
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 600-611, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Towards a Framework
for Comparing Process Modelling Languages

Eva Söderström1, Birger Andersson2, Paul Johannesson2,
Erik Perjons2, and Benkt Wangler1

1 Department of Computer Science, University of Skövde
Box 408, 541 28 Skövde, Sweden

{eva.soderstrom,benkt.wangler}@ida.his.se
2 Department of Computer and Systems Sciences

Stockholm University/Royal Institute of Technology
Electrum 230, 164 40 Kista, Sweden
{ba,pajo,perjons}@dsv.su.se

Abstract. The increasing interest in process engineering and
application integration has resulted in the appearance of various new
process modelling languages. Understanding and comparing such
languages has therefore become a major problem in information
systems research and development. We suggest a framework to solve
this problem involving several instruments: a general process meta-
model with a table, an analysis of the event concept, and a classification
of concepts according to the interrogative pronouns: what, how, why,
who, when, and where. This framework can be used for several
purposes, such as translating between languages or verifying that
relevant organisational aspects have been captured. To validate the
framework, three different process modelling languages have been
compared: Business Modelling Language (BML), Event-driven Process
Chains (EPC) and UML State Diagrams.

1 Introduction

Business Process Modelling has become a major focus of attention in Information
Systems Engineering, in order to create efficiency, quality and customer satisfaction.
Process models can be used for planning, design, simulation and automatic execution
of business processes, e.g. in Workflow Management Systems and Process Brokers
[1, 2]. Furthermore, methods like Total Quality Management and Business Process
Reengineering, and software packages like SAP R/3 and Baan ERP all have put the
business processes in the centre of analysis. As a result, several different process
modelling languages have been developed, e.g. Business Modelling Language, Event-
driven Process Chains, and UML Activity and State Diagrams. However, these
languages often define and use concepts in different and sometimes ambiguous ways,
which makes comparisons between and integration of process models difficult.

Towards a Framework for Comparing Process Modelling Languages 601

Language comparison can be made easier by using e.g. a meta-model. The reason
is that the meta-model provides a graphical illustration of the basic concepts and their
relations that is easy to grasp even for non-experts on process modelling languages.
The purpose of this paper is to suggest a framework that aims at making comparisons
between business process modelling languages easier to perform. The framework
consists of several instruments: a general process meta-model, an analysis of the event
concept, and a classification of concepts according to the interrogative pronouns:
what, how, why, who, when, and where. The intended users of the framework are
IS/IT-managers, business people and other stakeholders involved in business process
management in different domains. The framework must therefore: firstly, be easy to
understand for people not familiar with process modelling; secondly, include basic
business concepts that are central to business process management (e.g. activity,
event, actor, location, resource and time); and thirdly, be extensible to enable users to
complement it with concepts of interest to a certain business domain.

The paper is structured as follows: Related research in Chapter 2 presents
approaches such as meta-modelling and ontology analysis for comparing and
evaluating process modelling languages. Chapter 3 presents a process meta-model, an
analysis of the event concept and a classification of the concepts according to the
interrogative pronouns. Chapter 4 introduces three process modelling languages: EPC,
UML State diagram and BML. In chapter 5, the meta-model is used to compare the
three such languages, and the result is presented in a in a table (referred to as a
�comparison matrix�). Chapter 6 contains conclusions and directions for further
research.

2 Related Research

Meta-models, ontologies and conceptual models are often used to describe and
analyse the relations between concepts. A model is an abstraction of phenomena in
the real world, and a meta-model is yet another abstraction highlighting properties of
the model itself [3]. Meta-modelling is closely related to, and to some extent
overlapping, ontology analysis and conceptual modelling.

Ontology is a philosophical discipline where the nature of the real world is studied.
Some ontologies attempt to define basic concepts in a certain domain, e.g. medicine
or automobile manufacturing, while others try to be more domain independent. The
Bunge, Wand and Weber (BWW) ontology [4, 5] is domain independent. Wand and
Weber [5, 6] have used the BWW ontology to provide a theoretical foundation for the
evaluation of information systems models. They assume that an information system
(IS) represents a real world system, and that it is built to manage information process
functions in this real world. They present a set of basic real world concepts that IS
models should be able to express. By mapping the concepts (e.g. thing, state, event
and system) to concepts in different languages, Wand and Weber discuss strengths
and weaknesses in these languages. However, some concepts in this ontology are
difficult for non-experts to map to concepts in everyday process modelling languages.

