
Role of Model Transformation

in Method Engineering

Motoshi Saeki

Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan

saeki@cs.titech.ac.jp

Abstract. This paper discusses two applications of model transforma-
tion to method engineering; one is method assembly of diagram based
methods and formal methods and the other one is providing formal se-
mantics with meta models by means of the transformation of the meta
model descriptions into the formal descriptions. We use Class Diagram
to define the meta models, and the models following the meta model
can be represented with instance graphs. Thus our model transforma-
tion is based on graph grammars. To show and clarify the benefits of
model transformation in method engineering, we illustrate the transfor-
mation rules and how to transform models. We use two examples; one is
a method assembly of Class Diagram and Z and the other one is defining
formal semantics of the meta model of Class Diagram.

1 Introduction

As information systems to be developed become larger and more complex, model-
ing methods such as object-oriented analysis and design methods (simply, meth-
ods) are being one of the key technologies to develop them with high quality.
Modern methods such as RUP[9] adopt the techniques from multiple viewpoints.
For example, UML[17], which is used in these methods, has nine diagrams that
can depict functional aspects, structure, behavior, collaboration and implemen-
tation ones of the system. In this situation, transformation on these models from
different views, we call it model transformation, has played an important role as
follows;

1. Checking consistency : transforming into a common notation the different
descriptions that have overlaps with each other[13]. For example, a data flow
diagram and a state diagram in OMT are transformed into logical formulas
in order to check if the behavior specified with the state diagram is consistent
with the data flow diagram[3].

2. Changing different notations : In Rational Rose, a CASE tool for UML,
a sequence diagram can be automatically transformed into a collaboration
diagram and vice versa, because these diagrams represent the same view of
the system, i.e. collaboration of objects.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 626–642, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Role of Model Transformation in Method Engineering 627

3. Providing formal semantics with diagrams : Diagrams such as UML are called
semi-formal because they have no rigorous formal semantics in detail level
yet. Some studies are related to the techniques of transforming UML dia-
grams to formal descriptions, e.g. class diagrams to algebraic descriptions[5],
state diagrams to LOTOS[22] and so on.

4. Generating a program from a design model : Model descriptions in a de-
sign level are translated into an executable model such as a state transition
machine. The executable model sometimes is too abstract, and in this case,
it is refined further into a more concrete description such as a program
by using a stepwise refinement technique adopted in model-based formal
description techniques like Z[14] and VDM[11]. In DAIDA project[10], an
object-oriented design model of an information system written in TaxisDL
language is translated to an abstract state machine which can be refined into
an implementation.

In this paper, we discuss two potentials for the other roles of model trans-
formation as the techniques of method engineering for information systems de-
velopment. According to Sjaak Brinkkemper[7], Method Engineering can be de-
fined as an engineering discipline to investigate how to construct and to adapt
methods which are suitable for the situation of development projects. One of
the ways to construct suitable methods is method assembly, where we selects
method fragments (reusable parts of methods) and assemble them into the suit-
able methods. In [8,15], method fragments stored in a method base (data base
of methods and/or method fragments) are defined as meta models, and method
assembly is performed by means of manipulating these meta models. At first this
paper suggests another technique for method assembly based on model trans-
formation and this is one of the roles that we will discuss in the paper. Another
role is concerned with the way to provide formal semantics with meta models.
Some researchers investigated and proposed meta-modeling techniques based
on Entity Relationship Model[6], Object-Oriented Model (MOF)[2], Predicate
Logic (including Object Z)[18] and attribute grammars[20]. They successfully
defined just the structure of the artifacts that were produced in a development
project following a method, i.e. abstract syntax of the artifacts in a sense, but
did not specify the semantics of the artifacts. We apply a model transformation
technique to providing formal semantics with meta models.

The rest of the paper is organized as follows. Section 2 sketches the transfor-
mation technique based on graph grammars, which we have used in this paper.
In section 3, we discuss method assembly of a diagram based method and a
formal method, more concretely a class diagram and a formal method Z[14]. In
section 4, as another application of model transformation, we discuss the formal
semantics of these meta models by providing a set of the transformation rules
that can generate a formal description of an instance of a meta model.



