
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 612-625, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Generic Models for Engineering Methods
of Diverse Domains

N. Prakash1 and M. P. S. Bhatia2

1JIIT A10, Sector 62 NOIDA 201307,India
praknav@hotmail.com

2NSIT Sector 3, Dwarka, New Delhi 110045, India
bhatia_mps@hotmail.com

Abstract. The 3-layer architecture for methods consisting of the
generic model, meta-model, and method layers is considered and the
advantages of introducing the generic layer are brought out. It is argued
that this layer helps in method selection, construction of methods in
diverse domains and has the potential of rapidly engineering methods.
A generic model is introduced and then instantiated from meta-models
from the Information Systems and Robotics and Project Planning
domains. Thereafter methods are produced by an instantiation of these
meta-models. Computer based support for the 3-layer architecture is
considered and notion of a generic-CASE tool is introduced.

1 Introduction

A number of meta-models (Gro97, Pra97a, Pra97b, Pra99a, Pra99b, Rol95, Sou91)
have been developed in the last decade for a range of uses

• Understanding conceptual models of the 1970s and 1980s
• Identifying commonalties between models
• Representing product and process aspects of methods
• Understanding process models
• Representing quality aspects of methods
• Developing techniques for Requirements Engineering
• Investigating Data Warehouses

Indeed meta-models have emerged as a principal means to understanding the
activities seen in the area of Information Systems. Meta-modelling has been used in
the development of CASE tools including those for Requirements Engineering. It has
also been used for Method Engineering and more specifically, in the development of
CAME tools.

In method engineering, meta-models provide an abstraction of method concepts,
inter-relationships between these, and constraints binding these together into a
coherent system that forms a method. However, as noted in (Pra97a), whereas meta-
models provide useful abstractions of methods, they do not clearly articulate the

Generic Models for Engineering Methods of Diverse Domains 613

essential nature of the methods they deal with and do not address the critical issue of
what is a method. Consequently, the class of methods being modelled in a meta-
model determines the nature of methods assumed by the meta-model. Thus, in their
early period, meta-models emphasised only the product aspects of methods. Later, the
dichotomy of product and process aspects was modelled or the process aspects were
emphasised.

A comprehensive 3-layer framework was proposed (Pra99a) in which the highest
layer is the generic layer where the nature of a method is articulated, the middle layer
is the meta-model layer and, finally, the lowest layer is the method layer. The
successive layers were seen as instantiations of their immediately higher layer. This
framework was illustrated with a generic model whose instantiation resulted in a
meta-model of a method that, in turn, was instantiated as a method. Subsequently, the
method engineering activity to support this and an associated CAME tool called
MERU (Gup01), have been developed.

In this paper, we focus on the generic layer and raise two questions. The first is
concerning the usefulness of the generic layer itself: What does it achieve? what does
it get for us? As indicated earlier, we believe that the generic layer deals with the
essential nature of methods and makes explicit the domain of these methods. It helps
in the following ways:

Since it makes explicit the nature of the domain, it promotes the development of
methods and processes specific to that domain. We expect this to lead to greater
method acceptability among application engineers.

Again, by making explicit the nature of domain, it helps us in understanding and
comparing different domains.

It helps in meta-method engineering. A meta-model can be checked out for
consistency and completeness under the generic view. This can be facilitated by
constructing Generic-CAME tools.

A Generic tool can be developed to produce CASE tools directly from domain
specific models thus speeding up the construction of domain specific tools.

The generic approach can also be used for simulating real process and real systems
before they are actually implemented. For example, in the Robotics domain, the entire
robot can be conceptualised, and a method produced. Using CASE support,
application processes can be built to check that the robot does, in fact, handle the
proposed range of tasks. If not then the robot can be re-conceptualised. Thus, before
constructing the real robot, its viability can be fully established.

