
External Requirements Validation for
Component-Based Systems

Technische Universität Berlin, Germany
Computergestützte InformationsSysteme (CIS)

{fbuebl|aleicher}@cs.tu-berlin.de — http://www.cocons.org

Abstract. Software evolution is a major challenge to software devel-
opment. When adapting a component-based system to new, altered or
deleted requirements, existing requirements should not accidentally be
violated. Invariant conditions are usually specified via constraint lan-
guages like OCL on a high precision level close to source code. On the
contrary, this paper uses a new constraint mechanism. One context-based
constraint (CoCon) specifies one requirement for a group of indirectly as-
sociated components that share a context. This paper proposes a ‘Rule
Manager’ approach to monitor a system’s compliance with requirements
automatically at runtime. The approach is compatible with modern mid-
dleware technologies and allows the transparent integration of require-
ment validation in legacy systems or COTS.

1 Introduction

1.1 Continuous Software Engineering

The context for which a software system was designed continuously changes
throughout its lifetime. Continuous software engineering is a paradigm discussed
in [22] to keep track of the ongoing changes and to adapt legacy systems to altered
requirements. Only component-based systems are addressed in the KONTENG1

project, because this rearrangeable software architecture is best suited for con-
tinuous software engineering.

1.2 The Notion of ‘External Requirements Validation’

Some requirements should be reflected during the design phase, some during de-
ployment and some at runtime. This paper focuses on requirements validation at
runtime. We propose to monitor a system’s compliance with requirement specifi-
cations at runtime. Requirements tend to change quite often. The new approach
1 This work was supported by the German Federal Ministry of Education and Re-

search as part of the research project KONTENG (Kontinuierliches Engineering für
evolutionäre IuK-Infrastrukturen) under grant 01 IS 901 C

© Springer-Verlag Berlin Heidelberg 2002

Andreas Leicher and Felix Bubl¨

A. Banks Pidduck et al. (Eds.): CAiSE 2002, LNCS 2348, pp. 404-419, 2002.

presented in this paper suggests not to implement requirements validation into
any of the components involved. Instead, conformity with requirements is en-
forced externally of the components. Hence, the system can be transparently
adapted to changed or new requirements via connector refinement without mod-
ifying the components directly. Furthermore, legacy components or components
‘off the shelf’ can be forced to comply with requirements that are not taken into
consideration by the components themselves.

2 Context-Based Constraints (CoCons)

This section explains the concept of ‘context’ used in this paper and introduces
how to specify requirements via ‘context-based constraints’.

2.1 The New Constraint Technique ‘CoCons’ in Brief

This article is an overview on the new constraint technique – much more details
are provided in the corresponding technical report ([3]). The basic concept can
be explained in just a few sentences.

1. Yellow sticky notes are stuck to the components. They are called ‘context
properties’, because meta-information describing their component’s context
is written on them.

2. A new constraint mechanism refers to this meta-information for identifying
the part of the system where the constraint applies. Only those components
whose meta-information fits the constraint’s ‘context condition’ must fulfil
the constraint. Up to now, no constraint technique exists that selects the
constrained components according to their meta-information.

3. Via the new constraint technique a requirement for a group of components
that share a context can be automatically protected.

2.2 Introducing Context Properties

The term ‘context’ is used an various senses. When using context-based con-
straints, ‘context’ refers to the state, situation or environment of a component.
The context is expressed by assigning context properties to components. A con-
text property has a name and a set of values as illustrated in figure 2. One set
of values can be assigned to a single component c for each context property cp
. This set is called ConPropV alscp,c. If a context property value is associated
with a component, it describes how or where this component is used – this meta-
information describes the ‘context’ of this component. Each context property is
only useful if a requirement must be specified for a part of the system that can be
identified by this context property. This paper discusses only the context prop-
erty ‘Personal Data’. It signals whether a component handles data of private
nature. Its values associated with a component are defined manually.

On the contrary, system properties, like ‘the current User’ or ‘the current
IP Address’, can be automatically queried from the middleware platform during

405External Requirements Validation for Component-Based Systems

configuration or at runtime. Each middleware technology enables certain system
properties to be queried, but it’s beyond the scope of this paper how the various
technologies query the system property values.

Many techniques for writing down metainformation exist. The notion of con-
text or container properties is well established in component runtime infrastruc-
tures such as COM+, EJB, or .NET. The primary benefit of enriching compo-
nents with context properties is revealed in next section, where such properties
are used to specify requirements.