628 Motoshi Saeki

2 Graph Rewriting System

A graph rewriting system converts a graph into another graph or a set of graphs
following pre-defined rewriting rules. There are several graph rewriting systems
such as PROGRESS[19] and AGG[21]. We use the definition of the AGG system.
A graph consists of nodes and edges, and type names can be associated with
them. Nodes can have attribute values depending on their type. Figure 1(a) is
a simple example of rewriting rules. A rule consists of a left-hand (graph B1)
and a right-hand (graph B2) which are separated with “::=”. A rectangle stands
for a node of a graph and it is separated into two parts with a dashed lines.
Type name of a node appears in the upper part, while the lower part contains
its attribute values. In the figure, the node of “TypeA” in B1 has the attribute
“val” and its value is represented with the variable “x”. Numerals are used for
identifying a node between the left-hand graph and the right-hand graph. For
example, the numeral “1” in the node of “TypeA” in B1 means that the node
is identical to the node of “TypeA” having “1” in B2. A graph labeled with
NAC (Negative Application Condition) appearing in the left-hand controls the
application of the rule. If a graph includes the NAC graph, the rule cannot be
applied to the graph. The procedure of graph rewriting is as follows ;

1. Extracting the part of the graph that structurally matches to the left-hand
of the rule. If the type names are attached with nodes and/or edges, these
names should also match during this process. The variables appearing in
attributes of the nodes are assigned.

2. Replacing the extracted part with the right-hand of the rule and embedding
the result to the original graph, if none of the part which structurally matches
a graph of NAC appears. New attribute values are calculated and assigned
to the attributes.

Figure 1(b) illustrates rewriting the graph G into the graph H. The triangle part
of the graph G is replaced with the rectangular sub graph that is derived from
the right-hand of the rule. The attribute values 5 and 2 are assigned to x and y
respectively, and those of the two instance nodes of “TypeD” result in 7 (x+y)
and 3 (x−y). The other parts of G are not changed in this rewriting process. On
the other hand, since the graph I includes the node of “TypeD”, the NAC graph
of this rule, it cannot be transformed by the rule. In addition, we attach the
priority of rule-application with the rules. If we have more than one applicable
rule to a graph, we select some of them by their priority and rewrite the graph
by using the selected rules at first.

3 Method Assembly of Diagram Based Methods and
FDTs

3.1 Method Assembly Based on Transformation

Various kinds of formal description technique (simply, FDT) such as LOTOS,
Estelle, SDL, Z[14], and VDM[11] have been developed to specify software sys-
tems formally and are putting into practice. The benefits of using FDTs result



Role of Model Transformation in Method Engineering 629

(a) Rewriting Rule (Transformation Rule)

TypeA
val =5

TypeB
val = 2

TypeC

a b

b
TypeA TypeB

TypeD TypeD

val=5 val=2

val=7 val=3
a a

c

TypeE TypeA
c a

TypeE TypeA
c

G H

(b) An Example of Rewriting (Transformation)

1:TypeA
val =x

2:TypeB
val = y

TypeC

a b

b

1:TypeA 2:TypeB

TypeD TypeD

val=x val=y

val=x+y val=x-y

a a

c

:: =

B1 B2

TypeD

NAC

TypeA
val =5

TypeB
val = 2

TypeC

a b

b

TypeD

�

I

b

b

Fig. 1. Graph Rewriting Rule and Rewriting Process

from their rigorous and formal semantics based on mathematics. Software devel-
opers can use formal descriptions (FDs) as communication tools, and can verify
some properties of them such as consistency and correctness. Furthermore some
of the FDs such as LOTOS can be executed as prototype.

However it is difficult for developers to understand documents written in a
FDT and to construct a specification in the FDT without learning and training
it, because it has specific syntax and semantic rules based on mathematics such
as set theory, algebra and mathematical logic. Furthermore no sufficient meth-
ods for guiding how to construct formal specifications are embedded to a FDT.
Methods such as SA/SD, OMT[16] and RUP[9] guide developers to construct
the models of an information system step by step. And almost of them produce
diagrams as specifications that are easy for the developers to understand. The
methods are one of key factors to efficiently construct the specification of high
quality. Method assembly is one of the techniques to combine the methods with
FDTs and several case studies have been reported[12,4], even in industries. We
assemble an existing method and a FDT into a new method by using transfor-
mation rules. More concretely, we transform some artifacts that are developed
following the method into the descriptions written in FDT.