Examples of models of process concepts are the Workflow Management Coalition
WfMC reference model [7] and the FRISCO report [8]. In the WfMC reference
model, terminology, structure, components and interfaces for workflow management

602 Eva Söderström et al.

systems and languages are defined. The FRISCO report also defines central concepts
in the IS area (e.g. process, state and action), but its definitions of are different from
those given by WfMC. None of these models show how concepts from different types
of process modelling languages, e.g. activity-oriented, state-oriented and
communication-oriented languages, relate to one another. Activity-oriented languages
primarily describe which activities follow and precede another in a process. Examples
of such languages are UML Activity Diagram [9], Task Structures [10], and Event-
driven Process Chain (EPC) [11, 12]. State-oriented languages, for instance UML
State Diagram [9], describe which states follow and precede another in a process.
SDL [13] and Business Modeling Language (BML) [2, 14] are examples of
communication-oriented languages that focus on the interaction between people and
systems, and between systems.

The basic grammar of most process modelling languages derives from Petri nets
[15], which provide both a graphical description and formal definition of processes.
Researchers [16, 10] have mapped EPC and Task Structures to Petri nets to give the
languages formal semantics, and hence to verify the correctness (soundness) of the
process definitions. This approach could be used to compare different process
modelling languages, but Petri net analysis are for method experts and cannot easily
work as a platform for communication between business people. Furthermore, a
process modelling language for business process management must include more
concepts than just places, transitions and tokens that are present in classical Petri nets.

We have grouped the meta-model concepts according to a set of interrogative
pronouns to clarify what aspects of processes that different concepts represent. Other
researchers that use interrogative pronouns to structure their analysis are Zachman
[17] who uses them to classify a descriptive representation of an enterprise with focus
on managing and developing an enterprise�s system and Bunge [18] who uses the
pronouns to understand and separate basic types of domain-dependent problems.

3 The Framework

The framework will be explained starting with the basic concepts, before the meta-
model is introduced. Finally, we explain how and why the interrogative pronouns
have been used in the meta-model.

3.1 Basic Concepts

Most process modelling languages include at least four basic concepts: time point,
activity, state and event, i.e. these four concepts are the common denominators of
process modelling languages. Intuitively, a time point is an instant in time, not further
decomposable. An activity is a performance of some sort, possibly changing some
thing�s state, i.e. its set of properties. An event is a noteworthy occurrence. Usually,
one is interested in particular events associated with changes of state, i.e. activities are
involved in some way. Activities, states and the running of time can be thought of as
existing regardless of an observer but events are some facts about a thing that an
observer notice and records by some means.

Towards a Framework for Comparing Process Modelling Languages 603

Most process modelling languages agree on the general meaning of these concepts
and their definitions are usually precise but differ in some respects. The greatest
differences between the languages lie in the understanding of the relations between
the concepts. We claim that it is useful to consider an event as a connector that
connects states and activities in time as is schematically illustrated by the lines from
event to the other three concepts in Fig.1. One reason why languages differ is that
activities, states and time can be connected in many ways and this suggests that the
relations between the concepts are best understood by analysing the event concept.

Activity

Time Point

State

Event

Fig. 1. The intuitive relation between the event concept and other basic concepts

The following event types were identified in an analysis of the event concept from
the languages BML, UML State Diagram, and EPC:

• Events can either record a certain point in time (time point events) or record the
time between two time points (time duration events).

• Events can either record the start of an activity (pre-activity events) or record the
end of an activity (post-activity events).

• Events may record the change of a state (state change events) or not.

Using the event types described above in a language analysis, some conclusions
can be drawn about the languages and their use of the event concept. Firstly, the
languages define an event as non-similar combinations of the above mentioned event
types. For example, one language defines an event as a combination of post-activity
and state change events, i.e. the completion of an activity always leads to a change of
the process� state. Other languages define event as a combination of time point and
pre-activity events, and so on. Secondly, some languages do not recognise differences
between event types as they are presented above, e.g. by not distinguishing between
pre-activity and post-activity events.

3.2 The Meta-model

Figure 2 shows the meta-model, which is divided into two levels: type and instance.
On the type level, we find activity, resource, role and logical dependencies between
activities. On the instance level, we find event, state, actor, and temporal
dependencies between events. Thus, the meta-model includes some additional
concepts besides the basic ones to make it more useful in a business setting.