2.3 A New Notion of Invariants

One requirement can affect several components that do not invoke each other
directly or even do not run on the same platform. A context-based constraint
(CoCon) specifies a requirement for a group of components that share a context.
The shared context is identified via the context property values assigned to
these components. If these values comply with the CoCon’s context condition
then their components share the same context. The metamodel in figure 1 shows
the metamodel for CoCons. This metamodel resembles a UML 1.4 ([14]) profile if
you rename the metaclass ‘Component’ to ‘ModelElement’, ‘Context Property’
to ‘TagDefinition’ and ‘Context Property Value’ to ‘TaggedValue’ in figure 1.
However, this paper focuses on using CoCons at runtime. Thus, integration in
UML is not discussed. CoCons should be preserved and considered in model
modifications, during deployment, at runtime and when specifying another –
possibly contradictory – CoCon. Thus, a CoCon is an invariant. It describes
which parts of the system must be protected. If a requirement is written down
via a CoCon, its violation can be detected automatically.

Fig. 1. The CoCon Metamodel

406 Andreas Leicher and Felix Bübl

The context property ‘Personal Data’ is described section 2.2. Either its value
‘True’ or ‘False’ is associated with a component. Thus, a CoCon can state that
“components where ‘Personal Data’ has the value ‘True’ must be inaccessible
by the component ‘SalesMgr”’(Example A). This constraint is based on the
context property values of the components – it is a context-based constraint or
CoCon. The shared context is expressed via a ‘context condition’ which selects
components via their context property values. It describes a (possibly empty) set
of components. In example A, the part in italics represents the context condition
that selects the ‘target set’ .

In Example A, the scope of the CoCon is a single component: the component
‘SalesMgr’. But the scope can be a set containing any number of components,
as illustrated in example B: “The component ‘SalesMgr’ must be inaccessible
by any component that is currently used by a ‘Controller’ who is not located
in ‘Frankfurt’ ”. Users of the system have the role ‘controller’ if they check the
financial transactions of accountancy. Both example A and B are explained in
section 3.2. The ‘scope set’ contains those components, where the elements of
the target set must meet the constraint. In Example B, the scope set contains
all the components used by a controller not located in Frankfurt. Both target
set elements and scope set elements can be specified either directly or indirectly:

...directly: Set elements can be specified by directly naming the component(s)
involved. In Example A, the CoCon is associated directly with the ‘SalesMgr’
component. This unambiguously identifies the only element of the scope set.

...indirectly: The indirect association of a constraint to its constrained ele-
ments is the key new concept of context-based constraints. Set elements
can be indirectly selected via a context condition. The scope set in Exam-
ple B contains all the components where the context property ‘Current User
Role’ has the value ‘Controller’ and ‘Current Caller Location’ does not equal
‘Frankfurt’. These scope set elements are anonymous. They are not directly
named, but described indirectly via their context properties. If no compo-
nent fulfils the context condition, the set is empty. This simply means that
the CoCon does not apply to any component.

A CoCon attribute can define details of its CoCon. This paper only discusses
the attribute Action. It defines what to do in case of a CoCon violation. More
Details on CoCons are introduced in [4].

2.4 A Textual Language for CoCon Specification

This section introduces a textual language for specifying context-based con-
straints. The standard technique for defining the syntax of a language is the
Backus-Naur Form (BNF), where “::=” stands for the definition, “Text” for a
nonterminal symbol and “TEXT” for a terminal symbol.

The Context-based Constraint Language CCL for components ([3]) consists
of different CoCon types. However, this paper only discussed one CoCon type.
For a complete syntax definition please refer to the implementation of the ‘CCL

407External Requirements Validation for Component-Based Systems

plugin for ArgoUML’ described in section 6.1. All rules concerning the sepa-
rator (‘,’ ; ‘AND’or ‘OR’) are abbreviated. For instance, “Rule {‘OR’ Rule
}*” is abbreviated “(Rule)+OR”. This is the BNF Syntax for CoCons of the
InaccessibleBy Type:

InaccessibleByCoCon ::= (ElementSelection)+OR ‘MUST BE Inac-
cessibleBy’ (ElementSelection)+OR Attribute

ElementSelection ::= ContextCondition | DirectSelection
DirectSelection ::= (‘THE COMPONENT’ CompName) | ‘THIS’
ContextCondition ::= ‘ALL COMPONENTS WHERE’

ContextQuery+AND or OR

ContextQuery ::= ContextPropertyName Condition
(ContextPropertyValue | SetOfConPropValues)

SetOfConPropValues ::= (‘{’ (ContextPropertyValue)+Comma‘}’) |
ContextPropertyName