630 Motoshi Saeki

Methods are usually used for extracting and identifying an abstract model
of the system to be developed, while FDTs are applied to the stage to describe
the detailed specification. For example, we compose a class diagram (Object
Model), a state transition diagram (Dynamic Model) and a data flow diagram
(Function Model) that specify the system from multiple viewpoints, when we
adopt the OMT method. These diagrams do not always include detailed or
complete descriptions of the system, e.g. detailed contents of the operations on
objects do not appear in a class diagram. By this fact, it would be better that
we apply these methods at first in the processes of constructing a specification
document, and after identifying a model structure of the system i.e. a kind of
template, we fill its slots with detailed descriptions of the FDT. To support
this process, we design the transformation rules that can generate automatically
a template for the FDT descriptions from these diagrams. Thus we can have
a new method whose first step is based on the method, e.g. OMT and whose
second step is to add FDT descriptions in the artifacts that are produced in the
first step. That is to say, we assemble the method with the FDT through the
transformation rules.

Our transformation technique should be general in the sense that it can be
applied to various kinds of method and FDT. Thus we consider the rules on meta
models of methods and FDTs. A meta model represents a method or a FDT
itself and, like MOF, we use Class Diagram to describe the meta models. Thus
the methods, FDTs and FDs can be mathematically represented with graph.
Transformation rules can be defined as graph rewriting rules and the rewriting
system can execute the transformation automatically. Furthermore connecting
CASE tools for the method with the rewriting system allows us to have an
integrated tool supporting seamlessly the processes to construct a FD by using
methods.

This process can be summarized as follows;

1. Following the method, we construct a model description, e.g. class diagrams,
data flow diagrams, etc., of the system to be developed.

2. From the model description, we get the graph form of the description, called
instance graph, based on the meta model of the method.

3. We transform the instance graph into the instance graph for the FDT (i.e.
the graph-representation form of a FD) by using the graph rewriting rules.

4. The template of the FD is automatically generated from the FDT instance
graph.

5. We describe the detailed parts that are slots in the template.

The details will be discussed in the next section by using an example. Figure 2
sketches the above process.

3.2 Method Assembly Example

In this subsection, we illustrate the method assembly of class diagrams and
formal method Z, which is based on ZF set theory and predicate logic. Figure 3
depicts a part of the meta models of class diagrams and of Z.



Role of Model Transformation in Method Engineering 631

Class

FD (Template)

Transformation Rule

apply

transform

Diagram

Meta Model

instantiate

parse

Meta Model

instantiate

unparse

Class Diagram
State Transition

 Diagram
etc.

FDT
(Z, LOTOS)

Class

1. Constructing Diagrams
    following the method 2. Transforming Diagrams

     into FDs 3. Filling Slots with
    Detailed Descriptions

Fig. 2. Method Assembly and Transformation Process

Fig. 3. A Meta Model of Class Diagrams and Z



632 Motoshi Saeki

We must note briefly the conventions on Z notation. The Z schema defines
variables and constraints on them with predicate logical formulas in the follow-
ing style;

T ypic alSchema
Signatures (V ariable Declarations)

Pr edicate
(Invariants ; and Pre and post condition)

Figure 4 shows a brief sketch of a class diagram and the Z description which is
derived from the class diagram. As shown in (a) of the figure, the class “Lift”
in the class diagram, surrounded with a dotted box, is transformed into the Z
schema “Lift”, considering the associations and the relationships that the “Lift”
class participates in. The service “up” in the “Lift” class generates an additional
Z schema in order to define the operation “up”, as depicted in the right-hand
side in the figure. That is to say, a class corresponds to a Z schema, while each
service (operation) in a class also does to a Z schema. Attributes and associations
are transformed into variables appearing in the Z schema. The ∆ notation in
the signature part (variable declaration part: the upper of the Z schema) of
the service “up” declares the variables whose values may be updated by the
operation. The variables with the prime (’) decoration represent the values after
the operation is executed, while the variables that are not decorated represent the
values before the operation. Graph-representation forms of Figure 4(a) following
the meta models of Figure 3 (a) are depicted in the figure (b).

