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Abstract. Although research into the integration of e-catalogs has
gained considerable momentum over the years, the needs for building
adaptive catalogs have been largely ignored. Catalogs are designed by
system designers who have a priori expectations for how catalogs will
be explored by users. It is necessary to consider how users are using
catalogs since they may have different expectations. In this paper, we
describe the design and the implementation of a system through which
integrated product catalogs are continuously adapted and restructured
within a dynamic environment. The adaptation of integrated catalogs is
based on the observation of customers’ interaction patterns.

1 Introduction

In recent years, integration of e–catalogs has gained considerable momentum be-
cause of the emergence of online shopping portals, increasing demand for infor-
mation exchange between trading partners, prevalent mergers and acquisitions,
etc [10]. In approaches that address the problem of e–catalogs organisation and
integration, a product catalog is usually structured in a category–based hierar-
chy [10,7]. Catalogs are designed in a “one–view–fits–all” fashion, by a system
designer who has a priori expectations for how catalogs will be “explored” by
customers. However, the customers may have different expectations. Therefore,
it is necessary to take into consideration how the customers are using the catalogs
to continuously minimise the gap between expectations of the system designer
and customers. For example, in a catalog for computer parts, assume that it is
repeatedly observed that many users always use product category RAM right after
using category CPU. If the administrator merges the two categories and creates a
new category CPU&RAM, users now only need to visit this new category once for
information of both products.

In this paper, we describe the design and the implementation of a system,
called WebCatalogPers, through which existing online product catalogs can be
integrated and the resulting integrated catalogs can be continuously adapted and
restructured within a dynamic environment. The catalogs integration framework
used in this paper originates from a previous project on integration of Web data,
called WebFINDIT [4]. Based on this framework, we propose a usage–centric
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technique for transforming catalogs organisation. It should be noted that the fo-
cus of this paper is not on catalogs integration. The objective is to continuously
improve the organisation of catalogs by being responsive to the ways customers
navigate them in searching for products. The proposed approach offers the fol-
lowing features: (i) Catalog navigation and access model – this model provides
a set of actions, called catalog interaction actions, that users would perform
while accessing catalogs, (ii) Catalog transformation operations – these opera-
tions are used to transform the structure and organisation of catalogs, and (iii)
Predefined sequences of catalog interaction actions – these sequences represent
pre–identified interaction patterns of users. They can be considered as heuristics
for catalog transformations. Discovery of these patterns help administrators de-
cide what kind of transformations would be desirable to improve the organisation
of catalogs. Transformations of a catalog over time, result in offering improved
alternative of its organisation based on user interaction patterns.

The remainder of this paper is organised as follows. Section 2 overviews the
design of WebCatalogPers. Section 3 presents a formal model for integrated
catalogs and user interaction actions. The catalog reorganisation operations,
predefined interaction sequences (PISs), and the confidence of a PIS are intro-
duced in Sect.4, Sect.5, and Sect.6 respectively. Section 7 presents the results
of simulation studies. Finally, Sect. 8 discusses related work and concludes the
paper.

2 WebCatalogPers: Design Overview

In this section, we give the intuition behind the main concepts that are used in
WebCatalogPers, namely, catalog communities and eCatalogs–Net. The formal-
isation of these concepts will be presented in the next section.

2.1 Catalog Communities

A catalog community1 is a container of catalogs which offer products of a com-
mon domain (e.g., community of Laptops). It provides a description of desired
products without referring to actual sellers (e.g., a seller of IBM Laptops).
We illustrate catalog communities with computers and related services domain
(see Fig.1).

There are two types of relationships defined between catalog communi-
ties: SubCommunity–Of and PeerCommunity–Of. SubCommunity–Of relation-
ships represent specialisation between domains of two catalog communities (e.g.,
Printer is a sub–community of Peripherals). We assume that, each catalog
community has at most one super–community. PeerCommunity–Of relationships
are viewed as a referral mechanism in that when the user can not find (or is not
satisfied with) information from a catalog community, s/he can refer to other
communities that the catalog community consider as its peers (e.g., commu-
nity Display is a peer community of VideoCard). It should be noted that,
1 We use the terms catalog community and community interchangeably.



