
A Logical Foundation for XML

Mengchi Liu

School of Computer Science, Carleton University
Ottawa, Ontario, Canada K1S 5B6

mengchi@scs.carleton.ca

Abstract. XML is fast emerging as the dominant standard for data
representation and exchange on the World Wide Web. How to view an
XML document, i.e., XML data model, and how to query XML doc-
uments are two primary research issues for XML. The purpose of this
paper is twofold. First, we propose a novel data model for XML that
allows us to view XML data in a way similar to complex object data
models. Based on this data model, we then investigate how rule-based
paradigm can be used to query XML documents and what benefits it
brings over existing XML query languages. To this end, we present a
rule-based query language called XML-RL, in which we treat existing
XML documents as extensional databases, and the queries and functions
expressed in rules as intensional databases as in deductive databases.
We show that the querying part and result constructing part in XML-
RL are strictly separated, the rule body is used to query XML documents
and bind variables while the rule head is used to construct the resulting
XML document. As several rules can be used for the same query, com-
plex queries can be expressed in XML-RL in a simple and natural way
as in logic programming. Also, rules provide a uniform framework for
both functions/methods and queries and support recursion in a natural
way. Finally, rule-based framework has a formal logic foundation that is
lacking in other query languages.

1 Introduction

XML is fast emerging as the dominant standard for data representation and
exchange on the World Wide Web. Unlike HTML in which tags are mainly used
to describe how to display data, XML tags describe the data itself so that XML
data is self-describing. Therefore, a program receiving an XML document can
interpret it in multiple ways, can extract, synthesize, and analyze its contents,
and restructure it to suit the application’s needs.

How to view an XML document, i.e., XML data model, and how to query
XML documents are two primary research issues for XML. There are several
data models proposed for XML, such as DOM [1], XSL data model [4], XML in-
formation set [11], and XML Query Data Model [14]. However, they are low-level
data models using nodes and trees and are primarily for machine representation
of XML documents.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 568–583, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

A Logical Foundation for XML 569

There are also several query languages proposed for extracting and restruc-
turing the XML contents, such as Lorel [3], XML-GL [7], XPath [10], XML-
QL [12], XSL [4], XQuery [9], XML Query Algebra [13], etc. Some of them
are in the tradition of database query languages, others more closely inspired
by XML. The XML Query Working Group has recently published XML Query
Requirements for XML query languages [8]. The discussion is going on within
the World Wide Web Consortium, within many academic forums and within IT
industry, with XQuery been selected as the basis for an official W3C query lan-
guage for XML. In our view, the main problem with existing query languages,
including XQuery, is that the query part and the result constructing part are
intermixed, an inherent problem inherited from SQL and OQL [6]. For exam-
ple, XQuery uses a FOR-LET-WHERE-RETURN (FLWR) construct similar to
SQL. The FOR clause plays the same role as the FROM clause in SQL, the LET
clause binds a variable to an entire expression, the WHERE clause functions the
same as in SQL, and the RETURN clause is analogous to SELECT used to
construct/restructure the query results. Like SQL and OQL, simple FLWR con-
struct cannot express complex queries and construct/restructure query results
so that the FLWR construct has to be nested in the RETURN clause, and thus
makes queries complicated to comprehend.

Also, current work on XML lacks logic foundation to account for various
features introduced.

In this paper, we first propose a novel data model for XML that allows us
to view XML data in a way similar to complex object data models [2]. Based
on this data model, we then investigate how rule-based paradigm can be used
to query XML documents and what benefits it brings over existing XML query
languages. To this end, we present a rule-based query language called XML-RL,
in which we treat existing XML documents as extensional databases, and the
queries and functions expressed in rules as intensional databases as in deduc-
tive databases. We show that the querying part and result constructing part in
XML-RL are strictly separated, the rule body is used to query XML documents
and bind variables while the rule head is used to construct the resulting XML
document. As several rules can be used for the same query, complex queries
can be expressed in XML-RL in a simple and natural way as in logic program-
ming. Also, rules provide a uniform framework for both functions/methods and
queries and support recursion in a natural way. Finally, rule-based framework
has a formal logic foundation that is lacking in other query languages.

The rest of the paper is organized as follows. Section 2 introduces our data
model for XML. Section 3 defines our rule-based query language for XML. Sec-
tion 4 summarizes and points out further research issues.

