Querying Data with Multiple
Temporal Dimensions

Carlo Combi! and Angelo Montanari?
! Dipartimento di Informatica, Universita degli Studi di Verona
Ca’ Vignal 2, strada le Grazie, 15, [-37134 Verona, Italy
combi@sci.univr.it
2 Dipartimento di Matematica e Informatica, Universita degli Studi di Udine
Via delle Scienze, 206, [-33100 Udine, Italy
montana@dimi.uniud.it

Abstract. This paper focuses on the problem of designing a query lan-
guage for data models with multiple temporal dimensions.

1 Data Models with Multiple Temporal Dimensions

Valid and transaction times are commonly recognized as the basic (orthogonal)
temporal dimensions for data [2], and a variety of issues related these two di-
mensions have been systematically explored in the literature [3]. In parallel, a
considerable effort has been devoted to understand whether or not valid and
transaction times suffice to capture all relevant temporal aspects in a natural
and efficient way. In [1] we defined a new conceptual data model with four tempo-
ral dimensions that refines and extends a number of previous proposals. Besides
valid and transaction times, such a model includes event and availability times.
The event times of a fact are the occurrence times of the events that respec-
tively initiate and terminate its validity interval. The availability time of a fact
is the time interval during which the fact is available to and believed correct by
the information system (such an interval does not necessarily coincide with the
transaction time interval of the fact). In this paper, we focus on basic problems
involved in querying data with multiple temporal dimensions. The outcome is
the identification of the general requirements that a query language must satisfy
to allow one to manage multiple temporal dimensions.

2 Querying Data with Multiple Temporal Dimensions

The management of multiple temporal dimensions has an impact on many com-
ponents of query languages. In this section, we restrict our attention to those
aspects specifically related to queries involving the four temporal dimensions. To
exemplify the features of the query language, we will consider (a portion of) a
clinical database, consisting of two tables, namely, pat_sympt and pat_ther, which
contain data on patients’ symptoms and therapies, respectively. Table schema is
as follows:

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 711-714, 2002.
© Springer-Verlag Berlin Heidelberg 2002



712 Carlo Combi and Angelo Montanari

pat_sympt(P_id, symptom, VT, ET;, ET;, AT, TT)

pat_ther(P_id, therapy, VT, ET;, ET;, AT, TT)

where the attributes VT, ET;, ET;, AT, and TT respectively denote the valid
time, the initiating event time, the terminating event time, the availability time,
and the transaction time of stored facts.

WHERE and WHEN clauses. Comparisons between temporal dimensions
can be supported in two alternative ways [3]: the first one is to deal with temporal
and non-temporal data in the WHERE clause; the second one is to constrain purely
temporal conditions to appear in an ad-hoc WHEN clause. Obviously, to make it
possible to check conditions mixing temporal and non-temporal data, we must
allow temporal dimensions to occur, whenever necessary, in the WHERE clause,
no matters what option we choose. In case we opt for the second alternative
(this allows one to exploit specific tools to manage temporal data, at logical
and physical levels), another design issue is the specification of the temporal
dimensions we can refer to in the WHEN clause. The most general option is to
allow all the four temporal dimensions to be used in the WHEN clause. According
to this choice, a query that returns all and only the patient’s symptoms that
appeared no later than 3 days after their initiating event can be formulated as
follows:

SELECT symptom

FROM pat_sympt S

WHEN BEGIN(VALID(S)) - INITIATINGET(S) < 3

where INITIATING.ET(-), VALID(.), and BEGIN(.) are functions that return the
initiating event time of a tuple, the valid time interval of a tuple, and the starting
point of a given interval, respectively.

Querying past states. By default, a query is evaluated with respect to the
current state of the database (and thus to the knowledge currently available to
the information system). However, there must be the possibility of evaluating a
query over both the current and the past states of the database and/or of the
information system. If we are interested in querying the database about its past
states, we can use the well-known AS OF clause. We add an AS KNOWN clause that
allows the user to query the database about the knowledge which was available
to the information system at given time points in the past. We may also need to
jointly use both clauses. As an example, the following query determines which
data was available to the physician on October 18, according to the database
contents on October 20:

SELECT =*

FROM pat_sympt S
AS OF 970ct20
AS KNOWN 970ct18

Temporal joins. Some issues arise when more than one relation comes into play
in a query. For example, we have to assign a proper meaning to the cartesian
product of the relations that appear in the FROM clause. A possible choice is to



Querying Data with Multiple Temporal Dimensions 713

impose that temporal tuples of different relations can be associated only when
both their transaction times and their availability times overlap. Even though
this solution seems meaningful, it does not allow the users to formulate some
queries, such as, for instance, hypothetical queries where information available
at different times has to be considered. In general, the language should allow the
user to choose among different ways of executing the cartesian product between
temporal relations (one can even opt for the usual cartesian product of relations,
where the temporal attributes are treated as the standard ones).