346 Hye-young Paik et al.

OS

Components

Memory
VideoCard

Mother
Board

SoundCard
Processors

Hardware

AllCatalog

System Storage

Data
Recovery RAID TapeDrive

Data
Storage
Service

Optical

CableModem

Internet

Peripherals

Modem HardDrive Display Keyboard

Software

Digital
Camera

Printer

SubCommunityOf
PeerCommunityOf

Home
Networking

wrap wrap
wrap

HP Printer EPSON

CatridgeReplacement

0.7

0.3

0.8members of Printer

Member of a community

Fig. 1. eCatalogs–Net: Organising catalog communities

we do not assume that the opposite (i.e., VideoCard is a peer community of
Display) systematically holds. A weight (a real value between 0 and 1) is at-
tached to each PeerCommunity–Of relationship to represent the degree of rele-
vancy as a peer. Note that communities can also forward queries to each other via
PeerCommunity–Of relationship. We call this organisation of catalog communi-
ties eCatalogs–Net. Any catalog community that is not a sub–community of any
other community is related to AllCatalog via SubCommunity–Of relationship.

Each catalog community has a set of attributes that can be used to
query the underlying catalogs. We refer to the set of attributes as commu-
nity product attributes. For example, catalog community that represents “CD–
Readers and Writers” would have community product attributes such as Maker,
Read-WriteSpeed, Price, etc.

2.2 Catalog Registration

In order to be accessible through a community, product sellers need to register
their catalogs with the community. A catalog provider is known to a community
by providing (i) a wrapper, (ii) an exported interface, and (iii) a mapping be-
tween exported interface and community product attributes. The wrapper trans-
lates WebCatalogPers queries to local queries, and output of the local queries are
translated back to the format used by WebCatalogPers. The exported interface
defines the local product attributes for querying information at the local cata-
log. A local catalog supplier also should provide operations, such as ordering or
payment for the products. However, the focus of this paper is not on specifying
transactional operations. Detailed description on provisioning such operations in
the context of Web services is presented in [1]. Users may use a community to
express queries that require extracting and combining product attributes from
multiple underlying product catalogs (e.g., price comparison). We refer to this
type of queries as global queries. Global querying is achieved by using commu-
nity product attributes which do not directly correspond to product attributes.
Therefore, when a product catalog is registered with a community, the cata-
log provider should also define mapping between local product attributes and
community attributes. We call this mapping Source–Community mapping. Note
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that a community can be registered with another community. By doing so, the
members of the first community also become members of the second community.

2.3 Searching and Querying Product Information

Users in WebCatalogPers will typically be engaged in two–step information–
seeking activity: (i) navigating communities for product catalogs location and
semantic exploration (e.g., get communities that are relevant to selling laptops)
and (ii) querying selected communities or catalogs for products information (e.g.,
compare product prices). Users would have a specific task to achieve (e.g., prod-
uct items they wish to purchase, a category of products they want to investigate)
when using product catalogs. We assume that they use the following strategy2 :

1. Start at the root (i.e., AllCatalog), or at a specific community (if they know
the location of the catalog community).

2. While (current community C is not the target community T) do
(a) If any of the SubCommunity–Of relationships of C seems likely to lead

to T, follow the relationship that appears most likely to lead to T.
(b) Else, if any of the PeerCommunity–Of relationships of C seems likely to

lead to T, follow the relationship that appears most likely to lead to T.
(c) Else, either backtrack and follow SuperCommunity–Of relationship of C,

or give up.

Once the user has reached the target, s/he will submit a query to the target.
If the user ends up in the same community again in step 2(a) or 2(b), s/he will
follow a different relationship, since her/his reasoning of which relationship is
likely to lead to the target has changed by then.

3 Modelling Catalog Communities and User Interaction

In this section, we present a model for formally representing communities,
eCatalogs–Net, and consistency of eCatalogs–Net. The model also identifies a
set of actions that users can perform when interacting with the eCatalogs–Net.
The proposed model forms the basis for defining catalog restructuring operations
and user interaction patterns (see Sect. 4 and Sect. 5).

3.1 eCatalogs–Net

We give the definition of a community first and then eCatalogs–Net.

