
Auditing Interval-Based Inference�

Yingjiu Li, Lingyu Wang, X. Sean Wang, and Sushil Jajodia

Center for Secure Information Systems, George Mason University
Fairfax VA 22030-4444, USA

{yli2,lwang3,xywang,jajodia}@gmu.edu

Abstract. In this paper we study the feasibility of auditing interval-
based inference. Sensitive information about individuals is said to be
compromised if an accurate enough interval, called inference interval,
is obtained into which the value of the sensitive information must fall.
Compared with auditing exact inference that is traditionally studied,
auditing interval-based inference is more complicated. Existing auditing
methods such as audit expert do not apply to this case. Our result shows
that it is intractable to audit interval-based inference for bounded integer
values; while for bounded real values, the auditing problem is polynomial
yet involves complicated computation of mathematical programming. To
further examine the practicability of auditing interval-based inference, we
classify various auditing methods into three categories: exact auditing,
optimistic auditing, and pessimistic auditing. We analyze the trade-offs
that can be achieved by these methods among various auditing objec-
tives: inference security, database usability, and auditing complexity.

1 Introduction

Conflicts exist between individual rights to privacy and society’s needs to know
and process information [24]. In many applications, from census data through
statistical databases to data mining and data warehousing, only aggregated in-
formation is allowed to be released while sensitive (private) information about
individuals must be protected. However, inference problem exists because sensi-
tive information could be inferred from the results of aggregation queries.

Depending on what is exactly inferred from the queries about aggregated
information, various types of inference problem have been identified and studied.
See surveys [10,1,14,12]. Most existing works deal with either the inference of
exact values, referred to as exact inference (or exact disclosure), or statistical
estimators, referred to as statistical inference (or partial disclosure).

Interval-Based Inference We study another type of inference. Consider a
relation with attributes (model, sale) where attribute model is public and at-
tribute sale is sensitive. Assume that a user issues two sum queries and that
the correct answers are given as following: (1) The summed sales of model A

� This work was partially supported by the National Science Foundation under grant
CCR-0113515.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 553–568, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

554 Yingjiu Li et al.

and model C are 200; (2) The summed sales of model A and model B are 4200.
Clearly, from those two queries, the user cannot infer any exact value of sale.
However, due to the fact that attribute sale is positive, first the user is able to
determine from query (1) that both the sales of model A and the sales of model
C are between zero and 200, and then from query (2) that the sales of model
B are between 4000 and 4200. The length of interval [4000, 4200], which is the
maximum error of user’s estimation of the sales of model B, is less than 5%
of actual sales of that model. This certainly can be regarded as a disclosure of
sensitive information about model B.

The above example indicates that a database attacker is able to infer an
accurate enough interval when he or she may not infer an exact value of the
sensitive attribute. We call this type of inference interval-based inference and
the interval inference interval.

Interval-based inference poses a different threat to individual privacy in com-
parison with exact inference and statistical inference. On one hand, exact infer-
ence can be regarded as a special case of interval-based inference where the length
of inference interval is equal to zero. This means that exact inference certainly
leads to interval-based inference while interval-based inference may still occur
in the absence of exact inference. On the other hand, the statistical inference is
studied in the context that random perturbation, i.e., noise, is added to sensitive
individual data. If the variance of the noise that is added is no less than a prede-
termined threshold, then the perturbed database is considered “safe” in terms
of statistical inference. Because the perturbation is probabilistic, it is possible –
no matter how large the variance of the noise is – that some perturbed values
are close enough to the unperturbed ones, leading to interval-based inference.

Inference Control Techniques For controlling exact inference, many restric-
tion based techniques have been studied (in the statistical database literature)
which include restricting the size of a query set (i.e., the entities that satisfy a
single query) [17,13], controlling the overlap of query sets [15], suppressing sensi-
tive data cells in a released table of statistics (i.e., query results) [9], partitioning
data into mutually exclusive chunks and restricting each query set to some un-
divided data chunks [6,7], and (closer to our concerns in this paper) auditing
all queries in order to determine whether inference is possible [8,5,20,23]. For
controlling statistical inference, some perturbation based techniques have been
studied which include adding noise to source data [27,28], changing output re-
sults [2], altering database structure [25], or sampling data to answer queries[11].

Auditing We study the auditing approach in this paper. By auditing, all queries
made by each user are logged and checked for possible inference before the results
of new queries are released. For auditing exact inference of arbitrary queries with
real-valued data, one of the best results was given by Chin and Özsoyoglu [8]
in a system called audit expert. Audit expert uses a binary matrix to efficiently
describe the knowledge about the sensitive attributes (e.g., sale), where each
row of the matrix represents a query; each column, a database record; and each
element, whether the record is involved in the query. Audit expert transforms

Auditing Interval-Based Inference 555

the matrix by elementary row operations to a standard form and concludes that
exact inference exists iff at least one row contains all zeros except one column. It
has been shown that it takes audit expert no more than O(n2) time to process
a new query where n is the number of individuals or database records, and no
more than O(mn2) time to process a set of m queries. Recall that audit expert
deals with exact inference; one may ask natural questions about interval-based
inference: Is it possible to adapt audit expert to audit interval-based inference? If
not: Is it tractable to audit interval-based inference? Answering these questions
will shed new lights on auditing and inference control studies.

