
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 659-674, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Understanding Redundancy in UML Models
for Object-Oriented Analysis

Dolors Costal, Maria-Ribera Sancho, and Ernest Teniente

Universitat Politècnica de Catalunya
Dept. Llenguatges i Sistemes Informàtics

Jordi Girona 1-3, 08034 Barcelona (Catalonia)
{dolors,ribera,teniente}@lsi.upc.es

Abstract. A phenomenon that frequently appears when designers define
analysis specifications is that of redundancy between models. A correct
and deep understanding of this phenomenon is necessary to help the task
of the designer. In this paper, we study the problem of redundancy in
UML Models for Object-Oriented Analysis. In this context, we identify
different kinds of redundancies that may arise. We evaluate the impact
of redundancy in specifications from the point of view of their desirable
properties. We also propose how to obtain a canonical analysis model,
which does not include any of the identified redundancies, and we
sketch the possibility of having redundant views of some aspects of the
canonical model.

1 Introduction

In this paper we study the problem of having redundant specifications at the analysis
level. This is done for the particular case of object-oriented models, written in the
UML. To the best of our knowledge, redundancy in object-oriented analysis models
has not been considered before.

We say that an analysis model has redundancy when an aspect of the specified
system is defined more than once. We think that identifying the different kinds of
redundancy that may appear at the analysis level helps to fully understand the artifacts
that are used in that stage. Furthermore, having (or not having) redundancy in a given
specification has a great impact on their desirable properties, such as,
understandability, modifiability, consistency and ease of design and implementation.
Being aware of this impact helps the designer to define better and more
comprehensible analysis models. Understanding redundancy also contributes to obtain
better design models since it makes easier to decide the responsibilities of each
software component.

In the context of the UML notation [RJB99], the most well-known proposal of
software development process is the Unified Process (UP) [JBR99]. The Unified
Process must be understood as a framework that encompasses the best development

660 Dolors Costal et al.

practices and not just as a strict universal process. The main strengths of the UP are to
be use-case driven, architecture-centric, iterative and incremental.

One of the main difficulties that arise during software development is that of
establishing a clear frontier between the analysis and design phases [Kai99]. We think,
following the most accepted practices for software development [Rum96, Pres97] that
this deserves special attention because the analysis model constitutes a permanent
model of the reality in itself. In the UP (or in object-orientation in general) this is even
more difficult due to the iterative process, the use of the same models in both phases
and to the different criteria used by different authors.

As far as analysis is concerned, the UP admits a certain degree of freedom with
respect to the way to view and employ the models or artifacts generated during this
stage. In this sense, an interesting proposal is that of Larman [Lar98] because it
provides good criteria to define the boundary between analysis and design and it
proposes how UML artifacts have to be used acording to that criteria. Our work takes
this proposal as starting point.

In this context, we study the already mentioned problem of having redundant
specifications at the analysis level. One of the main points of this paper is to identify
which kind of redundancies may arise. Moreover, we evaluate the impact of
redundancy in specifications from the point of view of their desirable properties.

We advocate also for avoiding redundancy in the analysis models. In this sense, we
propose how to obtain a canonical model which does not include any of the identified
redundancies. Moreover, we sketch the possibility of having redundant views of some
aspects of the analysis model to help the designer in his task. In this way, he may take
advantage of having redundant and non-redundant models altogether.

This paper is structured as follows. Next section reviews the main UML models
used during the Analysis phase according to Larman�s proposal. Section 3 is devoted
to identify different kinds of redundancy that may appear in that phase. Section 4
discusses the issue of redundancy: advantages and inconveniences and provides a set
of guidelines to avoid the identified redundancies. Finally, we present our conclusions
in section 5.

2 UML Models for Analysis

In this section, we will briefly describe the UML models used during the analysis
phase following the main lines of Larman�s proposal [Lar98]: the Analysis Use Case
Model, the Conceptual Model, the System Behaviour Model and the Analysis State
Model.

In Larman�s work, analysis is characterized by emphasizing static and dynamic
information about a system. Therefore, a static model describes structural properties
of the system while a dynamic one describes the behavioural ones. Larman�s main
contribution relies on proposing to define the system behaviour as a �black box�
before proceeding to a logical design of how a software application will work. The
main idea behind this solution has also been sketched in [Boo96, FS97, Mul97,
Dou98, RV00].