Furthermore, besides the standard (atemporal) join, the language should
support some forms of temporal join, where the join condition allows the user
to join tuples taking into account different temporal features. As an example,
consider a scenario where the physician wants to determine the symptoms of
patients for which the valid time intervals of symptoms and therapies intersect.
The query can be formulated as follows:

SELECT symptom, S.P_id

FROM pat_sympt S, pat_ther T

WHEN NOT(VALID(S) BEFORE VALID(T)) AND
NOT(VALID(T) BEFORE VALID(S))

WHERE S.P_id = T.P_id

The WHEN and WHERE clauses can actually be replaced by a suitable join in the
FROM clause, as shown by the following equivalent formulation of the query:

SELECT symptom, S.P_id
FROM pat_sympt S TJOIN pat_ther T ON S.P_id = T.P_id AND

NOT(VALID(S) BEFORE VALID(T)) AND NOT(VALID(T) BEFORE VALID(S))
where we used the keyword TJOIN in the SELECT clause to point out that the
join involves the temporal dimensions of information.

Further complex temporal queries can be defined when the different temporal
dimensions have to be considered together. For example, for any given patient
and symptom, the following query determines the therapies decided after that
the information system became aware of the symptom and started before the
end of the symptom:

SELECT S.P_id, therapy, symptom

FROM pat_sympt S JOIN pat_ther T ON S.P_id = T.P_id

WHEN INITIATING ET(T) AFTER BEGIN(AVAILABLE(S)) AND
BEGIN(VALID(T)) BEFORE END(VALID(S))

where AVAILABLE(-) returns the availability time of the considered tuple.

Defining temporal dimensions of query results. When several temporal
relations are involved in a query, the language must provide some mechanisms to
allow the user to obtain a consistent result, that is, a temporal relation endowed
with valid, transaction, event, and availability times'.

! In this paper, we consider only temporal databases where each relation has all the
four temporal dimensions. As in the case of valid and transaction databases, one can



714 Carlo Combi and Angelo Montanari

While transaction and availability times of the resulting relation can be obtained
(according to the standard definition of the cartesian product given above) as the
intersection of the transaction times and the availability times of the considered
tuples, respectively, valid and event times are often explicitly defined by the user.
In order to properly evaluate a query, however, some default criteria must be
specified to determine the values of the valid and event times of the resulting
relation, whenever the user does not provide any explicit rule. As an example,
the valid time of each tuple belonging to the resulting relation can be defined as
the intersection of the valid times of the corresponding tuples belonging to the
relations that occur in the FROM clause, while its initiating and terminating event
times can be defined as the maximum of the initiating and terminating event
times of the corresponding tuples, respectively. However, we expect that, in most
cases, the user explicitly defines the way in which the valid and event times of the
resulting relation must be computed, taking into account the meaning he/she
assigns to the query and the relative data. As an example, in the following query
the user assigns to the valid and event times of the resulting relation the values
that these attributes have in the pat_sympt relation:

SELECT symptom, S.P_id WITH VALID(S) AS VALID, INITIATINGET(S)
AS INITIATING, TERMINATING_ET(S) AS TERMINATING

FROM pat_sympt S TJOIN pat_ther T ON S.P_id = T.P_id AND
NOT(VALID(S) BEFORE VALID(T)) AND NOT(VALID(T) BEFORE VALID(S))

3 Conclusions

This paper focused on the design of a query language for temporal databases
with multiple temporal dimensions. Even though we can debate whether or not
a database system needs to provide a special support, at the logical/physical
level, to manage multiple temporal dimensions, it is not controversial that these
dimensions must be taken into consideration at the level of requirements engi-
neering applied to the design of information systems.

References

1. C. Combi and A. Montanari. Data Models with Multiple Temporal Dimensions:
Completing the Picture. In K. R. Dittrich, A. Geppert, M. C. Norrie (eds.), Ad-
vanced Information Systems Engineering, 13th International Conference, (CAiSE
2001). LNCS 2068, Springer, Berlin Heidelberg, 187-202, 2001. 711

2. C. Jensen, C. Dyreson (Eds.) et al. The Consensus Glossary of Temporal Database
Concepts - February 1998 Version. In Temporal Databases - Research and Practice,
LNCS 1399, Springer, Berlin Heidelberg, 367—405, 1998. 711

3. G. Ozsoyoglu and R. T. Snodgrass. Temporal and Real-Time Databases: A Survey.
IEEE Transactions on Knowledge and Data Engineering, 7(4): 513-532, 1995. 711,
712

provide suitable clauses and/or keywords to allow the user to obtain relations with
a proper subset of temporal dimensions.



	Querying Data with Multiple Temporal Dimensions
	Data Models with Multiple Temporal Dimensions
	Querying Data with Multiple Temporal Dimensions
	Conclusions


