Design for Change: Evolving Workflow
Specifications in ULTRAflow

Alfred Fent, Herbert Reiter, and Burkhard Freitag*

University of Passau, Department of Computer Science
94030 Passau, Germany
Tel. (+49) 851 509 3131, Fax (+49) 851 509 3182
{fent,reiter,freitag} @fmi.uni-passau.de

Abstract. Updating the specification of workflows on the fly in a work-
flow management system is currently considered an important topic in
research as well as application. Yet, most approaches are either very
simplistic, allowing only newly started workflows to take advantage of
updated specifications, or they are complex, trying to transfer every ac-
tive workflow from the old to the new schema.

In the workflow management system ULTRAflow, updates to workflow
specifications are handled by using a multi-version concurrency control
protocol. This is facilitated by the specification language for workflows,
which is rule based and therefore provides a natural partitioning of spec-
ifications into smaller units. The proposed method allows active, running
workflows to partly use new specifications if this does not conflict with
already executed sub-workflows. Moreover, an architecture which is also
applicable in a distributed system is presented.

While the method to update the specifications is discussed in the context
of a workflow management system, it can also be applied in CORBA or
EJB applications, or the now ubiquitous electronic services.

1 Introduction

Updating the specification of workflows in a workflow management system
(WEMS) is currently considered an important topic in research as well as ap-
plication. Of special interest are procedures to perform these updates on the fly,
i.e., without disturbing the execution of active workflows in the system. However,
many approaches, especially those applied in commercial systems, are very sim-
plistic, allowing only newly started workflows to take advantage of the updated
specification, while active workflows still use the original one; other approaches
that try to transfer every running workflow instance from the old to the new
schema often are complex and complicated [26].

The way our workflow management system ULTRAflow [10,11,12] handles
evolving workflow specifications lies between these two extremes. A multi-version
concurrency control protocol is employed to control access to the changed parts

* The work described in this paper has been funded by the German Research Agency
(DFG) under contract number Fr 1021/3-3.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 516-534, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Design for Change: Evolving Workflow Specifications in ULTRAflow 517

T
____________ o= Application
Workflow 1y e Database

x” .

Gl Gl G]]]
v Workflow 2
(o) (o] [2] [o] oo]

—
Rule and Action —
Repository — -
1 2 3 Administrative
I:I I:I I:I Transactions

Fig. 1. Changes of specifications are also considered transactions

of a workflow specification. This is facilitated by the specification language of
ULTRAflow, which is rule based [13,27,28] and therefore provides a natural par-
titioning of specifications into smaller units. The proposed method allows active,
running workflows to partly use new specifications if this does not conflict with
sub-workflows or basic operations already executed. This is not possible in known
versioning schemes where a “snapshot” is taken at the beginning of the workflow.
It is also applicable in a distributed environment.

The general situation is depicted in Fig. 1: several workflows are running
concurrently, each consisting of steps a1, as, ... which can be basic operations or
sub-workflows that are again defined in the ULTRAflow language. While a work-
flow is executing — which typically takes some non-negligible time, i.e. several
hours, days, or weeks — it retrieves the specifications of its steps from a reposi-
tory for rules and actions. In the meantime, some of the specifications of steps
are updated in the repository by administrative transactions to account for new
technologies, changes in business rules, new processes, etc. Access to the rule-
and action repository is handled through a multi-version concurrency control
protocol. This protocol protects the retrieval of steps by workflows from updates
of the steps by administrative transactions and controls which of the workflows
can use an updated specification, and which has to stick to the old one. This
way, it eliminates the “dynamic change bug” [9,20], i.e., errors introduced by
changing specifications of active workflows.

Within the transactions formed by the workflows each step can execute arbi-
trary actions (represented by dotted lines in the figure) on, e.g., an application
database. Correctness of these actions with several workflows running concur-
rently is ensured by techniques well-known from databases [1] but not in the
scope of this paper.

A solution for the dynamic change bug must meet the following requirements:

1. No errors or failures of active workflows are caused due to the change
2. If a new specification for a workflow is provided, other workflows that use it
as a sub-workflow do not have to be modified to continue functioning

518 Alfred Fent et al.

3. Updating a specification does not cause the WIMS to stop execution of
running workflows, nor to delay starting new ones

4. The solution must be applicable within a system that isolates workflows with
some kind of transactions and implements recovery by compensation [17]

Requirements 1 and 2 are derived from [9], while number 3 is more than rea-
sonable in a real-life WfMS. Requirement 4 is mainly motivated by our specific
setting, as ULTRAflow uses compensation for recovery, i.e., it performs semanti-
cally reverse actions to undo the effects of aborted transactions. In systems that
do not rely on compensation, our solution can be implemented even more easily.

Although in this paper the method to update and control access to specifi-
cations is presented in the context of a WIMS, it can also be applied in other
situations where parts of a (possibly long running) program have to be exchanged
on the fly. This happens in application servers for, e.g., CORBA [20] or Enter-
prise Java Bean (EJB) applications [25], when new versions of the program code
are deployed and integrated into the system. This is frequently referred to as
“hot deployment”. We performed some tests with Apache/Tomecat [2] which can
be seen as a minimal application server. Today, this combination detects new
versions of code, however it then delays new requests until all instances of the
old code which are still active are finished, loads the new code, and continues
handling requests with the new version then. The delay could be eliminated with
our method. The full-fledged EJB application server Orion [21] behaved similarly
in our tests; it even exchanged definitions used several times within still active
transactions, thus stumbling directly into the dynamic change bug [9].