Understanding Redundancy in UML Models for Object-Oriented Analysis 661

This has a clear impact, during analysis, on the sequence diagrams definition and
on the assignment of operations to classes. Sequence diagrams are considered as
system sequence diagrams that show the events that external actors generate; their
order and the system response to those events. On the other hand, operations
responding to those external events are not assigned to particular classes since they are
recorded in an artificial type named system. In this way, responsibilities are not
assigned to objects during analysis.

We believe this is a good criteria to define the boundary between analysis and
design. We should mention that some difficulties may arise when trying to develop
these models along this direction. The overcoming of those situations is out of the
scope of this paper.

In the following, we will use a simple example that is aimed to model the
assignments of employees to departments in a certain company to illustrate the
Analysis Models.

2.1 Use Case Model

In the plan and elaborate phase, high-level use cases are identified. They are defined
very briefly, usually several sentences that describe a process. The Analysis Use Case
Model consists of the definition of expanded use cases which are longer and more
detailed than high-level use cases, in order to describe the course of events that occur
as a result of actor actions and the system responses to them. In our example, we need
a use case to fire employees. This use case is described in Figure 2.1.

Use Case: Fire employee
Actors: Director (initiator), Adm-Staff.
Overview: Fires an employee.
Type: Primary and essential.
Typical Course of Events:

Actor Action System Response
1. The use case begins when the

director decides to fire an
employee.

2. An administrative staff introduces
the employee identifier.

3. The system removes the employee and
all her/his assignments, if this can be
done.

Figure 2.1

2.2 The Conceptual Model

The Conceptual Model conforms the static part of the analysis and, consequently
describes the structural properties of the objects that model concepts of the problem
domain. It is illustrated with a set of static structure diagrams (a class diagram) in
which no operations are defined.

662 Dolors Costal et al.

For example, Figure 2.2 shows a static structure diagram. Object classes Employee,
Department and Date are linked with the Is-assigned-to association. An occurrence of
the association indicates that a particular employee has been assigned to a particular
department at a given date. The corresponding association class named Assignment
has an attribute to indicate the duration of this assignment. The diagram is
complemented with textual constraints, which cannot be expressed graphically in the
UML.

Is-assigned-to

Textual Constraints:
- Class identifiers: (Employee, emp-id); (Date, date); (Department, d-name)
- An employee may not have two overlapping assignements.

Date

emp-id
e-name

Employee
date

Department
d-name
location

Assignment
duration

* 0..1

*

Figure 2.2

2.3 The System Behaviour Model

The System Behaviour Model describes dynamic aspects of the system. As mentioned
in the introduction of this section, the system behaviour is defined as a �black box� in
the Analysis phase and it is illustrated through system sequence diagrams and the
contracts of the corresponding operations.

A system sequence diagram shows, for a particular course of events within a use
case, the external actors that interact directly with the system, the system as a �black
box�, and the system events that the actors generate. The following sequence diagram
corresponds to the use case of Figure 2.1:

Fire-employee
:Adm.-Staff :System

fire-emp (emp-id)

Figure 2.3

A system operation is an operation that the system executes in response to a system
event. Therefore, there is a one to one correspondence between events and operations
and we will refer to them as events or operations, indistinctly. It is defined by means
of a contract that includes the signature of the operation, its semantics, a set of
conditions that are guaranteed to be true when the operation is executed (its

Understanding Redundancy in UML Models for Object-Oriented Analysis 663

precondition) and the set of conditions that hold after the operation execution (its
postcondition). The contract of the previous operation fire-emp looks as follows:

Operation: fire-emp (emp-id)
Precondition:
Semantics: Fire an employee.
Postcondition:
1. If the employee emp-id does not exist then the operation is invalid.
2. Otherwise, the operation is valid and

2.1. The employee identified by emp-id is deleted.
2.2. All the assignments of this employee are deleted.

Figure 2.4

2.4 The Analysis State Model

Finally, the Analysis State Model consists of a set of state diagrams that illustrate
the interesting events and states of objects, and the behaviour of those objects in
reaction to an event. An example of analysis state model will be shown in Section 3.3.