A process is modelled on a type level as a structure of logical dependencies
between activities. These activities use one or more resources as input, and produces
one or more resources as output. One specific type of resource, the role, is regarded to
be responsible for that one or more activities will be performed.

604 Eva Söderström et al.

The execution of a process is regarded to be a time-bound series of events, caused
by an actor. These events may result in a state change for a resource. An actor who
causes an event always has an intention with his/her actions to achieve a specific state
for a resource. The state can be either different from the resource�s current state, or it
can be the same state as the current one.

Rule

Activity

Fork Merge

Selection
Role

Information

4M

Resource

Sequence

Temporal
Dependency

Activity
Dependency

Time Point

Location
Event

Actor

Goal

State

After

Outputs

E_type

Inputs

Takes_place_at

ISA

ISA ISA

ISA

ISA

Has_intention

Cause

Relating_act

Related_act

Before

Occurs_at

Changes

ISA
ISA

ISA

Responsible

A_type S_type

Govern

Motivate

Why When WhereWho HowWhat

Time-point
Event

Duration
Event

Starts_at

Ends_at

Pre-Activity
Event

Post-Activity
Event

ISA

ISA

ISAISA

0..1

0..1

1..*

1..1

1..1

1..1
0..*

1..1

1..1

0..1

0..1

1..1

1..1

1..*

1..*
1..*

1..*

1..*

1..*

1..*

1..*

1..*

1..1

1..1

1..1
1..1

1..1

1..1

Process

Modelled_as

Executed_as

1..*

1..1

1..*

1..*

Fig. 2. The meta-model

An actor is regarded to be an instantiation of a role, a state is viewed as an instance
of a resource, and an event is an instance of an activity. In the latter case, our
perception of an activity is through the event that initiates and/or terminates it. An
event always occurs at a certain time point or between two time points on a certain
location.

3.3 Interrogative Pronouns

The interrogative pronouns: where, who, how, when, what and why, have been
inserted into the meta-model to enhance readability and understandability. They
provide an easy-to-grasp classification of the concepts according to various aspects,
and also give an intuitive meaning to the abstract concepts.

This classification can help organisations to ask questions about their processes
and process models, and to aid organisations in selecting the process modelling
language appropriate to their business. For example, an organisation for which actors
are central can exclude languages that do not model actors, i.e. languages that
disregard from the �who� aspect.

Towards a Framework for Comparing Process Modelling Languages 605

4 Process Modelling Languages

EPC, UML State Diagram and BML represent different types of process modelling
languages: an activity-oriented, a state-oriented, and a communication-oriented (see
section 2). The three languages are considered to be representative of their respective
category, which motivates their presence in this paper. Following are a short
presentation of the languages, and a description of how the event concept is used in
respective language. This section includes as an example a very short snippet of a
manufacturing process to show language symbols and how they are used.

4.1 Event-Driven Process Chains (EPC)

Event-driven Process Chains (EPC) [11] is used for instance to describe business
processes in the SAP/R3 enterprise system. The EPC diagrams are also embedded and
used in the process view of the Architecture of Integrated Information System (ARIS)
framework that integrates five different perspectives or views (data, function,
organisation, output and process) of an organisation [12].

EPC is a graph with active nodes, called functions (soft rectangles), and passive
nodes, called events (hexagons), see Fig. 3 (left). In EPC, a process is considered to
be a chain of business functions to be executed, and of events describing the situation
before and after each function. EPC does not explicitly use the state concept. The
logical relationships and dependencies between functions and events are described
using logical connectors (circles including the logical AND, OR and XOR) and
control flow (arrows). The EPC diagram of Fig. 3 shows that two events, Order
received and Production date arrived must occur before the business function
Manufacturing can take place. When the function is completed, two additional events
must occur: Product in store and Order executed. The function nodes can be
connected to information, material, product and services and responsible
organisational unit, by adding the other views of the ARIS framework. This is not
included in Fig. 3.

EPC explicitly uses the following event types:

• Pre-activity events (i.e. the events before the functions in the EPC diagram).
• Post-activity events (i.e. the events after the functions in the EPC diagram).

EPC does not use the following event types:

• State change events (because EPC does not explicit use the concept state)

EPC does not explicitly distinguish between following event types:

• Time point events and Time duration events

Note that EPC does not explicitly combine any event types.