The second question we raise here is regarding the generic model inhabiting the
generic layer. What is the system of concepts that makes the generic model truly
generic? In other words, can the generic model be used for methods of a wide range
of domains, not just the IS domain? Indeed, if such a generic model can be found then
the domain of IS would contribute significantly to other domains.

In this paper we first present a generic model. Thereafter we consider three meta-
models, one in the domain of Information Systems, Robotics and Project Planning.
We show that these could be defined by instantiating the generic model. We then
consider the method level for the Information Systems, the Robotics and the Project
Management domains by instantiating the meta-models. The advantages of these
approaches in the three cases are then brought out.

614 N. Prakash and M. P. S. Bhatia

The layout of the papers is as follows. In the next section, the generic model is
presented. Thereafter in sections 3, 4 and 5 respectively the Information Systems,
Robotics and Project Planning meta-models are presented. Also, an instantiation of
these to yield methods is considered in these sections. The differences between the
meta-models of the three domains are highlighted. In section 5 we outline the nature
of the computer support that can be provided. Generic-CASE tools at higher level of
abstraction then the meta-CASE tools of today. The generic-CASE tool is at two
levels.

2 The Generic Model

The Generic View of a method (Pra99b) is based on the view of a method as an
artifact that provides the capability to construct a product. A method has two aspects
to it, its static and dynamic properties. Static properties of interest, from a modeling
point of view, are those that describe the holistic structure of the artifact, identify the
component parts of the artifact, and bring out the inter-relationships between these
components. The dynamic properties of artifacts are those that describe the interaction
of the artifact with its environment. This interaction may be viewed in holistic terms,
as the interaction of the entire artifact, or in terms of its components.

Generic Statics
 and
Generic Dynamics

Meta-model Statics
 and
Meta-model Dynamics

Method Statics
 and
Method Dynamics

Fig. 1: The Three-Layered Architecture

As shown in Fig. 1 a method is organised in three layers, the generic layer, the
meta-model, and the method layer. Each lower layer is an instantiation of its
immediately higher layer.

In the generic view, the interest is on the intrinsic notion of a method, namely, (a)
what it is, (b) what it can do, (c) how this capability is achieved, (d) what kinds of
methods exist and what are their inter-relationships. Thus, the generic view looks at
methods in meta-model independent terms and seeks to uncover their very essence. In
this paper, we will deal with method statics: generic, meta-model, and method. The
genericity of method dynamics is the subject of another paper.

Generic Models for Engineering Methods of Diverse Domains 615

Generic Method Statics

In this section we provide an overview of generic method statics. Details can be found
in (Pra97a) and (Par97b).

 Method blockMethod

has
depends on

approach

product
type

process type

objective
composed
of

atomic transformational

compound
product
manipulation

constructional
compositional
constraint
enforcement

product
composition

constraint
enforcement

product
model

belongs
to

#

1,N 1,N

1,N

1,N

1,N 1,N
1,N

1,N

1,N
1,N

Fig. 2: Generic Method Statics

As shown in Fig. 2, there are two kinds of methods, transformational and
constructional. A transformational method is used for transforming a product,
expressed in one or more product models, into a product of other product model(s). In
contrast, a constructional method is used whenever a new product, expressed in one
or more product models, is to be constructed.

Any method can be atomic or compound. An atomic method deals only with those
products, which are expressed, in exactly one product model. A constructional
method, which builds products for the ER model, is atomic since the product is
expressed in exactly one model. Similarly, the transformational method for converting
an ER product into a relational product is atomic since each of the products is
expressed in exactly one product model. On the other hand, as shown in Fig. 2, a
compound method is composed out of other simpler methods. For example, the
constructional atomic methods to construct the OM, the FM, and the DM products of
OMT, compose the constructional compound method of OMT.

We view a method (Fig. 2) as a set of method blocks. When expressed in terms of
method blocks, compound methods are composed of method blocks, which belong to
several methods whereas all method blocks of an atomic method belong to the atomic
method only. A method block is a pair, <objective, approach>. The objective of a
method block tells us what the block tries to achieve. The approach tells us the
technique that can be used to achieve the objective of the block. An objective itself is
a pair <product type, process type>.