Also, the now ubiquitous electronic services (e-services) [22] can profit from
our method. In e-services, it is usually assumed that at the beginning of an
application the necessary services are searched and decided upon, and that they
are used throughout the application. Yet, this may impose rather long setup
times at the start of the application or at the first invocation of a service if
the search is delayed until this moment. So, systems will begin to “cache” this
information and reuse the same e-service for several applications, providing some
kind of “e-service application server” which will run into the same issues as
described above.

The rest of the paper is organized as follows: we start with overviews of
related work and the ULTRAflow system in Sect. 2 and 3, before we detail on
updating specifications in Sect. 4 and ensuring correctness in Sect. 5. Practical
aspects of our architecture are presented in Sect. 6. The paper is concluded with
a summary in Sect. 7.

2 Related Work

Modification of workflow specifications has been quite frequently addressed in
recent research, so we will only mention a selection of the related work here.
Many other articles concerning adaptive workflows can be found e.g. in [3,16].
The so-called “dynamic change bug” was introduced in [9], where also cor-
rectness criteria for workflow evolution were proposed; however, the paper does

Design for Change: Evolving Workflow Specifications in ULTRAflow 519

not discuss what to do with instances that do not meet these criteria. This is
done in [6], where primitive operations on workflow specifications are defined.
The paper also discusses “progressive policies” dependent on the state of active
instances which can either continue with the initial specification, be migrated
to the new one under certain conditions, migrated to an ad hoc workflow, or be
aborted. Our solution is in fact a mixture of the first two policies: parts of the
workflow are migrated, and parts continue with the old version.

“Ad hoc changes”, i.e., changes performed as part of the workflow itself,
are the topic within ADEPTg,, [23]. While this is important, our work deals
with an evolution of the specifications driven from outside the running work-
flow instances. This is the typical case for planned workflows that are specified
and installed by a workflow administrator. Approaches to transform running
instances of an old to instances of a new specification are discussed in [3,19],
and an infrastructure based on language reflection that supports such transfor-
mations is presented in [7]. Our approach, in contrast, is not based on explicit
transformation, but uses new specifications automatically if they do not conflict
with those already used by the workflow.

The determination of a so-called “change region”, i.e., the part of a workflow
that is affected by an update, is the topic of [26]. Workflow instances whose
executions are currently not within this region immediately use an updated
specification, while the updates are postponed for other instances until they
leave the region. However, the algorithm of [26] to compute the change region
has a complexity in O(n*(n!)?), where n is the number of nodes of the workflow.
Moreover, if compensation is used the change region may include the rest of
the workflow, such that the anticipated advantage of minimizing the number of
versions is not achieved.

Work on handling exceptions and using compensation [15] is related to our
approach in so far as we also use compensation in the workflows within UL-
TRAflow. Yet, changes to workflow specifications or basic operations are not
addressed in [15].

3 The ULTRAflow System

ULTRAflow [10,11,12] is a WIMS which is based on a rule-based specification
language. It is implemented as a prototype that is integrated into a web-server
as a lightweight component, thus leveraging the access to the system from almost
arbitrary client systems, having HTML as the least common denominator. The
overall architecture is shown in Fig. 2. Actors, i.e., usually humans interacting
with the WIMS, can access the system from within a company intranet or from
the internet, where in the latter case either some kind of virtual private network
(VPN) or the authorization and authentication features of the web-server are
used to restrict admission to the system. Part of the ULTRAflow system is the
rule engine [13,27,28], which executes the workflow specifications. These speci-
fications also include information about task assignment to different actors or
access to other systems (like organisation information or production data, but

520 Alfred Fent et al.

Actor Internet | Actor +——» Actor Intranet
VPN | Q
t » Actor +———» Actor A =
: N - Organisation o
c e =
& % B Qualification %’
cle I~ &
Il 2 ()
Authentification & —— 3
Authorization o v Rule-Engine
Access to
Web-Server ULTRAflow = shared files
S s
. 3 3
Middleware Sy Sy
<)
st it
v v
Workflow- Task-specific 5 Task-specific ‘
‘ Database description data (tables ‘ FlleSyStem files

Fig. 2. The overall architecture of the ULTRAflow system

also databases etc.). General control data, as well as task-specific data (infor-
mation about work progress, status, etc.) are accessed through a middleware
layer. Moreover, files stored in a filesystem can be integrated into the workflow
execution.

Although actors usually are human workers, other systems calling a service
provided by ULTRAflow are also supported, such that the WfMS can be inte-
grated into, e.g., an e-service infrastructure [24]. However, in this case methods
for authentication and authorization specifically developed for e-services may be
more appropriate [22].

The rule engine works on workflow specifications that are expressed in the
action language of ULTRAflow, which itself is an instance of the general UL-
TRA framework [27,28]. Basic operations, like calls to other applications, posts
on user- or role-specific blackboards, etc., can be composed into more complex
specifications, which then can be reused in other rules. The rule language is
expressive enough to describe most patterns that arise in workflow specifica-
tion [10]. Features like handling of sub-workflows are inherent to the language,
and formal methods known for rule languages can be applied. For instance, the
dependency graph [18] reflects the workflow/sub-workflow relation.

During the execution of a workflow in the ULTRAflow system, the rules defin-
ing the workflow are “expanded” on demand in resolution-like steps [13,18]. This
is in contrast to many other WfMSs where the complete workflow specification
is instantiated (e.g., in the form of a graph or Petri net) when a new instance of
a workflow is started.

Ezxample 1. As an example for rule resolution, look at the following part of a
simple workflow specified in the rule language of ULTRAflow:

send(P, D, B) « prepare_shipment(P) : [ship(P,D) | send_bill(B)].
prepare_shipment(X) < collect_items(X) : package(X).