606 Eva Söderström et al.

Order
received

 Manufacturing

&

Order
executed

Product
in store

&

Production
date arrived

StateOrder
received

 (and)

Produktion
date arrived

Product in
store

 (and)

Order
executed

Do activity/

Manufacturing

Wait
for

Event

Order
received

Production
date

arrived
Send to
Manu-

facturing

Wait
for

Event

Product
in store

Order
executed End

Fig. 3. Three different modelling languages: EPC (left), UML State Diagram (top, right) and
BML (down, right)

4.2 UML State Diagram (SD)

The Unified Modelling Language (UML) [19] is an industry standard maintained by
the Object Management Group (OMG) [9]. The state � or state-chart � diagram (SD)
is one of several diagram types in UML. SD is a graphical representation of a state
machine and visualises how and under what circumstances a modelled element, e.g. a
UML class, a system or a business process, changes its state. SD is also used to show
which activities that are executed as a result of events. The SD graph uses symbols for
states (soft rectangles), transitions (arrows), events (text labels), and activities (text
labels), and always includes a start state (solid circle) and one or more final states
(�bulls-eye�), see Fig. 3 (right, top).

A state consists three components: name, variables (describing local variables like
counters and timers), and activities; where all but the name component is optional.
The state symbol is divided into three compartments to illustrate this division. The
difference between an action and an activity is that an action is non-divisible and non-
interruptible, and that an activity can contain several actions. There are three different
types of actions/activities associated with the state of a modelled element: entry
action (performed when entering the state); exit action (performed when exiting the
state), and do activity (performed while in the state). Fig. 3 only shows the do activity
Manufacturing. A state that does not contain any activities is called a wait state.

State changes are called transitions (arrows connecting the states). A transition
occurs if an event occurs and aborts an ongoing do activity, or if a do activity has
been completed and triggered a completion event. However, before a transition can
occur, an optional condition called "guard" must be evaluated. If the guard evaluates
to true, the transition occurs, otherwise it will not. During a transition certain actions
can be performed. A SD considers events to occur instantaneously, while states have
duration, but UML does not hinder modellers to redefine events to have duration and
states to have no duration. Some additional event types from UML state diagrams are
omitted in this paper for the sake of brevity.

Towards a Framework for Comparing Process Modelling Languages 607

SD explicitly uses the following simple or combined event types:

• Post-activity events (i.e. an event occurs, which aborts an ongoing do activity,
but does not trigger a transition since a guard is evaluated to false).

• Post-activity events and State change events (i.e. an event occurs, which both
aborts an ongoing do activity and triggers a transition).

• Post-activity events, and Pre-activity events (i.e. an event occurs, which both
aborts an ongoing do activity and initiates the exit action, but does not trigger
a transition because a guard is evaluated false).

• Post-activity events, Pre-activity events and State change events (i.e. an event
occurs, which both aborts an ongoing do activity, initiates an optional exit
action, triggers a transition, triggers some optional actions while in transition,
and initiates optional entry action and do activities in the next state).

• State change events (i.e. an event occurs, and the state is a wait state, and the
event triggers a transition).

• Pre-activity events (i.e. an event occurs, and the state is a wait state, and the
event initiates an exit action, but does not trigger a transition because a guard
is evaluated to false).

• Pre-activity events, and State change events (i.e. an event occurs, and the state is
a wait state, and the event both initiates an optional exit action, triggers a
transition, trigger some optional actions while in transition, and initiates
optional entry action and do activities in the next state).

SD does not explicitly distinguish between the following event types:

• Time point events and Time duration events

4.3 Business Modelling Language (BML)

The Business Modelling Language (BML) is used in a Process Broker [2], the
Visuera Process Manager [14]. BML focuses on describing interactions between
systems through the sending and receiving of messages. The language has similarities
to SDL (Specification and Description Language) [13], but is more adapted to
application integration. One important feature of BML is that it can be used for
business specification and design as well as for the execution of systems.

BML describes structure and behaviour of a system by using two kinds of
diagrams. The Business Process Integration (BPI) diagram shows the system structure
in terms of its logical decomposition into parts and the communication taking place
between the system and its environment, i.e. external applications and human agents.
The communication metaphor is sending and receiving messages through a channel.
The Business Integration Application (BIA) diagrams describe the dynamic behaviour
of the system, visualising when the system sends and receives messages, the rules for
handling messages and what activities to perform depending on the messages�
contents.

