
A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 701-705, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Process Inheritance

Christoph Bussler

Oracle Corporation
Redwood Shores, CA 94065, U. S. A.
Chris.Bussler@Oracle.com

Abstract. In large process deployments where an enterprise has to
model and maintain a large number of processes that are specializations
of each other it is advantageous to provide formal support for process
specialization called process inheritance. A process inheritance model
definition is introduced as well as a process definition language con-
struct for defining process specialization.

1 Introduction

A very naïve but very pragmatic way to achieve the specialization of processes is to
copy the most relevant process definition and modify the copy until it implements the
desired behavior. Maintenance of processes becomes very difficult this way since
changes that have to be applied to the original and all of its copies have to be updated
manually (let alone the copies of the copy, etc.). Furthermore, the differences between
the modified copy and the original are not explicitly stated. Anyone who would like to
understand the difference has to compare the definitions.

A much more elegant and useful approach is to achieve public process specializa-
tion through process inheritance. In the following first a definition of �process� is
given followed by the definition of �process inheritance�.

2 Process Definition

A process definition consists of several different process aspects [2] [3] [4]:
• Functional aspect. The functional aspect provides constructs to define process

types and process steps. A process type is the topmost entity that is decomposed
into several process steps. Process steps are the unit of work a human or an ex-
ecutable program has to fulfill. Subprocesses are process steps that are themselves
further decomposed. Through this mechanism an abstraction hierarchy of arbi-
trary depth can be defined.

Process types as well as process steps have input and output parameters. Pa-
rameters are used to communicate data values to process steps or obtain results
from process step execution.

702 Christoph Bussler

• Control flow aspect. The control flow aspect provides constructs to define the
sequencing between process steps. The most important constructs are sequence,
parallel branching, conditional branching as well as looping.

• Data and data flow aspect. Process types as well as process steps have to access
data in order to execute the business logic. Process data are stored locally as local
variables in the scope of process types. Data flow constructs connect process data
with the input parameters and output parameters of process steps. Data flow con-
structs define which process data are connected to which process steps in order to
define which process step can read or write which process data. Data flow makes
explicit which process step reads or writes to which process data.

• Organizational aspect. The organizational aspect defines which human user is
responsible for executing a process step. If a process step is to be executed auto-
matically, it is an automatic process step without any human user assignment.

• Operational aspect. The operational aspect defines the binding of process steps
to executable programs. These programs can be productivity tools for human us-
ers or executables for automatic process steps.

3 Process Inheritance Definition

A process that inherits from another process is called a subprocess class. The process
it inherits from is called the superprocess class. A subprocess class has to have a
unique name amongst all processes. If no changes are applied to the subprocess class
its instances at execution time behave exactly the same way than instances of the su-
perprocess class. If changes are applied, the changes dictate the new behavior.
Changes to subprocess classes can be of two fundamental types, process element
overwrite and process element addition.

• Process element overwrite. A process element overwrite replaces a process
element as defined in the superprocess class with another element. The overwrite
takes place in the subprocess class. For example, if two process steps have a se-
quence control flow construct between them in the superprocess class, the control
flow construct can be overwritten by a parallel branching construct in the sub-
process class. This would allow the two process steps to be executed in parallel in
any instance of the subprocess class. All process aspects as introduced earlier can
be subject to overwrite.

• Process element addition. A subprocess class does not necessarily have to only
overwrite process elements of its superprocess class. It is possible that in the sub-
process class new process elements are added. An example for this type of change
is the addition of a logging process step that explicitly logs data from the data
flow. All process aspects as introduced above can be added.

These two fundamental types of changes that can be applied to subprocess classes at
the same time define the concept of public process inheritance.

Related work in process inheritance that requires explicit discussion at this point
can be found in [1]. While the above definition targets at a pragmatic and complete

Process Inheritance 703

approach addressing all process aspects, [1] targets an abstract and theoretical defini-
tion of process inheritance. [1] abstracts in its discussion from the data flow aspect,
from subworkflows in the functional aspect, from the organizational aspect and from
the operational aspect. Since these process aspects are not addressed, no definition of
their inheritance semantics is provided. Furthermore, it reduces the process definition
to a specific class of Petri-Nets.