Condition ::= ‘CONTAINS’ | ‘DOES NOT CONTAIN’ |
‘=’ | ‘! =’ | ‘<’ | ‘>’ | ‘<=’ | ‘>=’

Attribute ::= ‘WITH ACTION =’ (‘Abort’ | ‘Redirect’ |
‘Filter’)

An example is given in section 3.2. The ContextCondition rule allows for
the indirect selection of the elements involved. In contrast, the ElementName
rule directly selects elements by naming them. The ContextQuery describes
(one or more) set(s) of RequiredV aluescp. A context condition selects the com-
ponent c if for each context property cp used in the context condition the
RequiredV aluescp ⊆ ConPropV alscp,c. Besides ‘CONTAINS’ (⊆), this pa-
per suggests other expressions like ‘!=’ (does not equal) and ‘DOES NOT
CONTAIN’ (6⊆). Only simple comparisons (inclusion, equality,...) are used in
order to keep CoCons comprehensible. Future research might reveal the benefits
of using complex logical expression, such as temporal logic.

2.5 Comparing OCL to Context-Based Constraints

Typically, the Object Constraint Language OCL summarized in [21] is used for
the constraint specification of object-oriented models. One OCL constraint refers
to (normally one) directly identified element, while a context-based constraint
can refer both to directly identified and to (normally many) indirectly identified,
anonymous and unrelated elements. A CoCon can select the elements involved
according to their meta-information. In the UML, tagged values are a mecha-
nism similar to context properties for expressing meta-information. There is no
concept of selecting the constrained elements via their tagged values in OCL or
any other existing formal constraint language.

An OCL constraint can only refer to elements that are directly linked to
its scope. On the contrary, a CoCon scope is not restricted. It can refer to
elements that are not necessarily associated with each other or even belong to
different models. When specifying an OCL constraint it is not possible to consider
elements that are unknown at specification time. In contrast, an element becomes

408 Andreas Leicher and Felix Bübl

involved in one context-based constraint simply by having the matching context
property value(s). Hence, the target elements and the scope elements can change
without modifying the CoCon specification.

Before discussing another distinction, the OMG meta-level terminology will
be explained briefly. Four levels exist: Level ‘M0’ refers to a system’s objects
at runtime, ‘M1’ refers to a system’s model or schema, such as a UML model,
‘M2’ refers to a metamodel, such as the UML metamodel, and ‘M3’ refers to a
meta-metamodel, such as the Meta-Object Facility (MOF). If an OCL constraint
is associated with a model element on level Mi, then it refers the instances of
this model element on level Mi−1 — in OCL, the ‘context’ [6] of an invariant is
an instance of the associated model element. If specified in a system model on
M1 level, an OCL constraint refers to runtime instances of the associated model
element on level M0. In order to refer to M1 level, OCL constraints must be
defined at M2 level (e.g. within a stereotype). On the contrary, a CoCon can be
verified automatically on the same meta-level where it is specified. All CoCons
discussed in this paper are specified and verified on M0 level because this paper
focuses on checking them at runtime.

3

Today, abstract constraints, like CoCons, are generally not supported by modern
component technologies, like Enterprise JavaBeans [7] or Microsoft .NET. They
have to be implemented manually into components. In fact, finalized components
have to be extended and modified by additional logic. They require a program-
matic extension that reduces the system’s maintainability. This complicates the
programming, the handling and the evolution of components. This paper, there-
fore, proposes to specify constraints declaratively. Most contemporary middle-
ware systems only allow for the specification of constraints for well-defined tasks
such as security and transactional behaviour at the time of deployment. Be-
yond that, the approach presented allows CoCons to be specified and monitored
dynamically at runtime.

3.1 Main Objectives

The main objective is the transparent integration of a mechanism for monitoring
CoCons into modern middleware technologies. This brings the advantage that
modifying components is not longer necessary when adapting the system to new
or changed requirements expressed via CCL CoCons. In addition, the trans-
parent integration as well as the separation of the requirements specification
support the evolution of systems. Requirements are encapsulated as separate as-
pects of the application logic and are treated separately. Therefore, the approach
facilitates the integration with legacy systems, which can be enforced even at
runtime to conform to new or changed constraints without modifying the legacy
components themselves. Furthermore, components ‘of the shelf ’ (COTS) can
be transparently complemented by additional constraints for the same reasons.

409External Requirements Validation for Component-Based Systems

Applying Context-Based Constraints at Runtime

Their standard functionality can be restricted by the approach presented without
modifying themselves.

