested already then to translate i* into executable ConGolog programs (see
also [GJK+01b]), the mapping was preliminary and only partially developed. In
this paper we consider a complete and automatic translation for a large fragment
of extended i* models. Moreover, we report on a fully implemented prototype
implementation. Having a system which takes as input graphical network rep-
resentations based on (extended) i*, which can then be turned into executable
programs, is valuable because it provides a tool for network participants to sim-
ulate various network scenarios whose outcome may give valuable information
regarding the risks and benefits of taking certain actions.

The rest of the paper is organized as follows. In the next section we intro-
duce i* and the extensions necessary to facilitate the translation into executable
programs. In Section 3, we introduce ConGolog and present the translation from
extended i* networks into ConGolog programs. In Section 4 we briefly go over
the implemented system. Finally, we end with some conclusions and open issues.

2 Representing Social Networks in Extended i*

We begin this section by introducing the i* modeling language [Yu95], originally
devised for early requirements engineering. i* is then extended to facilitate the
automatic translation into executable programs. We also show that, by repre-
senting i* diagrams in the conceptual modeling language Telos [MBJK90], it
becomes possible to perform a static analysis of a network or enforce integrity
constraints with the help of the Telos query language.

2.1 The i* Modeling Language

i* is firmly based on the notions of actor and goal and assumes that social settings
involve actors who depend on each other for goals to be achieved, tasks to be

330 Günter Gans et al.

performed, and resources to be furnished. The framework includes the strategic
dependency (SD) model for describing the network of relationships among ac-
tors, as well as the strategic rationale (SR) model for describing and supporting
the reasoning that each actor performs concerning her relationships with other
actors.

cook

earn
money

meal
serve

go to
restaurant

eat rate
meal

meal

choose
meal

meal

tip

good
rating

Means−Ends Link

Task−Decomposition Link

Goal

Resource

Task

Goal DependencyD D

Resource DependencyD D

D

D

D

D

D

waiter

chef
guest

D

D
D

enjoy a
good meal

repeat
customers

Legend

Fig. 1. Strategic rationale model of the “restaurant” example

We will not go over SD models here, but instead focus on SR models and
illustrate some of their key features by way of a restaurant example shown in
Figure 1 involving three actors: a guest, a waiter, and a chef.1 The guest’s main
component is a go to restaurant task which serves to bring about the goal of
enjoying a good meal and is decomposed into three subtasks. The guest depends
on the waiter for the meal to be served. Conversely, to obtain a tip the waiter
depends on the guest’s favorable rating of the meal, which the chef also depends
on in his goal to have repeat customers.
1 While the example, which we use throughout the paper, is rather simple and the

actors involved may not even share long-term strategic goals, it nevertheless serves
to illustrate the main ingredients of our approach and has the advantage of being
familiar to most readers.

SNet 331

2.2 Enriching Task Description

Our goal is to turn specifications of SR diagrams into agent programs ready for
simulation. However, in their current form, i* models are not expressive enough
for this purpose. For example, consider the decomposition of the go to restaurant
task. Clearly, the subtasks need to be ordered, but the ordering is not determined
by the model. In fact, in i* the semantics of this decomposition is left open.
Here we interpret it as an and-decomposition, that is, all subtasks need to be
performed, and we will give it a precise semantics in Section 3.2. Also, when
tasks are decomposed, it is implicitly assumed that all subtasks are (eventually)
performed. However, as we will see below in an example, there are cases where
an or-decomposition is needed, that is, where only one of the subtasks should be
performed. Finally, it is not clear at all when and how any of the tasks involved
are actually activated.

To see how all this can be achieved, let us consider Figure 2, which enriches
the task descriptions of Figure 1 in an appropriate way. From a syntactical
point of view, the main new graphical feature are triangles. These are labeled
with logical formulas whose predicates are so-called fluents whose truth value
may vary during the execution of tasks. When a triangle points to a task like
trust high enough pointing to choose meal, then it serves as a precondition. When
a task points to a triangle, then it denotes a postcondition or effect of that task,
which in turn can be preconditions of other tasks.

