
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 467-483, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Evolving Partitions in Conceptual Schemas in the UML

Cristina Gómez and Antoni Olivé

Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica Catalunya,

Jordi Girona 1-3 E08034 Barcelona (Catalonia)
{cristina,olive}@lsi.upc.es

Abstract. The evolution of information systems from their conceptual
schemas is an important research area in information systems
engineering. In this paper, we aim at contributing to the area by
focusing on a particular conceptual modeling construct, the partitions.
We analyze the evolution of partitions in conceptual schemas of
information systems. We deal with conceptual models with multiple
specialization and classification, and consider whether entity types are
base or derived. We provide a list of possible schema changes and, for
each of them, we give its preconditions, and its effects on the schema,
taking into account the state of the information base. In this paper, we
deal with conceptual schemas in the UML. However, the results
reported here should be applicable to most conceptual modeling
languages and also to object-oriented database schemas.

1 Introduction

The evolution of information systems is one of the most important problems in the
field of information systems engineering. For several reasons, many organizations
need to change very often their activities, and this usually requires an evolution of the
information system that supports those activities. The evolution must be done always
efficiently, and often quickly and without interrupting critical services [2]. Automated
support for information system evolution becomes central to satisfy these evolution
requirements [12].

Ideally, the evolution of information systems should follow the strategy called
�forward information system maintenance� in [8]: changes should be applied directly
to the conceptual schema, and from here they should propagate automatically down to
the database logical schema(s) and application programs. If needed, the database
extension(s) should be also converted automatically. This strategy implies that the
conceptual schema is the only description to be defined, and the basis for the
specification of the evolution. All the others are internal to the system.

 Many past and current research efforts aim directly or indirectly at that ideal. Most
of them have been done in the database field and, more precisely, in the subfield that
deals with the problem of schema evolution. The problem has two aspects: the
semantics of changes (i.e. their effects on the schema) and the change propagation

468 Cristina Gómez and Antoni Olivé

(i.e. the propagation of the schema changes to the underlying existing instances) [18].
Both aspects have been studied extensively for the relational and the object-oriented
data models, in the temporal and the non-temporal variants [19]. The results have
been often incorporated into commercial or prototype database systems (e.g., Orion
[3], O2 [26], Cocoon [24], F2 [1] and Tigukat [7]).

More recently, in the software engineering field, the problem of software evolution
is being dealt with a refactoring approach [16]. A refactoring is a parameterized
behavior-preserving program transformation that automatically updates an
application�s design and source code. Design refactoring deals with design constructs
rather than code, and therefore it can be applied also to models in the UML [22]. The
approaches in the databases and software engineering fields are similar, because
database schema evolution transformations have their parallels in refactoring
transformations [23].

In this paper, we aim at contributing to the general field of information systems
evolution from conceptual schemas. We extend the work reported in [10] by dealing
with a particular conceptual modeling construct, partitions, and analyze, the possible
changes and their effects at the schema and instance levels.

Partitions are well-known constructs, used in conceptual modeling, object-oriented
software design and object-oriented database schemas. A partition of an entity type
like, for example, Person into entity types Man and Woman states that Man and
Woman are subtypes of Person, that Man and Woman are disjoint, and that the
population of Person is exactly the union of that of Man and Woman. The interest of
partitions lies in their simplicity, expressiveness and generality (since specializations
and generalizations can be transformed into partitions). Often it is easier to develop,
analyze and reason about conceptual schemas, when only partitions are considered
[21, 4, 25, 13].

However, partitions have not been studied in the literature on schema evolution.
Since the early works of Orion [3], there has been a lot of work related to the
evolution of specializations (or generalizations or subclass/superclass relationships)
but, as far as we know, there are not published results on the evolution of partitions.
The work most similar to ours is [5], which takes into account disjointness and
completeness constraints between entity types, but partitions are not considered
schema objects, and the context is restricted to object-oriented databases.

The main contribution of our paper is the analysis of the evolution of partitions in
conceptual schemas of information systems. We deal with conceptual models with
multiple specialization and classification, and consider whether entity types are base
or derived (with different kinds of derivability). We show that derivability has an
important influence on the evolution of partitions. We provide a list of possible
schema changes (related to partitions and derivability) and, for each of them, we give
its preconditions, and its effects on the schema, taking into account the state of the
information base.

In this paper, we deal with conceptual schemas expressed in the UML. We hope
that, we ease the application of our results to industrial projects, and the integration
with other ongoing projects. However, the results reported here should be applicable
to most conceptual modeling languages and also to object-oriented database schemas.
In particular, the results can be adapted to the logic-based language used in [10].

Evolving Partitions in Conceptual Schemas in the UML 469

The rest of the paper is structured as follows. Section 2 reviews the concept of
taxonomic constraints, partitions, derived types and constraint satisfaction. In Section
3, we propose an UML Profile for Partitions in Conceptual Modeling. This profile is
an extension to the UML, using the standard mechanisms provided by the language.
We explain that the profile is needed to represent partitions, taxonomic constraints
and different kinds of derived types in the UML. In Sections 4 and 5, we present the
operations that we propose to evolve partitions and derivability, respectively. For each
operation, we give a description and an intuitive explanation of its pre and
postconditions. Due to space limitations, we can include the formal specification in
the OCL of only one operation. The full details of the profile and operations can be
found in [6]. Finally, Section 6 gives the conclusions and points out future work.