Transformation rules of a class diagram into a Z description can be defined
as a graph grammar in straightforward way as shown in Figure 5. The rules have
the priority, for example, the rule 1) has the priority of 1, the highest one. This
rule should be applied at first. After no rules with higher priority are applicable,
we can use the rules of the next lower priority. In the figure, we should apply the
rule 1), and then do the rules 2), 3) and 4) which have lower priority rather than
the rule 1). The priority is useful to easily describe the transformation rules. For
simplicity, we do not write down attribute names but just their values included in
nodes appearing the rules in the figure, because the readers can identify uniquely
the attribute names. Note that these rules derive just a structure of Z schemas
based on the class diagram, not strict and formal descriptions of the meaning
of the class diagrams. In this sense, the rules produce the template of the Z
schemas.

Figure 6 illustrates a series of the snapshots of the transformation process of
the example of Figure 4. These are screen dumps of the execution result by AGG
graph-rewriting system. See the screen (1) in the figure and it is separated into
the top and bottom areas. The top area displays a rule being applied to a graph,
which the graph to be rewritten is in the bottom area. Furthermore the top area
consists of two or three areas from left to right. These display a NAC, a left-
hand side of the rule and a right-hand side respectively. By repeatedly applying
the rule 1), for each class appearing in a graph, a node of the corresponding Z



Role of Model Transformation in Method Engineering 633

Lift
position
has_LiftButton
has_DoorButton

up
1(Lift)

£À½Ë�ÌËËÆÅ �ÆÆÉ�ÌËËÆÅ

£À½Ë

ÇÆÊÀËÀÆÅ

ÌÇ��

has-Attribute

has-Service

has

has

has

aggregationaggregation

(a) Class Diagram and Z

(b) Transformation

Class
Lift

Attribute
position

Service
up

Class
LiftButton

Class
DoorButton

Z-schema

Z-schema
up

Lift

Variable

Variable

position

Variable
has_LiftButton

1(Lift)

Variable
has_DoorButton

has

Fig. 4. Transformation of Class Diagrams

Service

1(#C)

has-Attribute

has-Service

has

has

has

has

::=

::=

::=

::=

2) : 2

3) : 2

4) : 2

5) : 3

aggregation

Attribute
#A

1:Class
#C

1:Class
#C #S

1:Class
#C

Variable
#A

1:Class
#C

Z-schema
#S

Variable

1:Class
#C1

2:Class

#C2

1:Class
#C1

2:Class

#C2

has_#C1
Variable

Variable
has_#C2

Class
#C

2:Z-schema
#C

2:Z-schema
#C

2:Z-schema
#C

2:Z-schema
#C

4:Z-schema
#C2

3:Z-schema
#C1

3:Z-schema
#C1

4:Z-schema
#C2

1:Class
#C

1:Class
#C

Z-schema
#C

Z-schema
#C

1) : 1 NAC

::=

Fig. 5. A Part of Transformation Rules for Method Assembly



634 Motoshi Saeki

schema is generated (the screen (1) in Figure 6). The NAC part of the rule (1)
prevents its duplicated application to the same class node. As a result, every
class node has the corresponding Z schema node and the rule (1) cannot be
applied any more (screen (2)). As shown in the screen (2), we have three Z
schemas “Lift”, “LiftButton” and “DoorButton”. By applying the rule (2), we
can produce a node of type “Variable” denoting the attribute “position” and
draw an edge from “Lift” node to it. See the transformation from the screen
(3) to (4) and the readers can find a new node “Variable” whose the attribute
“name” is “position”. The rule (4) is for adding a Z schema denoting a service
of a class (screen (4)) and its result is shown in the screen (5). Two aggregation
relationships to “LiftButton” and “DoorButton” classes are processed by using
the rule (4) (screens (5) and (6)). Finally, the class nodes are eliminated with
the rule (5) (screen (7)) and we can get a final result as shown in the screen (8).