The BML symbols in the process diagram (BIA), some of which are presented in
Fig. 2 (right, down), are: Receive message (concave box), Send message (convex
box), and State (circle). Further BML symbols are: Start timer (hourglass �full of
time�), Expire timer (hourglass �out of time�), Business activity (rectangle, not

608 Eva Söderström et al.

shown), and Automated business decision (rhombus, not shown), which shows what
paths should be taken through the process according to business rules. BIA always
includes a start state (circle without name) and one or more End states (circle with the
label �End�). A BIA can visualise to which application, human agent or process that a
message is sent to or received from, by using labels (or icons) above the diagram�s
send and receive symbols (not shown in Fig. 2).

An instance of a BIA can either be in a state or in transition from one state to
another. A transition is initiated when a message is received or when a timer is
expired. Activities that may occur during the transition, e.g. Send message and Start
timer, are considered to happen instantaneously.

BML explicitly uses the following combined event types:

• Time point events, Pre-activity events and State change events (i.e. a Receive
Message or Expire Timer triggers one or several activities, i.e. Send message,
Start timer and/or, Business activity, and a transition.)

• Time point events and State change events, (i.e. a Receive Message or BML
Expire Timer triggers a BML transition, but not an activity.

BML does not explicitly use the following event types:

• Post-activity events
• Time duration events

5 Language Comparison

Results from comparing process modelling language using the meta-model is
presented in Table 1. The table provides a structured overview of defined concepts,
and clearly indicates some differences between the languages. For example, empty
boxes in the table illustrate that a particular language does not explicity express this
concept. Anyone creating and using the table for language selection is made aware of
this fact and can eliminate a language that cannot express desired concepts or extend
it with the missing concept. Furthermore, the table makes differences in definitions
between the languages explicit, which enables organisations to discover languages
which defines and uses concepts in ways similar to the organisation itself. Creating
the table may also provide an opportunity for organisations to reflect about the way
they define their own concepts and consider alternative definitions.

6 Summary and Further Research

The framework presented in this paper consists of a meta-model of process concepts
with a comparison matrix, a classification of the concepts according to interrogative
pronouns, and an analysis of the event concept. It aims at making comparisons
between various process modelling languages easier. In this summary, we will
highlight contributions and strengths of both the parts, and of the framework as a
whole. Since the parts provide slightly different views of the same phenomenon, some
of their contributions will be the same.

Towards a Framework for Comparing Process Modelling Languages 609

Table 1. Comparison of EPC, BML and UML SD

Concept EPC BML SD
Time Point
Event Uses two simple

events types:
1) Pre-activity events
2) Post-activity events

Uses two
combinations of event
types:
1) Time point+ Pre-
activity+State change
events.
2) Time point+State
change events.
Both correspond to
the BML concepts
�Receive Message�
and �Expire Timer�

Uses seven simple or
combined event types,
see section 4.2.

State Corresponds to the
BML concept �Wait
for Event�

Corresponds to the
SD concepts �State�
and �Wait State�

Activity Corresponds to EPC
concept �Function�

Corresponds to the
BML concepts
�Business activity�,
�Send message� and
�Start timer�

Corresponds to the
SD concepts �entry
action�, �do activity�
and �exit action�

Process Corresponds to a
partially ordered set
of logically dependent
�functions�

Corresponds to a
partially ordered set
of logically dependent
�business activities�

Corresponds to a
partially ordered set
of logically dependent
�actions/activities�

Rules Corresponds to a set
of pre- and post
conditions (�events�)
that must be true
before and after an
�function�

Corresponds the BML
concept �Automated
business decisions�

Corresponds to a set
of conditions on the
�transitions�

Resource Corresponds to the
EPC concept
�Resource�.

Corresponds to the
BML concept �BIA �

Corresponds to the
SD concept �Class �

Actor Corresponds to the
BML concepts
�BIA�, �application�,
and human agent,
capable of sending
�messages� at a time
point.

Corresponds to the
SD concept �Object�
capable of producing
an �event�.

Location

Starting with the meta-model, one contribution is that it explores basic definitions
of concepts used in various process modelling languages. Furthermore, the meta-

610 Eva Söderström et al.

model is extensible and can thus be adapted to different business domains. It also
enables organisations to cover many different organisational aspects through the use
of the interrogative pronouns. These pronouns provide understandability, readability,
and an easy-to-grasp classification of concepts. The meta-model still needs some
work, however, such as a deeper exploration into all the meta-model concepts, and
real life cases through which the extensibility of the meta-model can be shown.