Precondition triangles in bold face have a special meaning in that they serve
as triggers or interrupts for the execution of the task they are pointing to. For
example, order received triggers the execution of cook. We require that only top-
level tasks can have interrupts and that there can be at most one per task. Tasks
without interrupts that trigger their execution are considered to be exogenous,
like the start task in the example. Each graphical object has to be assigned to
one actor. So, an exogenous task belongs to a special actor called Exogenous.
Intuitively, these kinds of tasks are under external control and may be used,
for example, to start a simulation run. Note that there may be more than one
exogenous task present.

The decomposition of rate meal is an example of an or-decomposition. In par-
ticular, we want to make sure that only one of rate good or rate bad is performed,
not both. We will see in Section 3 that the semantics of or-decompositions is ac-
tually quite subtle.

Note that there are preconditions without any arrows directed to them.
Where does, for example, the fluent trust high enough obtain its value from?
The complete specification of this precondition refers to another fluent confi-
dence guest which, say, takes as value a positive real number and is initialized
appropriately. It is then updated by the effects of good rating and bad rating,
respectively. For example, when good rating is activated, it raises the value of
“guest-confidence” by some small amount.2

2 We have not included these details in the diagram to avoid clutter. In the imple-
mentation discussed in Section 4, these details are usually also hidden, but can be
made visible on demand (see Figure 3).

332 Günter Gans et al.

start cook

meal

rate_bad

ready work

order
accept_

mealeat

meal_
meal

choose_

chef

trust_high_
enough

exogenous

rate_meal

rate_good

bad_rating

good_rating

waiterguest

something_

restaurant

finished
eating_

_ok
everything

not_ok

go_to_

chosen received
order_

meal
serve_

Precondition/Effect

Task

Resource

Interrupt/Effect

Legend

Means−Ends Link

Or−Task−Decomp. Link

And−Task−Decomp. Link

Fig. 2. Extended strategic rationale model of the “restaurant” example

Finally, note that the synchronization of tasks via pre- and postconditions
gives rise to dependencies among actors in an implicit fashion. For example,
the chef can only cook a meal after an order was accepted by the waiter, thus
expressing a natural dependency between the waiter and the chef.

To summarize, the new features introduced into SR models are precon-
ditions, postconditions, interrupts as a special kind of preconditions, and or-
decompositions.

2.3 Static Analysis in ConceptBase

We use the ConceptBase metadata manager [JEG+95] based on the conceptual
modeling language Telos [MBJK90] as the representation language of extended
i* diagrams. This has the added benefit of providing us with a powerful query
language which allows us to perform a static analysis of our networks. Syntac-
tical checks are one application. For example it is useful to know whether there

SNet 333

are network nodes with neither in- nor outgoing links, because isolated elements
make no sense, which can be formulated as follows in the ConceptBase Query
Language:

QueryClass elements_without_link isA SNetElement with
retrieved_attribute

name: String
constraint

rule: $not exists l/SNetLink (l from this) or (l to this)$
end

Another example describes that it is not allowed for subtasks to be a de-
composition of more than one supertask. If there are tasks with more than one
in-going task-decomposition-link (tdl) they will be found by the following query:

QueryClass subTask_with_n_tdls isA SNetTaskElement with
constraint
rule: $exists tdl1,tdl2/SNetTaskDecompLink

(tdl1 to this) and (tdl2 to this) and (not (tdl1==tdl2))$
end

As we will see in Section 3.2, queries to ConceptBase also play an important
role to supply the relevant information for the translation from extended i*
diagrams into ConGolog programs.

3 Simulation of Social Networks

3.1 ConGolog – A Short Introduction

In our methodology, plans are expressed in the logic-based language ConGolog.
This section describes both ConGolog and its formal foundation, the situation
calculus.

The situation calculus is an increasingly popular language for representing
and reasoning about the preconditions and effects of actions [McC63]. It is a
variant of first-order logic3, enriched with special function and predicate symbols
to describe and reason about dynamic domains. We will not go over the language
in detail except to note the following features: all terms in the language are
one of three sorts, ordinary objects, actions or situations; there is a special
constant S0 used to denote the initial situation, namely that situation in which
no actions have yet occurred; there is a distinguished binary function symbol do
where do(a, s) denotes the successor situation to s resulting from performing the
action a; relations whose truth values vary from situation to situation are called
relational fluents, and are denoted by predicate symbols taking a situation term
as their last argument; similarly, functions varying across situations are called
functional fluents and are denoted analogously; finally, there is a special predicate
Poss(a, s) used to state that action a is executable in situation s.
3 Strictly speaking, a small dose of second-order logic is required as well, an issue

which should not concern us here.