2 Data Model for XML

In this section, we introduce our data model for XML. We assume the existence
of a set U of URLs, a set C of constants, and the symbol null.

570 Mengchi Liu

Definition 1. The notion of objects is defined as follows:

(1) null is an empty object.
(2) Let c ∈ C be a constant. Then c is a lexical object.
(3) Let o1, ..., on be objects with n ≥ 0. Then 〈o1, ..., on〉 is a list object.
(4) Let a ∈ C be a constant, and o a lexical object or a list of lexical objects.

Then @a : o is an attribute object and o is the value of the attribute a.
(5) Let @a1 : o1,...,@am : om be attribute objects, p1, ..., pn be element, lexi-

cal, or empty objects with m ≥ 0, n > 0. Then o = (@a1 : o1, ...,@am :
om, p1, ..., pn) is a tuple object, with two components: attribute component
and content component and can be written as o = @(a1 : o1, ..., am :
om)(p1, ..., pn). When m = 0, it is a pure content tuple object and can
be written as o = (p1, ..., pn). When n = 1 and p1 is either null or a lexical
object, we can also write it as o = @(a1 : o1, ..., am : om)p1.

(6) Let o = (o1, ..., oi, ..., on) be a tuple object. If oi is an attribute/element
object with a list value, i.e, oi = li : 〈p1, ..., pm〉 with n ≥ 1, then we can
replace it in o with m sequential attribute/element objects as (o1, ..., li :
p1, ..., li : pm, ..., on) and vice versa. If every such attribute/element object
is replaced in this way, then the resulting tuple object is flat. If none of such
attribute/element objects are replaced in this way, then o is normalized.

(7) Let e ∈ C be a constant, and o a tuple object. Then e : o is an element
object.

The following are examples of objects:

Lexical objects: Computer Science, Database Systems
List objects: 〈John, Mary〉, 〈o123, o234〉
Attribute objects: @id: o123, @year: 1995, @children: 〈o123,o234〉
Tuple object: (@id:o123, @children:〈o123, o234〉, title:XML)
Element objects: address:null, title:XML, name:(First:Smith, Last:John)

Lexical objects correspond to character data and attribute values in XML,
list objects are used to represent the multiple values of the same attributes
or elements, attribute objects to represent attribute-value pairs in XML, tuple
objects to represent the relationship among attributes and elements in XML,
and element objects to represent element-data pairs, Like other proposals for
XML, we use the symbol @ in front of attributes to differ them from elements
in tuple objects.

Note that a tuple object in our data model can have several different views:
flat view, normalized view and their various mixtures based on Item (6) in Def-
inition 1. The following examples demonstrate their difference:

(@children : o123,@children : o234, title : XML, author : John, author : Tony)
(@children : 〈o123, o234〉, title : XML, author : 〈John,Tony〉)
(@children : 〈o123, o234〉, title : XML, author : John, author : Tony)

The first view is flat as it does not show any list objects. The second view
is normalized as it only uses list objects. The last view only shows list objects

A Logical Foundation for XML 571

for attribute objects but not for element objects and is much closer to XML
presentation of data. In the rule-based query language introduced in Section 3,
we use the flat view when we have individual variables and use the normalized
view when we have list variables.

Conversion between XML and our model is straightforward using the follow-
ing tranformation operator T :

(1) Let s be a character string or a quoted character string. Then T (s) = s.
(2) Let s = "s1...sn" be a list of quoted character strings separated by the white

space. Then T (s) = 〈T (s1), ..., T (sn)〉.
(3) Let E be a null element: E = 〈e A1...Am/〉 or E = 〈e A1...Am〉〈/e〉 with

m ≥ 0. Then T (E) = e : (T (A1), ..., T (Am))null.
(4) Let E be a children or mixed element: E = 〈e A1...Am〉E1...En〈/e〉 with

m ≥ 0 and m > 0. Then T (E) = e : (T (A1), ..., T (Am), T (E1), ..., T (En)).