By using a comparison matrix (or table) to present the results from applying the
meta-model, several contributions can be identified. The matrix provides a structured
overview of defined concepts, and an explicit illustration of definitional differences
between the languages. This enables organisations to identify the language that best
suits the organisation�s own definitions and intentions. Should an organisation lack
explicit definitions of its concepts, the matrix can provide a basis for creating such
definitions.

By analysing the event concept, we have highlighted that some major differences
between the languages lie in how they use this concept. However, the other basic
concepts (activity and state) also need to be analysed to enhance the usefulness of the
framework, as do the concepts in the complete meta-model (rule, resource, actor, and
goal).

The framework as a whole was validated by comparing three different process
modelling languages: BML, EPC and UML SD. The comparison shows that the
framework can be used for several purposes, many of them already described in this
chapter. Different process modelling languages can be compared with respect to their
concepts definitions, concept relationships, and correspondences of concepts between
languages. The result provides a basis for selecting the process modelling language
that best suites the organisational needs. The framework can also be used as a
translation instrument between process modelling languages, and to identify what
organisational aspects that the languages cover. As mentioned, the framework still
needs some work: a method for using the framework, including step-by-step
guidelines for how to perform e.g. language comparisons, needs to be developed.
Furthermore, more formal definitions of the basic concepts are needed, as are
experiences from real life case studies where the framework is applied, validated and
verified.

References

1. Linthicum, D.: Enterprise Application Intergration, Addison-Wesley (2000).
2. Johannesson, P., Perjons, E.: Design Principles for process modelling in

enterprise application integration, Information Systems, 26:165-184 (2001)
3. van Gigch, J. P (1991) System Design Modeling and Metamodeling. Plenum

Press, New York. ISBN 0-306-43740-6
4. Bunge, M.: Treatise on Basic Philosophy Vol 3, Ontology I: The Furniture of

the World, Reidel, Dordrecht, Boston (1977)
5. Wand, Y.: Ontology as a Foudation for Meta-modelling and method

engineering, In: Information and Software Technology 38 (1996), 281-287
6. Wand, Y., Weber, R.: An Ontological Model of an Information System, In:

IEEE Transactions on Software Engineering, 11 (1990), p 1282-1290

Towards a Framework for Comparing Process Modelling Languages 611

7. Reference Model - The Workflow Reference Model, WFMC-TC-1003, 19-Jan-
95 (1995), 1.1, and Terminology & Glossary, WFMC-TC-1011, Feb-1999, 3.0
(1999). Available at: http://www.aiim.org/wfmc/mainframe.htm

8. The FRISCO Report, A Framework of Information System Concept, IFIP
(1998), available at: http://www.liacs.nl/~verrynst/frisco.html

9. OMG Unified Modelling Language Specification, Version 1.3. (1999), available
at: http://www.oml.org

10. van der Aalst, W. M. P, Ter Hofstede, A. H. M.: Verification of Workflow Task
Structures: A Petri-net-based Approach, Information Systems, vol. 25, no. 1
(2000)

11. Keller, G., Nüttgens, M. , Scheer, A.W.: Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89, University of Saarland, Saarbrücken
(1992)

12. Sheer, A.: ARIS-Business Process Modelling. Springer-Verlag, Berlin (1998)
13. Belina, F., Hogrefe, D., Amardeo, S.: SDL with Applications from Protocol

Specification. Carl Hanser Verlag and Prentice Hall International, UK (1991)
14. Wåhlander, C., Nilsson, M., Törnebohm, J.: Visuera PM Introduction,

Copyright Visuera AB (2001)
15. Reisig, W.: Petri Nets: an introduction. Springer-Verlag, Berlin (1985)
16. van der Aalst, W. M. P: Formalization and Verification of Event-driven Process

Chains, In: Information and Software Technology, 41(10):639-650, (1999)
17. Zachman, J.: Enterprise Architecture: The Issue of the Century In: Zifa

Framwork Articles (1996), available at: http://www.zifa.com
18. Bunge, M.: Scientific Research I, Springer-Verlag, (1967)
19. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language

reference manual, Addison Wesley Longman Inc. (1999)

	Introduction
	Related Research
	The Framework
	Basic Concepts
	The Meta-model
	Interrogative Pronouns

	Process Modelling Languages
	Event-Driven Process Chains (EPC)
	UML State Diagram (SD)
	Business Modelling Language (BML)

	Language Comparison
	Summary and Further Research
	References