334 Günter Gans et al.

Within this language, we can formulate theories which describe how the world
changes as the result of the available actions. One possibility is a basic action
theory of the following form [LPR98]:
– Axioms describing the initial situation, S0.
– Action precondition axioms, one for each primitive action a, characterizing

Poss(a, s). For example, the fact that a robot can only pick up an object if
it is next to the object and it is not holding anything can be formalized as
follows: Poss(pickup(r, x), s) ≡ NextTo(r, x, s) ∧ ∀y.¬Holding(r, y, s).
We use the convention that free variables are implicitly universally quanti-
fied.

– Successor state axioms, one for each fluent F , stating under what conditions
F (x, do(a, s)) holds as a function of what holds in situation s. These take
the place of the so-called effect axioms, but also provide a solution to the
frame problem [Reiter 1991]. As an example, consider a simple model of time
which progresses in a discrete fashion by 1 unit as a result of a special action
clocktick. The time of a situation can then be specified with the help of a
fluent time(s) and the following successor state axiom:

time(do(a, s)) = t ≡ a = clocktick ∧ t = time(s) + 1
∨a �= clocktick ∧ t = time(s)

– Domain closure and unique-name axioms for actions.

ConGolog [dGLL00], an extension of Golog [LRL+97], is a language for spec-
ifying complex actions (high-level plans). It comes equipped with an interpreter
which maps these plans into sequences of atomic actions assuming a description
of the initial state of the world, action precondition axioms and successor state
axioms for each fluent. Complex actions are defined using control structures fa-
miliar from conventional programming languages such as sequence, while-loops,
and recursive procedures, but also non-deterministic actions like choosing non-
deterministically between two actions or performing an action an arbitrary num-
ber of times. In addition, parallel actions with or without priorities are possible
as well.

α primitive action
φ? test action
[σ1, σ2] sequence
if φ then σ1 else σ2 conditional
while φ do σ loop
or(σ1, σ2) nondeterministic choice of actions
pi(x, σ) nondeterministic choice of arguments
star(σ) nondeterministic iteration
conc(σ1, σ2) concurrent execution
pconc(σ1, σ2) prioritized concurrent execution
tryAll(σ1, σ2) concurrent execution until one terminates
interrupt(φ, σ) interrupts
proc(β(

→
x), σ) procedure definition

SNet 335

When translating extended i* into ConGolog, the most important constructs
are conc, pconc, tryAll, and interrupt. While the intuitive meaning of conc is
the obvious, pconc says that σ1 should be preferred over σ2 whenever possible.
tryAll4 means that both programs σ1 and σ2 start executing concurrently, but
the whole tryAll-construct terminates as soon as one of the two terminates.
This is in contrast to conc and pconc, where both parts need to terminate. As
we will see later, tryAll is needed to give semantics to the or-decomposition of
subtasks in i*. Finally, interrupt(φ, σ) says that σ should be executed whenever
the condition φ becomes true. In other words, interrupts serve as triggers to
initiate actions.

We will not go over the formal semantics of ConGolog here except to note that
it uses a conventional transition semantics defining single steps of computation
and where concurrency is interpreted as an interleaving of primitive actions and
test actions. For details see [dGLL00, GL00].

3.2 Transformation of Extended i* into Executable Programs

In this section we show how to automatically translate a large fragment of ex-
tended SR models, which includes all the new features added in Section 2.2, into
executable ConGolog specifications. We will get back to the parts of SR models
that are not dealt with at the end of this section.

The translation needs to specify two parts, the description of the application
domain and the complex tasks operating on this domain. For the application
domain we need to describe the fluents and primitive actions together with their
preconditions and effects. Complex tasks correspond to ConGolog procedure
definitions. Each fluent, primitive action, and procedure is also assigned a unique
actor to which it belongs.