2 Partitions
In this section, we review briefly the basic concepts and the terminology that will be
used throughout the paper, taken mainly from [14].

2.1 Taxonomic Constraints and Partitions

A taxonomy consists of a set of entity types and their specialization relationships.
There are also taxonomies of relationship types, but these will not be studied in this
paper. We call taxonomic constraints the set of specialization, disjointness and
covering constraints defined in a schema.

A specialization constraint between entity types E' (the subtype) and E (the
supertype) means that if an entity e is instance of E', then it must be instance of E.

A disjointness constraint between entity types E1 and E2 means that the populations
of E1 and E2 are disjoint.

Finally, a covering constraint between an entity type E and a set of entity types
{E1,...,En}, means that if e is instance of E, it must be also instance of at least one Ei.

A generalization corresponds to a set of specialization constraints between Ei and
E, for i = 1,..,n, with a common supertype E. A generalization is disjoint if their
subtypes are mutually disjoint; otherwise, it is overlapping. A generalization is
complete if the supertype E is covered by the subtypes E1,...,En; otherwise it is
incomplete.

A partition is a conceptual modeling construct that allows us to define in a succinct
way a set of taxonomic constraints. A partition is a generalization that is both disjoint
and complete. A partition of E into E1,...,En is semantically equivalent to:

• A set of n specializations constraints between Ei and E, for i = 1,..,n
• A covering constraint of E by {E1,...,En}
• A set of n(n-1)/2 disjointness constraints between Ei and Ej, for i,j = 1,..,n, i > j.

2.2 Derived Types

The entity types involved in a partition can be base or derived. We will see that this
aspect has a strong influence on the satisfaction of taxonomic constraints related to a
partition. An entity type E is derived when the population of E can be obtained from

470 Cristina Gómez and Antoni Olivé

the facts in the information base, using a derivation rule. Derived entity types can be
classified depending on the form of their derivation rule. We give a special treatment
to the following classes:
- Derived by specialization. Entity type E is derived by specialization of entity types
E1, ..., En ,with n ≥ 1, if the population of E is the subset of the intersection of the
populations of E1,..., En, that satisfy some condition. For example, Young may be
defined as a specialization of Person, with the condition "age less than 18 years".
- Derived by exclusion. This is a particular case of specialization. Entity type E is
derived by exclusion if its population corresponds to the population of an entity type
E�, excluding those entities that belong also to some entity types E1, ..., En, with n ≥ 1.
For instance, Unmarried may be defined as specialization of Person, excluding
Married.
- Derived by union. Entity type E is derived by union if its population is the union of
the populations of several entity types E1, ..., En, with n ≥ 1. For instance, Person may
be defined as the union of Man and Woman.

2.3 Satisfaction of Partition Taxonomic Constraints

In general, satisfaction of integrity constraints can be ensured by the schema or by
enforcement. A constraint IC is satisfied by the schema when the schema entails IC.
That is, the derivation rules and the (other) constraints defined in the schema imply IC
or, in other words, IC is a logical consequence of the schema. In this case no
particular action must be taken at runtime to ensure the satisfaction of IC.

A constraint IC is satisfied by enforcement when it is not satisfied by the schema,
but it is entailed by the information base. That is, IC is a condition true in the
information base. In this case, the system has to enforce IC by means of checking and
corrective actions (database checks, assertions, triggers, or transaction pre/post-
conditions), to be executed whenever the information base is updated.

An analysis of the taxonomic constraints satisfied by a schema is presented in [14].
We restructure and summarize the conclusions presented there as follows:

• - A specialization constraint between Ei and E is satisfied by a schema when:
- Ei is derived by specialization of E.
- Ei is derived and E is base.
- E is derived by union of a set of types that includes Ei.

• - A covering constraint between E and {E1,...,En} is satisfied by a schema when:
- E is derived by union of {E1,...,En}.
- There is an Ei ∈ {E1,...,En} derived by specialization of E and exclusion of

{E1,...,En} � {Ei}.
- There is a partition P with supertype E and subtypes {E1,...,En} and such that

all subtypes are derived by specialization of E.
• -A disjointness constraint between Ei and Ej is satisfied by a schema when:

- There is a partition P with supertype E and subtypes {E1,...,En}, with Ei, Ej ∈
{E1,...,En} and such that all subtypes are derived by specialization of E.

- Ei is base and Ej is derived.
- Ei is derived by specialization of some E and exclusion of a set of entity

types that includes Ej.

Evolving Partitions in Conceptual Schemas in the UML 471

Fig. 1. Fragment of UML metamodel

These relationships allow us to determine which taxonomic constraints are satisfied
by the schema and, complementarily, which ones need to be enforced. The distinction
is very important when efficiency is a concern, as it is the case in this paper.