The following are several simple examples:

T (John) = John by (1)
T (”John”) = John by (1)
T (”o123 o234”) = 〈o123,o234〉 by (2)
T (〈person id= ”o123”/〉) = person: (@id:o123) null by (3)
T (〈name〉John〈/name〉) = name: John by (4)
T (〈person id=”o123”〉〈name〉John〈/name〉〈/person〉)

= person: (@id: o123, name: John) by (4)
T (〈person id=”o234”〉Tony〈/person〉) = person: (@id: o123) Tony by (4)

Example 1. Consider the following XML document:

<chapter>
<title>Data Model</title>
<section>

<title> Syntax For Data Model</title>
</section>
<section>

<title>XML</title>
<section>

<title>Basic Syntax</title>
</section>
<section>

<title> XML and Semistructured Data</title>
</section>

</section>
</chapter>

It is transformed into our data model as the following attribute object:

572 Mengchi Liu

chapter: (title: Data Model,
section: (title: Syntax For Data Model),
section: (title: XML,

section: (title: Basic Syntax),
section: (title: XML and Semestructured Data)))

Example 2. Consider another example:

<bib>
<book year=”1995”>

<title> Introduction to DBMS </title>
<author> <last> Date </last> <first> C. </first></author>
<publisher> <name> Addison-Wesley </name > </publisher>

</book>
<book year=”1998”>

<title> Foundation for ORDB</title>
<author> <last> Date </last> <first> C. </first></author>
<author> <last> Darwen </last> <first> D. </first></author>
<publisher> <name> Addison-Wesley </name > </publisher>

</book>
<book></book>

</bib>

It is transformed into our data model as follows:

bib: (book: (@year:1995,
title: Introduction to DBMS,
author: (last: Date, first: C.),
publisher: (name: Addison-Wesley)),

book: (@year:1998,
title: Foundation for ORDB,
author: (last: Date, first: C.),
author: (last: Darwen, first: D.),
publisher: (name: Addison-Wesley))

book: null)

Note here that the element object is in flat form.

Example 3. Consider the following DTD and the corresponding XML document
with ID, IDREF and IDREFS attributes:

<!ELEMENT people (person+)>
<!ELEMENT person (name)>
<!ELEMENT name (#PCDATA)>
<!ATTLIST person

id ID #REQUIRD
mother IDREF #IMPLIED
children IDREFS #IMPLIED>

A Logical Foundation for XML 573

<people>
<person id=”o123”>

<name>Jane</name>
</person>
<person id=”o234” mother=”o456”>

<name>John</name>
</person>
<person id=”o456” children =”o123 o234”>

<name>Mary</name>
</person>

</people>

It is transformed into our data model as follows:

people: (person: (@id:o123, name: Jane),
person: (@id:o234, @mother: o456, name: John),
person: (@id:o456, @children: 〈o123,o234〉, name: Mary))

The following example demonstrate how to represent XML document with
mixed content in our data model.

Example 4. Consider the following example:

<Address>
John lives on
<Street>Main St</Street>
with house number
<Number>123</Number>
in
<City>Ottawa</City>
<Country>Canada</Country>

</Address>

It is transformed into our data model as follows:

Address:(John lives on,
Street: Main St,
with house number,
Number: 123,
in,
City: Ottawa,
Country: Canada)

A well formed XML document over the Web has a URL and exactly one root
element. We therefore introduce the following notion to represent it in our data
model.

574 Mengchi Liu

Definition 2. Let u be a URL and e be an element object. Then (u)/e is an
XML object.

Suppose the XML document shown in Example 3 is found at the URL
www.abc.com/people.xml. Then we can represent it as an XML object as fol-
lows:

(www.abc.com/people.xml)
/people: (person: (@id:o123, name: Jane),

person: (@id:o234, @mother: o456, name: John),
person: (@id:o456, @children: 〈o123,o234〉, name: Mary))

3 Rule-Based Query Language for XML

In this section, we present a rule-based language based on our data model called
XML-RL (XML Rule-based Language) to query XML documents. First, we de-
fine the syntax. Then we give some examples. Finally, we define the semantics.

3.1 Syntax of XML-RL

Besides the set U of URLs and the set C of constants in the data model, XML-RL
uses a set V of variables that is partitioned into two kinds: single-valued variables
started with ’$’ followed by a string and ’$’ itself is an anonymous variable, and
list-valued variables started with ’#’ followed by a string.