The program describes sending a parcel P to delivery address D and billing
address B. In ULTRAflow, a colon (“”) denotes sequential composition, while
concurrent execution is denoted by a vertical bar (“|”); where necessary, brack-

Design for Change: Evolving Workflow Specifications in ULTRAflow 521
ets “[” and “|” indicate precedence. As usual in logic programming, vari-
ables are denoted by capital letters. To send the parcel, first the sub-workflow
prepare_shipment is executed, then the parcel is shipped to the delivery ad-
dress, while concurrently the bill is sent to the billing address. The specification
of sub-workflow prepare_shipment for a parcel X consists of the activities to
collectitems for X that are to be sent, and to package them together.

If this workflow is executed, the system proceeds just as described above. For
every subgoal on the right hand side of a rule, the adequate definition is looked
up, which either yields another rule (like in prepare_shipment) or a class in
Java, the implementation language of ULTRAflow, in case of a basic operation.

When errors occur during the execution of a workflow, like logical failure in
rule evaluation [18], transactional conflicts, etc., compensation [17] is used to
rollback the execution state to the last existing choice point. The existence of a
compensation method is mandatory for basic operations and optional for rules
defining sub-workflows.

In the architecture of Fig. 2 there is only one block called ULTRAflow; how-
ever, this block can be implemented as a distributed system which spreads the
load of workflow execution over several nodes according to some schema based
on availability of resources, physical proximity, or other distribution aspects.
Whether a rule specifying a sub-workflow is executed at the same or a remote
system is transparent to the caller.

4 Updating Workflow Specifications

Before we analyze how a system might evolve, we first describe workflow speci-
fications in more detail.

4.1 Components of a Workflow Specification

As ULTRAflow uses a rule based specification language, every workflow and sub-
workflow specification is represented by a number of rules. An entire workflow
instance is started by issuing a (top-level) query, whereas the start of a sub-
workflow is caused by a sub-query within the specification of the superordinate
workflow. The call to a sub-workflow and also to a basic operation is just a
name and a number of arguments. However, the WfMS itself needs additional
information to be able to call the sub-workflow and to ensure correctness of the
execution in the application level sense. All this information can be divided into
the following parts:

Syntactic Information includes everything the W{MS needs to identify the
specific basic operation or workflow which is called. In the ULTRAflow system,
this is currently just the name, but additional information like name spaces or
module names may be present, too.

Interface Definition describes the arguments of the sub-workflow or basic op-
eration, their number and types, etc.

522 Alfred Fent et al.

Semantical Context covers everything that the WIMS needs to ensure cor-
rectness during the execution. In the ULTRAflow system, this includes a com-
patibility matrix, a description of transactional features (e.g., support for two
phase commit [4,5,14]), and recovery aspects for basic operations. For complex
workflows, the semantical context may also contain recovery data (name of a
compensating workflow), estimated execution times for sub-workflows and ac-
tions, etc. In other words, the semantical context of a step comprises all the
meta data available to the WIMS.

Program Code is called when the operation or workflow is executed, i.e., it is
the actual implementation. For basic operations the program code is given by the
name of a Java class (cf. Sect. 6). As compensation [17] is used for recovery (see
requirement 4 in Sect. 1), this class must provide forward (do) and backward
(undo) methods. For complex (sub-)workflows, the program code consists of
the defining rules for the predicate corresponding to the workflow; providing an
undo-workflow is optional, as the effects can always be removed by compensating
the basic operations. So, in short, “program code” includes everything that is
needed to perform the step or to remove its effects in case of (transactional)
failure.

Definition 1. A (specification of a) step is a tuple a = (N, I, S,C) consisting
of name N, interface I, semantical context S, and code C. A step can be a basic
operation or a sub-workflow that is defined by a rule in the ULTRAflow language.
The set of all steps known to the system is called P.

Ezxample 2. The specification of step prepare_shipment of Ex. 1 is the tuple

N = "prepare_shipment”

I = X plus adequate type information
S = representation of semantical context
C = {collect_items(X) : package(X)}

The set of all steps is as follows, with tuples abbreviated to their names:
P ={("send”,...), (" prepare_shipment”,...), (" ship”,...),
(send bill”, . ..), ("collectitems”, .. .), (" package”,...)}
4.2 Adding New Specifications

Adding new specifications to the system is relatively easy from the theoretical
point of view and poses only engineering issues. We can simply define

Definition 2. 4 step o’ = (N',I',5’,C") is new (in P) if its name is not con-
tained in P, i.e., Ya = (N,I,S,C) € P: N # N'. Adding a new step a’ to P is
done by insertion, i.e., P’ = PU{a’'} where P’ is the new set of steps.

This definition which is used in the ULTRAflow system only relies on the name
of the operation. Alternatively it would be possible to also take the interface

Design for Change: Evolving Workflow Specifications in ULTRAflow 523

definition into account like in object-oriented languages and define o’ as new if
Va = (N,I1,5,C) € P: (N # N' AT #1TI'). Yet, it does not make a difference in
the following presentation which is why we stick to the simple definition based
only on the names of predicates.

In the following, we identify the step a = (N, 1,5, C) with its name N.

4.3 Deleting an Existing Specification

It may also happen that the specification of a step is removed from the system.
However, we do not discuss this here for a simple reason: requirements 1 and 2
of Sect. 1 said that the specifications of other workflows in the system must
not be altered because of an update, and that no errors may occur due to it.
Now, if we removed a step that is used in another workflow, this other workflow
will no longer work, i.e., it will cause runtime errors. So our requirements would
be violated. If, on the other hand, the step to delete is not used in any other
workflow specification, it is only “dead code” and therefore can be removed,
anyway.