As pointed out in [20], most of works in this area, including audit expert,
assume that the confidential data are real-valued and essentially unbounded. In
real world applications, however, data may have maximum or minimum values
that are fixed a priori and attainable. In such a case, traditional auditing methods
such as audit expert are inadequate, especially for protecting databases against
interval-based inference. One reason is that such methods do not take the bound-
ary information into account, which has a significant impact on the inference.
To illustrate this, consider a single sum query with each response represented
by

∑n
i=1 aixi = b, where ai is either one or zero, and each real variable xi is

bounded: li ≤ xi ≤ ri, 1 ≤ i ≤ n, then the k-th variable xk must fall into the
following interval Ik:

Ik =
{

[max(lk, b−
∑n

i�=k airi),min(rk, b−
∑n

i�=k aili)] , if ak = 1
[lk, rk] , if ak = 0

For example, given x1 + x2 = 5 and 1 ≤ x1, x2 ≤ 3, we have 2 ≤ x1, x2 ≤ 3
and I1 = I2 = [2, 3]. If the length of the interval Ik is less than a predetermined
value (e.g., 5% of the actual value of xk), then variable xk can be considered as
compromised in terms of interval-based inference. This shows that even a single
sum query of multiple variables may be vulnerable to interval-based inference,
while audit expert will indicate “safe” in this case.

Another reason is the impact of data types. Recall that audit expert deals
with real-valued data. In fact, discrete-valued data (Boolean data or integer
data) make the auditing problem more difficult. For example, regarding exact
inference, Kleinberg et al. [20] recently proved that auditing Boolean attributes
is a NP-hard problem. Hence, as for the problem of auditing interval-based
inference, an interesting question is: What is the complexity for auditing interval-
based inference with different types of data?

Our study answers the above questions. In section 2, we define interval-
based inference and formulate the problem of auditing interval-based inference.
In section 3, we investigate the particular challenges presented by interval-based
inference, boundary information, and different data types. Our result shows that
it is intractable to audit the interval-based inference for bounded integer values;
whereas for bounded real values, the auditing problem is polynomial yet involves
complicated computation of mathematical programming. In section 4, we further
examine the practicability of auditing interval-based inference. First we classify
various auditing systems into three categories: exact auditing system, optimistic

556 Yingjiu Li et al.

auditing system, and pessimistic auditing system. Then we analyze the trade-offs
that can be achieved by these auditing systems among different auditing objec-
tives: inference security, database usability, and auditing complexity. Finally we
point out some promising future directions based on our discussions.

2 Problem Formulation

In this section, we formulate the auditing problem. Consider an attribute with n
individual values x∗1, . . . , x

∗
n stored in a database. Denote x∗ = (x∗1 . . . x

∗
n)T . A

sum query (or query for short) is defined to be a subset of the individual values
in vector x∗ and the query response the sum of the values in the specified subset.

From the point of view of database users, each individual value x∗i is secret
and thus a variable (to be inferred), denoted by xi. Let x = (x1 . . . xn)T . To
model that database users or attackers may have a priori knowledge about vari-
able bounds, we assume that li ≤ xi ≤ ri, where li, ri are the lower bound and
upper bound of xi, respectively (li and/or ri can be infinite). We use l ≤ x ≤ r
to denote the boundary information {li ≤ xi ≤ ri|1 ≤ i ≤ n}.

By above notation, each query with its response w.r.t. x∗ can be expressed by
a linear equation aT

i x = bi, where ai is an n-dimensional vector whose component
is either one or zero, and bi is a scalar that equals to aT

i x
∗. Similarly, a set of m

queries with responses w.r.t. x∗ can be expressed by a system of linear equations
Ax = b, where A is an m× n matrix whose element is either one or zero, and b
is an m-dimensional vector that equals to Ax∗.

Given a set of queries with responses w.r.t. x∗, Ax = b, and the boundary
information l ≤ x ≤ r, exact inference and interval-based inference can be
defined as follows.

Definition 2.1. (Exact Inference of xk) In all the solutions for x that satisfy
Ax = b and l ≤ x ≤ r, variable xk has the same value x∗k.

Definition 2.2. (Interval-Based Inference of xk) There exists an interval
Ik = [xmin

k , xmax
k] such that (i) the length of the interval Ik, |Ik| = xmax

k −xmin
k ,

satisfies |Ik| < εk; (ii) in all the solutions for x that satisfy both Ax = b and
l ≤ x ≤ r, variable xk has values in the interval Ik; (iii) xmin

k , xmax
k and x∗k

are three of these values (in the interval Ik), where εk is a predefined threshold
called tolerance level.

In the above definition, tolerance level εk (usually εk � rk − lk, k = 1, . . . , n)
is used to indicate whether variable xk is compromised in terms of interval-
based inference. For example, we may set εk = 5%× x∗k. Denote ε = (ε1 . . . εn)T .
Interval Ik = [xmin

k , xmax
k] is called the k-th inference interval (or inference

interval for short). The endpoints xmin
k and xmax

k of Ik can be derived as the
optimal objective values of the following mathematical programming problems
(MPs) Pmin[k] and Pmax[k], respectively:

Pmin[k]: minimize xk Pmax[k]: maximize xk

subject to Ax = b subject to Ax = b
l ≤ x ≤ r l ≤ x ≤ r

Auditing Interval-Based Inference 557

Due to the fact that the feasible set P = {x|Ax = b, l ≤ x ≤ r} of the above
MPs is a nonempty bounded polyhedron (note x∗ must be in P), the values xmin

k

and xmax
k must exist uniquely.