Definition 1 (Catalog Community). A catalog community C is a tuple C =
(NameC, GeneralInfo, CommunityProductAttr, Members) where:

– NameC is the name of the community C,
2 [13] uses a similar strategy for browsing and searching Web documents.
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– GeneralInfo is a set of pairs (p, v), where p is a property of the community
and v is a value of p (e.g., (Domain, “CD Writers”)),

– CommunityProductAttr is a set of attribute-type pairs (att, type), where
att is a community product attribute (i.e., a global attribute) and type is
the type of att (e.g., (“ModelNumer”, Integer)),

– Members is a set of members. A member can be either a product catalog or
another catalog community and is defined as a pair (mid, map) where mid rep-
resents the identifier of the member and map contains the Source–Community
mapping. ✷

Definition 2 (eCatalogs–Net). An eCatalogs–Net is a labelled directed graph
G = (N, E1, E2, W, �), where:

– N is a finite set of nodes. A single node represents a catalog community,
– E1 ⊆ N × N is a finite set of directed edges (representing SubCommunity–Of),
– E2 ⊆ N × N is a finite set of directed edges (representing PeerCommunity–
Of),

– W : E2 → [0, 1] is a weighting function (initially each edge in E2 receives a
neutral weight of 0.5), and

– � : N → C is a naming function where C is a set of catalog community names.
✷

To be consistent, an eCatalogs–Net must satisfy the conditions given in the
definition below:

Definition 3 (Consistent eCatalogs–Net). The eCatalogs–Net G = (N, E1,
E2, W, �) is consistent if and only if the following conditions are satisfied:

1. The naming function � is injective (that is, there will not be two communities
with the same name),

2. The graph G′1 = (N, E−1
1 , �) (generated from the sub-graph G1 = (N, E1, �) of G

by inverting the edges) is a tree. The root of the tree is AllCatalog,
3. E2 ∩ (E1 ∪ E−1

1 )+ = ∅ (where E+ denotes the transitive closure of E, i.e.,
(i, j) ∈ E+ iff there is a directed path from i to j in E). ✷

3.2 Permissible User Actions

The permissible actions, noted A, for exploring eCatalogs–Net are listed in Ta-
ble 1. By modelling user interaction actions, the system can capture them for
future use.

Every time a user invokes one of the permissible actions at a catalog com-
munity, WebCatalogPers keeps that event in the system log file. The log file
is, later, organised into sessions and for each SubmitQuery action in a session,
all of the product attributes selected by the query are identified. A session in
WebCatalogPers is an ordered sequence of actions performed by a single user,
where the time difference between any two consecutive actions in the sequence
should be within a time threshold, Tthreshold defined by an administrator.
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Table 1. Permissible User Actions A in eCatalogs–Net

Action Name Description

NavigateToSub(Community c) The user goes from the current catalog community
to one of its sub–communities c.

NavigateToSuper() The user goes from the current catalog community
to its super–community.

NavigateToPeer(Community c) The user goes from the current catalog community
to one of its peer communities c.

LeaveCatalogCommunity() The user leaves the current catalog community.
The user is taken to AllCatalog.

ShowMembers(Constraint s) The user requests to show members of the current
catalog community satisfying the constraint s.

SubmitQuery(Query q) The user submits the query q to the current catalog
community. It could be a global query which uses
the community product attributes, or a source
query which concerns one member of the
community.

4 Restructuring eCatalogs–Net

We now describe a set of restructuring operations on eCatalogs–Net. These op-
erations are used, for example, to change the relationships between catalog com-
munities, remove a catalog community, or merge catalog communities. They can
be performed at an administrator’s own discretion. In the next section, we will
introduce predefined interaction sequences which provide means to observe the
user’s interaction patterns. The observation will help decide which operation to
perform in order to improve the organisation of the eCatalogs–Net.

An operation is applied to a consistent eCatalogs–Net G = (N, E1, E2, W, �) and
produces a consistent eCatalogs–Net G′ = (N′, E′1, E′2, W′, �′). For space reasons, we
do not give detailed description of each operation. We only describe operations
for merging and splitting catalog communities. It should be noted that each high
level operation is defined as a sequence of primitive operations. The primitive
and high level restructuring operations are summarised in Table 2.

Moving a Community. The operation moveCatComm()moves a community c
from one place to another, by changing its super–community. This operation is
used, e.g., when an administrator is convinced that the current super–community
of c does not represent the domain of products in c properly. For example, in
Fig.1, assume that the community HardDrive is sub–community of Peripherals
and the user navigation behaviour shows that community Storage is more suit-
able super–community for HardDrive. This may suggest that it is beneficial to
move HardDrive to Storage. When a community c is moved, all of its sub–
communities are moved with it. Having this assumption creates less overhead,
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Table 2. eCatalogs–Net Restructuring Operations

Primitive Operations

setCatalogName(Community c, String n) : Set the name of c to n.

addPeer(Community ci, Community cj): Add PeerCommunity–Of from ci to cj.