Definition 3. The terms are defined recursively as follows:

(1) null is an empty term.
(2) Let c ∈ C be a constant. Then c is a lexical term.
(3) A list value or a list-valued variable is a list term.
(4) Let X be a constant or a single-valued variable, and Y a term. Then @X : Y

is an attribute term, and Y denotes the value of the attribute thatX denotes.
(5) Let X1, ..., Xn be a set of terms with n ≥ 1. Then @(X1, ..., Xn) is a tuple

term.
(6) Let X be a non-anonymous variable and X1, ..., Xn, (n ≥ 1) be a set of

attribute terms and element terms. Then X(X1, ..., Xn) is a tuple selection
term. When n = 1, we can simply use X/X1 instead.

(7) Let X be a constant or a variable, and Y a term. Then X : Y is an element
term, and Y denotes the content of the element that X denotes. If Y is an
attribute term X ′ : Y ′ or a tuple term (X ′ : Y ′), then we can simply use
X/X ′ : Y ′. The case for Y ′ is the same.

(8) Let X be a single valued variable, Then {X} is a grouping term.
(9) A single-valued variable is either an empty term, lexical term, an attribute

term, an element term, or a tuple term depending on the context.

A Logical Foundation for XML 575

The grouping term is used solely to construct query results. The list term is
used to manipulate list values. In a tuple selection term $t(X1, ..., Xn), $t is used
to denote a tuple and X1, ..., Xn are used to specify conditions that the tuple $t
must satisfy.

The following are examples of terms:

Lexical terms: Computer Science, Database Systems, $Name
List terms: 〈〉, 〈John, Mary〉, 〈o123, o234〉, #s
Attribute terms: @Id:o123, @Id:$x, @year:$y, @$y:1995, @$x:$y
Tuple terms: (@Id : $x, author : $a), (Title : $t, author : 〈John〉), $t
Tuple Selection terms: $t(publisher : Springer), $t/Title : XML
Element terms: name:$n, book/author:$a, bib/book: 〈$b〉, $x:$y,
Grouping terms: {title: $t}, {(title : $t, {author : $a})},
A term is ground if it has no variables.

Definition 4. The expressions are defined as follows:

(1) Let U be a url or a single-valued variable and T an element term. Then
(U)/T is a positive expression.

(2) If P is a positive expression, then ¬P is a negative expression.
(3) Arithmetic, logical, string, and list expressions are defined using terms in

the usual way.

The following are several examples of expressions:

Positive exp: (http://www.abc.com/bib.xml)/people: $p
Negative exp: ¬($url)/people/person: (name: John)
Other exp: $a = $b × 2, count(#authors) > 2, first(#authors) = John

The positive expression above is equivalent to the following XQuery expres-
sion:

FOR $p IN document(”http://www.abc.com/bib.xml”)/people

Definition 5. A rule has the form A⇐ L1, ..., Ln and A is the head and L1, ...,
Ln is the body of the rule, where A is a positive expression, and each Li is a
positive expression, a negative expression, or an arithmetic, logical, string, list
expression and only A can contain grouping terms.

The rule body is used to query data in XML documents while the rule head
is used to construct the resulting XML document.

We require the variables in the head of the rule to be covered or limited as
defined in [5,15,16]. An anonymous variable ’$’ may appear several times in a
rule and their different appearances in general stand for different variables. It
cannot appear in the head of a rule.

576 Mengchi Liu

Definition 6. A query is a set of rules.

In order to make queries easier, we adopt XPath abbreviation in rules. That
is, if there is a rule: A ⇐ ..., (U)//X, ... where // means any number of levels
down, then this rule stand for the following rules:

• A⇐ ..., (U)/X, ...
• A⇐ ..., (U)/X1/X, ...
• ...

If there are several such Xpath abbreviations in a rule, then it stands for their
various combinations as outlined above. Also, if we have X : ...$t..., $t(Y1, ..., Yn)
in the body of a rule, then we can simply use X : ...$t(Y1, ..., Yn)... instead.

If URL U in the head (U)/T is the default one, such as standard output,
then we can omit it and use /T instead.

3.2 Query Examples

The following queries are based on the XML documents shown in the last section.

(Q1) List book elements for books published by Addison-Wesley after 1991.

(file:///home/users/xml/result.xml)
/results/book: $b
⇐
(http://www.abc.com/bib.xml)
/bib/book: $b(publisher/name: Springer, year: $y, title: $t), $y > 1991

Since there are a number (list) of book elements in the XML document, variable
$b matches one book element (a tuple) and tuple selection term specifies the
condition that $b should satisfy. The result is a list of book elements under the
root element results.