4.4 TUpdating an Existing Specification

As described in the previous sections, adding new and deleting existing steps
are more or less straightforward and do not pose a lot of problems. This is no
longer the case when we consider updating the specification of an existing step.
We then have to analyze three cases, as three parts of the step can be changed:
interface, code, and semantical context.

Changing the Interface As mentioned in Def. 2 of Sect. 4.2, the interface
is not used to identify the step itself, but only the predicate name. So it is
possible to provide a new version with a changed interface. Yet, as one of our
basic requirements is that the specifications of workflows using the updated
step have to remain unchanged (see Sect. 1) this precludes a change to the
interface; otherwise, runtime errors would occur. If a changed step really needs
other arguments, mappings from the old to the new interface have to be provided
within the implementation code, such that the visible interface stays unchanged.
Otherwise, a new step with the new interface has to be added to the system.

Changing the Implementation This is the most frequent case: the overall
syntactical and semantical appearance of the step stays the same, but its code
is updated to reflect some change in the environment, to provide an optimized
or corrected version of the implementation, etc. Recall from Sect. 4.1 that the
code includes do- and undo-methods.

Formally, changing the specification of step a = (N, I, S, C) to the new code C’
corresponds to replacing P with the new set P' = PU{(N,I,5,C")} \ {a}.
The notion of “code” here does not necessarily imply some kind of programming,
binary data, or compiled executable. In WfMS, for example, it is quite frequent
that applications like word processors or spreadsheets are started for the user. If
now a company changes its corporate design and therefore replaces the standard

524 Alfred Fent et al.

style sheets, letter heads, etc. of the word processor, this must also be seen as
a change to the implementation code of the corresponding operation “call word
processor”.

Changing Semantical Information Besides the code itself, there may be
additional semantical information that is provided to the system. In ULTRAflow,
this information mainly covers compatibility information to facilitate scheduling
operations of concurrent workflows. In other systems semantical information may
comprise arbitrary data necessary for the correct execution of workflows.

Like above, changing the specification of step a = (N, I,S,C) to the new se-
mantical information S’ corresponds to replacing P with the new set P’ =

PU{(N,I,5",C)}\ {a}.

5 Ensuring Correctness

The previous section analyzed the types of changes that can occur within a run-
ning WMS. From the various possibilities (adding, deleting, and changing any
of the four components a step consists of) several were ruled out because they
violate the requirements of Sect. 1. Adding and deleting steps were already de-
scribed, such that we are now left with the two most interesting (and challenging)
cases: changing program code and changing semantical information.

5.1 Updating Implementation Code

Updates to and usage of specifications have to be synchronized, especially if
(part of) the specification of an active workflow is to be updated. This obviously
resembles the classical and well-known case of concurrent access to data items in
a database system, except that we do not access data, but code and rules. In fact,
in ULTRAflow we reuse serializability theory [4,5,14] to ensure that changes to
specifications of steps do not have negative effects on active workflows. Therefore,
we will introduce — in addition to transactions that the system already may use
— a second layer of transactions that protect access to the specifications of steps.
In other words, we consider the implementation code as the data objects that
are either read or written.

To avoid having to reinvent all the definitions and theorems from database
concurrency control, we observe that the execution of a workflow only reads its
steps, while changes to the specification only write to it. Due to the rule based
specification language of ULTRAflow we consider a workflow specification as a
structured object with each rule (step) being accessible separately. This allows
us to treat the execution of a workflow as a sequence of accesses to its steps.

Definition 3. A workflow execution which executes the steps ai,as,...,a, is
a transaction T; which only reads these specifications, denoted by r;(a1) ri(az2)
coori(an).

An administrative transactions that updates the steps by, ba, . .., by, is a trans-
action T which only writes to the specifications, denoted by w;(b1) w;(ba)

Design for Change: Evolving Workflow Specifications in ULTRAflow 525

With these definitions, we can now easily distinguish the “productive” work-
flows which only read and execute the steps from the administrative transactions
that update them. Note that we talk about changes and updates to the steps
here, i.e., we see the set P as the database and the elements of P as data items
(recall Fig. 1: P corresponds to the rule and action repository). This is indepen-
dent from the read and write access that the basic operations actually perform
on an application database containing production data. In other words, a work-
flow is a sequence of reads from P but can also write data to the application
database. However, it must not write to P.

Example 3. Recall the setting of Ex. 1 and that we identify the step a =
(N, I,S,C) with its name N. The execution of an instance of the top-level work-
flow send corresponds to the following transaction 7; (the numbers denote times
and are used for reference later):

ri(send)
. ri(prepare_shipment)
r;i(collect sitems)
r;(package)
ri(ship)
ri(send_bill)

ST W N

Note that after each read of the specification of a step the workflow executes
it. For steps like prepare_shipment which are defined by a rule this results in
further read operations (reads of collect_items and package). Execution of basic
operations like ship can involve access to the application database, e.g., to record
the shipment.

In database concurrency control, an interleaved execution of transactions is
considered correct if it has the same effects as some serial, i.e., non-interleaved,
execution of these transactions (serializability, cf. [1,5,14]). We adopt this notion
here and define correctness of specification changes as follows:

Definition 4. An interleaved ezxecution of instances of a workflow specifica-
tion and updates of its steps is correct, if it is equivalent to some serial, non-
interleaved execution.

Now that we mapped the execution of workflows and changes to their steps
to classical database concurrency control, we can reuse the protocols developed
there.