3 Identifying Redundancy in the UML Analysis Model

Each one of the models explained so far shows different perspectives of a software
system: the static one, the behavioural one, etc. It usually happens that a certain aspect
of the system can be viewed from different models. We say that an analysis model has
redundancy when an aspect is specified in more than one of its models.

In this section we identify several redundancies that may arise among the UML
analysis models.

3.1 Conceptual Model and System Behaviour Model

The Analysis Conceptual Model allows to express several constraints about the
information that it defines. In general, we may consider three different kinds of
constraints: graphical, textual and structural.

Graphical constraints (like multiplicity, generalization constraints, subset, xor, etc.)
can be directly represented by means of a graphical symbol in the UML. Textual
constraints define conditions that the conceptual model must satisfy but that can not be
graphically represented. They will usually be specified in the OCL language [WK99].
Structural constraints are implicit in the Conceptual Model and, thus, they are not
represented neither graphically nor textually. For instance, each association
(associative class) implies a structural constraint stating that there may not exist two
instances of an association linking the same objects.

On the other hand, the System Behaviour Model includes Operation Contracts that
describe the effect of the operations upon the system and, in particular, how the
information of the Conceptual Model will be updated.

664 Dolors Costal et al.

It is not difficult to see that an update may lead to a violation of a certain constraint.
In this sense, it may happen that the post-condition of a certain operation contract
checks a constraint that is already entailed by the conceptual model.

Example 3.1: consider the following Conceptual Model, which is aimed to model the
Enrolments of Students into Subjects, during Academic Courses. Subjects may be
offered during academic courses. An offered subject can be open or closed. When an
offered subject is closed, no new students can be enrolled in it.

Is-enrolled-to

Textual Constraints:
- Class identifiers: (Student, st-id); (Ac.Course, course-id); (Subject, name)
- A student may not be enrolled in a subject if s/he had a mark greater than 5 in a previous

enrolment of that subject.
- A student may not be enrolled in a subject if s/he does not have a mark greater than 5 in all its

previous subjects.
- A student must be enroled at most in five subjects during an academic course.
- The association Previous-to is transitive.
- A subject may not be previous to itself.

st-id
name

Student

Ac.Course
course-id
year

Subject
name
nr-credits

0..80

*

Previous-to
*

*

Open Closed
closing-date

{disj., comp.}

Offers *

OfferedSubject *

Enrolment
mark

Figure 3.1

The previous Conceptual Model specifies several constraints. In particular,
regarding the enrolments of students into subjects, it entails that:

An offered subject is defined by a subject and an academic course (structural
constraint). Two different assertions are deduced from this constraint. First, it
guarantees that two different instances of offered subject may not be linking the same
instances of subject and academic course. Second, if an offered subject exists, it is
guaranteed that the subject and the academic course also exist.

An instance of the association Is-enrolled-to is defined by a student and an offered
subject (structural constraint). Two different assertions are deduced from this
constraint. First, it guarantees that two different instances of enrolment may not be
linking the same instances of student and offered subject. Second, if an instance of the
association exists, it is guaranteed that the student and the offered subject also exist.

a) An offered subject must have at most 80 enrolled students (graphical).
b) An offered subject may not be open and closed at the same time (graphical).
c) A student may not be enrolled in a subject if s/he had a mark greater than 5 in a

previous enrolment of this subject (textual).

Understanding Redundancy in UML Models for Object-Oriented Analysis 665

d) A student may not be enrolled in a subject if s/he does not have a mark greater
than 5 in all its previous subjects (textual).

e) A student must be enrolled at most into 5 subjects during an academic course
(textual).

There are at least four operations that may violate some of the previous integrity
constraints: to offer a subject in an academic course, to enrol a student, to change the
enrolment of a student and to close an offered subject. We will illustrate this issue in
the context of the operation that enrols a student in a subject offered in an academic
course which could be specified by means of the following contract:

Operation: enrol-1 (course-id, subject-name, st-id)
Precondition:
Semantics: To enrol a student into a subject offered in an academic course.
Postcondition:

1. If the student st-id or the course course-id or the subject subject-name do not
exist, then the operation is invalid.

2. If the subject subject-name is not offered in course course-id, then the operation
is invalid.

3. If the student st-id is already enrolled into subject subject-name for the course
course-id, then the operation is invalid.