In what follows we use the Prolog syntax of the IndiGolog interpreter used
for our implementation. IndiGolog [dGL99] is a variant of ConGolog developed
for on-line execution, where the choice of the next primitive action alternates
with its execution.5

Generating the Application Domain Description

To describe the application domain we use clauses (in the sense of Prolog)
of the form prim fluent(F), prim action(a), and exog action(e) for primi-
tive fluents, primitive actions, and exogenous actions, respectively. The clauses
initially(F,true) and poss(a,φ) are needed to initialize a fluent’s value in
situation S0 resp. to define an action precondition axiom. A convenient feature
of IndiGolog is that it suffices to declare the effects of actions, which are then
4 We remark that the tryAll-construct was not present in the original ConGolog, but

was later added in [GL00].
5 IndiGolog can also be used in an off-line modus, where a whole action sequence is

computed before execution. The on-line modus, however, seems more appropriate
for simulation purposes.

336 Günter Gans et al.

automatically converted into successor state axioms introduced in Section 3.1.
Effect axioms have the form causes val(a,F,newVal,cond) with the reading
that after performing an action a, the fluent F will obtain the new value newVal,
if the condition cond holds.

Besides fluents which are explicitly specified in the extended SR model like
meal chosen or confidence guest, interrupts and resources are also represented
as relational fluents. The former are used to trigger the corresponding ConGolog
interrupts inside procedures (see below). The latter are needed to describe the
owner of a resource, who, unlike other components of the model, may change
over time. In the restaurant example the meal’s owner initially obtains the de-
fault value “notexist.” After the chef performs cook he owns the meal-resource.
The waiter can only perform serve meal if this resource is owned by the chef in
that situation. Thus, in a sense, resources are formally treated like special task
preconditions. There is one system-defined fluent time which keeps track of time
and whose meaning is given by the successor state axiom in Section 3.1. Finally,
initial values of fluents are generated from corresponding annotations in the SR
model (see below for an example).

The primitive actions are generated by extracting the names of all tasks that are
neither decomposed further nor an exogenous task. For example, choose meal is
considered a primitive action, while go to restaurant is not. There is one system-
defined primitive action clocktick which advances time and which is executed
with lowest priority.

A poss(a,φ)-clause for a primitive action a is generated by collecting the cor-
responding preconditions in the SR model and then computing the appropriate
φ. For example, the task rate good will not be performed unless the precondition
everything ok holds. Also, everything ok held and rate good has been performed,
the rate bad or-branch will be pruned, because or-decomposition applies the
tryAll-construct (see above).

Exogenous actions are special primitive actions that are controlled by the
user. In our model, an action is exogenous if it belongs to a special actor called
“Exogenous.” During a simulation, the user is able to invoke exogenous actions
interactively. Because they are regarded as primitive, the corresponding task in
the SR model may not be decomposed further. In our example, the task start is
the only exogenous action and does the obvious. In general, exogenous tasks are
not restricted to initiating simulation runs. For example, we could replace the
rate meal task by an exogenous rate meal exog task, which would give the user
the chance to influence the meal-rating process from the outside.

How a fluent is affected by actions is determined in one of four ways: 1) it
can be read off explicitly from the postconditions of tasks corresponding to
primitive actions, as in meal chosen, which is satisfied by the action choose meal;
2) interrupt-fluents likemeal chosen are automatically reset at the end of the task
they are pointing to; 3) resource-fluents are affected by changes in ownership;
4) the special fluent time is only affected by the action clocktick. In any case,
appropriate causes val-clauses are generated.

Here is an excerpt of the definitions generated for the restaurant example.

SNet 337

initially(confidence_guest, 0.5).

prim_action(choose_meal).

prim_fluent(meal_chosen).

prim_fluent(confidence_guest).

poss(choose_meal,confidence_guest > 0.45).

causes_val(rate_good,confidence_guest,X,X is confidence_guest+0.1).

causes_val(choose_meal , meal_chosen, true, true).

causes_val(work, meal_chosen, false, true).

Note that these clauses are generated completely automatically from the SR
model. Since the SR model is stored in ConceptBase, we can easily collect the
relevant information for clause generation by posing appropriate queries. For
example, in order to define fluents for all interrupts in the model, we would use
the following query:

QueryClass fluents isA SNetInterruptElement with
retrieved_attribute

name : String
end

Given the result of the query, it is then a simple matter to emit the right
prim fluent-definitions.