In the case of εk = 0, variable xk has the same value x∗k in all the solutions
that satisfy Ax = b and l ≤ x ≤ r. Therefore, interval-based inference is more
general than exact inference.

Problem of Auditing Interval-Based Inference Given a set of queries with
responses w.r.t. x∗, Ax = b, boundary information l ≤ x ≤ r, and tolerance level
ε, show there is no interval-based inference for any variable xk (that is, |Ik| ≥ εk).
Specifically, we study the following two problems:

1. Auditing integer variables, where x, l, r, b are restricted to be integer vectors.
In this case, the corresponding MPs Pmin[k] and Pmax[k] (1 ≤ k ≤ n) are
integer programmings (IPs).

2. Auditing real variables, where x, l, r, b are real vectors. In this case, the MPs
Pmin[k] and Pmax[k] (1 ≤ k ≤ n) are linear programmings (LPs).

3 Auditing Interval-Based Inference

We study the complexity of auditing interval-based inference. The complexity
results are given with respect to the number of queries (m) and the number of
database records (n). By default, we consider arbitrary queries (Ax = b) w.r.t. a
single sensitive attribute1 (x∗). For auditing integer variables, we also consider
one-dimensional range queries.

Proposition 3.1. Auditing integer variables is NP-hard.

Proof: Our proof is based on the result that auditing exact inference of Boolean
variables2 is NP-hard [20]. Auditing integer variables is NP-hard due to re-
striction to the problem of auditing exact inference of Boolean variables by
allowing only instances in which l = (0, . . . , 0)T , r = (1, . . . , 1)T , and εk = 0
(k = 1, . . . , n). ✷

Proposition 3.1 indicates that it is intractable for auditing integer variables
of arbitrary queries. This also implies that solving each IP Pmin[k] or Pmax[k] is
NP-hard (Note that the NP-hardness of Pmin[k] and Pmax[k] cannot be derived
directly from the fact that general IP is NP-hard since Pmin[k] and Pmax[k]
1 The setting may involve multiple nonsensitive attributes since they are known to
database users. It can also be extended to the queries that even involve multiple
sensitive attributes if the auditing system treats them independently; that is, each
time a single sensitive attribute is audited while the others are treated as “nonsen-
sitive.” We do not consider inferring information using other database features such
as schema constraints and functional dependencies. The reader is referred to [4,3]
for the study in this aspect.

2 Auditing exact inference of Boolean variables can be described as follows: Given n 0-
1 variables {x1, . . . , xn} and a set of sum queries Ax = b, show there is no variable xk

(1 ≤ k ≤ n) such that in all 0-1 solutions of Ax = b, variable xk has the same value.

558 Yingjiu Li et al.

are special IP problems) in that (i) all Pmin[k] and Pmax[k] (k = 1, . . . , n) are
equivalent problems; (ii) if anyone of them can be solved in polynomial time,
then all can be solved in polynomial time; therefore, all inference intervals Ik
(k = 1, . . . , n) can be computed in polynomial time, which is a contradiction to
proposition 3.1.

Although proposition 3.1 indicates that it is theoretically difficult (i.e., NP-
hard) to audit integer variables, it does not necessarily mean that the problem is
practically unsolvable. People have developed various methods such as branch-
and-bound, cutting planes, and heuristics (see, e.g., [19]) to solve IP problems
in practice. Such methods can be used in auditing. On the other hand, propo-
sition 3.1 holds in the case of arbitrary queries, the following result shows that
it is polynomial in the case of one-dimensional range queries. A set of one-
dimensional range queries with responses w.r.t. x∗ can be defined as Ax = b,
where the matrix A holds the consecutive ones property (i.e., the ones in each
row must be consecutive) and b = Ax∗.

Proposition 3.2. For one-dimensional range queries, auditing integer variables
is polynomial.

Proof: We first prove that every vertex x̂ of polyhedron P = {x|Ax = b, l ≤
x ≤ r} is an integer vector. By the definition of vertex, there are n linearly
independent constraints3 that are active4 at x̂ (certainly all equality constraints
Ax = b must be active). Let A′x = b′ denote the active constraints. We know
that vertex x̂ satisfies the constraints x̂ = (A′)−1b′ and l ≤ x̂ ≤ r and that
n×n matrix A′ has the consecutive ones property. Since any nonsingular matrix
with the consecutive ones property has determinants +1 or −1 [26], the matrix
inverse A−1 is an integer matrix. Therefore, vertex x̂ is an integer vector.

Next we show that the optimal objective value of each LP Pmin[k] (actually
Pmin[k] is IP but we consider its LP relaxation here) is an integer. We know
that if a LP has nonempty feasible set and finite optimal objective, then there
exists a vertex in its feasible set which is its optimal solution. Let xmin denote
this vertex of Pmin[k]. The vertex xmin is an integer vector since every vertex of
polyhedron P is an integer vector. Therefore, the optimal objective of Pmin[k]
must be an integer. The same conclusion also holds for LP Pmax[k]. Hence,
inference interval Ik can be computed by any polynomial-time algorithm for
LPs Pmin[k] and Pmax[k] (note that Pmin[k] and Pmax[k] are actually IPs). ✷

Regarding to the problem of auditing real variables, we have the following
result.

