A Framework for Tool-Independent Modeling
of Data Acquisition Processes
for Data Warehousing

Arne Harren and Heiko Tapken

Oldenburg Research and Development Institute for Computer Science Tools and
Systems (OFFIS)
Escherweg 2, 26121 Oldenburg, Germany
{arne.harren,heiko.tapken}@offis.de
http://wuw.offis.de

Abstract. Due to their integrated and unified view over data of various
operational and external systems, data warehouse systems nowadays are
well established to serve as a technical fundament for strategic data anal-
yses. Unfortunately, data acquisition which is responsible for introducing
new or changed data from source systems into the data warehouse is not
static and new requirements may be identified as time walks by. There-
fore, comprehensibility and maintainability of data acquisition processes
are crucial to the long-time success of a data warehouse.

Within the scope of this paper we sketch some aspects of our framework
for tool-independent data acquisition design including the framework’s
architecture, the underlying design process model, and the management
of metadata.

1 Introduction

Data warehouses which usually integrate cleansed data from operational and ex-
ternal data sources, provide a reliable platform for decision support. Besides the
data warehouse database, enterprise-wide data warehouse environments typically
comprise multitudes of components which store data, e.g. data sources, staging
areas, operational data stores, and online analytical processing systems. Often,
these environments contain more than one physical data warehouse or data mart
that are fed by the source systems. For further complexity, these components
may be spread across various platforms and may store their metadata in vendor-
dependent repositories.

With regard to the overall coordination of the data flow, maintainability
and comprehensibility are key factors for sound data acquisition. Therefore, our
research project TODAY (Toolsuite for Managing a Data Warehouse’s Data
Supply) aims at providing a framework that supports an iterative definition
of data acquisition processes from data sources to target systems, enforces a
clear separation of process descriptions from their corresponding, optimized im-
plementations, and employs commercial extraction, transformation and loading
tools for process execution.

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 733-736, 2002.
© Springer-Verlag Berlin Heidelberg 2002

734 Arne Harren and Heiko Tapken

2 Architecture

The framework enables modeling of the overall data flow within data acqui-
sition processes on an extensible, tool-independent design layer that permits
hiding tool-specific details of process implementations. After process design is
done, (semi-)automatic derivation of optimized, tool-specific implementations is
provided by the framework’s optimization component in conjunction with tool-
dependent deployment components. Thus, processes on the design layer may be
modeled intuitively and do not necessarily have to be specified in an optimized
way from a tool’s point of view. This enables easy adoption of new functionality
within a process without having the designer worrying about the impacts on
later optimization.

Subsequent to the deployment of process implementations into the tools’
proprietary metadata repositories, data acquisition processes can be set to pro-
duction at the execution layer. At this layer, process execution is scheduled and
monitored by a dedicated controller component.

Figure 1 sketches the framework’s architecture and the relationship between
the design layer and execution layer.

design layer

0 s

tool-independent
logical source schemata process descriptions logical target schemata
4
4 process optimization L
and implementation
v

. schema extraction
schema extraction and abstraction
and abstraction

optimized, generated tool-dependent
process implementatipns

/ - deployment; e i \
' & B / » g ’ v A o a
S — 7l

transformation tools
and staging areas

L]

process execution controller

source systems extraction tools extraction buffers loading tools target systems

execution layer

Fig. 1. Framework architecture

3 Design Process Model

For process design at the design layer, we have developed a process model which
allows simple, flexible, comprehensive design of data acquisition [3]. This process
model comprises the following six phases which are traversed iteratively:

A Framework for Tool-Independent Modeling of Data Acquisition 735

1. As a prerequisite for tool-independent modeling, counterparts of physical
source and target schemata have to be described on the basis of our frame-
work’s logical data model. These logical schemata hide details of the corre-
sponding data structures, e.g. relational databases or XML files.

2. Data transformations can be modeled by means of data flow graphs in which
each node describes a data processing step. Each step is associated with an
operator, e.g. for providing data from a source system, deriving new attribute
values, or filtering data streams. Data can be manipulated using our tool-
independent transformation language TL?2.

3. In order to be able to generate process implementations in subsequent phases,
appropriate tools have to be selected from a given set of available tools.

4. As a first part of process optimization, processes are partitioned and restruc-
tured based on tool capabilities and operator dependencies.

5. The previous phase results in process segments consisting of unary and bi-
nary operators that are now converted to tool-dependent operators. As a
second part of process optimization, each segment is locally optimized with
regard to the specific tool.

6. All generated, optimized, tool-dependent process segments are now deployed
into the tools’ private repositories using the required, vendor specific meta-
data format. Functions for data manipulation described in TL? are mapped
to equivalent functions in tool-specific programming languages.

4 Metadata Management

Within our framework we are using a hybrid metadata architecture (cp. [1,4]).
Therefore, each software component involved in the environment may use its
own repository for local metadata while shared metadata are primarily stored
in a central repository.

For central metadata storage, we have developed the prototyped, extensible
repository system TOY (TODAY Open Repository) [2] which is capable of han-
dling metadata based on metadata structures using the Meta Object Facility
(MOF) [6]. We implemented the Common Warehouse Metamodel (CWM) [5]
and use extensions to it in order to meet all needs at the design and execu-
tion layer. Access to a repository instance is possible using the system’s object-
oriented API or using text streams which comply to the metadata interchange
format XMI [7]. By combining APT and stream-based metadata exchange with
XSL [8] and additional wrappers for accessing proprietary repository systems,
we can reduce time and effort which needs to be spent for developing mappings
between different metadata repositories.

5 Current Status and Future Work

We are currently implementing a prototype system of our framework. In this pro-
totype we support a set of base operators for data transformations (cp. [3]) and
integrate a commercial tool for extraction, transformation, and loading of data.

736 Arne Harren and Heiko Tapken

Completing the prototype shall show the soundness of our concepts. Evaluation
will be done in cooperation with an enterprise within the telecommunication
industry.

References

1.

2.

H. H. Do, and E. Rahm: On Metadata Interoperability in Data Warehouses, Tech-
nical report 1-2000, Institute for Informatics, University of Leipzig, 2000. 735

A. Harren, H. Tapken: TODAY Open Repository: An Extensible, MOF-Based Meta-
data Repository System, technical report, Oldenburg Research and Development
Institute for Computer Science Tools and Systems (OFFIS), 2001. 735

A. Harren, H. Tapken: A Process Model for Enterprise-Wide Design of Data Ac-
quisition for Data Warehousing, Proc. of the 4th Intl. Conference on Enterprise
Information Systems, Ciudad Real, Spain, ICEIS Press, 2002. 734, 735

D. Marco: Building and Managing the Meta Data Repository, A Full Lifecycle Guide,
Wiley Computer Publishing, 2000. 735

Object Management Group: Common Warehouse Metamodel (CWM) Specification.
Version 1.0, 2001. 735

Object Management Group:OMG Meta Object Facility (MOF), Specification, Ver-
ston 1.8, 1999. 735

Object Management Group: OMG XML Metadata Interchange (XMI) Specification,
Version 1.1, 2000. 735

World Wide Web Consortium: Extensible Stylesheet Language (XSL) Version 1.0,
W3C Recommendation, 2001. 735

	A Framework for Tool--Independent Modeling of Data Acquisition Processes for Data Warehousing
	Introduction
	Architecture
	Design Process Model
	Metadata Management
	Current Status and Future Work