The most frequently used concurrency control protocols are those based on
locking, with two phase locking as the most prominent representative [4,5,14].
However, locking protocols have the inherent property that they may block the
execution of transactions, and if this happens to one of the productive workflows,
it violates requirement 3 of Sect. 1. So locking protocols cannot be used in our
context.

Optimistic protocols [4,5,14] avoid blocking, but they also cannot be used
here: incorrect executions are only detected at a transaction’s commit time;

526 Alfred Fent et al.

erroneous transactions then are aborted and restarted. In a WfMS, this is clearly
unacceptable, as all the work done within the workflow, which can be worth
several weeks, would be lost.

The most suitable protocols to choose in the specific situation are in fact
the multi-version concurrency control protocols [4,5]. The different versions of
the data object in database theory correspond to the different implementation
versions in our WfMS setting. Moreover, we can exploit a simple property that
is valid in this specific setting where modification of specifications is concerned:
there are only two kinds of transactions, namely the productive workflows which
only read the steps, and the administrative transactions that only write them.
So we have only “queries” and “updaters” (in the terminology of [4]) in the
system. In this case, it is possible to use a mixture of two protocols: multi-version
timestamp ordering is used to synchronize queries, i.e., access to the steps, and
strict two phase locking to synchronize updaters, viz., changes of the steps. This
mixed protocol, which is described and analyzed in detail in [4, Chap. 5.5] and
[5, Chap. 6.6], especially has the property that a query is never forced to wait for
updaters and never causes updaters to wait. The scheduler can always process a
query’s read without delay, i.e., execution of a workflow instance is never blocked
by an update of the specification. To make this paper self contained, we repeat
the protocol here:

Definition 5 (Multi-version Mixed Concurrency Control with Commit
Lists [4]).
When a query begins executing, a list of all the committed update transactions
is associated with it, called the commit list. The query attaches the commit list
to every read that it sends to the scheduler, essentially treating the list like a
timestamp. When the scheduler receives r;(x) for a query transaction T;, it finds
the most recently committed version of x whose transaction identifier is in T;’s
copy of the commit list.

Updaters use strict two phase locking, so two transactions may not concur-
rently create new versions of the same data item and the order of a data item’s
versions (and hence the version list) is well defined.

Given this organization of versions, to process r; (x) for a query transaction 7,
the scheduler scans the version list of x until it finds a version written by a
transaction that appears in the commit list associated with T;.

So, while using concurrency control to protect access to the code guarantees
that requirement 1 of Sect. 1 is fulfilled, the selection of the specific concurrency
control protocol also satisfies requirement 3.

Moreover, the protocol is also implementable efficiently in distributed sys-
tems. This is important in our setting, as execution of a workflow can span
several systems, either by distribution of the workflow (several concurrent parts
run on different systems), or by migration from one system to another (execution
is transferred to another system). Using the distributed version of the protocol,
we can ensure that no matter on which system a part of a workflow is executed,
it always uses the correct version of its steps.

Design for Change: Evolving Workflow Specifications in ULTRAflow 527

However, the protocol of Def. 5 has a disadvantage: the starting time of a
query transaction fully determines all the versions that the program sees, as
the commit list is generated at this time. While this is acceptable for normal
database transactions, an application to updating workflow specifications would
yield the simple versioning schema that is also employed in many commercial
systems [20], as it corresponds to taking a snapshot at the beginning of each
workflow. However, we want active workflows also to use changes to their steps
that happen after their start, if they do not conflict with the work executed
so far.

Ezxample 4. Recall the setting of Ex. 3 and assume that ship is updated by a
transaction T between times 3 and 4. Then the history reads like this:

T T;
3: ri(collect_items)

3.1: w; (ship)
3.2: commit;
4: ri(package)

5: ri(ship)

This update can be caused by implementing a new shipment procedure that is
more efficient than the old one. Now we would like the active workflow T; to
take advantage of this new, improved ship definition. However, as the commit
list of T; was built at its starting time, it does not contain transaction 7}, and
consequently the read of step ship at time 5 will return the old version instead
of the updated one.

Therefore, we use the following extension of the protocol of Def. 5 in ULTRAflow:

Definition 6 (Multi-version Mixed Concurrency Control with Dyna-
mic Commit Lists). When a query begins executing, a list of all the committed
update transactions is associated with it, called the commit list. It attaches the
commit list to every read that it sends to the scheduler. When the scheduler
receives r;(x) for a query transaction T;, it finds the most recently committed
version of x whose transaction id is in T;’s commit list. Moreover, a mark is set
on data item x which records the read access of T;. We denote the set of all data
items which are marked at time t by transaction T; as mark(t,T;).

Updater transactions use strict two phase locking, so two transactions may
not concurrently create new versions of the same data item and the order of a
data item’s versions (and hence the version list) is well defined. We denote the
set of all data items that are written by a transaction T} as write(T;). Whenever
an updater commits, its transaction id is added to the commit lists of all query
transactions T; for which mark(c,T;) Nwrite(T;) = 0, where ¢ denotes commit
time of T;.

In other words, the modified protocol is like the original one, only whenever
an updater commits, its transaction id is added to the commit lists of all those
query transactions, which did not yet read any data item that the updater wrote.

528 Alfred Fent et al.

The procedures to purge old versions and to keep the commit list short
that are shown in [4] can also be applied to our modified protocol. Moreover,
as updater transactions do only write and not read data (i.e., implementation
code), the issues of the original protocol in a distributed environment cannot
arise here.

Proposition 1. The protocol of Def. 6 creates only multi-version serializable
histories.