As shown in the figure, product types belong to a product model. For each product
type of the product model, the process types that act upon it are associated with it to
yield the objectives of the method. Method blocks do not exist independently of one
another. Instead they exhibit dependencies among themselves. In (Pra97a) we have
postulated four kinds of dependencies. Details can be found there.

616 N. Prakash and M. P. S. Bhatia

3 The Information Systems Meta-model

The Information Systems domain aims to build teleological systems that mirror the
real world. This domain deals with passive systems embedded in an environment. The
environment sends a stimulus to the Information System, which responds to it. The
domain is passive in the sense that it cannot perform an action without a stimulus.
This makes the domain well suited to the development of transaction based systems.
In this section, we outline the method meta-model statics of (Pra97a). The meta-
model is an instantiation of the generic view. A decision is instance of the method
block, a purpose of objective, a purpose-approach (p-approach for brevity) of
approach. Therefore, a method is a set of decisions and a decision is a pair, <purpose,
p-approach>.

3.1 Meta-model Statics

There are two kinds of product types: conceptual structures and fixed structures.
Similarly there are two kinds of process types, production manipulation which
operates on the former and quality enforcement for manipulating the latter. These
have been dealt with in (Pra97a) and (Pra99b) respectively.

As shown in Fig 3, conceptual structures can be partitioned into two clusters. The
first cluster classifies them as either simple or complex. The second cluster partitions
conceptual structures into disjoint classes of structures called constraint, definitional,
constructional, link, and collection of concepts respectively.
 A simple conceptual structure cannot be broken up into any components. It is
atomic. Complex conceptual structures are constructed out of others which may
themselves be complex or simple.

conceptual
structure

definitional constructional Linkconstraintsimple

complex

collection
of
concepts

##

Fig. 3: The Conceptual Structure

There are five kinds of conceptual structures:

• Constructional: Constructional structures are used to represent the architecture of
the product. For example, in order to display a conceptual schema expressed in
ER terms, Chen uses the notions of entity and relationship respectively.

• Link: Product models use links extensively. For example, ISA links and
aggregation links.

• Collection of Concepts: These are constructed whenever structures are connected
by links. Aggregations, specialisation hierarchies, and subtype hierarchies are
examples of such collections.

Generic Models for Engineering Methods of Diverse Domains 617

• Definitional: They define the properties of conceptual structures.
• Constraint: Constraints impose application-related integrity constraints on

conceptual structures. For example, such a constraint could say that the ages of
employees should be less than 65 years.

3.1.1 Fixed Structures

Fixed structures (Pra99a) are those which cannot be created or destroyed by
application engineers. They identify the criteria that must be met by a good quality
product. There are four kinds of fixed structures as shown in Fig. 4.

Fixed Structure

Method
Constraint

Heuristic Design
Factor

Environmental
Factor

Fig. 4: The Fixed Structure

Environmental factors are fixed structures that specify the properties of the product as
part of the environment in which it is embedded. These factors look after the various
'ilities' of software engineering, reliability, maintainability, usability, re-usability etc.

Design factors define method aims that are integral to method use. When translated
into products, the resulting product is good because it meets method aims. For
example, modularity is essential in object-oriented models and therefore is a design
factor for such models. Heuristics are defined in methods to control the quality of the
product. They provide rules of the thumb for good quality products and identify the
bounds/criteria for acceptable products under the method.
 Method constraints (Pra97a) deal with the restrictions that make conceptual
structures well defined and well formed. There are four kinds of method constraints,
completeness, conformity, fidelity, and consistency constraints.