4. If the student st-id has already five enrolments corresponding to academic course
course-id, then the operation is invalid.

5. If the student st-id has already an enrolment into subject subject-id with a mark
greater than 5, then the operation is invalid.

6. If the offered subject corresponding to course-id and subject-name is closed,
then the operation is invalid

7. Otherwise, the operation is valid, and
7.1 An instance of the association Is-enrolled-to, defined by the

corresponding Student, Subject and Academic Course is created.

Figure 3.2

Clearly, the postconditions 4 and 5 and the integrity constraints g) and e) are
redundant. Also, postconditions 1, 2 and 3 are redundant with the structural
constraints a) and b). In this latter case, it is not difficult to see that structural
constraints guarantee that an enrolment of a student in an offered subject can only be
performed if the student is not already enrolled on that offered subject and if the
student and the offered subject exist. Similarly, if an offered subject exists, the
academic course and the subject also exist.

On the other hand, if we had specified the contract of Figure 3.3 for enrolments, the
previous redundancy would not appear since the postconditions of this operation do
not include the checking of the previous constraints.

Note that the existence of redundancy between the operation and the conceptual
model does not imply that all constraints of the conceptual model that affect the
operation are included in its postconditions. As an example, enrol-1 does not check

666 Dolors Costal et al.

constraints c) and f) although they can be violated by enrolling a student into an
offered course.

Operation: enrol-2 (course-id, subject-name, st-id)
Precondition:
Semantics: To enrol a student into a subject offered in an academic course.
Postcondition:

1. If the offered subject corresponding to course-id and subject-name is closed,
then the operation is invalid

2. An instance of the association Is-enrolled-to, defined by the corresponding
Student, Subject and Academic Course is created.

Figure 3.3

Therefore, in addition to the conditions already implied by its postconditions, an
operation will also be invalid if any of the constraints entailed by the conceptual
model is violated. For instance, operation enrol-2 will be invalid if any of the
constraints entailed by the conceptual model is violated due to its postcondition.

In general, it is very difficult to ensure that an operation contract guarantees all
constraints specified in a conceptual model. For this reason, whenever we talk about
redundancy in this paper we will be referring to relative redundancy since absolute
redundancy (in the sense that operation contracts specify all the aspects of the
software system that can be affected by operation execution) is as difficult to achieve
as non-redundancy.

3.2 Redundancy inside the System Behaviour Model

In addition to the Operation Contracts, the System Behaviour Model includes System
Sequence Diagrams that specify the external events generated by actors in the context
of a use case, its order, and the system operations that respond to those events.

Since, at the analysis level, there is a one-to-one correspondence between external
events and system operations, the system sequence diagram already guarantees that the
operations are handled in a specific order. Consequently, a certain operation is only
executed when all previous operations have been handled satisfactorily. Therefore, it
is guaranteed that the postconditions of its precedent operations in the sequence
diagram are already satisfied.

A System Sequence Diagram and an Operation Contract would be redundant if the
contract checks aspects already guaranteed by the sequencing entailed by the sequence
diagram.

Example 3.2: assume that there is a use case that, at the beginning of an academic
course, offers a new subject and enrols some students to that subject. The system
sequence diagram of this use case could look as follows:

Understanding Redundancy in UML Models for Object-Oriented Analysis 667

 Offer-New-Subject
:Adm.-Staff :System

new-subject (c-id, sub-name)

enrol (c-id, sub-name, st-id) *

Figure 3.4

The operations new-subject and enrol should be specified by means of the
corresponding contracts. The first operation, new-subject, is aimed to add the subject
as an offered subject of the given academic course. This offered subject is specialised
to open. The second operation, enrol, will perform individual enrolments of students
for that subject into that course.

Note that, in a non-redundant analysis model, the contract of the operation enrol
does not need to check none of the conditions that are entailed by new-subject. In this
sense, part of the postconditions of new-subject become preconditions of enrol and,
thus, they must not necessarily be specified again in its contract.

In particular, postcondition 1 stating that the offered subject must be open is not
necessary. Then, the corresponding contract enrol-3 would be:

Operation: enrol-3 (course-id, subject-name, st-id)
Precondition:
Semantics: To enrol a student into a subject offered in an academic course.
Postcondition:

1. An instance of the association Is-enrolled-to, defined by the
corresponding Student, Subject and Academic Course is created.