For example, if Person is derived by union of Man and Woman, then the
specialization constraints between Man and Person, and between Woman and Person
are satisfied by the schema. Similarly, the covering constraint between Person and
{Man, Woman} is satisfied by the schema. Note that, in this case, the disjointness
constraint between Man and Woman must be enforced.

3 Uml Profile for Partitions
In this section, we justify the need to extend the UML in order to deal with partitions,
derived types and their associated concepts. We use the standard extension
mechanisms provided by the UML [20], and define a UML Profile for Partitions in
Conceptual Modeling. This profile could be integrated into a larger one for conceptual
modeling. We explain below the main elements of the profile. The complete details of
the stereotypes, constraints and additional operations (and their formalization in the
OCL), tag definitions and tagged values of the profile can be found in [6].

3.1 Constraints

In the UML metamodel a Generalization is a taxonomic relationship between two
GeneralizableElements: child and parent (Fig 1). In this paper we only deal with
GeneralizableElements that are entity types, which we represent as classes with the
standard stereotype <<type>> [15]. Sets of Generalizations sharing a given parent can
be distinguished using the Discriminator.

A Constraint is an assertion (defined in the body) on a set of ModelElements that
must be true in the information base (Fig 1). The UML has only a few predefined
constraints. Among them, there are complete and disjoint.

Therefore, in the UML, a partition is represented by a set of Generalizations
having the same parent and the same discriminator, and two predefined constraints
(complete and disjoint) that have, as constrainedElement, those generalizations.
However, it is convenient to have a single schema object representing a partition, to
which we can attach properties and several rules. On the other hand, we need to have
subtypes of Constraint corresponding to the taxonomic constraints, to which we can
attach also properties and rules. To this end, we define in our profile the five
stereotypes of Constraint shown in Fig 2.

472 Cristina Gómez and Antoni Olivé

Fig. 2. Stereotypes of Constraint in the profile

The most important stereotype is <<partition>>. A single instance of a constraint
with this stereotype will correspond to a partition in the conceptual schema.
Graphically, this constraint will appear as shown in the examples of Fig 5.

The constrainedElements of a <<partition>> constraint must be a set of
Generalizations. This is an example of a meta schema integrity constraint, also called
�Well-Formedness Rules� in the UML metamodel, or invariants in database schema
evolution [3]. The rules are expressed as constraints attached to stereotypes. In this
case, we attach the constraint to Partition, and define it formally in the OCL:

context Partition inv: --The constrained elements are Generalizations
 self.constrainedElement -> forAll(g | g.oclIsTypeOf(Generalization))

The other main constraints attached to Partition are (we only give their description):
- A partition has one or more generalizations.

- All generalizations belonging to the same partition must have the same
parent and discriminator.

- All generalizations with the same parent and discriminator belong to the
same partition.

- The generalizableElements of generalizations belonging to a partition are
Types.

- A partition cannot have two generalizations with the same child.
- Two partitions with the same parent cannot have a generalization with the

same child.

The body of a Partition will be empty and, therefore, it is not a real constraint. We
will translate automatically a partition into the set of taxonomic constraints
semantically equivalent to it. These constraints will be instances of the stereotypes
<<disjointness>>, <<covering>> and <<specialization>>, shown in Fig 2. Instances
of these stereotypes are constraints that must be satisfied in the information base, like
any other instance of Constraint. The body of these constraints will be derived
automatically, as shown in Section 3.3.

The constraint stereotype <<taxonomic>> is abstract, and serves only to define two
common derived tags: partition and satisfaction. Unsurprisingly, partition gives the
partition corresponding to the constraint; its value is defined when the instances are
generated. Satisfaction can be BySchema or Enforced; its value is defined by a
derivation rule explained in Section 3.3.

We define the stereotypes Disjointness, Covering and Specialization as derived,
because their instances can be obtained automatically from the Partitions and their
Generalizations. In the UML metamodel, ModelElements have a tag called derived. A

Evolving Partitions in Conceptual Schemas in the UML 473

true value indicates that it can be derived from other ModelElements. The details of
derivation are given in an Abstraction dependency, with the standard stereotype
<<derive>>, and name of the stereotype class Derivation [15]. A derivation
dependency specifies that the client can be computed from the supplier. A derivation
rule is an instance of Derivation. The expression of the rule is defined in the attribute
Mapping (Fig 1). The expression can be defined formally in the OCL.

The expression corresponding to Covering would be:
Partition.allInstances -> forAll(p:Partition | Covering.allInstances→one(cov:Covering |
cov.partition = p and cov.constrainedElement = Sequence {p}))

The rule defines that for each Partition p there must be one (and only one) instance
cov of Covering such that its partition tag has the value p, and its
constrainedElements is the sequence consisting in only p. The derivation rules for
Disjointness and Specialization are similar.