3.1.2 The Operation

Operations identify the set of process types that operate upon product types to provide
product manipulation and quality checking capability to application engineers.
Operations are classified into two four classes (Fig. 5)

• Basic Life Cycle : for the creation and deletion of instance of structures
• Relational: for establishing relationships between concepts
• Integration: for building constructional/transformational products.
• Fixed Structure Enforcement: for quality enforcement

618 N. Prakash and M. P. S. Bhatia

operation

in teg ration basic life cycle re la tional fixed struc tu re
en fo rcem en t

m ethod constrain t
enfo rcem ent heuristic

en fo rcem en t
design facto r
en fo rcem ent

env ironm en ta l
fac to r
en fo rcem en t

Fig. 5: The Operation

There are two operations in the basic life cycle class, create and delete. The relational
class of operations is axiomatically defined and this definition can be found in
(Pra97a)

3.1.3 Defining Decisions

A decision is an instance of a method block. In the meta-model, a decision has two
components to it, the purpose and the p-approach. The purpose of the decision is a
statement of what the decision wants to achieve. There can be many ways of
achieving the purpose and this aspect is embodied in the p-approach. Thus,

Decision = < Purpose, P-approach >

A purpose is an instance of the objective of the generic model. It is a pair

Purpose = <structure, operation>

Thus, the following are purposes

<simple constructional structure, create>
<simple constructional structure, simple constructional structure, ISA link, relate>

3.2 Validating the Information System Meta-model

The validity of the foregoing meta-model has been established in (Gup01) and we
only outline this here. Consider a method having the following concepts:

Cardinality, functionality, attributes, primary key, entity, relationship.

An instantiation of the meta-model is as follows

• Simple definitional concepts: cardinality, functionality
• Complex definitional concepts: attribute, primary key
• Simple constructional concepts: entity
• Complex constructional concept: relationship

Generic Models for Engineering Methods of Diverse Domains 619

A part of the total set of purposes is given below. The full set of purposes can be
found in (Gup01).

<attribute, create>
<entity, create>
<relationship, create>
<entity, attribute, attach>
<entity, relationship, associate>

4 The Robotics Meta-model

In this section we consider building methods for the domain of Robotics. Unlike the
Information Systems domain that we term as passive, we view the Robotics domain
as active. Information systems are transaction-based and respond to stimuli from their
environments. In contrast, robots perform specific tasks spontaneously and are
programmed with the method to carry out these tasks. It is in this sense that the
Robotics domain is active.
A robot can behave differently depending on the process that it is programmed to
carry out. However, a robot addresses a class of tasks, and processes can be defined
that fall into this class. Robots are similar to models like ER: just as a number of
processes can be defined to build ER schemata so also a number of processes can be
defined for a robot to carry out specific tasks. This is shown in the bottom row of
Table 1. Just as it is possible to build meta-models that are an abstraction of the
methods in the Information Systems domain, it is possible to build meta-models for
robots that abstract their essential features into meta-models. This correspondence is
shown in Table 1. Finally, the common properties of meta-models are abstracted out
into the generic model of section 2.

Table 1. Correspondence between IS and Robotics Domains

Information Systems Robotics
Generic Model Generic Model
Information Systems Meta-models Robotic Meta-models
IS Method like ER, SHM Robot like Mitsubishi Industrial Robot

Our Robotics meta-model is presented in Figs. 6 to 7. In the rest of this section we
show that this meta-model itself is an instantiation of the generic model and by doing
so, we establish the genericity of the generic model. Thereafter, we instantiate the
meta-model with the Mitsubishi Industrial Micro Robot System RV-IV (Mitsu) to
show that the meta-model is valid.

The instantiation of the generic model is shown in Table 2.

Table 2. : The Instantiation of the Generic Method

Generic Concept Robotics Meta-model Concept
Product type Object
Process type Action
Objective Ability

620 N. Prakash and M. P. S. Bhatia

The notion of an object is elaborated in Fig. 6. As shown, an object can be either an
Operator or a Product. Operator refers to a component of a robot that has to be
controlled, for example, its arm. Product is the object on which the operator acts. It is
the real object which is to be manipulated by the operator, for example, a physical
thing that has to be picked up, a screw that is to be tightened etc. Fig. 6 also shows
that Object has attributes. Attributes capture the different properties that
Operator/Product may have. For example, an operator which is the arm of a Robot
may have as attributes the speed and direction of movement.