Proposition 3.3. Auditing real variables is polynomial.

Proof: The proof is straightforward due to the fact that LP problems can be
solved in polynomial time. ✷

3 A set of linear equality or inequality constraints is said to be linearly independent if
the corresponding vectors ai are linearly independent.

4 Given a linear equality or inequality constraint aT
i x ≥ bi or aT

i x ≤ bi or aT
i x = bi,

the constraint is said to be active at x̂ if x̂ satisfies aT
i x̂ = bi.

Auditing Interval-Based Inference 559

One of the most efficient algorithms for solving those LPs is Karmarkar’s
algorithm[19], whose time complexity is O(mn4.5) (strictly speaking, the com-
plexity is O(n3.5L) where L is the number of bits required to store each LP
Pmin[k] or Pmax[k] in computer). Therefore, if we solve those LPs Pmin[k] and
Pmax[k] by the Karmarkar’s algorithm, the complexity of auditing real vari-
ables (or equivalently, auditing integer variables in the case of one-dimensional
queries) is O(mn5.5) (note that we need to solve 2n LPs), which is worse than
the complexity result O(mn2) of audit expert[8] in the case of auditing exact
inference.

Because the feasible set P = {x|Ax = b, l ≤ x ≤ r} of LPs Pmin[k] and
Pmax[k] is a convex set, for any xk ∈ Ik there exists a solution x′ ∈ {x|Ax =
b, l ≤ x ≤ r} such that x′k = xk. This means that a database attacker cannot
obtain any strict subset of Ik without extra knowledge.

4 Auditing Systems with Different Auditing Policies

In the previous section, we studied the problem of auditing interval-based infer-
ence. Specifically, we proved the following results: (i) auditing integer variables is
NP-hard; (ii) auditing integer variables in the case of one-dimensional queries or
auditing real variables is polynomial (w.r.t. the number of queries and the num-
ber of database records). In this section, we study various auditing systems that
enforce different auditing policies. An auditing policy determines under which
condition a set of queries are “safe” or “unsafe”, and an auditing system checks
user queries and enforces a particular auditing policy. We analyze the trade-offs
among inference security, database usability, and auditing complexity in various
auditing systems.

4.1 Auditing System State

We first define auditing system state for the purpose of describing auditing sys-
tems. The auditing system state consists of three components: inference security,
database usability, and auditing complexity, each of which is defined as a lattice.

Definition 4.1. (Inference Security) Inference security is defined as a lattice
〈S,⊆s〉, where S is the power set of n variables x1, . . . , xn, and ⊆s is subset
relationship ⊆ on S.

For each pair s1, s2 ∈ S, the least upper bound is s1 ∪ s2 and the greatest
lower bound is s1 ∩ s2. Each element s ∈ S describes an auditing system which
guarantees no interval-based inference (in any set of queries) for any variable
in s. Given s1, s2 ∈ S, if s1 ⊆s s2, then the auditing system described by s2
is safer than the one described by s1. Particularly, s = {x1, . . . , xn} indicates
no interval-based inference, and s = ∅ gives no guarantee on interval-based
inference.

560 Yingjiu Li et al.

Definition 4.2. (Database Usability) Database usability is defined as a lat-
tice 〈U,⊆u〉, where U is the power set of the power set of all the queries, and ⊆u

is subset relationship ⊆ on U .

Each element u ∈ U describes an auditing system in which the sets of an-
swerable queries are given by u. For example, if u = {{{x2, x3}}, {{x1, x2},
{x1, x3}}}, it means that the auditing system can answer the query {x2, x3}, or
any subset of the queries {{x1, x2}, {x1, x3}}. Given u1, u2 ∈ U , if u1 ⊆u u2, then
the auditing system described by u2 is more accessible than the one described
by u1. We say that an auditing system described by u ∈ U provides (i) appro-
priate restriction (on database usability) if u = uapprop and uapprop contains all
the sets of queries except exactly the sets of queries which lead to interval-based
inferences; (ii) strong restriction if u = ustrong and ustrong ⊂ uapprop; (iii) weak
restriction if u = uweak and uweak ⊃ uapprop; and (iv) inappropriate restriction
if the system provides neither appropriate nor strong nor weak restriction. An
auditing system that provides appropriate or strong restriction is free of interval-
based inference, while the one that provides weak or inappropriate restriction
gives no such guarantee.

Definition 4.3. (Auditing Complexity) Given an arbitrary set of m queries
on n variables, auditing complexity is defined as a lattice 〈C,⊆c〉, where C =
{NP -hard5} ∪ {minj : i, j ≥ 0}, and ⊆c is a binary relationship on C: (i) for
each c = minj in C we have NP -hard ⊆c c; (ii) for each pair c1 = mi1nj1

and c2 = mi2nj2 in C we have c1 ⊆c c2 iff i1 ≥ i2 and j1 ≥ j2.
Auditing complexity 〈C,⊆c〉 is a lattice with infinite number of elements.

