Managing Complexity of Designing Routing Protocols
Using a Middleware Approach

Cosmina Ivan', Vasile Dadarlat’, and Kalman Pusztai’

" Department of Computer Science & Information Systems
University of Limerick, Ireland
cosmina.ivaneul.ie
2 Department of Electronics & Computer Engineering
University of Limerick, Ireland
vasile.dadarlat@ul.ie
*Department of Computer Science
Technical University of Cluj, Romania
kalman.pusztai@cs.utcluj.ro

Abstract. Designing and architecting new routing protocols is an
expensive task, because they are complex systems managing distributed
network state, in order to create and maintain the routing databases.
Existing routing protocol implementations are compact, bundling
together a database, an optimal path calculation algorithm and a
network state distribution mechanism. The aim of this paper is to
present a middleware-based approach for designing and managing
routing protocols based on the idea of decomposing routing protocols
into fundamental building blocks and identifying the role of each
component, and also to propose a framework for composing
dynamically new routing protocols making use of a distributed object
platform.

1 A New Approach for Designing Protocols

A routing protocol allows the communication nodes of different networks to exchange
information in order to update and maintain routing tables. Well known examples of
routing protocols are: RIP, IGRP, EIGRP, and OSPF. The routers are capable to
support multiple independent routing protocols and maintain forwarding tables for
several routed protocols [3].

Traditionally, the term middleware was applied to software that facilitates remote
database access and systems transactions, some common middleware categories may
include: TPs, DCE or RPC systems, various ORBs. In newer accepts, the role of
middleware would be to manage the complexity and heterogeneity of distributed
infrastructures, providing simpler programming environments for distributed-
application developers and new communication services. Well-known platforms

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 737-741, 2002.
© Springer-Verlag Berlin Heidelberg 2002

738 Cosmina Ivan et al.

offering middleware solutions for programming various distributed objects systems
are OMG’s CORBA and Microsoft’s DCOM [9], [10].

As a general observation, the existing routing protocols are developed and
implemented in a compact, monolithic manner, and they are highly integrated into
each vendor's equipment, or even specific to each vendor. This approach obstructs the
dynamic introduction of new routing protocols and services into the Internet. Making
use of distributed objects technologies, it is possible to design a binding model, used
by the programmable objects to construct the traditional services, as well as a design
solution for new routing services. [2], [6].

On making use of OO-distributed technologies one must design the routing
protocol implementations based on separating the routing database, the routing
information announcement and the optimal path calculation. This technique would
allow protocol developers to create various routing architectures in a modular fashion
and to be able to introduce new routing services in a dynamic way, as a basis for the
programmability of routing protocols [2], [10].

Generic clases

Fig. 1. RIP class hierarchy

2 Design and Implementation Considerations

We propose a binding model for characterizing each routing protocol used for
decomposing the protocol into fundamental blocks and a hierarchy of classes, which
reflects the general structure of any routing protocol implementations. The most
important components of the binding model are:

Managing Complexity of Designing Routing Protocols 739

e Access interfaces, acting above the operating system’s kernel
RI manager managing the routing information in the network
Event generator, controls internally the transmission of routing information for
the database updating, or the calculus of the optimal paths

e Database object, used for maintaining the distributed routing state of nodes, and
update manager object, which updates the database when new routing
information is received

e Optimal path algorithms, are components which operate on the contents of the
database to calculate forwarding tables

By introducing standard interfaces between these routing components, code reuse
could be enabled assuring the independency of the specific routing protocols and
being fully programmable. By allowing components to create bindings at run-time,
we enable the dynamic introduction of new routing services into networks.

To realize the binding model was designed a routing SDK named RP-ware,
consisting of a hierarchy of base class’s implemented using Java and making use of
CORBA services. The prototype implements a set of three groups of classes: generic
classes which offers basic functionality, a middleware layer containing routing
component classes and the lower layer which contains the protocol specific classes.
(Figure 1).