If we simply want to display the result on the screen, then we can simply use
the following instead:

/results/book: $b ⇐
(http://www.abc.com/bib.xml)
/bib/book: $b(publisher/name: Springer, year: $y, title: $t), $y > 1991

(Q2). Create a flat list of all the title-author pairs, with each pair enclosed in a
"result" element.

(file:///home/users/xml/result.xml)
/results/result: (title: $t, author: $a)
⇐
(http://www.abc.com/bib.xml)
/bib/book : (title: $t, author : $a)

Note here the variable $a in the body matches one author at a time.

A Logical Foundation for XML 577

(Q3). For each author in the bibliography, list the author’s name and the titles
of all books by that author, grouped inside a ”result” element.

(file:///home/users/xml/result.xml)
/results/result: (author: $a, {title: $t})
⇐
(http://www.abc.com/bib.xml)
/bib/book : (title: $t, author: $a)

The grouping term {title: $t} in the head is used to group the titles of all books
by author $a.

(Q4). For each book that has at least two authors, list the title and first two
authors.

(file:///home/users/xml/result.xml)
/results/result : (title: $t, {author: $a})
⇐
(http://www.abc.com/bib.xml)
/bib/book : (title: $t, author: #a), count(#a) > 2, $a ∈ first two(#a)

Note here the variables #a is a list-valued variable that match a list of authors.

(Q5). For each person, list his/her ancestors IDs.

(file:///home/users/xml/result.xml)
/results/result : (@id: $c, {ancestors: $p})
⇐
(http://www.abc.com/people.xml)
/people/person : (@id: $p, children: #c), $c ∈ #c

(file:///home/users/xml/result.xml)
/results/result : (@id: $c, {ancestors: $p})
⇐
(file:///home/users/xml/result.xml)
/results/result : (@id: $c, ancestors: $a),
(http://www.abc.com/people.xml)
/people/person : (@id: $p, children: #c), $a ∈ #c

The first rule says for each person identified by $p, if $c is a child, then $p is an
ancestor of $c. The second rule says if $a is an ancestor of $c, and $a is a child
of $p, then $p is also an ancestor of $c. Note here the second rule is recursively
defined.

578 Mengchi Liu

In practice, we can simplify the above query by following Prolog convention
to combine the two rules with the same head using ’;’ as follows:

(file:///home/users/xml/result.xml)
/results/result : (@id: $c, {ancestors: $p})
⇐
(http://www.abc.com/people.xml)
/people/person : (@id: $p, children: #c), $c ∈ #c;
(file:///home/users/xml/result.xml)
/results/result : (@id: $c, ancestors: $a),
(http://www.abc.com/people.xml)
/people/person : (@id: $p, children: #c), $a ∈ #c

3.3 Semantics of XML-RL

In this section, we define the Herbrand-like logical semantics for XML-RL queries.

Definition 7. The Herbrand universe U of XML-RL is the set of all ground
terms that can be formed.

Definition 8. The Herbrand base B of XML-RL is the set of all XML positive
expressions that can be formed using terms in U .

Definition 9. An XML database XDB is a set of XML objects.

Definition 10. A ground substitution θ is a mapping from the set of variables
V − {$} to U ∪ 2U . It maps a single-valued variable to an element in U and a
list-valued variable to an element in 2U .

The use of anonymous variables allows us to simply our query rules as demon-
strated in the examples above. However, when we deal with semantics, we disal-
low anonymous variables. We assume that each appearance of anonymous vari-
able is replaced by another variable that never occur in the query rules. This is
why we do not map anonymous variable ’$’ to any object in the above definition.

Given a set of XML documents, our queries just select part of them. Thus,
we introduce the following auxiliary notions in order to define the semantics.

Definition 11. A ground term o is part-of of another ground term o′, denoted
by o � o′, if and only if one of the following hold:

(1) both are lexical or list objects and o = o′;
(2) both are attribute terms or element terms: o ≡ l : oi and o′ ≡ l : o′i such

that oi � o′i;
(3) both are list terms and o = o′;
(4) both are tuple terms: o ≡ (X1 : o1, ..., Xm : om) and o′ ≡ (X1 : o′1, ..., Xn :

o′n) with m ≤ n such that oi � o′i for 1 ≤ i ≤ m.