4 Transformational Semantics of Meta Models

4.1 Overview

Some researchers investigated and proposed meta-modeling techniques based on
Entity Relationship Model[8], Predicate Logic (including UML/OCL)[9,18], at-
tribute grammars[20] and MOF[2], in order to define precisely methods. They
successfully defined just the structure of the artifacts that were produced in a
development project following the method. Consider again the simple example of
a meta-model of class diagrams and is depicted in Class Diagram itself, as shown
in Figure 3(a). This diagram specifies just the logical structure of class diagrams,
i.e. abstract syntax in a sense. A crucial question arises in this meta-model de-
scription. What is the meaning of this meta-model? More precisely what meaning
do “Class” and “generalization” have? One of the answers to the above question
is applying Ontology[8]. Ontology consists of a set of atomic words and their
relationship structure. The “atomic words” mean the non-decomposable words
where persons can have the common understanding. For example, although the
word “Class” is not provided with formal semantics, it can be commonly under-
stood by almost all of software engineers. The technique of Ontology is based on
constructing a kind of thesaurus for methods and providing a map from method
concepts to the atomic words included in the thesaurus. Although this tech-
nique is useful to clarify the differences on method concepts between methods,
it cannot provide a formal semantics or we cannot have any formal treatment
regarding the semantics of meta models.

This section suggests another solution how to provide the meaning for meta-
models so that we can treat the semantics of meta models formally. Although
the artifacts that are produced following a method such as class diagrams may
include informal parts, they can be partially translated into formal descriptions,
and the parts that can be translated can have formal semantics. We capture
the semantics of a meta-model as the rules that generate the formal specifica-
tion (Z description) of a real system when we specify the system following the



Role of Model Transformation in Method Engineering 635

(1) Initial Graph & Introducing Z schema (Rule 1) (2) Terminating the Introduction of Z schema (Rule 1)

(3) Introducing Variables as Attributes (Rule 2) (4) Transforming Services into Z schemas (Rule 3)

(5) Transforming Aggregations (Rule 4) (6) the same as the left

(7) Eliminating Class Nodes (Rule 5) (8) Final Result

Fig. 6. A Snapshot of A Transformation Process



636 Motoshi Saeki

meta-model. The rules can be considered as model transformation rules and be
described in the rules of a graph grammar in the similar way of section 3. Fig-
ure 7 sketches the above discussion. A set of the translation rules is associated
with each meta-model description as a mechanism which provides its semantics.

Lift_Class
set_of_Lift : P Lift
idLift : Lift_ID " Lift
services : {"up" "Tup_Lift}

Lift
id : Lift_ID...

£À½Ë�ÌËËÆÅ �ÆÆÉ�ÌËËÆÅ

£À½Ë

ÇÆÊÀËÀÆÅ
ÌÇ��

¾¼Å¼É¸ÃÀÑ¸ËÀÆÅ

�ËËÉÀ¹ÌË¼

Å¸Ä¼
ª¼ÉÍÀº¼
Å¸Ä¼

�Ã¸ÊÊ

Å¸Ä¼

¿¸Ê��ËËÉÀ¹ÌË¼ ¿¸Ê�ª¼ÉÍÀº¼

¸¾¾É¼¾¸ËÀÆÅ

Meta Model (Class Diagram, STD, DFD,...), 

Specification Level (Instance Level)

Meta Level

Specification (Model) of the System
(Instance of class diagrams, STD, DFD,...)

Formal Specification of the System
by Z

Translate

Syntactical Aspect

1: 1:
::=

Semantical Aspect

Transformation Rules

Fig. 7. Semantics of Meta Models by Translation Rules

4.2 Example : Semantics of Class Diagrams by Z

Consider that we write the class diagram not in diagrammatic notation but in
formal description technique such as Z. The difficulties in representing a class
diagram with Z are how to provide the mechanisms for 1) constructing instances
of a class and 2) generalization, i.e. inheritance from a super class. Suppose that
a class diagram shown in Figure 8. A class is mathematically a set of objects
which has the functions manipulating the existing objects. Adding these func-
tions, we can get the following description of the class “Brake”.