The lattice is used to classify sets of auditing problems that fall in the ap-
propriate complexity class. For each pair c1 = mi1nj1 and c2 = mi2nj2 in C,
the least upper bound is mmin(i1,i2)nmin(j1,j2), and the greatest lower bound
is mmax(i1,i2)nmax(j1,j2). If c1 = minj and c2 = NP -hard, then the least upper
bound isminj, and the greatest lower bound is NP -hard. If c1 = c2 = NP -hard,
then both the least upper bound and the greatest lower bound are NP -hard.
If c = minj , it means that auditing interval based inference will take Θ(minj)
time (we may also interpret it in terms of space). Similarly, c = NP -hard indi-
cates that the auditing problem is NP-hard. We use O(minj) to denote those c
satisfying minj ⊆c c, and Ω(minj) those c satisfying c ⊆c m

inj.

Definition 4.4. (Auditing System State) The space of auditing system states
〈O,⊆o〉 is defined as the product lattice of the three underlying lattices: inference
security 〈S,⊆s〉, database usability 〈U,⊆u〉, and auditing complexity 〈C,⊆c〉. The
auditing system state of an auditing system is an element o ∈ O, denoted as a
triple o = 〈s, u, c〉 where s ∈ S, u ∈ U , and c ∈ C.
5 Note that we assume NP �= P in definition 4.3. If NP = P , the node of “NP -hard”
can be simply removed from the lattice 〈C,⊆c〉 without affecting its validity.

Auditing Interval-Based Inference 561

Auditing policy Auditing result “safe” Auditing result “unsafe”

Exact auditing No inference Presence of inference
“safe”⇔ s = {x1, . . . , xn}
Optimistic auditing Possible presence of inference Presence of inference
“safe”⇐ s = {x1, . . . , xn} (false negatives)
Pessimistic auditing No inference Possible no inference
“safe”⇒ s = {x1, . . . , xn} (false positives or alarms)

Fig. 1. Definition of different auditing policies

4.2 Auditing Policies

Now we define different auditing policies for the purpose of classifying various
auditing systems. Given a set of queries, an auditing policy stipulates that under
which condition the auditing result “safe” or “unsafe” is given. The auditing
result “safe” means that the given set of queries is answerable and that response
“unsafe” means unanswerable. Either “safe” or “unsafe” must be given as an
auditing result. We define three types of auditing policies given a set of queries:

Exact Auditing The auditing result “safe” is given iff no interval-based in-
ference exists; that is, “safe”⇔ s = {x1, . . . , xn}. We denote the auditing
system state for exact auditing (policy) as oexact = 〈sexact, uexact, cexact〉.

Optimistic Auditing The auditing result “safe” is given if no interval-based
inference exists; that is, “safe”⇐ s = {x1, . . . , xn}. We denote the auditing
system state for optimistic auditing (policy) as oopti = 〈sopti, uopti, copti〉.

Pessimistic Auditing The auditing result “safe” is given only if there is no
interval-based inference; that is, “safe”⇒ s = {x1, . . . , xn}. We denote the
auditing system state for pessimistic auditing (policy) as
opessi = 〈spessi, upessi, cpessi〉.
The definition of the auditing policies is summarized in figure 1. We classify

various auditing systems into three categories according to the auditing policies
they enforce: exact auditing system, optimistic auditing system and pessimistic
auditing system. The characteristics of these auditing systems can be described
in terms of soundness and completeness. An auditing system is sound means
that if the auditing system says that there is an interval-based inference, then
an inference exists. An auditing system is complete means that if there exists
an interval-based inference, then the system will say so. In terms of soundness
and completeness, exact auditing system is both sound and complete; optimistic
auditing system is sound but may not be complete; and pessimistic auditing
system is complete but not necessarily sound. In other words, optimistic auditing
system may produce false negatives (i.e., some inference may not be detected)
but no false positives (false alarms); on the contrary, the pessimistic auditing
system may produce false positives but no false negatives. Exact auditing system
produces neither false negatives nor false positives.

562 Yingjiu Li et al.

4.3 Auditing Systems

Now we study the auditing systems that enforce auditing policies. We focus on
the trade-offs among the three components of auditing system state o = 〈s, u, c〉
that can be achieved by various auditing systems. To enforce the optimistic
auditing policy, certain interval-based inference can be tolerated if only it is
“hard” for database attackers to obtain it. To enforce pessimistic auditing policy,
even some restrictions on “safe” queries can be allowed if its impact on database
usability is negligible. In both cases, auditing complexity is balanced against
inference security and/or database usability.

Exact Auditing System Exact auditing system is defined as an auditing sys-
tem that enforces exact auditing policy. Exact auditing system can be described
as follows: (i) it guarantees no interval-based inference on inference security
(sexact = {x1, . . . , xn}); (ii) it imposes an appropriate restriction on database
usability (uexact = uapprop); (iii) its auditing complexity is NP-hard for interval
variables (cexact = NP -hard) and polynomial for real variables or for integer
variables in the case of one-dimensional range queries (cexact ⊇c mn

5.5).
Exact auditing system requires that the length of each inference interval

|Ik| (1 ≤ k ≤ n) be exactly computed; that is, the exact optimal solutions to
IPs/LPs Pmin[k] and Pmax[k] must be obtained. Due to the fast development of
computing techniques, these IP problems (for auditing integer variables) can be
commonly solved in hundreds or thousands of variables and constraints, so do the
LP problems (for auditing real variables) with tens or hundreds of thousands of
variables[18]. As a result, exact auditing system can be implemented for small or
medium size auditing problems. However, database attackers benefit more from
this than auditing systems do. To compromise sensitive information, a database
attacker can use dedicate computing resources for a single set of queries. In
comparison, to detect all possible inferences, an auditing system must perform
the computation for all potential attackers (database users). It is thus impractical
in a large auditing system with many users, especially in an on-line environment.