3.2 Scenario

The following example describes a trading system of a company located in New
York(main office), Tokyo(branch office) and Frankfurt(branch office). The sys-
tems main components are shown in figure 2. They are associated with appro-
priate context property values. An identical configuration of the system will be
deployed and installed at each location. Personal data of local users is stored
at the user’s location whereas a global user schema exists for the whole system.
The following context properties are shown in figure 2:

System.Location: Specifies the installation place of the component
System.UserRole: Describes user groups: In our example, an user is either a

Trader or a Controller. Controllers are able to check personal data on all
transactions.

In this paper only one requirement is discussed: “Controllers who are not
located in Frankfurt must not be able to access Frankfurt’s personal data”. The
system must comply with this requirement due to German federal law. The
corresponding CoCon specification is defined as follows:

ALL COMPONENTS WHERE ‘Personal Data’ = ‘True’
AND System.Location = ‘Frankfurt’
MUST BE InaccessibleBy
ALL COMPONENTS WHERE System.Location != ‘Frankfurt’ AND
System.UserRole = ‘Controller’
WITH ACTION = ‘Abort’

ISalesMgr

ITrade

 System.Location : NewYork, Tokio, Frankfurt
 System.UserRole : Controller
 Personal Data : True, False

 System.Location : NewYork, Tokio, Frankfurt
 System.UserRole : Trader, Sales Agent, Controller
 Personal Data : True, False

<<comp spec>>
Trade

System

<<comp spec>>
SalesMgr

<<comp spec>>
Controlling

System

 System.Location : NewYork, Tokio, Frankfurt
 System.UserRole : Trader, Sales Agent, Controller
 Personal Data : True, False

<<comp spec>>
Sales

 System

<<comp spec>>
Backup
SystemIBackup

Fig. 2. Trader System Scenario

410 Andreas Leicher and Felix Bübl

3.3 Runtime Realisation

The example requirement is checked at runtime since it refers to dynamically
changing context properties values. The components in question may not be
changed because transparent monitoring is strived for. Rather, the communica-
tion of the components involved must be intercepted. Hence, monitoring points
(Points of Interception) are installed in the communication paths of the compo-
nents. For this, we use as the technical foundation the proxy pattern[8]. Most
middleware technologies use a kind of this standard communication method to
realize local and distributed communication.

Figure 3 shows the example scenario once more. This time a J2EE application
server is used as the starting point. Requests to the system are routed via the
controlling system component to the sales management component. The point
of interception is placed, in front of the sales management component. Each
incoming call is monitored, for whether it complies with the specified CoCon. In
the case a violation against a CoCon, predefined actions are executed.

Class

<<database>>
Backup
System

<<database>>
Trade

System

<<session bean>>
SalesMgr

<<servlet>>
Controlling

System

J2EE Application Server

service
requests

PoI

<<session bean>>
Context
Manager

Fig. 3. Point of Interception

4 Rule Manager Approach

Our approach is based on two well-known concepts. On the one hand, it uses
Event Condition Action (ECA) rules. They are typically applied in active databases
[24], where ECA rules are used to check for basic database operations and where
additional actions are triggered when specified conditions are met. On the other
hand, middleware systems are integrated via a proxy mechanism. It allows for
transparent integration in common technologies by intercepting communication
between components. The proxy mechanism is extended by the needed monitor-
ing functionality. Thus, it becomes possible to place interception points between
components. The extended proxy can be seen as a connector, which facilitates
requirement protection. Consequently, a connector is treated as a first-class en-
tity [19], which has to be carefully designed.

411External Requirements Validation for Component-Based Systems

4.1 ECA Rules

The approach presented uses ECA rules to monitor CoCons at runtime. ECA
rules are based on a formal specification language and have a syntax depicted in
figure 4. A rule consists of four parts: a type clause, an event clause, a conditional
clause and an action clause2. One of the main tasks of this approach is to
translate a CoCon into ECA rule definitions.

declare rule rule name
proxy typeclause
on eventclause
if conditionalclause
do actionclause

end rule

Fig. 4. Rule Definition

declare rule security example
proxy type(SalesMgt)
on request(true)
if context(‘PersonalData‘, ‘True‘) AND
¬(context(System.Location, ‘Frankfurt‘) AND
context(System.UserRole, ‘Controller‘)
do abort

end rule

Fig. 5. Example Rule

CoCons declare invariants between up to two sets of components (see section
2). One CoCon applies to all components whose context property values fulfil
its context condition. An ECA rule, on the other hand, references a particular
connection between two components. For this reason, a suitable type clause must
be declared for each component affected by the CoCon. A type clause specifies the
component to which communication has to be filtered. An event clause specifies
the event that must occur to trigger the ECA rule. An event can be related to
a specific, or to several services.