A Logical Foundation for XML 579

The part-of relationship between o and o′ captures the fact that o is part
of o′. We need this notion because query results are always based on part of one
or more XML documents.

The following are several examples:

John � John
author: (first: John) � author: (first: John, last: Mary)
(title:XML, author:John) � (title:XML, author:John, author:Mary)

Definition 12. Let O = (u)/t, O′ = (u′)/t′ be two XML objects. Then O is
part-of O′, denoted by O � O′, if and only if u = u′ and t � t′.

Definition 13. Let XDB and XDB′ be two XML databases. Then XDB is
part-of XDB′, denoted by XDB � XDB′, if and only if for each O ∈ XDB −
XDB′, there exists O′ ∈ XDB′ −XDB such that O � O′.

Definition 14. Let XDB be an XML database. The notion of satisfaction (de-
noted by |=) and its negation (denoted by �|=) based on XDB are defined as
follows.

(1) For a ground positive expression (u)/t, XDB |= (u)/t if and only if there
exists (u)/t′ ∈ XDB such that t � t′.

(2) For a ground negative expression ¬(u)/t, XDB |= ¬(u)/t if and only if
XDB �|= (u)/t

(3) For a ground arithmetic, logical, string, or list expression ψ, XDB |= ψ (or
XDB |= ¬ψ) if and only if ψ is true (or false) in the usual sense.

(4) For a ground tuple selection term X(Y1, ..., Yn). XDB |= X(Y1, ..., Yn) if
and only if Yi is satisfied in X for 1 ≤ i ≤ n.

(5) For a rule r of the form A ⇐ L1, ..., Ln, XDB |= r if and only if for every
ground substitution θ, XDB |= θL1, ..., XDB |= θLn implies XDB |= θA

For example, let XDB denote the XML objects in Example 3. Then we have

XDB |= (www.abc.com/people.xml)/people/person : (@id : o123, name : Jane)
XDB |= ¬(www.abc.com/people.xml)/people/person : (name : Tony)
XDB |= count(〈John,Mary〉) > 1, first one(〈John,Mary〉) = John, 6 = 3 ∗ 2
XDB |= (@id : o123, name : Jane)(name : Jane)
XDB �|= (@id : o123, name : Jane)(name : Tony)

Definition 15. Let Q be a query. A model M of Q is a web database that
satisfies Q. A model M of Q is minimal if and only if for each model N of Q,
M � N .

Definition 16. Let XDB be an XML database and Q a set of query rules. The
immediate logical consequence operator TQ over XDB is defined as follows:

TQ(XDB) = 〈θA | A⇐ L1, ..., Ln ∈ Q and ∃ a ground substitutionθ
such that XDB |= θL1, ..., XDB |= θLn}

580 Mengchi Liu

Example 5. Consider query Q3 in Section 3.2. Then

TQ3(DB) =
〈(resultURL)/results/result:(author:(last:Date, first: C.),

〈Title:Introduction to DBMS〉),
(resultURL)/results/result:(author:(last:Date, first: C.),

〈Title:Foundation for ORDB〉),
(resultURL)/results/result:(author:(last:Darwen, first: D.),

〈Title: Foundation for ORDB 〉)〉
where resultURL ≡ file:///home/users/xml/result.xml.

Note that the operator TQ does not perform result construction. Therefore,
we introduce the following notions.

Definition 17. Two ground terms o and o′ are compatible if and only if one of
the following holds:

(1) both are constants and are equal;
(2) o ≡ a : oi and o′ ≡ a : o′i such that oi and o′i are compatible;
(3) both are grouping terms;
(4) o ≡ (X1, ..., Xn) and o′ ≡ (X ′

1, ..., X
′
n) such that Xi and X ′

i are compatible
for 1 ≤ i ≤ m.

For example, the following pairs are compatible:

John and John
Author:(last:Date, first: C.) and Author:(last:Date, first: C.)
〈Title : Databases〉 and 〈Title : XML〉
(author:(last:Date, first: C.), 〈Title: Database〉) and
(author:(last:Date, first: C.), 〈Title: Foundation for ORDB〉)

Definition 18. Two ground positive expression (u)/o and (u′)/o′ are compatible
if and only if u = u′ and o and o′ are compatible. A set of ground positive
expressions are compatible if and only if each pair of them are compatible.