A short presentation of the functionality for some of these classes is made below a
database class supports generic methods for creating new databases. The network
connection class provides the mechanisms used at the interface with the system level,
for transmitting routing messages to the network. A range of communication
mechanisms will be supported, including TCP and UDP socket management or
remote method invocations (RMI)[8]. Because many routing protocols are
multithreaded, a thread management class will wrap operating system specific
methods. Routing component classes are defined or derived to allow the construction
of different routing architectures. A routing database extends the generic database
class, encapsulating all the route entries available at a network node and will provide
information about the network nodes and their associated paths. Protocol specific
classes are used to describe the objects that participate in a specific routing protocol
implementation.

The components of a programmable RIP implementation are shown in Figure 2.
The component that directly communicates with the network is the network
connection object (based on UDP sockets, or remote method invocations). In the
case of sockets, a RIP packet processor object is involved, reading routing protocol
specific headers from the received packets. Once a packet has been examined and
verified, a route entry is extracted and sent to the RIP entry processor object. The RIP
update manager object is then invoked, which exchanges information with the metric
object, the RIP route comparison object, and the routing database. Following this, the
RIP route comparison object inputs the two entries and produces the comparison
result based on a specified set of metrics. If the received entry is better than the
existing one, the routing database object is used to replace the existing entry. For this
purpose the RIP event generator initiates a RIP triggered update, issued by the RIP
update manager. Updated entries are finally transmitted to the neighboring routers via

740 Cosmina Ivan et al.

the routing info manager and network connection objects. Regular RIP updates are
periodically initiated, also using a routing info manager object.

Route
comparision Metric

Routing
database
RIP updlate RIP event
manager generator

RIP entry

processor

l—‘ v

Rowting info

Authentication|

i RIP processor
algorithm

Network connection
RIP packet A RIP packet
ouT IN

Y

Fig. 2. The programmable RIP

The interfaces were written using Interface Definition Language (IDL)[8] and
compiled using Orbacus 4.1.1 over NT platform. Since the functions of a router are
over a wide range, we have provided interfaces for the following modules: the
retrieval of information about host and interfaces, and IP route additions and deletions
which result in kernel routing table updates. We also intend to extend our project to
offer support for other routing protocols covering BGP, OSPF. An extract from the
idle definition file for the RIP update manager:

struct rip interface

/* RIP is enabled on this interface. */
int enable_ network;
int enable interface;
/* RIP is running on this interface. */
int running;
/* RIP version control. */
int ri send;

} int ri receive;

interface rip interface

void rip interface clean ();
void rip_ interface reset ();

Managing Complexity of Designing Routing Protocols 741

3 Conclusions

In our work, we have identified similarities between a numbers of routing protocols
and designed a routing development kit and middleware for programming routing
protocols. We have argued for the construction of routing protocols by extending and
combining a set of components, hierarchically organized. This leads to an open
programmable design that can greatly facilitate the design and deployment of new
routing architectures. We have proposed a set of components and have outlined their
interaction in order to construct a routing protocol. By being able to dynamically
program routing protocols we can evaluate and change their structure in a dynamic
manner, as is needed.

References

1. Lazar, A.A., : Programming Telecommunication Networks, /[EEE Network, vol.11,
no.5, September/October 1997.

2. Yemini, Y., and Da Silva, S, "Towards Programmable Networks", IFIP/IEEE
International Workshop on Distributed Systems: Operations and Management,
L'Aquila, Italy, October,(1996)

3. Malkin, M. ,:IP version 2- IETF Network Working Group RFC 1723, (1994.)

4. Merwe J. et al, “The Tempest: A Practical Framework for Network
Programmability”, IEEE Network Magazine, 12(3), (1998)

5. Merit GateD Consortium, http://www.gated.net

6. Moy, J.,:OSPF version 2- IETF Network Working Group RFC 2328, April 1998

7. Staccatos, V., Kounavis, E., Campbell, A.,: Sphere- A binding model and
middleware for routing protocols, OPENARCH' 01, Alaska, April 27-28, 2001.

8. www.omg.org

9. Vinoski, S. “CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments,” [EEE Communications Magazine, vol. 14,
February 1997.

	A New Approach for Designing Protocols
	Design and Implementation Considerations
	Conclusions
	References