3.2 Derived Types

We need to distinguish between the three classes of derived entity types defined in
Section 2.2, and therefore we define in our profile the three stereotypes of Abstraction
shown in Fig 3: <<DerivedUnion>>, <<DerivedSpec>> and <<DerivedExcl>>. The
first two are subtype of the standard Derivation (Fig 1), and the third one subtype of
DerivedSpec. In the three cases, the client is the derived entity type.

Fig. 3. Stereotypes of Abstraction dependency in the profile

The profile includes several meta schema integrity constraints concerning derived
types and partitions. The main constraints attached to DerivedUnion are:

- A derived by union dependency must have at least one supplier.
- In a derived by union dependency, the client cannot be one of its direct or

indirect suppliers.
- The suppliers of a derived by union dependency cannot be direct or indirect

suppliers of themselves.
- The main constraints attached to DerivedSpec are:
- A derived by specialization dependency must have at least one supplier.
- In a derived by specialization dependency, the client cannot be one of its

direct or indirect suppliers.
- The suppliers of a specialization dependency cannot be direct or indirect

suppliers of themselves.
- The main constraint attached to DerivedExcl is:
- A derived by exclusion dependency must have at least two suppliers.

474 Cristina Gómez and Antoni Olivé

3.3 Satisfaction of Constraints

In Section 2.3, we have seen that some constraints are satisfied by the schema. The
relationships between the derivability and schema satisfaction, are formalized by three
OCL operations on Type, that are used in several parts of the profile and in the
operations. The names, parameters and (short) description of the operations are:

Type::SpecSatisfiedBySchema (subtype:Type):Boolean
- True if the specialization constraint between subtype and self is satisfied by

the schema.
Type::CovSatisfiedBySchema (subs:Set(Type)):Boolean

- True if the covering constraint between self and subs is satisfied by the
schema.

Type::DisjSatisfiedBySchema (type:Type):Boolean
- True if the disjointness constraint between self and type is satisfied by the

schema.

We have seen (Fig 2), that the instances of Disjointness, Covering and
Specialization have a derived tag called Satisfaction, with values BySchema and
Enforced. We define a derivation rule for Satisfaction in each of the three stereotypes.
The rules can be expressed easily using the above operations. As an example, the rule
for Satisfaction in Covering is:
 context Covering:

let supertype:Type = -- Gives the supertype of the Covering constraint
let subtypes:Set(Type) = -- Gives the set of subtypes of the Covering constraint
in self.Satisfaction = if supertype.CovSatisfiedBySchema(subtypes) then Satisfaction::BySchema
 else Satisfaction::Enforced endif

Note that, for a given constraint, the value of the Satisfaction attribute may change
automatically if there is an evolution in the derivability of an involved entity type, or
in the composition of the partition. This is one of the advantages of derived attributes
of schema objects: The operations need not to be concerned with the effect of changes
on them. The effects are defined declaratively in a single place of the profile.

We take a similar approach for the definition of the body. Fig 2 shows that the
instances of Disjointness, Covering and Specialization are Constraints and, therefore,
have the attribute body. The value of this attribute is an OCL expression
corresponding to the constraint that must be satisfied by the information base. We
define a derivation rule for body in each of the three stereotypes. The rules can be
defined easily using the above operations.

The generated expression is tailored to each particular constraint, so that its
evaluation can be performed efficiently. We distinguish between constraints satisfied
by the schema and those to be enforced. The former have an empty body, because
they need not to be enforced at runtime. The body for the latter is the specific
constraint that must be enforced. For example the covering constraint between Person
and {Woman, Man} not satisfied by the schema, would have for the body the value:

"Woman.allInstances -> union(Man.allInstances) -> includesAll(Person.allInstances)"

which means that the population of Person must be included in the union of
populations of Woman and Man.

Evolving Partitions in Conceptual Schemas in the UML 475

4 Evolving Partitions
In this section, we present the operations that we need to evolve partitions. We adopt
the classical framework with the reflective architecture [9, 11, 17, 10] shown in Fig 4.
In our case, the meta conceptual schema is the UML metamodel and the Profile
presented in the previous section. The meta external events are the operations
presented in this section and in the following one. The effects of these operations are
a changed meta information base (conceptual schema or UML model) and, if
required, a changed information base. The framework is very general and it allows an
easy adaptation to an implementation environment in which both processors are
integrated or tightly coupled, or which both information bases are integrated.

Fig. 4. Framework for the evolution

4.1 Changes to Partitions

The list of evolution operations of partitions is as follows:

1. Creating a partition: allows the designer to define a new partition in the UML
schema with one supertype, a set of subtypes and a discriminator.

2. Adding a subtype to a partition: allows the designer to add an empty entity type
as a subtype of an existing partition.

3. Removing a subtype from a partition: allows the designer to remove an empty
entity type as a subtype of an existing partition.

4. Replacing subtypes: allows the designer to replace a set of subtypes of a given
partition by another one.

5. Resizing a partition: allows the designer to add (to remove) a non empty subtype
to (from) a partition where the supertype is derived by union of its subtypes.