Figure 3.5

In some cases, it is very difficult to avoid redundancy completely among sequence
diagrams and operations contracts. This will happen when a certain event (operation)
may appear in several sequence diagrams since the events previously invoked will
differ from diagram to diagram. In such cases, it is not possible to ensure that the
conditions that are already satisfied are always the same and we have to choose
between considering a different operation contract in each case or considering a single
operation contract that may be redundant for a certain sequence diagram.

As an example, assume an additional use case that enrols a student in a subject. The
system sequence diagram of this use case could look as follows:

 Enrol-Student
:Adm.-Staff :System

enrol (c-id, sub-name, st-id)

Figure 3.6

668 Dolors Costal et al.

In this case, the contract for the operation enrol must check that the offered subject
is open since it is not guaranteed by a previous operation. As a consequence, the
operation contract enrol-2 would be adequate. When this happens, we may choose
between specifying two slightly different operations (enrol-3 for Offer-New-Subject
and enrol-2 for Enrol-Student) or defining a single enrol operation (enrol-2) that
would be partially redundant when invoked from sequence diagram Offer-New-
Subject.

3.3 Analysis State Model and System Behaviour Model

An Analysis State Diagram shows the life-cycle of an object, the events that affect it,
its transitions and the states it is in between these events. In this sense, it shows the
behaviour of an object in reaction to events.

Each state transition specified in the diagram defines changes on an object that are
caused by the invocation of a certain event (operation) on that object. An object may
only suffer a certain transition if its state is the one required for the transition when the
event is invoked.

An Operation Contract and a State Diagram are redundant if the contract checks
conditions about the state of the objects that are already entailed by the state diagram
transitions.

As an example, assume the following Analysis State Diagram for offered subjects:

Open Closed
New-subject Close-subject

Figure 3.7

This state diagram specifies that the event new-subject is the creation event for
offered subjects and that the event close-subject can only be applied to open offered
subjects. Therefore, it would be redundant to specify this information in the contracts
of the corresponding operations. The designer could easily specify the following
contract to close an offered subject:

Operation: Close-subject (sub-name, course-id)
Precondition:
Semantics: To close a subject of an academic course.
Postcondition:

1. If the offered subject o defined by the academic course course-id and the
subject sub-name is not Open then the operation is invalid.

2. Otherwise, the operation is valid and the specialization of the offered
subject o is changed from open to closed.

Figure 3.8

Understanding Redundancy in UML Models for Object-Oriented Analysis 669

The postcondition 1 of the previous contract is redundant since it specifies an
aspect already defined in the state diagram for offered subjects defined in Figure 3.7.

4 Dealing with Redundancy in the UML Analysis Model

In this section we discuss about the advantages and inconveniences of considering
non-redundant UML Analysis Models. We propose some guidelines to avoid
redundancy and we define the semantics of the execution of a sequence diagram in
this case. We finally show the advantages that could provide a tool able to generate
(redundant) views of a non-redundant model.

4.1 Discussion about the Advantages of Non-redundant Analysis Models

We think that a non-redundant analysis model presents the following advantages as far
as software development is concerned:

1. It contributes to desirable properties of a software system specification

Modifiability and consistency are some of the properties that must be achieved to
obtain a well-written specification [Dav93].

Usually, a software system is under continuous evolution. A specification is
modifiable if changes to the requirements can be made easily, completely and
consistently. It is not difficult to see that, if a certain redundant aspect evolves, we
need to modify it in all the models where it is specified. On the contrary, this does not
happen in a non-redundant specification.

For instance, if it happens that the requirement about the maximum number of
subjects a student may be enrolled in during an academic course changes from five to
seven, it will be more difficult to modify the analysis model if we consider the
operation contract enrol-1 (see Figure 3.2) than with the operation contract enrol-3
(see Figure 3.5)

On the other hand, a specification is consistent if no subset of requirements stated
therein conflict. Again, in a redundant specification, it is easier to define inconsistent
requirements because, since a single aspect is specified several times and in several
models, it is difficult to guarantee that it is always specified in the same way.

For instance, it will be more difficult to keep the specification consistent with the
operation contract enrol-1 since we could easily have specified in it that the maximum
number of subjects for a student into an academic course is three, which would clearly
enter in contradiction with the information provided by the conceptual model.