4 Process Language

In the following the process definition language (similar to the one defined in [3]) is
taken as the basis for adding constructs for specialization. Due to the space limita-
tions, only a short and abstract example is given.

WORKFLOW_CLASS S /* SEND */
(IN message: send_message) /* step sending a message */

END_WORKFLOW_CLASS

WORKFLOW_CLASS R /* RECEIVE */
(OUT message: received_message) /* step receiving a message */

END_WORKFLOW_CLASS

Based on these two steps, a process called R/R (for request/reply) is defined. After
declaring two steps the control flow definition "cf_1" between the two steps follows.
They are executed in strict sequence without any branching or parallelism. Then the
data flow definitions "df_1" and "df_2" follow. Two local variables are defined that
are going to store the two messages that are sent or received. Two types of message
are necessary: �out_message� and �in_message�. The data flow section defines which
steps set or read the local variables. The organizational aspect definitions "o_1" and
"o_2" define that the process steps are executed automatically.

WORKFLOW_CLASS R/R
SUBWORKFLOWS
S: send_step;
R: receive_step;
END_SUBWORKFLOWS
CONTROL_FLOW
cf_1: sequence(send_step, receive_step);
END_CONTROL_FLOW
WORKFLOW_DATA
Message: out_message;
Message: in_message;
END_WORKFLOW_DATA
DATA_FLOW
df_1: out_message -> send_step.send_message;
df_2: receive_step.received_message -> in_message;
END_DATA_FLOW
ORGANIZATION
o_1: send_step: automatic;
o_2: receive_step: automatic;

END_ORGANIZATION
END_WORKFLOW_CLASS

704 Christoph Bussler

5 �subclass_of� Construct

In order to denote process inheritance the �subclass_of� construct is introduced to the
process language. Local variables, steps, subworkflows, control flow, data flow, the
organizational aspect as well as the operational aspect can be extended and/or over-
written in the subclass by introducing new ones or referring to the name of these con-
structs in the superclass.

In the following the concept of process inheritance is applied to the R/R example.
In this example acknowledgements are added to confirm the receipt of messages or to
receive the receipt of a sent message.

WORKFLOW_CLASS R/R_ACK
SUBCLASS_OF R/R
SUBWORKFLOWS
S: send_acknowledgment;
R: receive_acknowledgment;

END_SUBWORKFLOWS
CONTROL_FLOW
cf_1: sequence(send_step, receive_acknowledgment);
cf_2: sequence(receive_acknowledgment, receive_step);
cf_3: sequence(receive_step, send_acknowledgment);

END_CONTROL_FLOW
WORKFLOW_DATA
Message: in_acknowledgment;
Message: out_acknowledgment;
END_WORKFLOW_DATA
DATA_FLOW
df_3: receive_acknowledgment.received_message ->

in_acknowledgment;
df_4: out_acknowledgment -> send_acknowledgment.send_message;

END_DATA_FLOW
ORGANIZATION
o_3: send_acknowledgment: automatic;
o_4: receive_acknowledgment: automatic;

END_ORGANIZATION
END_WORKFLOW_CLASS

Two steps are added to send and to receive the acknowledgements. "cf_1" is over-
written in order to add the "receive_acknowledgment" step after the "send_step". Data
and data flow is added to store the acknowledgements and to pass them to the correct
steps. Organization definitions are added for the two additional steps indicating their
automatic execution.

References

1. Aalst, W. M. P. van der; Basten, T.: Inheritance of Workflows - An approach to
tackling problems related to change. Computing Science Reports 99/06, Eindho-
ven University of Technology, Eindhoven, 1999

2. Aalst, W. M. P. van der; Hee, Kees van: Workflow Management. Models, Methods,
and Systems. The MIT Press, 2002

Process Inheritance 705

3. Jablonski, S.; Bussler, C.: Workflow Management. Concepts, Architecture and
Implementation. International Thomson Publisher, 1995

4. Leymann, F.; Roller, D.: Production Workflow. Concepts and Techniques. Prentice
Hall PTR, 2000

	Introduction
	Process Definition
	Process Inheritance Definition
	Process Language
	“subclass_of” Construct
	References