6. Removing a partition: allows the designer to remove an existing partition.

In the next subsections we describe and justify each of the above operations, and
give an intuitive explanation of their pre and postconditions. Preconditions are
conditions that must be satisfied when an invocation of the operation occurs.
Postconditions define the conditions that are satisfied when the operation finishes.
Additionally, and implicitly, the execution of the operations:

- must maintain the meta schema integrity constraints defined in the
stereotypes, and

- may induce effects on the schema and/or the information base defined by the
derivation rules attached to the stereotypes.

Due to space limitations, we include the formal specification of only one operation.

476 Cristina Gómez and Antoni Olivé

4.2 Creating Partitions

The operation AddPartition allows the designer to define a new partition of existing
entity types in a conceptual schema. The parameters are the supertype, a set of one or
more subtypes and a discriminator.

Fig. 5. Two examples of partitions

There are many situations in which it is necessary to add new partitions. For example,
assume that our conceptual schema has already a partition of Person into Man and
Woman, where Person is base, and Man and Woman are derived by specialization of
Person. Assume that now we need to define a new partition of Person into the set of
base entity types {Single, Married, Divorced}. The information base contains already
some instances of Person, but it does not know yet their marital status. Initially, then,
the population of Single, Married and Divorced will be empty, which implies that the
partition is not possible. We decide then to include a fourth, temporary entity type in
the partition, that we call PersonWithUnknownStatus, and that we define as derived
by specialization of Person with the exclusion of Single, Married and Divorced
(Fig. 5). The idea is to have initially all persons automatically instance of
PersonWithUnknownStatus, and ask the users to enter progressively the marital status.
The preconditions must ensure that the taxonomic constraints equivalent to the
partition will be satisfied in the information base after the operation is executed.
Otherwise, the information base would enter in an inconsistent state. The main
preconditions are:

- SpecAreSatisfied: The instances of each subtype must be a subset of the
instances of the supertype.

- DisjAreSatisfied: The instances of the subtypes must be mutually disjoint.
- CovIsSatisfied: The instances of the supertype must be covered by the union

of the instances of the subtypes.

In fact, it is not necessary to test all the taxonomic constraints, but only those that
are not satisfied by the schema.

In the example, we will only need to check that Single, Married and Divorced are
subsets of Person, and that they are mutually disjoint. These checks are performed by
querying the information base. In our framework (Fig. 4) this means that the meta
information processor issues a query to the information processor, which is the only
one that can access the information base. In the example, the checks will be very easy
because the population of Single, Married and Divorced is initially empty.

The postconditions guarantee that a new partition will be created, a generalization
will be created for each subtype, and the constrained elements of the partition will be
the set of generalizations just created. The OCL definition of the operation is:

Evolving Partitions in Conceptual Schemas in the UML 477

context Partition::AddPartition (discriminator:Name, super:Type, subs:Set(Type))
 pre: subs -> notEmpty() -- There must be at least one subtype
 pre SpecAreSatisfied:
 subs -> forAll(sub:Type | not super.SpecSatisfiedBySchema(sub) implies
 super.allInstances -> includesAll (sub.allInstances))
 pre DisjAreSatisfied: -- Pairs of types in subs must be mutually disjoint. We avoid duplicate checks.
 let subsSeq:Sequence(Type) = subs -> asSequence()
 let numberSubtypes:Integer = subs -> size()
 in Sequence {1..numberSubtypes} ->
 forAll (i, j:Integer | i > j and not subsSeq->at(i).DisjSatisfiedBySchema(subsSeq->at(j))
 implies
 subsSeq -> at(i).allInstances -> excludesAll (subsSeq -> at(j).allInstances))

 pre CovIsSatisfied:
 not super.CovSatisfiedBySchema(subs) implies
 subs -> iterate(sub:Type; acc:Set(Type) = Set{} | acc->union(sub.allInstances))->
 includesAll(super.allInstances)
 post:
p. oclIsNew() and p.oclIsTypeOf(Partition) �A new partition is created
and -- Create a generalization for each subtype
subs -> forAll(sub:Type | ge.oclIsNew() and ge.oclIsTypeOf(Generalization)
and ge.discriminator = discriminator and ge.child = sub
and ge.parent = super and p.constrainedElement -> includes(ge))

In addition to the effects defined by the postconditions, the execution of the
operation induces other effects on the schema, as defined by the Profile derivation
rules. In this operation, the induced effects are:

- For each Generalization created by the operation, an instance of
Specialization is created as well.

- For each pair of subtypes of the new partition, an instance of Disjointness is
created as well.

- A new instance of Covering is created.
- In the three cases, the new instances are associated to the ModelElements that

they constrain and to the partition that originates them. The attribute body
has as value an OCL expression corresponding to the constraint that must be
satisfied by the information base, and the tag satisfaction has as value
BySchema or Enforced, depending on whether the constraint is already
satisfied by the schema, or needs to be enforced.

4.3 Adding a Subtype to a Partition

The operation AddSubtype allows the designer to add an empty entity type as a
subtype of an existing partition. The parameters are the partition and the subtype.