2. It facilitates software design and implementation

Redundancies at the analysis level will be easily propagated to the following stages of
software development, i.e. to design and implementation, causing in general a
significant reduction in the efficiency of the final system. For instance, a certain aspect
could be designed and implemented twice, also in two different ways, if the designer
or the programmer do not realise that it is redundantly specified.

670 Dolors Costal et al.

Consider again the conceptual model of Figure 3.1. If we are implementing it in a
relational database, we will probably obtain a (partial) logical schema with the
following tables (primary key attributes are underlined):

Ac-course (course-id, year)
Subject (s-name, nr-credits)
Offered-course (course-id, s-name)

{course-id} is a foreign key that references Ac-course
{s-name} is a foreign key that references Subject

Student (st-id, name)
Enrolment (course-id, s-name, st-id)

{course-id, s-name} is a foreign key that references Offered-course
{st-id} is a foreign key that references Student

If we directly design the transaction corresponding to the operation contract enrol-1
(see Figure 3.2), the transaction will include a check for each of the validation
postconditions of the operation contract. In particular, it will verify that
(postconditions 1, 2 and 3):

• Student st-id, course course-id and subject subject-name exist.
• Course-id is offered in course course-id.
• Student st-id is not enrolled into subject subject-name for the course course-id.

However, it is not difficult to see that due to primary and foreign keys the database
alone will already guarantee that these postconditions are satisfied, (and thus, that they
must not be implemented inside the transaction).

In a similar way, we could implement the checking of the constraints e) and g)
directly into the database management system by means of triggers or stored
procedures. Again, the transaction corresponding to enrol-1 would probably also
unnecessarily include a check to guarantee that these constraints are not violated by
the transaction.

Although it can be argued that this drawback can be prevented if software design
includes a first initial step to remove redundancy between the different models, we
believe that this would enter into a contradiction with the way in which we do analysis
since we would first redundantly specify an aspect into different models to remove the
same redundancy afterwards.

4.2 Defining a Canonical (Non-redundant) Analysis Model

As we have seen in the previous section, non-redundant analysis models present
several advantages over the redundant ones. Therefore, we need some criteria to
define non-redundant models. We call canonical analysis model the non-redundant
analysis model resulting from applying the criteria proposed in this section.

Removing redundancy between the graphical and structural constraints of the
conceptual model and the operation contracts can only be done by avoiding the
definition of the corresponding postconditions in the operation contracts since they
cannot be removed from the conceptual model.

Understanding Redundancy in UML Models for Object-Oriented Analysis 671

In a similar way, redundancy between sequence diagrams or the state model and the
operation contracts can only be done by avoiding the definition of the corresponding
postconditions in the operation contracts. One could argue that it could also be
removed from the sequence diagram or the state model but this would imply not to
define them at all. Nevertheless, since the utility of these UML diagrams is doubtless,
we believe that this alternative is not realistic.

To remove redundancy between textual constraints in the conceptual model and the
postconditions of the operation contracts, we could choose to specify either the
constraints or the postconditions. In the first case, if we just specify textual
constraints, we would increase the localization of the information definition since we
would specify a constraint a single time in the conceptual model rather than
distributed among all the operations that may affect it. Since localization is an
important issue regarding the construction, understanding and changeability of
analysis models [Oli86, CSO+97], we think that this is the best alternative to obtain
the canonical model.

For instance, we increase the localization of the information definition if the
constraint that at most 80 students can be enrolled into an offered course is specified
only once in the conceptual model instead of several times in the contracts of the
operations to enrol a student, to change the enrolment of a student, to offer a new
subject, etc., i.e. once for each operation that may violate this constraint.

The canonical model of our example of section 3 would contain the conceptual
model of Figure 3.1, the sequence diagram of Figure 3.4, the state diagram of Figure
3.7 and the operation contracts of enrol-3 (Figure 3.5) and close-subject (Figure 3.8,
without the postcondition 1).

As a conclusion, we can see that the canonical analysis model keeps away from
redundancy by avoiding it in the definition of the postconditions of the operation
contracts. This is not surprising since we can observe that operation contracts are
involved in all different types of redundancy that we have identified. Moreover, an
aspect specified into a certain model (other than the contracts), may be affected in
general by several operations. Therefore, to increase localization, it is more reasonable
to specify it in only one place.