Operator Product

has

#

Object Attributes1,N 1, N

Fig. 6: The Object Meta-Concept

The notion of Action is shown in Fig. 7. There are two kinds of action, primitive and
compound. Primitive actions cannot be decomposed into simpler ones whereas a
compound action is built of other simpler actions. An example of an action is Move
Robot Arm.

A ctio n

C o m p o u n dP rim itiv e

B u ilt o f

1

N

Fig. 7. The Action meta-concept

As shown in Table 2, an ability is an instantiation of objective. It is a pair, <object,
action>.

4.1 Validating the Meta-model

The Mitsubishi Industrial Micro Robot System RV-IV robot can be integrated with a
PC and can be used to pick and place physical objects. It is possible to control the
robot through parameters like speed of movement and direction etc. The arm of this
robot is an instance of Operator. It has the attributes speed, gripper_status, and
pressure. Product is any item that has to be picked up and placed in some position by
the robot. The instantiation of the Robotic meta-model is given in Table 3. We have

Generic Models for Engineering Methods of Diverse Domains 621

listed out only some of the primitive and compound actions of this robot. Full details
can be found in (Mitsu).

Table 3. Instantiation of the Robotic Meta-model

Meta-model concepts Concepts of Robot System
Operator Robot arm
 Product Item (to be picked)
 Attribute Speed, gripper_status, pressure
 Primitive Action MP(Move Position), MS(Move

Straight), MT(Move Tool), GC(Grip
Close), GO(Grip Open), GP(Grip
Pressure)

 Compound Action Movemaster program

The set of abilities defines the full instruction set of the robot and can be used to
simulate the behaviour of the robot. In this sense the abilities are a specification of the
functionality of the robot. A partial set of abilities of the robot is given below.

<Robot arm, MP>
<Robot arm, MS>
<Robot arm, GC>
<Robot arm, GO>
<Item, MT>
<Item, GP>

5 Project Planning Meta-model

To establish the genericity of the generic model, we now consider another passive
domain, that of project planning and management. Project planning involves the
completion of numerous activities (project components) by various resources-men
materials, machines, money, and time �so that a project on paper is translated into
concrete reality.

As for the other two domains, we will adopt the three-layer architecture for
methods. At the highest level is the generic model. Below this is the meta-model that,
in this case, will abstract out the common properties of project planning methods. At
the lowest level, are the methods themselves that are instantiations of the project
planning meta-model. The instantiation of the generic view with a project planning
meta-model is shown in Table 4.

Table 4. The Instantiation of the Generic Method

Generic Concept Project Planning Meta-model
Concept

Product type Project Concept
Process type Operation
Objective Capability

622 N. Prakash and M. P. S. Bhatia

The Project Planning meta-model is shown in Fig. 8 and 9. There are two kinds of
project concepts, components and constraints. Constraints are similar to method
constraints and impose restrictions on well-formedness and well-definedness of the
project plan. Components are concepts that are used in the representation of the
project plan. These can be activities or events. Activities are long-duration actions
that are triggered by events. The Figure shows that components have attributes. Thus,
for example, an activity has a cost, a start time and an end time.

Component

Activity Event

AttributesHasResources Uses 1 N1,N 1,N

Project Concept

Constraint

Fig. 8. The Project Concept of the Meta-model

The operations that can be performed on project concepts are shown in Fig. 9.
There are two kinds of operations, those that enforce constraints and those for
manipulating components. The latter are partitioned into basic life cycle and
combinational classes of operations. Basic life cycle operations are used for
creating/deleting components whereas combinational operations allow components to
be related to one another. For example, the start event of an activity can be associated
with it by a combinational operation.