Generating Procedural Descriptions

For the generation of procedures from complex tasks, we only need a subset
of the IndiGolog instructions, namely sequential and (prioritized) concurrent
execution of actions ([A,B] resp. conc(A,B)) (pconc(A,B)), as well as con-
trol of actions by (prioritized) interrupts (interrupt(condition,body) resp.
prioritized interrupts(list of interr.)). The latter is an abbreviation of
the prioritized concurrent execution of interrupts, where precedence in the list
means higher priority.

For each actor in our model we need a procedure that describes its behavior.
In particular, all interrupts and their following actions form the body of the pro-
cedures. Additionally, we need a start-procedure which both concurrently starts
the procedures of all involved agents and provides other services for our sim-
ulation. (Again, the relevant information can be extracted automatically using
ConceptBase queries.):

proc(agent_guest,
conc(interrupt(eating_finished=true, decomp_rate_meal),

interrupt(ready=true, decomp_go_to_restaurant))).
proc(agent_chef,

interrupt(order_received=true, cook)).
proc(agent_waiter,

interrupt(meal_chosen=true, decomp_work)).
proc(start_sim,

prioritized_interrupts([interrupt(sim_running=true,

338 Günter Gans et al.

pconc(conc(conc(agent_guest,agent_chef),agent_waiter),
interrupt(true,noOp))),
interrupt(sim_running=false, noOp)])).

While primitive actions like cook are used directly, decomposed tasks like
go to restaurant lead to auxiliary procedures which initiate the execution of the
corresponding subtasks in a concurrent fashion. In other words, our interpreta-
tion of and-decomposition is that all subtasks are started concurrently and they
all need to terminate successfully for the supertask to terminate. In the case of
the and-decomposed task work, we obtain

proc(decomp_work,[conc(accept_order, serve_meal), work]).

Note that each procedure decomp [taskname] ends with a primitive action
[taskname], which is used for things like switching off the interrupt or per-
forming other direct effects of the task.

As for or-decompositions, recall that the intuition is that the termination of one
of the subtasks should lead to the termination of the whole task. At first glance,
one might be tempted to use the or(σ1, σ2)-construct provided by ConGolog,
which nondeterministically chooses one of the σi for execution. However, this
is problematic for on-line execution. After all, the interpreter needs to commit
right away to one of the choices, but it may not have enough information to
make the right choice. This is why we need the tryAll(σ1, σ2)-construct first
proposed in [GL00], which starts executing both σ1 and σ2 concurrently and
stops as soon as one of them reaches a final state. In the restaurant example,
rate meal is or-decomposed and the translation results in:

proc(decomp_rate_meal,[tryAll([rate_bad , rate_meal],
[rate_good, rate_meal])]).

This ends the description of the translation from extended SR diagrams into
IndiGolog. Note that, since the mapping is completely automatic and since In-
diGolog has a precise declarative semantics, we have also given extended SR
models a precise meaning. The only caveat is that we have not yet considered all
features of i*. Goals and subgoals, perhaps the most notable omissions, will be
dealt with in the near future.6 Soft-goals and positive resp. negative contribution
links are more problematic because they are introduced as vague concepts, and
it is not clear at all how to formally represent them.

4 SNet: A Software Environment for Modeling, Analysis,
and Simulation of Social Networks

Extended i* diagrams are composed using a modification of the editor OME3
(Object Modeling Environment) [LY]. While OME3 was developed for the orig-
inal i*, we extended it to cover the new features like preconditions and or-
decompositions of tasks.
6 If a task satisfies a goal, one idea would be to insert a test action corresponding to

the goal as the final action of the procedure representing the task.

SNet 339

Fig. 3. OME(Object Modeling Environment)

Simulator
(Java)

Eclipse/IndiGolog
(Linux, Windows)

Simulation
Java−
Interface

OME3
(Windows)

Editor Plugin

TCP/IP−
Interface

Simulation−
Performance,
Fluents

Static Model
(.tel File)

IndiGolog−Program
(.pl file)

Model,
Query/Response

Model,
History−Storage

ConceptBase
(Solaris)

Data Storage

Fig. 4. SNet Software Architecture

In addition, we have attached Java plugins to OME3 to maintain a connection
to a ConceptBase server (see below), initiate the static analysis of extended i*
diagrams, and to perform the translation process to ConGolog programs. An
OME-snapshot is shown in Figure 3.