For example, the set of ground positive expressions in Example 5 are com-
patible.

Definition 19. Let S be a set of ground positive expressions (terms) and S′ a
compatible subset of S. Then S′ is a maximal compatible set in S if there does
not exist a ground positive expressions (terms) o ∈ S − S′ that is compatible
with each element in S′.

Definition 20. Let S be a list of ground terms and � list concatenation oper-
ator. Then the constructing operator C is defined recursively on S as follows:

(1) If S is partitioned into n maximal compatible sets: S = S1 � ... � Sn with
n > 1, then C(S) = 〈C(S1), ..., C(Sn)〉.

A Logical Foundation for XML 581

(2) S = 〈o〉 then C(S) = o.
(3) If S is a compatible set of attribute terms or element terms: S = 〈a : o1, ...,

a : on〉, then C(S) = a : C(〈o1, ..., on〉).
(4) Let S = 〈〈X1〉, ..., 〈Xn〉〉 be a set of grouping terms of attribute or element

objects. If n = 1, then C(S) = C(X1). Otherwise,
C(S) = (C(X1), ..., C(Xn)).

(5) Let S be a set of compatible tuples S = 〈(X1, ..., Xm, Y1), ...(X1, ..., Xm, Yn)〉
where X1, ..., Xm are non-grouping terms and Y1, ..., Yn are grouping terms.
Then C(S) = (C(X1), ..., C(Xm), C(Y1), ..., C(Yn)).

The following is an constructing example:

C(〈bib: 〈book: (Title: Web)〉,
bib: 〈book: (Title: Databases)〉,
bib: 〈Journal: (Title: XML)〉〉)

= bib : C(〈〈book: (Title: Web)〉,
〈book: (Title: Databases)〉,
〈Journal: (Title: XML)〉〉) by (3)

= bib : (book: (Title: Web),
book: (Title: Databases),
Journal: (Title: XML)) by (4)

We extend the constructing operator to a list of ground positive expressions
as follows: if S is a compatible list of objects of the form (u)/o1, ..., (u)/on, then
C(S) = (u)/C(〈o1, ..., on〉). Otherwise, C is not defined.

Definition 21. The powers of the operation TQ over the XML database XDB
are defined as follows:

TQ ↑ 0(DB) = DB
TQ ↑ n(DB) = TQ(C(TQ ↑ n− 1(DB))) ∪ TQ ↑ n− 1(DB) if C is defined
TQ ↑ ω(DB) = ∪∞

n=0TQ ↑ n(DB) −DB if TQ ↑ n(DB) is defined

Continue with Example 5, we have

C(TQ3 ↑ ω(DB))
= C(〈(resultURL)/results/result :(author : (last : Date, first : C.),

〈Title : IntroductiontoDBMS〉),
(resultURL)/results/result : (author : (last : Date, first : C.),

〈Title : FoundationforORDB〉),
(resultURL)/results/result : (author : (last : Darwen, first : D.),

〈Title : FoundationforORDB〉)〉)
=(resultURL)/results : C(〈result : (author :(last : Date, first : C.),

〈Title : IntroductiontoDBMS〉),
result :(author :(last : Date, first : C.),

〈Title : FoundationforORDB〉),
result :(author :(last : Darwen, first : D.),

〈Title : FoundationforORDB〉)〉) by (3)

582 Mengchi Liu

=(resultURL)/results : (C(〈result:(author :(last:Date, first: C.),
〈Title : IntroductiontoDBMS〉)),

result : (author :(last:Date, first: C.),
〈Title : Foundation for ORDB〉)〉),

C(〈result : (author :(last:Darwen, first: D.),
〈Title : Foundation for ORDB〉)〉)) by (1)

=(resultURL)/results:(result : C(〈(author :(last:Date, first: C.),
〈Title : Introduction to DBMS〉)),

(author :(last:Date, first: C.),
〈Title : Foundation for ORDB〉)〉),

result : C(〈(author :(last:Darwen, first: D.),
〈Title : Foundation for ORDB〉)〉)) by (3)

=(resultURL)/results : [result : (author :(last:Date, first: C.),
Title : Introduction to DBMS,
Title : Foundation for ORDB〉),

result : (author :(last:Darwen, first: D.),
Title : Foundation for ORDB)) by (5)

Theorem 1. Let XDB be a web database and Q a set of query rules. Then
C(TQ ↑ ω(XDB)) is a minimal model of Q.