delPeer(Community ci, Community cj): Delete PeerCommunity–Of from ci to cj.

updatePeer(Community ci, Community cj, Weight w): Update the weight of
PeerCommunity–Of from ci to cj by w.

addSub(Community ci, Community cj): Add SubCommunity–Of from ci to cj.

delSub(Community ci, Community cj): Delete SubCommunity–Of from ci to cj.

createCatComm(Name n, GeneralInfo gi, Members m, CommunityPro-

ductAttr gs): Create a new catalog community with the information given.
create-CatComm must be followed by addSub operation.

superCatComm(Community c): Return the super–catalog community of c.

subCatComm(Community c): Return a set of catalog communities which directly have
SubCommunity–Of relationship with c (direct sub–communities).

indSubCatComm(Community c): Return a set of catalog communities which, directly
or indirectly, have SubCommunity–Of with c (indirect subcommunities).

High Level Operations

mergeCatComm(Community ci, Community cj, Name n): Merge two existing
communities ci and cj and set the name of the new catalog community to n.

splitCatComm(Community c, GeneralInfo gic, Name n, GeneralInfo

gi, CommunityProductAttr cpa, Query q, setOfCommunities sub):
Split catalog community c into two separate communities. gic contains new
specification of GeneralInfo for c. n, gi, and cpa contain specification of the
new community (Name, GeneralInfo, and CommunityProductAttr respectively). q is
a query which will be used by the operation to select members to be moved from c

to the new community. sub is a set of sub–communities to be moved to the new one.

delCatComm(Community c): Remove the catalog community c from eCatalogs–Net.
Used, for example, when a community becomes obsolete (e.g., has no useful
existence inside the eCatalogs–Net).

moveCatComm(Community ci,Community cj): Move ci to new super–community cj.

since sub–communities of c do not get affected by the change. The effects of this
operation are described in Fig.2.

The community E is moved from its super–community B to the new super–
community C. E’s sub–communities, i.e., G and H remain as sub–communities of
E. However, since a catalog community cannot be a peer of its super–community,
the PeerCommunity–Of relationship from H to C has to be deleted.

Merging Communities. The operation mergeCatComm()merges two commu-
nities c and c′ which have the same super–community3. It is used, e.g., when
3 Note that, in this paper, we only consider merging of two communities, but the
operation can be generalised to more than two communities.
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it is observed that the two catalog communities c and c′ are always accessed
together. Hence, it is beneficial that these two catalog communities are merged,
so that the majority of users do not have to visit two separate communities each
time. Figure 3 illustrates the effects of mergeCatComm().

It shows that a new community is created from merging communities B and
C. The super-community of the new community is the super-community of B and
C (i.e., A). All sub–communities of B and C (i.e., D, F and G) are sub-communities
of the new community. All PeerCommunity–Of relationships between B and C,
as well as between B and all of C’s sub–communities, C and B’s sub–communities
should be deleted to maintain the consistency of the eCatalogs–Net. Also, all
PeerCommunity–Of relationships coming from other communities into B and C
need to be updated, i.e, the PeerCommunity–Of relationships would refer to the
name of the new community, instead of B and C.

Splitting a Community. The operation splitCatComm() splits an existing
catalog community into two separate communities. This operation is used, e.g.,
when it is observed that the community represents a domain (described by com-
munity product attributes) which can be divided into smaller sub-domains. This
situation is illustrated in Fig.4. Note that as a result of split, one new commu-
nity is created out of an existing one. The definition of the existing community
is updated to reflect this change (e.g., remove community product attributes, or
members that have been moved to the new community).
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Figure 4 illustrates that when the community B is split, a new community B′

is created out of B. All incoming and outgoing PeerCommunity–Of relationships
of B are inherited by B′. Also, if it is necessary, some of the sub communities of
B can be moved to B′.

The split of an existing catalog community needs careful consideration
about “how” each element in the community should be treated. It is an
administrator’s responsibility to decide how the attributes GeneralInfo,
CommunityProductAttr, Members and SubCommunity–Of relationships should
be initialised. This information is specified via the operation parameters (see
Table 2).