Furthermore, this proposal leads to postconditions with only dynamic constraints
(all the static ones are specified in the conceptual model). As a side effect, this results
in an emphasis of dynamic constraints that improves their understandability.

Finally, in the canonical model, since only the operation contracts are textual
descriptions, a certain aspect is specified graphically whenever possible. This results
also in a more comprehensive analysis model.

4.3 Semantics of Sequence Diagrams Execution

When we consider non-redundant operation contracts, its execution semantics depend
on the rest of the analysis models. Therefore, an operation postcondition must be
understood as something that is performed as a necessary, but not always sufficient,
condition to execute the corresponding operation. In this sense, it is not guaranteed
that an operation will be executed satisfactorily if its postcondition succeeds, since its
execution may lead to a violation of a constraint specified somewhere else.

672 Dolors Costal et al.

As a consequence, the semantics of the execution of a system sequence diagram has
to be defined as follows:

• The conditions entailed by a State Diagram must be satisfied before the
execution of each operation appearing in the system sequence diagram.

• The conditions entailed by the Conceptual Model must be satisfied after the
execution of all the operations that appear in a system sequence diagram.

• For each operation of the system sequence diagram, its postconditions do not
lead to an invalid execution of the operation.

• If any of the previous three conditions does not hold, then all the operations are
rejected and the information base is not updated at all.

Note that this semantics is required not only for non-redundant models but also for
any relative redundant model. Therefore, in practice, as absolute redundancy is almost
never achieved, the semantics stated here should be the usual one.

4.4 Redundant Views of a Canonical Analysis Model

The whole idea of analysis models is to foster understanding and this may sometimes
require to isolate certain aspects from other aspects. Since many aspects participate in
multiple views, one could argue that this redundancy is unavoidable and, in this way,
disagree with the guideline that suggests not to have redundancy in the analysis model.
However, the use of a canonical model does not prevent the designer having
redundant views of the analysis model.

In fact, the use of a graphical language like the UML is based on the assumption
that we will be using computer-based tools and not �paper and pencil� or mere
semantics-free drawing tools. Therefore, we think that such a CASE tool should store
explicitly only the canonical model and should be able to reason about it to identify
redundancy that could appear in the operation contracts and to keep consistency
among them. Moreover, a tool of this kind could also be able to generate a skeleton of
an operation contract that includes all aspects already specified in other models. This
would clearly help the work of the designer since he would have a more complete
view of the impact of each decision taken. The definition of such a CASE tool is far
beyond the scope of this paper and it is left for further research.

For instance, if we had the conceptual model of Figure 3.1, we could think of a
CASE tool that would automatically generate the following absolute redundant
skeleton of a contract for the operation to enrol a student into an academic course.
Note that this skeleton includes the checking of all constraints specified in the
conceptual model.

Understanding Redundancy in UML Models for Object-Oriented Analysis 673

Operation: enrol (course-id, subject-name, st-id)
Precondition:
Semantics: To enrol a student into a subject offered in an academic course.
Postcondition:

1. If the student st-id or the course course-id or the subject subject-name do not
exist, then the operation is invalid.

2. If the subject subject-name is not offered in course course-id, then the operation
is invalid.

3. If the student st-id is already enrolled into subject subject-name for the course
course-id, then the operation is invalid.

4. If the student st-id has already five enrolments corresponding to academic course
course-id, then the operation is invalid.

5. If the student st-id has already an enrolment into subject subject-id with a mark
greater than 5, then the operation is invalid.

6. If the offered course defined by subject subject-name and academic course
course-id has 80 enrolments already, then the operation is invalid.

7. If, for any of the subjects previous to subject-name, the student st-id does not
have a mark greater than five into some enrolment in that subject, then the
operation is invalid.

Figure 4.1

Even if such a CASE tool does not exist yet, we believe that the advantages we
have discussed in section 3 justify putting the effort to generate a canonical model
rather than falling into redundancy. Moreover, the inexistence of such a CASE tool
alone does not justify the preference for redundant analysis models since, as we have
seen, it is as difficult to define an absolute redundant analysis model (the only way we
can get rid of all interactions between multiple views) by hand than a canonical one.