Optimistic Auditing System Optimistic auditing system is defined as an
auditing system that enforces optimistic auditing policy. Optimistic auditing
system is based on the belief that if it is computationally infeasible to audit an
interval-based inference in a set of queries, it is also infeasible for a database
attacker to compromise the sensitive information in the same set of queries even
though the information is actually revealed in principle. Compared with exact
auditing system, we have (i) sopti ⊆s sexact, (ii) uopti �u uexact

6, and usually
we require that copti ⊇c cexact. In other words, optimistic auditing system seeks
to improve database usability and/or auditing complexity at the expense of
inference security. We illustrate this through the following case studies.
6 As to database usability, optimistic auditing resorts to weak restriction or inappro-
priate restriction. Note that inappropriate restriction can always be transferred to
weak restriction by updating database usability u = uopti∪uapprop while at the same
time keeping inference security s = sopti unchanged.

Auditing Interval-Based Inference 563

Case study 4.1. (Optimistic auditing: auditing by LP relaxation) Consider au-
diting integer variables by solving the IPs Pmin[k] and Pmax[k] (1 ≤ k ≤ n). It
is NP-hard to solve those IPs under exact auditing policy. However, optimistic
auditing policy allows us to compute each “inference interval” by solving LP
relaxations of those IPs rather than the IPs themselves (the length of the “in-
ference interval” computed this way is greater than its true value – leading to
false negatives). Consequently, auditing complexity is improved from NP-hard
to polynomial. ✷

Case study 4.2. (Optimistic auditing: auditing with relaxed bounds) Consider
using relaxed bounds l′ ≤ x ≤ r′ in stead of l ≤ x ≤ r in solving the MPs
Pmin[k] and Pmax[k] (1 ≤ k ≤ n), where l′ ≤ l and r′ ≥ r. By doing so,
the length of the “inference interval” computed is greater than its true value
– leading to false negatives, and database usability is improved compared with
exact auditing system. ✷

Optimistic auditing system might be impractical in some applications since
it is usually difficult to decide when it is infeasible for a database attacker to
compromise the sensitive information that is actually released. Therefore, the
implementation of optimistic auditing could be “dangerous” due to the presence
of false negatives. This inspires the study of pessimistic auditing system.

Pessimistic Auditing System Pessimistic auditing system is defined as an
auditing system that enforces pessimistic auditing policy. Compared with exact
auditing system, we have (i) spessi = sexact, (ii) upessi ⊆u uexact, and usually we
require that cpessi ⊇c cexact. In other words, pessimistic auditing system ensures
no inference on inference security. It seeks to achieve a better result on auditing
complexity by imposing strong restriction on database usability. We examine
pessimistic auditing system through the following case studies.

Case study 4.3. (Pessimistic auditing: auditing by trace) Given a set of sum
queries akx = bk, 1 ≤ k ≤ n (or Ax = b) w.r.t. x∗ = (x∗1 . . . x

∗
n)T , we define the

trace τ(x∗i) of value x∗i as the set {k|aki = 1, 1 ≤ k ≤ n}. Auditing by trace is
based on the following observation: If for each value x∗i , there exists a value x∗j
such that |x∗i − x∗j | ≥ ε and τ(x∗i) = τ(x∗j), then no interval-based inference
exists, where ε is the tolerance level. The observation is true because a database
attacker can never discriminate between variable xi and xj .

To implement auditing by trace, we maintain a graph whose vertex set is the
collection of the variables. We join variables xi and xj by an edge if |x∗i − x∗j | ≥
ε and τ(x∗i) = τ(x∗j). Before any set of queries has been presented, we have
τ(x∗i) = τ(x∗j) = ∅ for any two different variables xi and xj . Define the k-th
query set as Qk = {i|aki = 1, 1 ≤ i ≤ n}, k = 1, . . . , n. With each query set Qk,
we delete the edge (xi, xj) iff |Qk ∩ {i, j}| = 1. As long as the graph has no
isolated nodes, no inference exists. It is easy to know that the complexity of
such implementation is O(mn2), and that the complexity of checking whether a
new query can be answered is O(n2) – similar to the complexity result of audit
expert in the case of auditing exact inference. ✷

564 Yingjiu Li et al.

Case study 4.4. (Pessimistic auditing: auditing by approximation) Auditing by
approximation seeks to obtain each inference interval with its length smaller
than its true value. To achieve this, we solve the MPs Pmin[k] and Pmax[k]
(1 ≤ k ≤ n) using approximate algorithms rather than exact algorithms, as long
as these approximate algorithms stop at feasible solutions of the original MPs.
In mathematical programming literature, many approximate algorithms provide
feasible solutions and have better time complexity compared with corresponding
exact algorithms. ✷