5 Predefined Interaction Sequences

Predefined interaction sequences represent foreseeable user’s interaction behav-
iour, therefore can be predefined. In our approach, we use these sequences of
actions to help identify situations where the organisation of an eCatalogs–Net
may be improved through restructuring operations. Any particular sequence
of actions with prevalent occurrences should be recognised as a recurring user
interaction pattern. Each interaction pattern identified suggests a restructuring
operation. A Predefined Interaction Sequence (PIS) is formally defined as follows:

Definition 4 (Predefined Interaction Sequence (PIS)). A predefined in-
teraction sequence PIS of length n (n > 0) is a vector of ordered user actions
PIS = 〈a1, a2, ..., an〉 where ai ∈ A (see Table 1) (i = 1, .., n). ✷

For a given PIS, there may exist a session s such that the exact order of
actions in PIS can be found in s. A predefined interaction sequence is matched
against each session in the processed log file to check whether the sequence exists
in the session. We refer to the number of occurrences of a PIS in the log file as
Frequency (see Sect. 6).

In the following subsections, we present a set of predefined interaction se-
quences. We describe some of the PISs in details. The rest are listed in Tables 3
and 4. We use the action SubmitQuery as the most appropriate action in indi-
cating user’s strong interests in a community. However, an administrator may
decide to choose other actions (or define new ones, e.g., PurchaseItem) for the
same purpose.
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Table 3. Other Predefined Interaction Sequences

Predefined Interaction Sequences

Deleting a community : Identify a community from which users are constantly
leaving without performing any further action.
PISdelComm = 〈 a(ci, cj), LeaveCatalogCommunity(cj)〉, where ci, cj ∈ N,
(ci, cj) ∈ E1 ∪ E−1

1 , and a ∈ {NavigateToSub, NavigateToSuper}.
Merging communities (Case 1): Identify two sub–communities of the same
super–community which are always accessed together (not via PeerCommunity–Of).
PISmerge1 = 〈 SubmitQuery(ci , q1), NavigateToSuper(ci , ck), NavigateToSub(ck , cj),
SubmitQuery(cj , q2) 〉, where ci, cj, ck ∈ N and (ci, ck), (cj, ck) ∈ E1.

Merging communities (Case 2): Identify a catalog community and its super
community are always queried together.
PISmerge2 = 〈 SubmitQuery(ci , q1), a(ci, cj), SubmitQuery(cj , q2) 〉, where
a ∈ {NavigateToSuper, NavigateToSub}, ci, cj ∈ N, and (ci, cj) ∈ E1 ∪ E−1

1 .

Merging communities (Case 3): Same as PISmerge1 , but uses NavigateToPeer
PISmerge3 = 〈 SubmitQuery(ci , q1), NavigateToPeer(ci , cj), SubmitQuery(cj , q2) 〉
where ci, cj ∈ N and (ci, cj) ∈ E2.

5.1 Merging Communities

Here, we introduce a generic sequence that describes situations where merging
of communities may be beneficial. We identify some interesting sequences which
represent special cases of the generic sequence4.

Definition 5 (PISGenericMerge). PISGenericMerge which represents the situations
where two communities are always queried together is:

PISGenericMerge = 〈 SubmitQuery(ci, q1), a1, ..., an, SubmitQuery(cj, q2) 〉

where ci, cj ∈ N, ak ∈ {NavigateToSub, NavigateToSuper, NavigateToPeer}
(k = 1, .., n), and q1, q2 are global query attributes (i.e., community product
attributes). ✷

PISGenericMerge captures interaction sequences where users, within a catalog
community ci, first submit a query then perform several navigation actions to
reach a community cj from where they finally submit another query. Figure 5
presents three particular cases of PISGenericMerge.

5.2 Splitting a Community

A catalog community may be split if a subset of community product attributes
are always queried together and the subset can represent a specific domain by
4 Note that, even though actions in Table 1 do not include source catalog community
parameters, we add them when defining PIS for clarity reasons.
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Table 4. More PISs (on PeerCommunity–Of relationship)

Predefined Interaction Sequences

Upgrading the weight of a PeerCommunity-Of: Consolidates the relevancy
of the relationship. Consider that many users navigate from commu-
nity ci, via PeerCommunity-Of relationship, to community cj, and sub-
mit a query to cj. This indicates that the PeerCommunity – Of relation-
ship from ci to cj positively contributed in finding the target community.
PISupgrade = 〈 NavigateToPeer(ci , cj), SubmitQuery(cj , q) 〉, where ci, cj ∈ N,
(ci, cj) ∈ E2, and q is global query attributes.