Role of Model Transformation in Method Engineering 637

Fig. 8. An Example of A Class Diagram

[Brake ID ]

Br ake
id : Br ake ID
status :
contains destination : Sp eedControl System ID

Br akeClass
set of Brake : PBrake
idBrake : Br akeID 7 7! Br ake
servic es : f\CheckBrake" 7! �CheckBrake Brakeg

idBrake = fx : set of Brake � x :id 7! xg

CheckBrake Brake
�(Br ake)
:::

id 0 = id
:::

Brake new
�Brake Class
new Brake! : Br ake

:(new Br ake!:id 2 dom set of Br ake)
set of Brake0 = set of Brake [ fnew Brake!g

[Brake with L amp ID ]

Br akewith Lamp ID � Br akeID

Brake with Lamp
Brake " Brake with L amp1



638 Motoshi Saeki

Brake with Lamp1
id : Brake with Lamp ID
lamp status :

Brake with Lamp Class
set of Brake with Lamp : PBrake with L amp
idBrake with L amp : Brake with Lamp ID 7 7! Br akewith L amp
services : Brake Class :servic es"
f\Set L amp00 7! �Set L amp Brake with L ampg

idBrake with L amp=
fx : Br akewith L amp� x :id 7! xg

Brake with Lamp new
�Brake with L amp Class
new Brake with Lamp! : Brake with L amp

:(new Br akewith Lamp!:id 2 dom set of Brake with Lamp)
set of Brake with Lamp0 =

set of Brake with L amp [ fnew Brake with Lamp!g

Set Lamp Brake with Lamp

Sp eedControl System
id : Sp eedControl System ID
contains sour ce: PBr akeID

Sp eedControl System Class

The Z schemas “Brake” and “Brake Class” define a brake object and its
class respectively. The “Brake Class” has the variable “set of Brake” which
holds the information on which brake objects currently exist, i.e. have been al-
ready created by its constructor. The map “idBrake” in “Brake Class” is for
accessing brake objects with their identifiers. Since it is defined as a function, a
unique identifier should be attached to a brake object, i.e. their identifiers are
different if the objects are different. The operation “Brake new”, a construc-
tor for brake objects, adds a newly generated object “new Brake!” into the set
“set of Brake” and returns it as a result of the operation. The first line of the
predicate part of “Brake new” says that the identifier of the newly generated
object is not equal to any identifiers of the existing objects. When translating a
class diagram into a Z description, we should add the Z schemas for holding the
existing objects and for defining constructors, as mentioned above. In addition,
the variable “services” included in the schema “Brake Class” has the informa-
tion on which services the schema has. When the name of a service is specified
with the variable, say services (“CheckBrake”), we can get the specification of



Role of Model Transformation in Method Engineering 639

the service defined with Z schema. We use the operator θ for specifying the Z
schema itself.

Association and aggregation relationships between classes can be formally
and simply specified by means of introducing into the Z schemas the variables
that hold the relationship information. In the example, we define the variable
“contains destination” in the schema “Brake”, through which the Brake ob-
jects are linked to the “Speed Control System” objects. It is the same technique
as introducing the variables like “has LiftButton” in the section 3.2 in order to
specify the aggregation relationships.

Inheritance (generalization-specialization) relationships would be more com-
plicated. Mathematically, an object of a sub class is also an object of its super
class, and the formula Brake with Lamp ID ⊆ Brake ID specifies this mathe-
matical property of set-inclusion. Since the definition of a subclass overrides that
of its super class, we use an override operator ⊕ on Z schema. Suppose that A
is a map. In this case, (A ⊕ {x �→ y})(z) = y if z = x, otherwise the result-
ing value is A(z). In the case that A is a Z schema, (A ⊕ [a : new domain]).x
returns the value of new domain if a = x, otherwise it follows the definition
of the schema A. For simplicity, we define the modified version of the override
operator ⊕ as A � B = (A⊕B)∪B. The newly defined operator � can play a
role on keeping the definitions included in B. By using �, we can formally and
separately define the override mechanism of attributes and services of classes.