Case study 4.5. (Pessimistic auditing: auditing by feasible solution) Auditing by
feasible solution seeks the same objective as auditing by approximation; however,
it directly uses the exact algorithms of the MPs and stop in the middle as long
as feasible solutions are obtained. If the exact algorithms search the optimal
solutions within feasible sets (actually most exact algorithms do so), we can
always achieve polynomial time complexity since we can stop the algorithms at
any time (it should be balanced against database usability requirement). ✷

Case study 4.6. (Pessimistic auditing: auditing with enhanced bounds) Consider
using enhanced bounds l′ ≤ x ≤ r′ in stead of l ≤ x ≤ r in solving the MPs
Pmin[k] and Pmax[k] (1 ≤ k ≤ n), where l′ ≥ l and r′ ≤ r. By doing so, the
length of the “inference interval” computed is less than its true value – leading to
false alarms, and database usability is decreased compared with exact auditing
system. ✷

Integrated Auditing Systems In practice, there might exist many different
ways to implement pessimistic auditing (or optimistic auditing). Each way can be
considered as an independent auditing system, called pessimistic (or optimistic)
auditing unit. A number of such auditing units can be integrated into a generic
framework, called integrated pessimistic (or optimistic) auditing system. In the
following discussion, we focus on integrated pessimistic auditing system; while
the extension to integrated optimistic auditing system is trivial.

Integrated pessimistic auditing system is shown in figure 2. For convenience,
denote the auditing system state of unit i using oi = 〈si, ui, ci〉 and the integrated
system using osys = 〈ssys, usys, csys〉. In figure 2, when a unit receives its input,
it first determines whether it is applicable for the input. If not, it hands over the
input to the next unit (if available); otherwise, it audits the input. If the auditing
result is “safe”, the whole auditing process is terminated with result “safe” (due
to that pessimistic auditing produces no false negatives); otherwise, the input is
handed over to the next unit (if available). When the last unit outputs “unsafe”,
the whole auditing process is terminated with the result “unsafe” (though it is
still possible the input is “safe” – false alarm).

Briefly speaking, integrated pessimistic auditing system responses “safe” iff
one of its unit answers “safe”. It is clear that the integrated system enforces pes-
simistic auditing policy; we have (i) ssys = ∩isi (ssys = sexact = {x1, . . . , xn}),
(ii) usys = ∪iui (usys ⊆u uexact), and (iii) csys is no worse than the greatest lower
bound of those ci in the auditing complexity lattice (see definition 4.3). Note

Auditing Interval-Based Inference 565

No No

No No

Yes

Yes

Yes

Yes

Unit 1

Input: a set of sum queries and
response Ax=b; variable
bounds l, r; tolerance level ε

Auditing

Is the unit applicable?

 Is there interval based
 inference?

Unit N

Auditing

Is the unit applicable?

 Is there interval based
 inference?

… …

“Safe” “Safe” “Safe”

“Unsafe”

“Unsafe” “Unsafe”

Fig. 2. Integrated pessimistic auditing system

that sorting the units in certain orders may help improve auditing complexity
of the system; however, we do not address this issue in this paper.

For integrated optimistic auditing system, our purpose is to increase the
auditing security at the expense of database usability and/or the auditing com-
plexity. The system responses “safe” iff all (or many) its units response “safe”.
In this case, we have (i) ssys = ∪isi, (ii) usys = ∩iui, and (iii) csys is no worse
than the greatest lower bound of those ci in the auditing complexity lattice.

Finally, the auditing system state for various types of auditing discussed in
this paper is summarized in figure 3.

5 Conclusion and Future Directions

In this paper, we pointed out the significance to investigate interval based infer-
ence and formulated the auditing problem formally. Our study showed that: (1)
The auditing problem invalidates existing methods (e.g., audit expert) designed
for auditing exact inference. (2) Auditing interval-based inference is possible;
however, it involves complicated computation of mathematical programming.
The complexity of auditing integer variables is NP-hard, while auditing real
variables is polynomial. (3) Under different auditing policies, various auditing
systems can be classified into three categories: exact auditing, optimistic audit-
ing, and pessimistic auditing. Trade-offs can be achieved by different auditing
systems among inference security, database usability and auditing complexity.

566 Yingjiu Li et al.

Auditing auditing system state o = 〈s, u, c〉
policy Inference security s Database usability u Auditing complexity c

Exact No Appropriate 1. NP-hard: auditing integer
auditing inference restriction variables

2. Polynomial (O(mn5.5)):
auditing real variables

Optimistic Possible presence Weak restriction Polynomial (O(mn5.5)):
auditing of some inferences or inappropriate auditing by LP relaxation

restriction for auditing integer variables

Pessimistic No Strong 1. O(mn2): auditing by trace
auditing inference restriction 2. Possible to achieve better

results by other methods
e.g. auditing by approx. and
auditing by feasible solution

Fig. 3. Auditing system state for different types of auditing

For practical auditing systems, we believe that the optimistic auditing and
pessimistic auditing are promising. Also, observe that many real world applica-
tions, such as OLAP, restrict user queries to specific meaningful forms; we may
take advantage of such restrictions to build efficient audit systems for such appli-
cations. It would also be interesting to reconsider other inference control meth-
ods such as microaggregation (see, e.g., [16,22]) and random data perturbation
(RDP) techniques for interval-based inference [21]. Although such techniques
would provide users imprecise (perturbed) query responses rather than exact
responses, the upper side is that no restrictions are imposed on user queries and
that the complexity for perturbing data is low.