Different types of CoCons exist (though, in this paper only one type relevant
to runtime is discussed). These types determine the conditional clause. If the
constraint is to be evaluated at runtime, as in figure 5, the conditional clause
contains context clauses that determines the matching context property values
at runtime. A context clause is related to the Context Manager, which provides
the context property values of a component. The context manager detects this
information through technology-specific functions. Every message (or procedure
call) to a certain proxy is checked by an ECA rule at runtime. In case of a condi-
tional match, there are many possible actions. These can be stated in the actions
clause. Actions are managed in an action template repository that contains some
predicates with platform specific mappings.

4.2 Actions

The specification of a runtime CoCon includes the action that must be taken in
the case where a CoCon is violated. There are many possible actions. A selection
of typical actions follows without claiming to be complete:
2 In the following, clauses are stated as predicates

412 Andreas Leicher and Felix Bübl

Abort Action The communication is prevented specifically. This can be re-
alized by sending back an exception to the calling client. This is totally
transparent to the application components.

Redirect Action: The communication, which is normally initiated between
components A→ B, will be redirected to an available and fully compatible
component C (A→ C). Component C has to fulfil the contract of component
B with A.

Filter Action: The data transferred in communication calls have to be modi-
fied. Therefore, the exact knowledge of the format used for the submitting
information is necessary.

Context-Aware Service: Besides normal communication, additional actions
will be executed. For example, log-entries or some kind of analysis could be
transparently integrated into communication.

4.3 Calculating the Points of Interception

The monitoring of CoCons at runtime requires that monitoring points (inter-
ception points) be determined. As a starting point of the calculation, there are
both a component specification model as known from Cheesman/Daniels[5] and
an abstract requirements (CoCon) specification. The component specification
model has been enriched by context properties. The following problems arise in
the context of the calculation:

– CoCons can specify requirements for sets of components. Thus, a large num-
ber of ECA rules can result from a single CoCon. Because of the nature of
CoCons components can be directly or transitively associated. The resulting
ECA rules must be installed at each possible connection path between the
sets of components. This ensures that the communication between compo-
nents can be suitable monitored.

– Interception points between components that are not connected directly can
be installed in different places. The problem therefore arises to localize the
best suitable point.

In the following possible solutions to these problems are discussed briefly.

Invocation Path Calculation The component specification model (which
shows dependencies between components) can be used to calculate all invoca-
tion paths of the system. A sequence of components that are directly connected
with each other is referred as an invocation path. Figure 6 shows a part of the
component specification diagram from the scenario, including context proper-
ties. Additionally, a CoCon is indicated. CoCons are build up out of two sets,
the target set and the scope set. All components, which belong to one of these
sets, are involved in the current CoCon. In order to determine the interception
points, all of the invocation paths between these components must be identi-
fied. Therefore, direct and transitive dependencies between all the components
in each set have to be calculated. As a result. all invocation paths have to fulfil

413External Requirements Validation for Component-Based Systems

the following predicates: They start with an element of the scope set, they end
with an element of the target set, and all elements between them are connected
directly via invocation dependencies.

ISalesMgr

ITrade

 System.Location : NewYork, Tokio, Frankfurt
 System.UserRole : Controller
 Personal Data : True, False

 System.Location : NewYork, Tokio, Frankfurt
 System.UserRole : Trader, Sales Agent, Controller
 Personal Data : True, False

<<comp spec>>
Trade

System

<<comp spec>>
SalesMgr

<<comp spec>>
Controlling

System

CoCon

Scope
Set

Target
Set

Fig. 6. Invocation path Calculation

Identifying the Interception Point An interception point has to be deter-
mined for each invocation path. This is a complicated task because the integrity
and the performance of the system have to be maintained. Currently, we follow
the heuristic to place the interception point in front of the serving component
(service provider). This has the advantage of guaranteeing that all communica-
tion calls can be intercepted. In this way, we maintain the integrity of the system
but haven’t optimised the intercepting mechanism.