Downgrading the weight of a PeerCommunity-Of: Consider that many
users who followed a PeerCommunity–Of relationship and arrived at
a community cj, ultimately leave the community without perform-
ing any further action. This may indicate that cj is not relevant to
these users. To leave cj, use LeaveCatalogCommunity or NavigateToPeer.
PISdownByLeave = 〈 NavigateToPeer(ci , cj), LeaveCatalogCommunity(cj ) 〉,
where ci, cj ∈ N, and (ci, cj) ∈ E2. PISdownByPeer = 〈 NavigateToPeer(ci , cj),
NavigateToPeer(cj , ci) 〉, where ci, cj ∈ N, and (ci, cj), (cj, ci) ∈ E2.

Creating a new PeerCommunity--Of: Identify communities that are constantly used
as stop-overs. It may be beneficial to create direct PeerCommunity–Of relation-
ship so that users can by-pass them. PIScreatePeer represents a situation where
there are one or more navigational actions between NavigateToPeer and Sub-
mitQuery. This suggests the creation of Peer-Community–Of between ci and ck.
PIScreatePeer = 〈 NavigateToPeer(ci , ck), a1, .., an, SubmitQuery(cj , q) 〉, where ap ∈
{NavigateToSub, NavigateToSuper, NavigateToPeer} (p = 1, .., n), ci, cj, ck ∈ N,
(ci, ck) ∈ E2, and (ci, cj) /∈ E1 ∪ E−1

1 ∪ E2.

Deleting a PeerCommunity-Of: No pattern specifically defined. We consider
PISdownByLeave , and PISdownByPeer . When it is observed that the weight of a
PeerCommunity–Of in a community reaches the lower threshold (given by an ad-
ministrator), the relationship is considered to be irrelevant and can be removed.
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Fig. 5. Three particular cases of PISGenericMerge

itself. One way to detect this situation is to observe the way the community
product attributes are queried. The following pattern is used to identify a subset
of attributes that are always queried together. In this pattern, an administrator
has a specific catalog community in mind (ci) that s/he wants to examine for
possibility of splitting and a set of attributes s/he predicts to be queried together.
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Definition 6 (PISsplit). PISsplit which represents the pattern for splitting a
catalog community is: PISsplit = 〈 SubmitQuery(ci, “attr1, .., attrn”) 〉, where
ci ∈ N, and attr1, .., attrn are community product attributes in ci that are likely
to be queried together. ✷

6 Confidence of Patterns

In this section, we provide two definitions, namely frequency and confidence of a
PIS. They are used to decide whether a PIS can be considered as a pattern for
which a restructuring operation is suggested.

Definition 7 (Frequency). A frequency of a PIS, denoted by Frequency(PIS),
is number of occurrences of PIS in the processed log file. ✷

The frequency of a predefined interaction sequence is used to decide whether
the result of the match is significant enough to consider performing eCatalogs–
Net restructuring operations. We discuss some of the issues that arise from using
the patterns.

First, there is an issue of conflicting patterns where discovery of one pattern
suggests a certain restructuring operation, whereas another pattern leads to a
different operation on the same relationships or communities. For instance, it is
possible that the pattern PISupgrade shows that the weight of PeerCommunity–Of
relationship between community A and B needs to be upgraded, but at the same
time, the pattern PISdownByPeer may suggest that the same relationship should be
downgraded.

On the other hand, there is an issue of knowing patterns that can consol-
idate each other. We refer to these patterns as consolidating patterns. These
patterns, when used together, can reinforce each other’s findings. For example,
suppose that the pattern PISdownByLeave suggests that PeerCommunity–Of rela-
tionship between community A and B should be downgraded. When PISdownByPeer
pattern also suggests downgrading of the same relationship, it helps choosing a
restructuring operation with much more assurance. Table 5 lists the identified
conflicting and consolidating patterns among the predefined interaction patterns
presented in this paper.

Definition 8 (Confidence). A confidence of a PIS denoted by Confi-
dence(PIS) is defined as:

Confidence(PIS) =
Frequency(PIS)+ A

(Frequency(PIS) + A) + B
where

A is sum of frequency of all consolidating patterns of PIS and B is sum of fre-
quency of all conflicting patterns of PIS. ✷

For a PIS to be considered, (i) its frequency should be greater than a fre-
quency threshold and (ii) its confidence should be greater than a confidence
threshold. Those two thresholds can be defined by an administrator.
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Table 5. Conflicting and Consolidating Patterns