Proof. A formal proof of the proposition can be found in [12]. Intuitively, Def. 6
extends the protocol of Def. 5 in one respect: the commit lists are not determined
and kept unmodified during the whole lifetime of a query transaction, but may
grow whenever an updating transaction commits. We have to distinguish two
cases:

First, for query transactions whose commit list is not modified the protocol is
correct, as it then coincides with the one of Def. 5 which is known to be correct.

Second, a query transactions T; whose commit list is modified did not read
any of the data that was written by the committed updater transaction T} up to
commit time of T;. This is the condition for the commit list to be changed. So the
interleaved execution of T; and T; is obviously equivalent to a serial execution
of T; before the start of T;. In the serial case, T; would be in the commit list
of T;. So adding it in the interleaved case is allowed, too.

Note that the argumentation relies heavily on the fact that query transactions
only read data, while updater transactions only write it. This precludes workflows
that modify their own specification as they are investigated, e.g., in ADEPTg,
[23].

If there are n queries and m committed updaters, O(nm) modifications of
commit lists are performed. However, O(n) accesses are necessary even in the
original protocol (Def. 5) to initially create the commit lists. As we can assume
that the workflows always outnumber the administrative transactions by far, m
is small in comparison to n, and the induced overhead is acceptable.

The marks set during read operations are not read locks and consequently
do not block writes from updating transactions. They only record access to
the definitions and can be used at commit time of an updater transaction to
determine the commit lists to be changed: recall that updaters use strict two
phase locking. When now the locks on updated data items (i.e., specifications)
are released, an exclusion list is built containing all ids of query transactions
that marked these data items. The id of the committed updater is added to
the commit lists of all query transactions not in the exclusion list. As updaters
usually consist of only a few writes, the exclusion list can be built efficiently.

As a side effect, the exclusion list can also be used to support workflows that
must stick to the old version of a step, e.g., for legal reasons or because usage
of this old version is demanded in a contract: it suffices to add the transaction
ids of such workflows to the exclusion lists and they will never use a new version
during their runtime.

Design for Change: Evolving Workflow Specifications in ULTRAflow 529

The protocol of Def. 6 ensures correctness, but allows some committed modi-
fications to be visible to query transactions even after their start. In our workflow
context this enables active workflows to take advantage of updates to steps they
did not yet use.

Ezample 5. Recall Ex. 4. At the time when T; commits 7; has not yet read the
new version of ship. So, using the new protocol Tj is added to 7;’s commit list
at time 3.2, and 7T; will use the new version of ship at time 5.

Let again T; be a productive workflow, and 7 be the administrative trans-
action which now additionally updates the step package. Let Ty be another
workflow.

T; T; Th

3: ri(collect_items)

3.1: rp(collect _items)
3.2: w; (ship)

3.3: w; (package)

4: ri(package)

4.1: commit;

4.2: rn(package)
4.3: rn(ship)

5: r;i(ship)

Although ship is again read by T; after the commit of 7}, this time it will
return the old version, because T; already used the old version of package (the
new version was not yet committed at this time), and consequently T; will not
be added to T;’s commit list at time 4.1. So, the erroneous situation where the
old version of package and the new version of ship are combined is avoided.

However, workflow T} can use the new definitions, as it did not access any
of the updated steps before T}’s commit, and so T; was added to T}’s commit
list at time 4.1. That is, although T} read the step ship after T}, it will correctly
see the old version, while T}, already gets the new one.

An additional problem arises through the use of compensation [17] to rollback
workflows in case of failures (cf. [15]). As backward operations heavily depend on
the forward operations they have to undo, it must be ensured that the correct
version is selected even if the steps have been updated between the time the
forward and backward operation are called. In ULTRAflow, this is achieved by
packaging forward and backward operations together. This is reflected in the
set P of all steps because it does not contain special elements for the undo
operations, i.e., there is no ship~! or send~!. Instead, the Java objects that
represent the steps in the implementation always have to provide methods for the
forward and backward actions (cf. Sect. 4.1). However, from the administrative
transaction’s point of view these can only be changed together. The call to a
compensating backward operation appears as read access to the specification for
the forward operation, and consequently the multi-version concurrency control
protocol ensures that the correct version of the implementation is accessed.

530 Alfred Fent et al.

Table 1. Compatibility matrices before (a) and after (b) updating semantical
information

b
+ b)

T o
+ 4|

5.2 Updating Semantical Information

In the previous section, we described that a multi-version concurrency control
protocol can be used to change specifications of steps. Yet there is a subtlety that
has to be observed when not only the implementation code but also additional
semantical information are changed. Although the latter usually is associated
with one specific step, its proposition may involve several steps. Compatibility
information as described below is one representative of this phenomenon, but it
occurs with other step-related information as well: changing its average duration
may have ramifications for other steps if an overall deadline is to be met, new
access rights can influence following steps, etc.

In ULTRAflow, every basic operation class contains not only the code for
the forward and backward implementation, but also a compatibility matrix as
semantical information to facilitate scheduling of concurrent workflows using a
nested transaction approach [1,13]. The effects of changes to this matrix can even
be shown using standard database conflict serialization theory [4,5,14]. Consider
the following example:

Ezxample 6. We assume two transactions 71, T executing basic operations a and
b with a compatibility matrix as shown in Tab. la. Note that the matrix is
arbitrarily chosen for the sake of the example. The history a; by by as commity
commity obviously is serializable as the only operations in conflict are by and b;.