There are many situations in which it is necessary to add a subtype to an existing
partition. In the example of the partition of Person by maritalStatus, shown in Fig 5,
we may be interested now in other marital status such as, for instance, Widower. We
define then a new entity type and add it to the partition.

The main precondition of the operation is that the new subtype has no instances
and, therefore, the new taxonomic constraints equivalent to the changed partition will
be necessarily satisfied in the information base after the operation has been executed.
The postconditions guarantee that a new generalization will be created, and that it will
be added to the constrained elements of the partition.

478 Cristina Gómez and Antoni Olivé

4.4 Removing a Subtype from a Partition

The operation RemoveSubtype allows the designer to remove an empty entity type as
a subtype of an existing partition. The parameters are the partition and the subtype.

This operation is the inverse of the previous one. In the example of the partition of
Person by maritalStatus, shown in Fig 5, we may already know the marital status of
each person and, therefore, PersonWithUnknownStatus is automatically empty. We
can then remove it from the partition.

The main precondition of the operation is that the subtype to be removed has no
instances and, therefore, the new taxonomic constraints equivalent to the changed
partition will be necessarily satisfied in the information base after the operation has
been executed. The postconditions guarantee that the corresponding generalization
will be deleted, and that it will be removed from the constrained elements of the
partition.

4.5 Replacing Subtypes

The operation ReplaceSubtypes allows the designer to replace a set of subtypes of a
given partition by another one. The parameters are the partition, the old set, and the
new set. There are several situations in which the designer may need to evolve a
partition using this operation. We explain one of them in our example. Assume that
we have in the schema the partition of Person by maritalStatus, but now we need to
group the subtypes Single, Divorced and Widower into a new entity type Unmarried,
and want also to change the original partition to one with only two subtypes: Married
and Unmarried (see Fig 6).

Fig. 6. Example of the Replacing operation: In the partition of Person by maritalStatus, the set
{Single, Divorced, Widower} is replaced by {UnMarried}

This operation must satisfy two main preconditions in order to ensure that, after the
operation has been executed, the taxonomic constraints equivalent to the partition
remain satisfied:

- The instances of the set of new subtypes must be mutually disjoint.
- The union of the populations of the set of old subtypes must be the same as

the union of the new subtypes. This condition preserves the covering
constraint, as well as the disjointness with the unaffected subtypes.

When the old set and the new set are the super and the subtypes of an existing
partition preconditions need not to be checked, because they are already guaranteed.

Evolving Partitions in Conceptual Schemas in the UML 479

The postconditions guarantee that the old generalizations are removed, the new
ones created, and the constrained elements of the partition have the new value.

4.6 Resizing a Partition

The operations of Adding, Removing and Replacing subtypes allow us to restructure a
partition provided that the population of the supertype remains unchanged. However,
there are cases in which we need to restructure a partition with the effect of increasing
or decreasing the population of the supertype.

Assume, for example, a library that loans books and journals. The library has also
audio CD, but they cannot be loaned. The corresponding conceptual schema (Fig 7)
includes the base entity types Book, Journal, AudioCD and ItemOnLoan. Entity type
Book is partitioned into LoanableBook and NonLoanableBook, both of which are
derived. Entity type LoanableItem is defined as the union of LoanableBook and
Journal. There is also a partition of LoanableItem into ItemOnLoan and
AvailableItem. This latter is defined as derived by specialization of LoanableItem
with the exclusion of ItemOnLoan.

Fig. 7. Example of Resizing partition

Now, the policy of the library changes, and it allows loans of AudioCD. Therefore,
we have to evolve the existing partition, but this cannot be done with the Adding
operation, because the population of AudioCD is not empty. The operation Resize
allows us to do that in a controlled manner.

The operation Resize can be applied only to partitions whose supertype is derived
by union of its subtypes. The operation allows the designer to add or to remove a
subtype, and to change simultaneously the derivation rule of the supertype. The
overall effect is that the population of the supertype has been expanded or contracted.
The operation has two parameters: the partition and the non-empty subtype to be
added to or removed from it.

The are two non-trivial preconditions for this operation. The first is that if the
partition is being expanded, the new subtype must be disjoint with the population of
the existing supertype. The specialization and covering constraints are already
guaranteed by the derivation rule (union) of the supertype. In the example, this means
checking that AudioCD is disjoint with the existing population of LoanableItem.

The execution of the operation changes (adds or reduces) the population of the
supertype. In general, such change could affect other constraints, which can be or not
taxonomic. We, therefore, only allow resizing a partition if the resulting change
cannot affect any other constraint. We check this in the second precondition. In the
example, this could happen, for instance, if LoanableItem is a subtype in another

480 Cristina Gómez and Antoni Olivé

partition (the disjointness or the specialization constraints could be violated) or if it is
a supertype of other partitions (the covering constraint could be violated). Fig 7 shows
that LoanableItem is the supertype of another partition into ItemOnLoan and
AvailableItem, but no constraint is affected in this case because AvailableItem is
derived by exclusion. The existing audios CD become initially, and automatically,
available items.

The postconditions ensure that a generalization has been created (deleted), the
constrained elements of the partitions have the new value, and that the derivation rule
of the supertype has been changed.