6 Acknowledgments

We thank the anonymous referees for their valuable comments.

References

1. N.R. Adam and J.C. Wortmann. Security-control methods for statistical databases:
a comparative study. ACM Computing Surveys, 21(4):515–556, 1989. 553

2. L.L. Beck. A security mechanism for statistical databases. ACM Trans. on
Database Systems, 5(3):316–338, 1980. 554

3. A. Brodsky, C. Farkas, and S. Jajodia. Secure databases: Constraints, inference
channels, and monitoring disclosures. IEEE Trans. Knowledge and Data Engineer-
ing, 12(6):900–919, 2000. 557

4. A. Brodsky, C. Farkas, D. Wijesekera, and X.S. Wang. Constraints, inference
channels and secure databases. In the 6th International Conference on Principles
and Practice of Constraint Programming, pages 98–113, 2000. 557

5. F.Y. Chin, P. Kossowski, and S.C. Loh. Efficient inference control for range sum
queries. Theoretical Computer Science, 32:77–86, 1984. 554

Auditing Interval-Based Inference 567

6. F.Y. Chin and G. Özsoyoglu. Security in partitioned dynamic statistical databases.
In Proc. of IEEE COMPSAC, pages 594–601, 1979. 554

7. F.Y. Chin and G. Özsoyoglu. Statistical database design. ACM Trans. on Database
Systems, 6(1):113–139, 1981. 554

8. F.Y. Chin and G. Özsoyoglu. Auditing and inference control in statistical
databases. IEEE Trans. on Software Engineering, 8(6):574–582, 1982. 554, 559

9. L.H. Cox. Suppression methodology and statistical disclosure control. Journal of
American Statistic Association, 75(370):377–385, 1980. 554

10. D.E. Denning. Are statistical data bases secure? In AFIPS conference proceedings,
volume 47, pages 199–204, 1978. 553

11. D.E. Denning. Secure statistical databases with random sample queries. ACM
Trans. on Database Systems, 5(3):291–315, 1980. 554

12. D.E. Denning and P.J. Denning. Data security. ACM computing surveys,
11(3):227–249, 1979. 553

13. D.E. Denning, P.J. Denning, and M.D. Schwartz. The tracker: A threat to sta-
tistical database security. ACM Trans. on Database Systems, 4(1):76–96, 1979.
554

14. D.E. Denning and J. Schlörer. Inference controls for statistical databases. IEEE
Computer, 16(7):69–82, 1983. 553

15. D. Dobkin, A.K. Jones, and R.J. Lipton. Secure databases: protection against user
influence. ACM Trans. on Database Systems, 4(1):97–106, 1979. 554

16. J. Domingo-Ferrer and J. M. Mateo-Sanz. Practical data-oriented microaggrega-
tion for statistical disclosure control. IEEE Trans. Knowledge and Data Engineer-
ing (to appear). 566

17. L.P. Fellegi. On the qestion of statistical confidentiality. Journal of American
Statistic Association, 67(337):7–18, 1972. 554

18. R. Fourer. Linear programming frequently asked questions. Optimization Technol-
ogy Center of Northwestern University and Argonne National Laboratory, 2001.
http://www-unix.mcs.anl.gov/otc/Guide/faq/linear-programming-faq.html. 562

19. J.P. Ignizio and T.M. Cavalier. Linear Programming. Prentice Hall, 1994. 558,
559

20. J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes. In
Proc. of the 9th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pages 86–91, 2000. 554, 555, 557

21. Y. Li, L. Wang, and S. Jajodia. Preventing interval-based inference by random
data perturbation. In Workshop on Privacy Enhancing Technologies (to appear).
566

22. Y. Li, S. Zhu, L. Wang, and S. Jajodia. A privacy-enhanced microaggregation
method. In Proc. of the 2nd International Symposium on Foundations of Informa-
tion and Knowledge Systems, pages 148–159, 2002. 566

23. F.M. Malvestuto and M. Moscarini. Computational issues connected with the pro-
tection of sensetive statistics by auditing sum-queries. In Proc. of IEEE Scientific
and Statistical Database Management, pages 134–144, 1998. 554

24. M.A. Palley. Security of statistical databases compromise through attribute corre-
lational modeling. In Proc. of IEEE Conference on Data Engineering, pages 67–74,
1986. 553

25. J. Schlörer. Security of statistical databases: multidimensional transformation.
ACM Trans. on Database Systems, 6(1):95–112, 1981. 554

26. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986. 558
27. J.F. Traub, Y. Yemini, and H. Woźnaikowski. The statistical security of a statistical

database. ACM Trans. on Database Systems, 9(4):672–679, 1984. 554

568 Yingjiu Li et al.

28. S.L. Warner. A survey technique for eliminating evasive answer bias. Journal of
American Statistic Association, 60(309):63–69, 1965. 554

	Auditing Interval-Based Inference
	Introduction
	Problem Formulation
	Auditing Interval-Based Inference
	Auditing Systems with Different Auditing Policies
	Auditing System State
	Auditing Policies
	Auditing Systems

	Conclusion and Future Directions
	Acknowledgments