4.4 System Structure

As explained above, CoCons must be translated into ECA rules that have to be
assigned to appropriate proxies. These tasks are reflected in the structure of the
Rule Engine (see figure 7), which consists primarily of two parts:

The Rule Compiler translates CCL constraints into formal ECA rule spec-
ifications for each proxy involved. Context information as well as context-
templates assist the compiler in translating the CCL constraint. Context-
templates enable the necessary information to be determined at runtime. In
order to install the ECA rules at proxies, they are compiled to executable
Java code called plug-ins and dynamically uploaded to corresponding prox-
ies. Proxies are enabled to update and execute these plug-ins.

The Rule Manager is the central management component of the engine. It
manages the ECA rules in a repository and is responsible for updating the
proxies in case of changes. The rule manager registers all proxies in the repos-
itory and transmits applicable ECA rules only to the components concerned.

The main problem of this approach arises from the determination of the context
property values of the components involved in the checked communication call.

414 Andreas Leicher and Felix Bübl

Current values can be extracted from the call protocol in question, from the
environment (e.g. the application server) or even from the client. The context
manager(see figure 3) serves as a central repository that provides the current
context property values of each component.

CoCons

component
model

compile ECA
Rules

generate

Action
Templates

Context
Templates

Action
part

Context
part

Plug-Ins

Rules DB

Type,
Plug-In

Proxy DB Location,
Type Proxy

Modelling
Tool

Plug-InsRule
Manager

registration

Fig. 7. System Structure Overview

5 Integration Approach

The integration of a CoCon monitoring mechanism into middleware systems can
be realized through different concepts. The main difficulty is the incorporation
of the extended proxy mechanism into existing wiring standards of middleware
technologies.

5.1 System-Level Integration

The underlying middleware technology is transparently modified via the exten-
sion mechanism proposed. Therefore, the middleware’s source code, especially of
the proxy mechanism, has to be modified. At a minimum, the interception call
has to be inserted into the code, but also the whole extension mechanism can be
integrated, as well. Figure 8 shows the intended basic concept. The RPC/RMI
functionality of the J2EE Application Server is thereby enlarged. Obviously, com-
ponents at the application level communicate directly with each other. At the
system level, however, communication is controlled by a proxy mechanism, which
realizes remote connection and services like transactionality and security. Proxies
are currently examined in various scientific works such as [2,18,17]. To customize
transparent integration, some middleware platforms offer callback functions to
modify standard behaviour. The JBoss Server ([15]), for example, supports a
callback interface to intercept method calls to Enterprise JavaBeans. Such ex-
tensions simplify setting up integration approaches. The BEA WebLogic Server
[1], for example, supports a callback interface in order to specify customized load

415External Requirements Validation for Component-Based Systems

balancing. In addition, Microsoft offers several integration techniques that eas-
ily and transparently allow adding intercepting functions to existing software.
For example, so-called Hooks can be used to monitor relevant events and to
call declared functions to handle these events ([9]). At the moment, a prototype
based on JBoss is being developed. It cannot fulfil all advantages due to limited
interception interfaces. However, we hope to achieve conclusions regarding the
performance and the effectiveness of system-level integration.

J2EE Applicatoin Server

Proxy

Client A Service
Provider B

Stub Skeleton

Object reference in A

View in A of service provider B Service Provicer Implementation B

Application Level Application LevelSystem Level

Plug-In

Fig. 8. Proxy Mechanism

5.2 Application-Level Integration

At the application level, there are several possibilities for obtaining the needed
monitoring functionality. Most techniques are based on a wrapping concept for
integrating additional functionality to existing concepts. Some wrapping con-
cepts are represented in illustration 9. The standard approach is shown as variant
1. It is based on a proxy component, which is put in front of the service provider
component. The advantage of this approach is that application level components
do not have to be modified. It is a transparent integration approach. In contrast
to the same principle on the system level, however the control is limited. For ex-
ample, the Self problem (disclosure of the component’s identity)[23] cannot be
fully prevented and even worse, not all contexts can be evaluated. The second
variant shows the inheritance of the application level component. This means
that the source code of the component is needed and has to be extended to con-
tain monitoring functionality. This approach has not been investigated further
at this time. The third variant shows an aggregation approach. It is similar to
the first approach, but merges the proxy and application component. Therefore,
changing the source code is normally needed here, as well. In contrast to the sec-
ond version, however, the component’s classes could be repacked in Java without
directly modifying the code. At present, we also use this concept in our research.

An alternative technology comparable to wrapping is not shown in the fig-
ure: Aspect-oriented programming[10]. Aspects cleanly encapsulate crosscutting
concerns. Consequently, the extended proxy mechanism could be declared as an
aspect and precompiled into the components involved.