4.7 Removing a Partition

The operation Remove allows the designer to remove an existing partition. The
parameter is the partition. The operation has no preconditions. The postconditions
ensure that the generalizations corresponding to a partition are deleted, as well as the
partition itself.

5 Evolving the Derivability of Entity Types

We have seen, in the previous sections, that the derivability of the supertype and the
subtypes involved in a partition has a strong impact on the satisfaction (by the
schema, enforced) of the equivalent taxonomic constraints. This means that a
complete account of the evolution of partitions needs to consider the operations for
the evolution of derivability. In this respect, we define two operations: one that
changes the derivability to base, and one that changes it to derived.

5.1 Changing Derivability to Base

The operation ChangeDerivabilityToBase allows the designer to change the
derivability of a derived entity type to base. The only parameter of the operation is the
entity type.

The only precondition of this operation is that the entity type must not be base. The
main problem with this operation lies in its postconditions; more precisely, in what
happens to the population of the changed entity type. Several strategies are possible in
this respect. One strategy that seems appropriate in the context of partitions is to
assume that the population will not change.

The implementation of this postcondition in our framework (Fig 4) requires that
the meta information processor issues an event to the information processor, with the
intended effect of materializing the population existing at the moment the operation is
executed.

5.2 Changing Derivability to Derived

The operation ChangeDerivabilityToDerived allows the designer to define a base
entity type as derived, or to change the derivation rule of a derived entity type. We are

Evolving Partitions in Conceptual Schemas in the UML 481

in the context of partitions, and we need to ensure that initially the population remains
unchanged. To check this with our preconditions, we require two entity types: the one
that has to be changed, E, and another one, E�, that we call the model, with the
derivation rule that we want to assign to E. The parameters of the operation are the
affected entity type (E) and the model (E�).

The preconditions must ensure that the population of both entity types are initially
the same. The postconditions guarantee that the affected entity type will have the
desired derivation rule (that is, the one that the model has).

6 Conclusions
The evolution of information systems from their conceptual schemas is one of the
important research areas in information systems engineering. In this paper, we aim at
contributing to the area by focusing on a particular conceptual modeling construct, the
partitions. We have determined the possible evolutions of partitions in a conceptual
schema, and we have defined, for each of them, the preconditions that must be
satisfied, and the resulting postconditions. We take into account the state of, and the
impact on, both the conceptual schema and the information base.

We have dealt with conceptual schemas in the UML. The choice of the language
has been based on its industrial diffusion and the current (and future) availability of
CASE tools. However, our results could be adapted easily to other conceptual
modeling languages.

We have needed to extend the UML to deal with partitions and their evolution. We
have done so using the standard extension mechanisms provided by the language
itself. We have adhered strictly to the standard, and we have defined a UML Profile
for Partitions in Conceptual Modeling. The profile allows us to define partitions in
conceptual schemas, the taxonomic constraints equivalent to them, and the way how
they can be satisfied. We hope that the approach we have taken to define particular
classes of constraints, and the automatic derivation of schema objects and their
attributes may be useful in future developments of UML Profiles.

We have dealt with partitions in conceptual models that include derived types (with
different kinds of derivability), multiple specialization and multiple classification. We
have taken into account all these elements in our evolution operations. However, the
operations could be adapted (and, hopefully, be useful) to more restrictive contexts,
such as those of object-oriented database schemas.

The work reported here can be continued in several directions. We mention three
of them here. The first could be to define operations to evolve taxonomies in general.
In this paper, we have focused on partitions only, due to their special characteristics
that have not been studied before. The inclusion of other well known operations
related to taxonomies (add/remove an entity type, add/remove a generalization, etc.)
should not be difficult. Compound operations could be defined also. The second
continuation could be to extend the profile with other known conceptual modeling
constructs, with the aim of developing a complete UML Profile for Conceptual
Modeling. The corresponding evolution operations could be defined as well, in the
line of the ones described here. The third continuation could be to take into account
the temporal aspects of conceptual schemas [10], and to develop a UML Profile for
Temporal Conceptual Modeling.

482 Cristina Gómez and Antoni Olivé

Acknoledgments

We would like to thank Juan Ramon López, Dolors Costal, Maria Ribera Sancho and
Ernest Teniente for his useful comments. This work has been partly supported by
CICYT program project TIC99-1048-C02-1.

References

1. Al-Jadir, L.; Léonard, M. "Multiobjects to Ease Schema Evolution in an
OODBMS", Proc. ER'98, Singapore, LNCS 1507, Springer, pp. 316-333.

2. Andrade, L.F.; Fiadeiro, J.L. �Coordination Technologies for Managing
Information System Evolution�, CAiSE 2001, LNCS 2068, pp. 374-387.

3. Banerjee, J.; Chou, H-T.; Garza, J.F.; Kim, W.; Woelk, D.; Ballou, N. �Data
Model Issues for Object-Oriented Applications�. ACM TOIS Vol. 5, No. 1,
January, pp. 3-26.