Definition 22. Let XDB be an XML database and Q a set of query rules.
Then the semantics of Q under XDB is given by C(TQ ↑ ω(XDB)).

4 Conclusion

In this paper, we have proposed a novel data model for XML that is able to
represent XML documents in a natural and direct way. It establishes relationship
between XML and complex object data models. Using this data model, we can
easily comprehend XML from database point of view.

We have also presented a rule-based query language based on the data model
proposed. Formal syntax and logic-based declarative semantics of XML-RL are
presented. XML-RL provides a simple but very powerful way to query XML
documents and to construct/restructure the query results. As defined, XML-RL
is capable of handling (recursive) queries that make use of partial information
of the given XML documents. A number of XML-RL queries are included in the
paper to demonstrate the usefulness of XML-RL.

The main novel features that make XML-RL simple to use is the introduc-
tion of grouping terms and the corresponding constructing operator so that the
querying part and the result constructing part can be strictly separated. More
importantly, we have provided a formal logic foundation that is lacking in other
XML query languages.

Indeed, other kinds of database query languages, such as calculus-based, can
also be developed based on our data model and the work done in the database
community for nested-relational and complex object databases.

A Logical Foundation for XML 583

We have implemented XML-RL using Java. The system will soon be available
from the Web site at http://www.scs.carleton.ca/∼mengchi/XML-RL/ after
further testing and debugging.

The language presented here is not a full-fledge one as our primary focus is
on the formal foundation. However, many other features can be added. We leave
it as our future work.

References

1. Document Object Model (DOM). http://www.w3.org/DOM/. 568
2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,

1995. 569
3. S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener. The Lorel Query

Language for Semistructured Data. Intl. Journal of Digital Libraries, 1(1):68–88,
1997. 569

4. S. Adler, A. Berglund, J. Caruso, S. Deach, P. Grosso, E. Gutentag, A. Milowski,
S. Parnell, J. Richman, and S. Zillies. Extensible Stylesheet Language (XSL)
Version 1.0. http://www.w3.org/TR/2000/CR-xsl-20001121, November 2001. 568,
569

5. C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur. Set Construction in a Logic Database
Language. Journal of Logic Programming, 10(3,4):181–232, 1991. 575

6. R. G. G. Cattell and D. Barry, editors. The Object Database Standard: ODMG
2.0. Morgan Kaufmann, Los Altos, CA, 1997. 569

7. S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-
GL: a Graphical Language for Querying and Restructuring WWW data. In Pro-
ceedings of the 8th International World Wide Web Conference, Toronto, Canada,
1999. 569

8. D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie. XML Query Require-
ments. http://www.w3.org/TR/2001/WD-xmlquery-req-20010215, February 2001.
569

9. D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu. XQuery:
A Query Languge for XML. http://www.w3.org/TR/2001/WD-xquery-20010215,
February 2001. 569

10. J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0.
http://www.w3.org/TR/1999/REC-xpath-19991116, November 2001. 569

11. J. Cowan and R. Tobin. XML Information Set Data Model.
http://www.w3.org/TR/xml-infoset, May 2001. 568

12. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu. XML-QL: A Query
Language for XML. http://www.w3.org/TR/1998/Note-xml-ql-19980819, August
1998. 569

13. P. Fankhauser, M. Fernández, A. Malhotra, M. Rys, J. Siméon, and P. Wadler. The
XML Query Algebra. http://www.w3.org/TR/2001/WD-Query-algebra-20010215,
February 2001. 569

14. M. Fernandez and J. Robie. XML Query Data Model.
http://www.w3.org/TR/2001/WD-Query-datamodel-20010215, February 2001.
568

15. M. Liu. Relationlog: A Typed Extension to Datalog with Sets and Tuples. Journal
of Logic Programming, 36(3):271–299, 1998. 575

16. J. D. Ullman. Principles of Database and Knowledge-Base Systems, volume 1.
Computer Science Press, 1988. 575

	A Logical Foundation for XML
	Introduction
	Data Model for XML
	Rule-Based Query Language for XML
	Syntax of XML-RL
	Query Examples
	Semantics of XML-RL

	Conclusion