Turn back the example to clarify how to translate inheritance mechanism of
super-sub classes. In the example, “Brake with Lamp” is a sub class of “Brake”
and its instance has a lamp indicator for notifying pushing the brake. We gener-
ate an auxiliary schema “Brake with Lamp1” which has newly defined variables
only, i.e. “lamp status” in addition to its identifier id. To get the Z schema of
the subclass, we connect this schema to the Z schema of super class with the
override operator “�”, and we can have the schema “Brake with Lamp” which
has both variables of “Brake” and of “Brake with Lamp”. It is the defini-
tion of the instances of the subclass “Brake with Lamp”. As for the schema
“Brake with Lamp Class”, we just override the variable “services” in order to
add the services that are newly defined in the sub class.

The above formal description of the class diagram has the strict meaning
that is provided by the semantics of Z, i.e. set theory and predicate logic. In
other words, if we can have some translation rules of diagrammatic representa-
tions to a formal description, the rules define the meaning of the diagrammatic
representations. It suggests that the semantics of the meta-models can be de-
fined as the translation rules from the meta-models to Z descriptions, as shown
in Figure 7. The rules generate the formal description of the system when the
system is specified following a method, i.e. when its meta-model is instantiated
with the system specification.

A part of the translation rules of class diagrams into Z as graph rewriting
ones can be designed in Figure 9 and these can be considered as formal semantics
of the meta model of Figure 3(a).



640 Motoshi Saeki

1) : 1

::=

::=

2) : 2

1:Class
#C

TypeDec
[#C_ID]

1:Class
#C

1:Class
#C

1:Class
#C Z-schema

#C

Z-schema
#C_new

Variable
set_of_#C : P #C

Z-schema
#C_Class

Variable
id : #C_ID

2:Z-schema
#C

2:Z-schema
#C

Attribute
#A

Variable
#A

Variable
id#C : #C_ID " #C||

Variable
new_#C! : #C

Variable
1(#C_Class)

Predicate
id#C = { x : #C¶x.id " x}

Predicate
¬(new_#C!.id � dom set_of_#C)

Predicate
set_of_#C' = set_of_#C ¥ {new_#C!}

SeviceMap
services : { }

TypeDec
[#C_ID]

NAC

::=

4) : 2

::=

::=

6) : 4

5) : 3

1:Class
#C

2:Service
#O

1:Class
#C

Variable
1(#C)

Z-schema
#O_#C

Predicate
id' = id

1:Class
#C

Service
#O

2:SeviceMap
services : #map

1:Class
#C

2:SeviceMap
services : #map ¥ {#O "T#O#C}

Class
#C

1:Z-schema
#C_Class

SeviceMap
services : #map

1:Z-schema
#C_Class

Variable
services : #map

2:Service
#O

3) : 2 Axiom
[#C2_ID]�[#C1_ID]

2:Class
#C2

3:Z-schema
#C2_1

1:Class
#C1

generalization

3:Z-schema
#C2

4:Variable
id : #C2_ID

4:Variable
id : #C2_ID

2:Class
#C2

1:Class
#C1

Z-schema
#C2

Variable
#C1 #C2_1

::=

Fig. 9. Transformation Rules for Semantics of Class Diagrams



Role of Model Transformation in Method Engineering 641

5 Conclusion and Research Agenda

In this paper, we discuss the roles of model transformation based on meta models
in method engineering. The one role that we discussed was transformational
approach to method assembly and the other one was formal semantics of meta-
model descriptions. The semantics is provided by the rules which transform any
model following the meta-model into a formal description. The transformation
is defined with a graph grammar and its graph rewriting system can execute
automatically the transformation. We also illustrated method assembly of class
diagrams and Z, and the formal semantics of the meta model of class diagrams by
means of Z. We have developed 12 transformation rules for the method assembly
example and 20 rules for providing the example semantics.

In this paper, we have selected Z to provide formal semantics with the arti-
facts that have been produced following methods. There are several other formal
description techniques (FDTs) such as VDM, LOTOS and algebraic specifica-
tion languages for Abstract Data Type. In particular, some excellent studies
to provide formal semantics with the diagrams of OMT exist [5,22]. Although
the aim of these researches are the verification and/or consistency checking of
specifications written with OMT diagrams, we can apply these techniques to
our approach if we select their formal methods such as LOTOS and algebraic
languages as a semantic basis on meta-models. We should explore which FDT is
suitable for the semantics of meta-models.