4. de Champeaux, D.; Lea, D.; Faure, P. �Object-Oriented System Development�,
Addison-Wesley Pub. Co.

5. Franconi, E.; Grandi, F.; Mandreoli, F. �Schema Evolution and Versioning: A
Logical and Computational Characterisation�, In Balsters, H.; de Brock, B.;
Conrad, S. (eds.) �Database Schema Evolution and Meta-Modeling�, LNCS
2065, pp. 85-99.

6. Gómez, C., Olivé A; "Evolving Partitions in Conceptual Schemas in the UML
(Extended Version)",Technical Report UPC, LSI-02-15-R.

7. Goralwalla, I.; Szafron, D.; Özsu, T.; Peters, R. �A Temporal Approach to
Managing Schema Evolution in Object Database Systems�. Data&Knowledge
Eng. 28(1), October, pp. 73-105.

8. Hainaut, J-L.; Englebert, V.; Henrard, J.; Hick, J-M.; Roland, D. "Database
Evolution: the DB-MAIN Approach". 13th. Intl. Conf. on the Entity-
Relationship Approach - ER'94, LNCS 881, Springer-Verlag, pp. 112-131.

9. ISO/TC97/SC5/WG3. "Concepts and Terminology for the Conceptual Schema
and Information Base", J.J. van Griethuysen (ed.), March.

10. López, J-R.; Olivé, A. �A Framework for the Evolution of Temporal Conceptual
Schemas of Information Systems�, CAiSE 2000, LNCS 1789, pp. 369-386.

11. Manthey, R. "Beyond Data Dictionaries: Towards a Reflective Architecture of
Intelligent Database Systems", DOOD'93, Springer-Verlag, pp. 328-339.

12. Mens, T.; D�Hondt, T. �Automating Support for Software Evolution in UML�,
Automated Software Engineering, 7, pp. 39-59.

13. Olivé, A.; Costal, D.; Sancho, M-R. "Entity Evolution in ISA Hierarchies",
ER'99, LNCS 1728, pp. 62-80.

14. Olivé, A. "Taxonomies and Derivation Rules in Conceptual Modelling", CAiSE
2001, LNCS 2068, pp. 417-432.

15. OMG. "Unified Modeling Language Specification", Version 1.4, September
2001.

16. Opdyke, W.F. �Refactoring object-oriented frameworks�, PhD thesis, University
of Illinois.

Evolving Partitions in Conceptual Schemas in the UML 483

17. Peters, R.J.; Özsu, T. "Reflection in a Uniform Behavioral Object Model". Proc.
ER'93, Arlington, LNCS 823, Springer-Verlag, pp. 34-45.

18. Peters, R.J., Özsu, M.T. �An Axiomatic Model of Dynamic Schema Evolution in
Objectbase Systems�, ACM TODS, 22(1), pp. 75-114.

19. Roddick, J.F. �A Survey of Schema Versioning Issues for Database Systems�,
Inf. Softw. Technol, 37(7), pp. 383-393.

20. Rumbaugh, J.; Jacobson, I.; Booch, G. "The Unified Modeling Language
Reference Manual", Addison-Wesley, 550 p.

21. Smith, J.M.; Smith, D.C.P. "Database Abstractions: Aggregation and
Generalization". ACM TODS, 2,2, pp. 105-133.

22. Sunyé, G.; Pennaneac'h, F.; Ho, W-M.; Le Guennec, Al.; Jézéquel, J-M. "Using
UML Action Semantics for Executable Modeling and Beyond", CAiSE 2001,
LNCS 2068, pp. 433-447.

23. Tokuda, L.; Batory, D. "Evolving Object-Oriented Designs with Refactorings",
Automated Software Engineering, 8, pp. 89-120.339

24. Tresch, M.; Scholl, M.H. "Meta Object Management and its Application to
Database Evolution", 11th. Intl. Conf. on the Entity-Relationship Approach -
ER'92, LNCS 645, Springer-Verlag, pp. 299-321.

25. Wieringa, R.; de Jonge, W.; Spruit, P. �Using Dynamic Classes and Role Classes
to Model Object Migration�, TPOS, Vol 1(1), pp. 61-83.

26. Zicari, R. "A Framework for Schema Updates in Object-Oriented Database
System", in Bancilhon,F.; Delobel,C.; Kanellakis, P. (ed.) "Building an Object-
Oriented Database System - The Story of O2", Morgan Kaufmann Pub., pp. 146-
182.

	Introduction
	Partitions
	Taxonomic Constraints and Partitions
	Derived Types
	Satisfaction of Partition Taxonomic Constraints

	Uml Profile for Partitions
	Constraints
	Derived Types
	Satisfaction of Constraints

	Evolving Partitions
	Changes to Partitions
	Creating Partitions
	Adding a Subtype to a Partition
	Removing a Subtype from a Partition
	Replacing Subtypes
	Resizing a Partition
	Removing a Partition

	Evolving the Derivability of Entity Types
	Changing Derivability to Base
	Changing Derivability to Derived

	Conclusions
	Acknoledgments
	References