In the context of static analysis in 2.3 we mentioned that we use Concept-
Base, a deductive object manager for meta databases (for details see [JEG+95]).
The role of ConceptBase will become clearer if we have a look at our implemen-
tation’s architecture (Figure 4). By establishing a TCP/IP connection we are
able to transfer the SNet framework as well as the current application model

340 Günter Gans et al.

Fig. 5. SNet Simulator7

to ConceptBase. This way we are able to use the ConceptBase Query Language
to perform certain queries for static analysis purposes as described in 2.3. Also,
suitable queries are issued to ConceptBase to obtain the information necessary
for the translation process to generate ConGolog programs.

A third component (Fig. 4), the simulator, written in Java, retrieves the
SNet framework, the application, and the position of each graphical object from
ConceptBase. While the interpreter written in Prolog processes the IndiGolog
program, the simulator controls the execution, monitors the changing fluents,
initiates exogenous actions, and shows a step by step view of the simulation run.

Figure 5 shows a snapshot of our simulator running the restaurant example.
The user creates specific simulation runs by exogenous actions. Preconditions
that hold are depicted with a green border, otherwise they have red borders. In
the snapshot something not ok holds, which leads to the task rate bad being per-
formed. As a consequence the precondition trust high enough gets a red border.
The red-bordered resource meal illustrates that the guest is it’s owner.

5 Related Work

Lespérance et al. [LKMY99] are the first to demonstrate that ConGolog can be
applied to model and simulate business processes. Similar in spirit to our work,
7 For those labels in the screenshot which are not legible the reader is referred to

Figure 2 instead, which shows the same network, only hand-drawn.

SNet 341

Wang and Lespérance [WL01] also propose to integrate i* and ConGolog, but in
a way quite different from ours. Roughly, while we introduce a small number of
new node and link types like task preconditions and or-decomposition into the
graphical representation of SR models, they annotate the original SR diagrams
with ConGolog constructs like while-loops, sequential task decompositions, and
the like. While this allows very fine-grained control-flow specifications at the
i*-level, it comes at the expense of burdening the user with choosing among the
various control alternatives. Also, while we strive for automatic translations from
extended i* into ConGolog, they still need considerable user interaction. Fuxman
et al. [FPMT01] also start with i* and enrich it with constraints formalized in a
linear time logic inspired by the KAOS language [DvLF93].

They then use model checking techniques [CCGRar] to verify the consistency
of the specification. Models are presented by listing which fluents are true at
certain time points and hence can be thought of as a form of simulation. However,
the main motivation for model checking is finding counterexamples, that is, bugs
in the specification. Our system, on the other hand, is mainly intended for the
simulation of different scenarios for consistent specifications. Hence, the two
approaches seem to complement each other well, an issue we want to explore
further in the future.

6 Conclusions

In this paper we proposed a framework for modeling and simulating the complex
interactions found in social networks. A graphical language based on Yu’s i* is
introduced for the specification of the network and the internal structure of
the agents involved. The models are stored in the ConceptBase system, whose
query language can be used for the static analysis of the models. These are then
automatically translated into executable ConGolog programs and the prototype
implementation provides a graphical interface to visualize simulation runs.

This work was originally motivated by our desire to understand and model
the role of trust and distrust in social networks [GJK+01a]. Now that we have an
implemented modeling and simulation environment, we are in a position to test
existing theories about how trust and distrust evolve over time. Doing so will
require collecting data from extensive simulation runs and storing the history of
interactions in a suitable form. Storing the history in ConceptBase will have the
advantage of making it accessible not only to the user for analysis but also to
the agents in the network who can use it for further decision making.

Another important issue is to test our modeling and simulation environment
on real data. One such application scenario is our ongoing case study in trans-
Atlantic entrepreneurship networks. Using such a realistic application will likely
lead to refinements and extensions of our methodology.

342 Günter Gans et al.

Acknowledgment

This work was supported in part by the Deutsche Forschungsgemeinschaft in its
Focussed Research Programme on Socionics.