5 Conclusions

In this paper, we have studied the problem of redundancy in the context of the UML
Analysis Models. First, we have identified redundancies that may arise and we have
classified them in three different types: redundancy between the Conceptual Model
and Operation Contracts, redundancy between System Sequence Diagrams and
Operation Contracts and redundancy between Analysis State Diagrams and Operation
Contracts. We think that being aware of these different kinds of redundancy helps the
designer to fully understand the relationships that exist among different parts of an
specification.

We have also justified the advantages of non-redundant analysis models in terms of
desirable properties of software specifications and ease of design and implementation.
We have defined a canonical model that avoids redundancy by not including already
entailed checkings in the postcondition of operation contracts. We have described
several advantages that our canonical model presents over alternative ways of
avoiding redundancy. We have provided an adequate semantics of Sequence Diagrams

674 Dolors Costal et al.

execution in order to define the correct behaviour of non-redundant operations. This
semantics should also be applied in case of having not fully redundant operations.
Finally, since redundancy may be useful in some cases to permit the isolate use of
certain parts of an specification, we have sketched the possibility of having redundant
views of some aspects of the analysis model.

Acknowledgements

We would like to thank Antoni Olivé, Cristina Gómez and the anonymous referees for
their useful comments. This work has been partially supported by the CICYT program
project TIC99-1048-C02-01.

References

[Boo96] G.Booch. �Object Solutions: Managing the Object-Oriented Project�,
Addison-Wesley, 1996.

[CSO+97]D.Costal; M.R.Sancho; A.Olivé; M.Barceló; P.Costa; C.Quer and
A.Roselló. "The Cause-Effect Rules of ROSES", Proc. of the First East-
European Symposium on Advances in Databases and Information Systems
(ADBIS'97), St. Petersburg, September 1997, pp. 399-405.

[Dav93] A.M. Davis �Software Requirements. Objects, Functions and States�,
Prentice-Hall, 1993.

[Dou98] B.Douglass. �Real-time UML: Developing Efficient Objects for Embedded
Systems�, Addison-Wesley, 1998.

[FS97] M.Fowler and K.Scott. �UML Distilled�, Addison-Wesley, 1997.
[JBR99] I.Jacobson; G.Booch and J.Rumbaugh. �The Unified Software

Development Process�, Addison-Wesley, 1999.
[Kai99] H.Kaindl. �Difficulties in the Transition From OO Analysis to Design�.

IEEE Software, Sept./Oct. 99, pp. 94-102
[Lar98] C.Larman. �Applying UML and Patterns�, Prentice Hall, 1998.
[Mul97] P.A.Muller. �Modélisation Object avec UML� (in french), Éditions

Eyrolles, 1997.
[Oli86] A.Olivé. �A comparison of the operational and deductive approaches to

conceptual information systems modelling�, Proc. IFIP-86, North-Holland,
Dublin, 1986, pp. 91-96.

[Pre97] R.Pressman. �Software Engineering: A Practitioner�s Approach�, McGraw-
Hill, 1997.

[RJB99] J.Rumbaugh; I.Jacobson and G.Booch. �The Unified Modeling Language
Reference Manual�, Addison-Wesley, 1999.

[Rum96] J.Rumbaugh; et al. �Object Oriented Modeling and Design�, Prentice-Hall,
1996.

[RV00] P.Roques and F.Vallée. �UML en action� (in french), Éditions Eyrolles,
2000.

[WK99] J.Warmer and A.Kleppe. �The Object Constraint Language�, Addison-
Wesley, 1999.

	Introduction
	UML Models for Analysis
	Use Case Model
	The Conceptual Model
	The System Behaviour Model
	The Analysis State Model

	Identifying Redundancy in the UML Analysis Model
	Conceptual Model and System Behaviour Model
	Redundancy inside the System Behaviour Model
	Analysis State Model and System Behaviour Model

	Dealing with Redundancy in the UML Analysis Model
	Discussion about the Advantages of Non-redundant Analysis Models
	Defining a Canonical (Non-redundant) Analysis Model
	Semantics of Sequence Diagrams Execution
	Redundant Views of a Canonical Analysis Model

	Conclusions
	Acknowledgements
	References