Name of PISs downBy downBy create del merge1 merge2 merge3 split

Leave Peer Peer Comm

upgrade − − + n n n + n
downByLeave · + − + n n − n
downByPeer · · − + n n − n
createPeer · · · − n n n n
delComm · · · · − − − −
merge1 · · · · · n n −
merge2 · · · · · · n −
merge3 · · · · · · · −
split · · · · · · · ·
Legend: n=no conflict, −=conflict, +=consolidation

7 Evaluation

The eCatalogs–Net (see Fig.1) used in the experiments represents an integrated
view of 27 catalog communities in computers and related services domain. Over-
all, all components in WebCatalogPers have been implemented using Java,
JSP/Servlets, and JDBC. For persistent storage (log data and metadata repos-
itory), an XML-supported repository (Oracle 8i database) is used. The meta-
data repository stores information about community attributes, relationships,
members, etc. It should be noted that our initial studies were conducted under
simulated scenarios, in which, we restricted the users’ interactions in terms of
number of moves (e.g., mouse clicks) they can make. We show any measurable
improvement by comparing the number of users who find the target (what they
were looking for) before restructuring and after restructuring. The primary goal
of this simulation study is to demonstrate that given the same constraint (i.e.,
limited number of moves), more users find targets after restructuring.

7.1 Experiment Framework

We used task agents that played the role of customers who wanted to find out
information about the products. A Java class called AgentFactory was used to
create agents. More precisely, the class AgentFactory implements a software
component made up of a container and a pool of objects which represent agents.
The container is a process that, once created, runs continuously, listening to a
socket, through which an instantiation message from a predefined script (used
to create an agent) is received. An agent interacts with a module called Com-
munity Manager (implemented as JavaBean) which provides various methods
for exploring the community relationships (e.g., getSubCommunityOf(), get-
PeerCommunityOf() etc.). The agent’s search and query behaviour is based
on the same search and query strategy which is presented in Sect. 2.3. The
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agents are equipped with two kinds of information for autonomous interaction
with communities. First, the agents have access to the relationships (i.e., Sub,
PeerCommunity–Of) between communities. The second information provided to
the agents is called Likelihood Table. In the likelihood table, for a given a tar-
get community, every community in eCatalogs–Net is assigned a number value,
which represents a degree of “closeness” (i.e., relevance) of the community to the
target community. Hence, the higher the value, the more likely the community
will lead the agent to the target. We will refer to this value as a likelihood and
the list of likelihood values as a likelihood table.

Having the likelihood values fixed in the table makes the agents’ interaction
sequence to be always predictable. Agents should be able to make spontaneous
and irregular decisions, resulting in unpredictable behaviour. We introduced a
variant factor which would diverge a likelihood value. Each time, when an agent
is given the likelihood values, the agent dynamically recalculates all likelihood
values according to the factor before starting navigation.

The agent takes the following inputs to run; (1) name of the file that contains
likelihood table, (2) name of the target community to find, (3) maximum number
of moves an agent can make before giving up. For the purpose that stated earlier
in Sect. 7, we limited the MaxMove to 14 for all experiments. The parameter VF
(Variant Factor) represents the value of the variant factor for likelihood table. We
asked four people who are familiar with the domain to produce the likelihood
tables. The actual likelihood values used in the experiments took the average
values of the four. The VF has three settings, 5%, 10% and 15%. Higher the VF,
bigger the deviation from given likelihood values5.

7.2 Experiments and Results

We now describe the results of experiments that investigated the effect of two
restructuring operations (addPeer, moveCatComm) and the experiment param-
eter VF. The experiments carried out were based on two simulation scenar-
ios. In the first scenario, we experimented on a PeerCommunity–Of relation-
ship. For initial runs, 3000 agents were created and given the task of find-
ing the community CableModem (see ‘Before’ in Fig.6). From the initial runs,
observation showed that about 28% of the agents who found target followed
the PeerCommunity–Of relationship from Modem to Internet, and Internet,
HomeNetworking were used as stop-overs. We performed addPeer operation to
create a new PeerCommunity–Of relationship from Modem to CableModem. Then
we ran the 3000 agents again (see ‘After’ in Fig.6).
Varying VF: We measured the improvement made by the restructuring and
study the effect of different values of the variant factor. We varied VF from 15%
to 10%, and then to 5%. As shown in Fig.6, there were visible improvements in
the number of agents found target. Irrespective of creation of the relationship,
5 Note that other experimental parameters related to likelihood table have been de-
fined, such as number of the tables participated in the experiment, range of likelihood
values, etc. However, we only present the experiments with VF.
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Fig. 6. Varying VF: First Scenario Fig. 7. Varying VF: Second Scenario