The transformation rules are defined with graph grammars. To describe
them, as well as meta models and models, with high portability, adopting XML
techniques[1] are one of the significant topics. Although the AGG system holds
graphs in the form of XML documents, its format is specific and some kind of
converter is necessary to combine a method engineering tool.

References

1. XML : eXtensible Markup Language. ftp://ftp.omg.org/pub/docs/ad/, 1996. 641
2. Meta Object Facility (MOF) Speicication. ftp://ftp.omg.org/pub/docs/ad/, 2000.

627, 634
3. T. Aoki and T. Katayama. Unification and Consistency Verification of Object-

Oriented Analysis Models. In Proc. of 5th Asia-Pacific Softwrae Engineering Con-
ference (APSEC’98), pages 296–303, 1997. 626

4. D. Berry and M. Weber. A Pragmatic, Rigorous Integration of Structural and
Behavioral Modeling Notations. In Proc. of 1st International Conference on Formal
Engineering Methods, pages 38–48, 1997. 629

5. R. Bourdeau and B. Cheng. A Formal Semantics for Object Model Diagrams.
IEEE Trans. on Software Engineering, 21(10):799 – 821, 1995. 627, 641

6. S. Brinkkemper. Formalisation of Information Systems Modelling. Thesis Pub-
lisher, 1990. 627

7. S. Brinkkemper. Method Engineering : Engineering of Information Systems Devel-
opment Methods and Tools. Information and Software Technology, 37(11), 1995.
627



642 Motoshi Saeki

8. S. Brinkkemper, M. Saeki, and F. Harmsen. Meta-Modelling Based Assembly
Techniques for Situational Method Engineering. Information Systems, 24(3):209
–228, 1999. 627, 634

9. I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Software Development
Process. Addison Wesley, 1999. 626, 629, 634

10. M. Jarke, J. Mylopoulos, J. Schmidt, and Y. Vassiliou. DAIDA : An Environment
for Evolving Information Systems. ACM Trans. on Information Systems, 10(1):1–
50, 1992. 627

11. C. B. Jones. Systematic Software Development Using VDM. Prentice Hall, 1986.
627, 628

12. K. Kronlöf, editor. Method Integration – Concepts and Case Studies. Wiley, 1993.
629

13. C. Pons, R. Giandini, and G. Baum. Dependency Relations Between Models in the
Unified Process. In Proc. of 10th International Workshop on Software Specification
and Design (IWSSD-10), pages 149–158, 2000. 626

14. B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z.
Prentice Hall, 1996. 627, 628

15. J. Ralyte and C. Rolland. An Assembly Process Model for Method Engineering.
In Lecture Notes in Comupter Science (CAiSE’01), volume 1626, pages 267–283,
2001. 627

16. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lonrensen. Object-
Oriented Modeling and Design. Prentice-Hall, 1991. 629

17. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999. 626

18. M. Saeki and K. Wenyin. Specifying Software Specification & Design Methods. In
Lecture Notes in Computer Science (CAiSE’94), pages 353–366. Springer-Verlag,
1994. 627, 634

19. A. Schurr. Developing Graphical (Software Engineering) Tools with PROGRES. In
Proc. of 19th International Conference on Software Engineering (ICSE’97), pages
618–619, 1997. 628

20. X. Song and L. J. Osterweil. Experience with an Approach to Comparing Software
Design Methodologies. IEEE Trans. on Soft. Eng., 20(5):364–384, 1994. 627, 634

21. G. Taentzer, O. Runge, B. Melamed, M. Rudorf, T. Schultzke, and S. Gruner.
AGG : The Attributed Graph Grammar System. http://tfs.cs.tu-berlin.de/agg/,
2001. 628

22. E. Wang, H. Richer, and B. Cheng. Formalizing and Integrating the Dynamic
Model within OMT*. In Proc. of 19th International Conference on Software En-
gineering, pages 45 – 55, 1997. 627, 641


	Role of Model Transformation in Method Engineering
	Introduction
	Graph Rewriting System
	Method Assembly of Diagram Based Methods and FDTs
	Method Assembly Based on Transformation
	Method Assembly Example

	Transformational Semantics of Meta Models
	Overview
	Example : Semantics of Class Diagrams by Z

	Conclusion and Research Agenda