References

[CCGRar] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new
symbolic model checker. Int. Journal on Software Tools for Technology
Transfer (STTT), To appear. 341

[dGL99] G. de Giacomo and H. J. Levesque. An incremental interpreter for high-
level programs with sensing. Logical Foundations for Cognitive Agents,
pages 86–102, 1999. 335

[dGLL00] G. de Giacomo, Y. Lespérance, and H. J. Levesque. ConGolog, a con-
current programming language based on the situation calculus. Artificial
Intelligence, 121(1-2):109–169, 2000. 334, 335

[DvLF93] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.
341

[FPMT01] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking
early requirements specifications in tropos. In Proceedings Fifth IEEE
International Symposium on Requirements Engineering (RE01), Toronto,
Canada, August 27-31 2001. 341

[GJK+01a] G. Gans, M. Jarke, S. Kethers, G. Lakemeyer, L. Ellrich, C. Funken, and
M. Meister. Requirements modeling for organization networks: A (dis-
)trust-based approach. In Proceedings of the 5th IEEE International Sym-
posium on Requirements Engineering (RE01), pages 154–163, Toronto,
Canada, August 2001. Los Alamitos: IEEE Computer Society Press 2001,
ISBN 0-7695-1125-2. 329, 341

[GJK+01b] G. Gans, M. Jarke, S. Kethers, G. Lakemeyer, L. Ellrich, C. Funken, and
M. Meister. Towards (dis)trust-based simulations of agent networks. In
Proceedings of the 4th Workshop on Deception, Fraud, and Trust in Agent
Societies, pages 49–60, Montreal, May 2001. 329

[GL00] H. Grosskreutz and G. Lakemeyer. Towards more realistic logic-based
robot controllers. In Proc. of AAAI-00, 2000. 335, 338

[JEG+95] Matthias Jarke, Stefan Eherer, Rainer Gallersdörfer, Manfred A. Jeusfeld,
and Martin Staudt. ConceptBase - a deductive object base for meta data
management. Journal of Intelligent Information Systems, Special Issue
on Advances in Deductive Object-Oriented Databases, 4(2):167–192, 1995.
332, 339

[LKMY99] Y. Lespérance, T. G. Kelley, J. Mylopoulos, and E. Yu. Modeling dynamic
domains with congolog. In Proceedings of CAiSE-99, June 1999. 340

[LPR98] Hector Levesque, Fiora Pirri, and Ray Reiter. Foundations for the situa-
tion calculus. Linköping Electronic Articles in Computer and Information
Science, 3(18), 1998. 334

[LRL+97] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. Golog:
A logic programming language for dynamic domains. Journal of Logic
Programming, 31(1):59–84, 1997. 334

SNet 343

[LY] L. Liu and E. Yu. OME (Object Modeling Environment),
http://www.cs.toronto.edu/km/ome/. 338

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis. Telos - rep-
resenting knowledge about information systems. ACM Transactions on
Information Systems, 8(4):325–362, October 1990. 329, 332

[McC63] John McCarthy. Situations, actions and causal laws. Technical report,
Stanford University, 1963. Reprinted 1968 in Minsky, M.(ed.): Semantic
Information Processing, MIT Press. 333

[OSS94] A. Oberweis, G. Scherrer, and W. Stucky. INCOME/STAR: Method-
ology and tools for the development of distributed information systems.
Information Systems, 19(8):643–660, 1994. 328

[PJ96] P. Peters and M. Jarke. Simulating the impact of information flows on
networked organizations. In Proceedings of the 17th International Con-
ference on Information Systems, Cleveland, Ohio, USA, pages 421–439,
Dezember 1996. 328

[Sch94] A.-W. Scheer. Business Process Engineering - Reference Models for In-
dustrial Companies. Springer Verlag, Berlin, 2 edition, 1994. 328

[WL01] Xiyun Wang and Yves Lespérance. Agent-oriented requirements engi-
neering using ConGolog and i*. In Working Notes of the Agent-Oriented
Information Systems (AOIS-2001) Workshop, Montreal, QC, May 2001.
341

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD
thesis, University of Toronto, 1995. 329

	SNet: A Modeling and Simulation Environment for Agent Networks Based on i* and ConGolog
	Introduction
	Representing Social Networks in Extended i*
	The i* Modeling Language
	Enriching Task Description
	Static Analysis in ConceptBase

	Simulation of Social Networks
	ConGolog -- A Short Introduction
	Transformation of Extended i* into Executable Programs

	SNet: A Software Environment for Modeling, Analysis, and Simulation of Social Networks
	Related Work
	Conclusions