Operation

Component Manipulation Constraint Enforcement

Combinational Basic Life Cycle

Fig. 9: Operations of the Project Planning Meta-Model

5.1 Validating the Meta-model

The activities of a project have inter-relationships arising from physical, technical,
and other considerations. For proper planning, scheduling, and control of activities,
network techniques have been found quite useful. We consider the construction of

Generic Models for Engineering Methods of Diverse Domains 623

such networks here. There are two basic network techniques: PERT and CPM. The
orientation of PERT is �probabilistic� and CPM is � deterministic�. A project in both
these can be broken into a well defined set of jobs or activities. The common
characteristics of both these techniques are the imposition of an ordering on the
activities that can be performed. The instantiation of the project planning meta-model
for network construction is shown in Table 5.

Table 5. : Instantiation of the Project Planning Meta-model

Meta-model concepts Project Planning Method Concepts
Constraint 1. Precedence/succession constraint: For every

2. action there is a preceding and succeeding
3. event.
4. No loops are allowed.
5. Not more than one activity can have the same
6. Proceeding and succeding events.

 Activity Activity
Event Event
Attribute Cost
Resource Person
Combinational
Operation

 Attach attribute to project component
 Associate resource with project component
 Relate a start event and an end event with
 Activity

Basic Life Cycle Operation Create event/activity
 Delete event/activity

Some of the capabilities of the project planning , method are as follows:

<activity, create> <activity, cost, attach>
<activity, delete> <activity, person, associate>
<event, create> <activity, event, event, relate>
<event, delete>
<person, create>

6 Providing Computer Support

In this section we outline the manner in which computer assistance can be provided in
the task of constructing methods of any domain. Our proposal is to raise the level of
meta-CASE tools/CASE shells to generic CASE tools. These tools have the property
that they can generate methods for diverse domains: Information Systems as well as
others like the Robotics and Project Planning domains.

Method engineering has relied on the notion of meta-models to build CAME tools.
Meta-CASE tools or CASE shells have a CAME tool as their front-end and a CASE
generator as a back-end. Given that the generic view of section 2 has the capability to
deal with a range of domains, we are in the process of designing Generic-CASE shells

624 N. Prakash and M. P. S. Bhatia

with a generic part added in front of the CAME part. This part is used to instantiate
the generic model, possibly, with the meta-model of the domain of interest. Thus, for
example, the Generic tool can be used to instantiate the generic model with the
Robotics meta-model of section 4. This capability can be used to develop generic-
CASE that can produce methods and associated CASE tools of any domain.

Generic Part

Domain specific
meta-model Meta-method

CAME Tool CASE generator

Method

Fig. 10. The Three Stages of the Generic-CASE Tool

Fig. 10 shows that the Generic tool takes the specification of a domain specific
meta-model as input and outputs the meta-method in terms of the set of abilities. This
set is the definition of the full capability available with the meta-model and therefore
with the meta-method. The meta-method is then given to the CAME tool from which
the method is produced. Whereas the meta-method is domain-dependent, the method
is dependent on the meta-method itself. The CASE generator produces a tool that
makes the method usable.

The first step in the construction of the generic-CASE is a language in which meta-
models can be defined. This language, the Generic Specification Language (GSL),
expresses the meta-concepts and the generic concept to which they correspond. The
interpretation system behind this language generates the set of objectives that form
part of the meta-method.

7 Concluding Remarks

We have shown that the generic layer can help in instantiating meta-models of diverse
domains. Of course, the generic layer can be used for different meta-models of a
given domain as well. Thus, for the Information Systems domain, it can be used to
instantiate process meta-models or integrated process-product meta-models. This
genericity can be viewed as replacing meta-model dependence with generic model
dependence.