as VF decreases the more agents were able to find targets. VF randomises the
likelihood values from a given table. This result demonstrates that agents are
likely to find the target if their likelihood values are less deviated from the
given likelihood values. Given the fact that the likelihood values used described
the relationships of communities in relatively precise manner, this result can
be interpreted that the user whose understanding does not deviate much from
that of domain experts is more likely to find targets easily. Also, the biggest
improvement was made when VF was 15 (i.e, having the highest deviation from
given likelihood values). This indicates that the restructuring of eCatalogs–Net
can benefit the most when the user’s understanding deviates much from the
expert.

In the second scenario, we experimented on moving a community to a new
super–catalog community. In the initial structure of eCatalogs–Net (Fig.1),
HardDrive is sub catalog community of Peripherals. The likelihood values
used reflected the Storage as the expected location of the target. In the initial
runs, 3000 agents were created and given the task of finding the community
HardDrives. For the second runs, we performed moveCatComm() operation to
move HardDrives from Peripherals to Storage and ran 3000 agents again. As
shown in Fig.7, clear improvements were made after the restructuring.

Overall, we saw obvious improvements made after restructuring of eCatalog–
Net across various experiment settings. This demonstrates that adaptive struc-
turing of e–catalogs can help users have more streamlined and easier naviga-
tion/search experience. The experiments with VF parameter showed that for the
users whose understanding deviates very much from the experts, can benefit the
most from having communities restructured.

8 Related Work and Conclusions

We identify two major areas to discuss related work, namely building adaptive
Web sites and navigation mining techniques in Web content personalisation. [11]
automatically constructs index pages that supplement an existing organisation
by looking at co–occurring pages, so that users can easily locate pages that are
conceptually and strictly related to one topic. In [9], a technique that discovers
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the gap between Web site designer’s expectation and user’s behaviour is pro-
posed. The technique uses inter page conceptual relevance vs. inter page access
co–occurrence. [13] developed an algorithm to identify “expected locations” of a
Web page and create a link from the expected location to the page. [14] extract
related pages from a given page, then investigate the relationships between two
Web pages based on how each page drives other pages as related page. It is
worth noting that, while basic principles of this area are complementary to our
work, most approaches only deal with Web pages, which is quite different from
the concept of communities we proposed. In our work, communities are indi-
vidual and autonomous entities (rather than network of Web pages) with which
users and members of the community can have various interactions (submitting
a query to, invoking operations from, register with, etc.).

In the area of mining access patterns, [6] uses Web usage mining concept
to dynamically predict user’s next behaviour and to make a recommendation.
[3] uses Hypertext Probabilistic Grammar also to predict the user’s navigation
path. [5,8] discuss issues and processes involved in preparation/transformation
of data from Web server logs to a format suited for purpose of mining. In typ-
ical sequence or Web usage mining, an access pattern is a sequence of visited
Web documents which have a large occurrence frequency. It extracts frequently
visited nodes, or nodes that are visited together, but these kind of access pat-
tern does not reflect how users navigate the imposed structure. [12,2] proposed
a Web Usage Mining (WUM) system to evaluate effectiveness of the Web site
organisation. It uses a concept of g-sequence to model sequence of navigation of
users. We use a similar concept to model sequence of user interaction actions.

Another work worth mentioning is [15], in which decision trees are used to
automatically construct catalogs based on popularity of product items (i.e., fre-
quency of visits) and weighted product attributes. The algorithm of construction
is designed in a way that the depth of product hierarchy (which is a tree) is min-
imised, pushing the popular product items/attributes to upper levels so that
customers can find them easily (with fewer clicks). However, it does not discuss
the ongoing adaptivity of the catalogs. Also,WebFINDIT [4] considers addition
and deletion of links between communities. However, the mechanism is based on
link-monitoring agents, which is different from mining user access patterns.

In summary, in this paper, we presented a usage-centric approach for trans-
forming and improving integrated catalogs structure and organisation. We pro-
posed catalog restructuring operations as well as predefined interaction sequences
that help decide which operation to perform. We also illustrated the viability of
the proposed approach and demonstrated that restructuring increase the chances
of the user finding his/her targets through simulated experiments. Ongoing work
includes case studies to evaluate WebCatalogPers in a distributed environment.
We also plan to extend the proposed approach by grouping people with similar
interaction patterns.
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