416 Andreas Leicher and Felix Bübl

Controlling
System

(1) service request Proxy
Class

(2) check context

SalesMgr

(3) forward

NewSales
Mgr

NewSalesMgr

SalesMgr ContextMgr

SalesMgr

(1)

(1)

(2)

(2)

Variant 1

Variant 2

Variant 3

Fig. 9. Integration Variants

6 Conclusion

6.1 Applying CCL in Different Development Levels

This paper focuses on checking CCL CoCons at runtime. However, in this section
the application of CCL throughout the software development process is outlined.

During requirements analysis the business experts must be asked specific
questions in order to find out useful context properties and CoCons. Currently a
CCL-aware method for requirements analysis is being developed at the Technical
University (TU) of Berlin in cooperation with Eurocontrol, Paris.

The benefits of considering both requirements and architecture throughout
the design phase are discussed in [13]. The application of CLL during design
is currently being evaluated in a case study being carried out in cooperation
with the ISST Fraunhofer Institute, the TU Berlin and the insurance company
Schwäbisch Hall. In winter term 2001/02 a ‘CCL plugin’ for the open source
UML editor ‘ArgoUML’ has been implemented at the TU Berlin to automati-
cally protect CCL specifications during design. It is available for download at
ccl-plugin.berlios.de.

The people who want to enforce a new requirement often don’t know the
details of every part of the system, and neither do they have access to the
complete source code. By using CoCons, developers don’t have to understand
every detail (‘glass box view’) or modify autonomous parts of the system in
order to enforce a new requirement on them. Instead, context properties can
be assigned externally to an autonomous component, and the communication
with this component can be monitored externally for whether it complies with
the CoCon specification at runtime. A prototypical rule manager framework
as described in this paper currently is integrated into an application server at
application level in cooperation of the TU of Berlin with BEA Systems and the
Fraunhofer ISST. Thus, legacy components or components ‘off the shelf’ can be
forced to comply with new requirements.

6.2 Limitations of Context-Based Constraints

Regarding only the context properties of a component bears some risks. It is
crucial that theses values are always up-to-date. System properties, however,

417External Requirements Validation for Component-Based Systems

always have the current value, because they are queried from the middleware
platform at runtime. Only one ontology should be used within a single system.
For example, the context property ‘Personal Data’ should have exactly this name
in every part of the system, even if these parts are manufactured by different
companies. A common ontology can be ensured by either demanding it from
the manufacturers or by intellectually inspecting an ‘off the shelf’ or legacy
component when integrating it into the system.

6.3 Benefits of Context-Based Constraints

Similar to context properties, [16] suggest assigning metadata to components in
order to use it for different tasks throughout the software engineering lifecycle.
Likewise, [20] annotate components in order to perform dependency analysis
over these descriptions. Other concepts for considering metadata exist, but none
of them writes down constraints that reflect this metadata as introduced here.
Key requirements can now be expressed according to the system’s context. They
can be specified in an easily comprehensible, straightforward language.

Maintenance is a key issue in continuous software engineering ([12]). CoCons
facilitate consistency in system evolution. They assist in detecting when soft-
ware or context modifications compromise intended functionality. Requirements
tend to change quite often. The Rule Manager approach enables a system to be
adapted to changed to new requirements via connector refinement without mod-
ifying the components. Thus, legacy components or ‘off the shelf’ components
can be forced to comply with requirements that are not taken into consideration
by the components themselves. The adaptability of a system is improved by en-
forcing conformity with meta-information. This meta-information can be easily
adapted, whenever the context of a component changes. Furthermore, CoCon
specifications themselves can be modified, as well, if the requirements change.
Each deleted, modified or added CoCon can be automatically enforced, and re-
sulting conflicts can be identified automatically as described in [3]. It is changing
contexts that drive evolution. CoCons are context-based and are therefore easily
adapted if the contexts, the requirements or the configuration changes. The com-
pliance of a system with requirements can now verified automatically. According
to [11], automated support for software evolution is central to solving some very
important technical problems in current day software engineering.

References

1. BEA Systems, Inc. BEA WebLogic Server, Using WebLogic Server Clusters, March
2001.

2. Marko Boger, Toby Baier, Frank Wienberg, and Winfried Lamersdorf. Structuring
QoS-supporting services with smart proxies. In Extreme Programming and Flexible
Processes in Software Engineering - XP2000, Reading, 2000. Addison-Wesley.

3. Felix Bübl. The context-based constraint language CCL for component. Technical
report, Technical University Berlin, available at www.CoCons.org, 2002.