Dependence of methods on meta-models implies that the features and limitations
of meta-models get carried over to methods. In this sense, meta-model dependence
constrains methods. The introduction of the generic layer and generic-CASE tools is
an attempt at reducing the effect of this meta-model dependence. First, with generic-
CASE tools, it shall be possible to build meta-models faster. This will encourage the
development of meta-models that are tailor-made to produce the needed methods.
Second, it shall be possible to take the output of the generic part of the generic-CASE,
experiment with it and determine whether or not the meta-model provides the features
that it was supposed to provide. Thus, we see the generic-CASE tool as providing a
comprehensive structure for situational method engineering.

We shall observe similar effects in domains other than Information Systems. Thus,
for example in the Robotics domain, the robot engineer has to first determine the
nature of the robot to be produced and then construct the robot. Use of the generic-
CASE tool here helps in a number of ways (a) it makes the robot engineer concentrate

Generic Models for Engineering Methods of Diverse Domains 625

on the task of defining robot characteristic and not its construction (b) it is possible to
check out the usefulness of the robot meta-model before committing to a robot (c)
once the functionality of a specific robot has been output by the tool, then it is
possible to check out the robot before actually proceeding to construct it. Thus, the
generic-CASE shall help in designing the needed robot.

We are now working on the generic-CASE tool itself. A draft generic specification
language that will be input to the generic part of the tool has been designed and is
under test. Thereafter, the actual task of generic-tool construction shall be undertaken.
We shall use the meta-CASE MERU as the back-end of the generic-CASE.

References

(Cha95) Chandra P., Projects Planning, Analysis, Selection, Implementation and
Review. Tata McGraw-Hill

(Gro97) Grosz G., et al. Modelling and Engineering the Requirements Engineering
Process: An Overview of the NATURE approach. Requirement
Engineering Journal, 2(3): 115-131

(Gup01) Gupta D., and Prakash N., Engineering Methods From Their Requirements
Specification, Requirements Engineering Journal, 6, 3, 133-160

(Mitsu) Industrial Micro-Robot System model RV-M1 MovemasterEX manual,
Mitsubishi

(Pra94) Prakash N., A Process View of Methodologies, in Advanced Information
Systems Engineering, Wijers, Brinkkemper, and Wasserman(eds.), LNCS
811, Springer Verlag, 339-352

(Pra96a) Prakash N., and Sabharwal S., Building CASE tools for Methods
Represented as Abstract Data Types, OOIS'96, Patel, Sun, and Patel (eds.),
Springer, 357-369

(Pra96b) Prakash N., Domain Based Abstraction for Method Modelling, Ingénierie
Des Systèmes d'Information, AFCET/HERMES 4(6), 745-767

(Pra97a) Prakash N., Towards a Formal Definition of Methods, Requirements
Engineering Journal, Springer, 2, 1, 23-50

(Pra97b) Prakash N., and Sibal R., Computer Assisted Quality Engineering: A
CASE for Building Quality Products, Proc. First Intl. Workshop on The
Many Facets of Process Engineering, Gammarth, Tunisia, 25-35

(Pra99a) Prakash N., and Sibal R., Modelling Method Heuristics for Better Quality
Products, Advanced Information Systems Engineering, Jarke M. and
Oberweis A. (eds.), 429-433

(Pra99b) Prakash N., On Method Statics and Dynamics, Information Systems
Journal, Vol. 24, No.8, 613-637

(Rol95) Rolland C., Souveyet C., and Moreno M., An Approach for Defining Ways
of Working, Information System Journal, 20, 4, 337-359

(Sou91) Souveyet C.: Validation des Specifications Conceptuelles d�un Systeme
d�information, Ph.D. Thesis, Universite de Paris VI

	Introduction
	The Generic Model
	The Information Systems Meta-model
	Meta-model Statics
	Fixed Structures
	The Operation
	Defining Decisions

	Validating the Information System Meta-model

	The Robotics Meta-model
	Validating the Meta-model

	Project Planning Meta-model
	Validating the Meta-model

	Providing Computer Support
	Concluding Remarks
	References