Now suppose the definition of b has been changed by another transaction. We
write p(b) to denote this event and get the new history aq ba () by as commity
commity. With our concurrency control protocol of Def. 6 transaction T uses
the new version of b, while T5 uses the old one. Still, the overall execution is
correct.

But what if the change of the code of b affects its compatibility behavior, i.e.,
if it implies a new matrix like Tab. 1b? The history a; by u(b) by as commity
commits is no longer serializable, as after the update by and by imply the order
Ty < Ty, while by and ao imply Ty < Ts. However, all our correctness criteria
state that the history is correct.

Apparently, the change made in the compatibility matrix of b implicitly
changed also the matrix of a, and consequently the history should contain mod-
ifications of both, a and b, and look like a; by u(a,b) by as commit; commits.
In this case it is obvious that 77 has to execute the old version of b before the
change. Then the original compatibility matrix (Tab. 1a) is used, and the history
is serializable and thus correct.

Design for Change: Evolving Workflow Specifications in ULTRAflow 531

make new
addAction(..) @ instance
delAction(..) lookup @ . .
updateAction(..) Rule- and correct version Mult|-VerS|0n
addRule(.) ACtIon-Manager @ rule or action SChedUIer

delRule(..) class

updateRule(..) @ @
request rule instantiated Action
or action rule or action »| Reposi-
object tory
_/

— ‘ Rule Resolution ‘@

@ set action parameters Rule

@ > Reposi-

results from ac!ion] l action object tory

Scheduler

. check for conflics
(for actions) | in schedule

execute a% @ log basic operation

Fig. 3. Ensuring safe modification of operations by using an additional scheduler

The essence of this example is that changes of the semantical information
may have effects on more than one operation and that they have to be ac-
counted for adequately. In the case of ULTRAflow, it is enough to ensure that a
change to semantical information is performed on every affected operation. In
other systems that require other semantical information the effects of changing
semantical information have to be analyzed, too.

6 Implementation within ULTRAflow: An Architecture

The architecture of Fig. 3 incorporates the multi-version scheduling for admin-
istrative transactions. The main components are as follows:

Rule- and Action-Manager: The central component of our architecture is
the Rule- and Action-Manager (RAM). It manages the registered complex spec-
ifications and basic operations in a Rule- and an Action-Repository, resp., which
map an action name to the appropriate implementation code (a class file). Each
time a request for a rule or action is sent to the RAM, it gets the implementa-
tion of the rule or action from the repositories and then creates a new instance.
Since the implementation can be changed at any time the RAM accesses the
repositories not directly, but through the separate multi-version scheduler. The
repositories correspond to the set P of Def. 1.

Multi-version Scheduler: This component implements the protocol as de-
scribed in Sect. 5 and controls access to the Action and Rule Repositories. As
required by the multi-version protocol, older implementations are kept in the
repositories, too.

532 Alfred Fent et al.

Rule Resolution: Evaluation of rules is done in the rule resolution component
which proceeds as sketched in Sect. 3. The rule resolution requests rules and
actions from the RAM and gets back instantiated Java objects. This happens
repeatedly until a rule is completely resolved [13,18], while basic operations are
sent directly to the scheduler.

Scheduler: The scheduler is mainly responsible for a correct execution of ac-
tions at the application level, i.e., of the productive workflows. It implements
a concurrency control protocol on the basic operations [I] which is in general
independent from the one the multi-version scheduler applies. When an action
is sent to the scheduler it first checks whether the action conflicts with other ac-
tions in the schedule. If there is no conflict the action is logged in the scheduler
log and executed afterwards. Execution can affect external systems, databases,
etc. If the scheduler detects a conflict with other actions it can be necessary
to rollback several actions executed earlier. In this case the log will be used to
find the actions which have to be undone. To do so, the scheduler requests the
corresponding action from the Rule- and Action-Manager and compensates it
using its undo method.

Client: Clients are workflow instances that correspond to queries against the
workflow rule base and are sent to the Rule Resolution (see below).

Admin: In the diagram, “Admin” stands for administrative tools that update
workflow specifications and basic operations, i.e., steps. In the terminology of
Sect. 5 these are the updater transactions, while the clients are the query trans-
actions.

The chronological sequence of workflow execution is as follows: assume that
a client workflow is started. This corresponds to a query “« ¢” which is sent to
the Rule Resolution. This component first requests an action or rule object from
the RAM by giving the name (1), e.g., “ship”. The RAM resolves the name and
accesses the repository (2, 3) through the multi-version scheduler which returns
the correct version of the requested rule or action. It then creates a new instance
of the corresponding class (4) and returns this instance to the Rule Resolution
(5). The Rule Resolution initializes the object by setting the calling parameters
(6) that are bound during the resolution process. Complex sub-workflows are
iteratively resolved, i.e., steps (1) to (6) are repeated.

Basic operations are passed to the scheduler (7). Before executing the action
the scheduler checks for conflicts with other actions in the schedule (8) and
makes an entry in its log (9). Provided the scheduler did not detect any conflicts
the action is executed (10). This may cause for example access to a database,
the file system or popup a message on the screen. Finally, results are returned
to the Rule Resolution through the action object (11) which is given back after
the execution.

7 Conclusion

Updating workflow specifications is an important topic in research as well as in
practice. We showed how workflow specifications can evolve safely by defining

Design for Change: Evolving Workflow Specifications in ULTRAflow 533

additional administrative transactions which are scheduled using a multi-version
concurrency control protocol. This new protocol allows active workflows to use
new specifications that were updated even after its start. Furthermore, we showed
how this solution is implemented in our WIMS ULTRAflow. The proposed solu-
tion can also be applied to application servers and e-services.