418 Andreas Leicher and Felix Bübl

4. Felix Bübl. Introducing context-based constraints. In Herbert Weber and Ralf-
Detlef Kutsche, editors, Fundamental Approaches to Software Engineering (FASE
’ 02), Grenoble, France. Springer, April 2002.

5. John Cheesman and John Daniels. UML Components. Addison-Wesley, 2000.
6. Steve Cook, Anneke Kleppe, Richard Mitchell, Jos Warmer, and Alan Wills. Defin-

ing the context of OCL expressions. In B.Rumpe and R.B.France, editors, 2nd In-
ternational Conference on the Unified Modeling Language, Colorado, USA, volume
1723 of LNCS. Springer, 1999.

7. Linda G. DeMichiel, L. Umit Yalcinalp, and Sanjeev Krishnan. Enterprise Jav-
aBeans Specification. Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto,
California 94303, U.S.A., April 2001. Proposed Final Draft.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns,
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

9. Yariv Kaplan. API spying techniques for windows 9x, NT and 2000.
http://www.internals.com/articles/apispy/apispy.htm, 2001.

10. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi Matsuoka,
editors, ECOOP ’97 — Object-Oriented Programming 11th European Conference,
Jyväskylä, Finland, volume 1241, pages 220–242. Springer, New York, 1997.

11. Tom Mens and Theo D’Hondt. Automating support for software evolution in UML.
Automated Software Engineering, 7(1):39–59, 2000.

12. Hausi Müller and Herber Weber, editors. Continuous Engineering of Industrial
Scale Software Systems, Dagstuhl Seminar #98092, Report No. 203, IBFI, Schloss
Dagstuhl, March 2-6 1998.

13. Bashar Nuseibeh. Weaving the software development process between requirements
and architecture. In Proceedings of ICSE-2001 International Workshop: From Soft-
ware Requirements to Architectures (STRAW-01) Toronto, Canada, 2001.

14. OMG. UML specification v1.4 (ad/01-02-14), 2001.
15. JBoss Organization. Jboss website. http://www.jboss.org, December 2001.
16. Alessandro Orso, Mary Jean Harrold, and David Rosenblum. Component meta-

data for software engineering tasks. In Wolfgang Emmerich and Stefan Tai, edi-
tors, Engineering Distributed Objects (EDO 2000), volume 1999 of LNCS, Berlin,
November 2000. Springer.

17. G. S. Reddy and R. K. Joshi. Filter objects for distributed object systems. Journal
of Object Oriented Programming, 13(9):12–17, January 2001.

18. E. F. Robert, S. Barret, D. D. Lee, and T. Linden. Inserting ilities by controlling
communications. Communications of the ACM, 45(1):116–122, January 2002.

19. Mary Shaw and David Garlan. Software Architecture. Prentice-Hall, 1996.
20. Judith A. Stafford and Alexander L. Wolf. Annotating components to support

component-based static analyses of software systems. In Grace Hopper Celebration
of Women in Computing, Hyannis, Massachusetts, September 2000.

21. Jos B. Warmer and Anneke G. Kleppe. Object Constraint Language – Precise
modeling with UML. Addison-Wesley, Reading, 1999.

22. Herbert Weber. Continuous engineering of information and communication infras-
tructures (extended abstract). In Jean-Pierre Finance, editor, Fundamental Ap-
proaches to Software Engineering FASE’99 Amsterdam Proceedings, volume 1577
of LNCS, pages 22–29, Berlin, March 22-28 1999. Springer.

23. Ian Welch and Robert J. Stroud. From Dalang to Kava - the evolution of a reflective
java extension. In Reflection, pages 2–21, 1999.

24. Jennifer Widom and Umeshwar Dayal. A Guide To Active Databases. Morgan-
Kaufmann, 1993.

419External Requirements Validation for Component-Based Systems

	Introduction
	 Continuous Software Engineering
	 The Notion of `External Requirements Validation'

	 Context-Based Constraints (CoCons)
	 The New Constraint Technique `CoCons' in Brief
	 Introducing Context Properties
	 A New Notion of Invariants
	 A Textual Language for CoCon Specification
	 Comparing OCL to Context-Based Constraints

	Applying Context-based Constraints at Runtime
	Main Objectives
	Scenario
	Runtime Realisation

	Rule Manager Approach
	ECA Rules
	Actions
	Calculating the Points of Interception
	System Structure

	Integration Approach
	System-Level Integration
	Application-Level Integration

	 Conclusion
	 Applying CCL in Different Development Levels
	 Limitations of Context-Based Constraints
	 Benefits of Context-Based Constraints