Further work includes application of the schema to so-called “scientific work-
flows” that are only partly specified, as well as tuning of the rule resolution
component and its interaction with the rule and action manager. In particular,
a prefetching schema for steps is under investigation that can improve the reac-
tion time of the system when a step in a workflow is finished and the next one
is to be retrieved.

References

1. G. Alonso, D. Agrawal, A. E. Abbadi, M. Kamath, R. Giinthér, and C. Mohan.
Advanced transaction models in workflow contexts. In Proc. 12th Int. Conf. on
Data Engineering, pages 574-583, 1996. 517, 530, 532

2. Apache Software Foundation. The Apache HTTP daemon, 2001.
http://www.apache.org. 518

3. A. Bernstein, C. Dellarocas, and M. Klein. Towards adaptive workflow systems
(CSCW-98 workshop report). ACM SIGMOD Record, 28(3), 1999. 518

4. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery
in database systems. Addison-Wesley, 1987. 522, 524, 525, 526, 528, 530

5. P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan
Kaufmann, 1997. 522, 524, 525, 526, 530

6. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data and Knowl-
edge Engineering, 24(3):211-238, 1998. 519

7. D. Edmond and A. H. M. ter Hofstede. A reflective infrastructure for workflow
adaptability. Data and Knowledge Engineering, 34(3):271-304, 2000. 519

8. C. Ellis and K. Keddara. ML-DEWS: Modeling language to support dynamic evolu-
tion within workflow systems. Computer Supported Cooperative Work, 9(3/4):293~
333, 2000. 519

9. C. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow systems.
In Proc. Conf. on Organizational Computing Systems, pages 10-22, 1995. 517, 518

10. A. Fent and B. Freitag. ULTRAflow — a lightweight workflow management sys-
tem. In Proc. Int. Workshop on Functional and (Constraint) Logic Programming
(WFLP2001), Kiel, Germany, pages 375-378, 2001. 516, 519, 520

11. A. Fent and B. Freitag. ULTRAflow — Ein regelbasiertes Workflow Management
System. In Imnovations- Workshop im Rahmen der Stuttgarter E-Business Innova-
tionstage, 5.-8. November 2001, Stuttgart. Fraunhofer IAO, 2001. 516, 519

12. A. Fent, H. Reiter, and B. Freitag. Design for change: Evolving workflow specifi-
cations in ULTRAflow. Technical Report MIP-0104, University of Passau (FMI),
2001. http://daisy.fmi.uni-passau.de/papers/. 516, 519, 528

13. A. Fent, C.-A. Wichert, and B. Freitag. Logical update queries as open nested
transactions. In Transactions and Database Dynamics, volume 1773 of LNCS,
pages 45-66. Springer, 2000. 517, 519, 520, 530, 532

14. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, 1993. 522, 524, 525, 530

534

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Alfred Fent et al.

C. Hagen and G. Alonso. Exception handling in workflow management systems.
IEEE Transactions on Software Engineering, 26(10):943-958, 2000. 519, 529

M. Klein, C. Dellarocas, and A. Bernstein. Special issue on adaptive workflow
systems. Computer Supported Cooperative Work, 9(3/4), 2000. 518

H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery by com-
pensating transactions. In V. Kumar and M. Hsu, editors, Recovery mechanisms
in database systems, chapter 15, pages 444-465. Prentice Hall, 1998. 518, 521,
522, 529

J. W. Lloyd. Foundations of Logic Programming. Springer, 1987. 520, 521, 532
N. C. Narendra. Adaptive workflow management - an integrated approach and
system architecture. In Proc. 2000 ACM Symposium on Applied Computing, Villa
Olmo, Italy, volume 2, pages 858—865, 2000. 519

Object Management Group. The Common Object Request Broker Architecture,
v2.0, 1997. http://www.omg.org. 518

Orion Software. The Orion J2EE Server, 2001. http://www.orionserver.org. 518
T. Pilioura and A. Tsalgatidou. E-Services: Current technology and open issues.
In Proc. 2nd Int. Workshop on Technologies for E-Services (TES), Rome, volume
2193 of LNCS, pages 1-15. Springer, 2001. 518, 520

M. Reichert and P. Dadam. ADEPTq,, — supporting dynamic changes of work-
flows without losing control. Journal of Intelligent Information Systems, 10:93-129,
1998. 519, 528

G. Shegalov, M. Gillmann, and G. Weikum. XML-enabled workflow management
for e-services across heterogeneous platforms. VLDB-Journal, 10(1):91-103, 2001.
520

Sun Microsystems. FEnterprise Java Beans, 2001. http://www.javasoft.com/ejb.
518

W. van der Aalst. Exterminating the dynamic change bug. A concrete approach
to support workflow change. Information Systems Frontiers, 3(3):297-317, 2001.
516, 517, 519, 527

C.-A. Wichert. ULTRA — A logic transaction programming language. PhD thesis,
University of Passau, 2000. 517, 519, 520

C.-A. Wichert, A. Fent, and B. Freitag. A logical framework for the specification of
transactions (extended version). Technical Report MIP-0102, University of Passau
(FMI), 2001. http://daisy.fmi.uni-passau.de/papers/. 517, 519, 520

	Design for Change: Evolving Workflow Specifications in ULTRAflow
	Introduction
	Related Work
	The ULTRAflow System
	Updating Workflow Specifications
	Components of a Workflow Specification
	Adding New Specifications
	Deleting an Existing Specification
	Updating an Existing Specification

	Ensuring Correctness
	Updating Implementation Code
	Updating Semantical Information

	Implementation within ULTRAflow: An Architecture
	Conclusion

